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A crash course in topos theory



Warm-up: locales

For each topological space X we can consider its lattice of open
sets O(X): a complete lattice satisfying the infinite distributive law:

a ∧⋁i bi = ⋁i(a ∧ bi) . (*)

A complete lattice satisfying (*) is called a locale.

It’s possible to re-do all of general topology taking locales as the
basic notion in place of topological spaces. Some care is required
to phrase everything in terms of open sets, rather than points.

This is called constructive or point-free topology.
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Grothendieck toposes

Locales are slightly generalised topological spaces; Grothendieck
toposes are substantially generalised topological spaces.

• A locale is a poset with finite meets, arbitrary joins, and
compatibilities between the two.

• A Grothendieck topos is a category with finite limits, arbitrary
colimits, and compatibilities between the two.

Note: just like the elements of a locale, the objects of a topos
represent the opens of a generalised space, and not the points.

The points of a topos are a derived notion: what makes life
interesting is that these points may have automorphisms!
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Grothendieck toposes

A Grothendieck topos is not just a generalised space. It is also a
universe, like the universe of sets, within which one can do
mathematics. Thus, in any topos C one can speak of:

• Spaces (= locales) internal to C;
• k-modules internal to C (where k is a real-world ring);
• Complex numbers internal to C;
• Hilbert spaces internal to C;

and so on. Some care is needed: the axiom of choice may not hold
in C and so, for example, Heine–Borel and Gelfand–Naimark may
fail.
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Toposes vs groups

Any (discrete) group G gives rise to a topos:

Definition
The topos of G-sets BG is the category with right G-sets as objects,
and as maps, equivariant functions.

Conversely, each object A of a topos C gives rise to a group:

Definition
The group of automorphisms of A ∈ C is the group

Aut(A) = { f∶A→ A ∣ f invertible } .
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Toposes vs spaces

Any space (= locale) S gives rise to a topos:

Definition
The topos of sheaves Sh(S) is the category with as objects the
local homeomorphisms A→ S, and as maps, commuting triangles.

Conversely, each object A of a topos C gives rise to a space:

Definition
The locale of subobjects of A ∈ C is the partially ordered set

O(A) = {U↣ A}/∼ ;

this is a complete lattice satisfying (*), hence a locale.
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Pseudogroups

Definition
A monoid M is an inverse monoid if for each m ∈ M there is a
unique m∗ such that mm∗m = m and m∗mm∗ = m∗.

Such an M has a partial order ⩽ and a compatibility relation ⌣:

m ⩽ n iff m = nm∗m
m ⌣ n iff mn∗,m∗n idempotent .

M is a pseudogroup if every pairwise compatible family has a join
with respect to the partial order, and each (–)m preserves joins.

Pseudogroups correspond to (localic) étale groupoids G1 ⇉ G0.

7



Pseudogroups

Definition
Let M be a pseudogroup. An M-set is a set X with a right M-action
and a map ¯(–)∶ X→ E(M) to the set of idempotents in M satisfying

xx̄ = x and xm = m∗xm .

Such an X also has a partial order and ⌣ relation:

x ⩽ y iff x = yx̄ and x ⌣ y iff xȳ = yx̄ .

X is an M-sheaf if every compatible family has a join which is
preserved by the M-action.

If M corresponds to G = G1 ⇉ G0, then M-sheaves correspond to
equivariant sheaves on G: that is, local homeomorphisms X→ G0
with a right action X ×G0 G1 → X over G0.
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Toposes vs pseudogroups

Any pseudogroup M gives rise to a topos:

Definition
The topos of sheaves on M is the category of M-sheaves and maps
preserving the right action and (–).
Conversely, each object A of a topos C gives rise to a pseudogroup:

Definition
The pseudogroup of partial isomorphisms of A ∈ C is the set

PAut(A) = { U��
�����

��

��
>>>

A A
} /∼ ,

with monoid structure given by composition of partial maps.
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The Jonsson–Tarski topos



Jonsson–Tarski algebras

Definition
A Jonsson–Tarski algebra is a set X equipped with an
isomorphism X→ X × X.

Jonsson–Tarski algebras are models for an equational theory. It
has two unary operations and one binary operation:

x↦ xℓ x↦ xr x, y↦ x ∗ y

subject to the equations(x ∗ y)ℓ = x (x ∗ y)r = y (xℓ) ∗ (xr) = x .
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The Jonsson–Tarski topos

Proposition (Freyd, 1970s)
The category JT of Jonsson–Tarski algebras is a topos.

So associated to each object of JT is a group, a space and a
pseudogroup. In fact, there’s a very natural choice of object.

Definition
The Jonsson–Tarski algebra F1 is the free Jonsson–Tarski algebra
on one generator.
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The Jonsson–Tarski algebra

It’s easy to describe F1 explicitly: its elements are binary trees
ℓrℓℓ@@ rℓℓ

~~
ϵ

}}
}}
}}
}

ℓℓ

||
||
||
||
||
||

∗ CC
∗ CC

∗

with leaves labelled in {ℓ, r}∗, identified under the congruence
xℓ

BB
xr

}}
∗

∼ x .

We can also write such trees in “two-line notation”:( ℓℓℓ ℓℓr ℓr r
ℓrℓℓ rℓℓ ϵ ℓℓ

)
where the first row is a maximal antichain for the prefix order.
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The group associated to F1

Each element h = ( x1 ⋯ xn
y1 ⋯ yn ) of F1 induces a local homeomorphism

ϕh of Cantor space {ℓ, r}ω with ϕh(xiW) = yiW. Thus:
Theorem (Higman)
Aut(F1) is Thompson’s group V.
Proof.
By freeness, JT-maps γ∶ F1→ F1 correspond to elements h ∈ F1
and so to functions ϕh∶ {ℓ, r}ω → {ℓ, r}ω. Clearly γ is invertible
just when ϕh is; and the group of invertible ϕh’s is precisely V.
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The space associated to F1

Theorem
The locale O(F1) is the locale of opens of Cantor space.
Proof.
Call a right ideal I ⩽ {ℓ, r}∗ constructible if xℓ, xr ∈ I⇒ x ∈ I.

A constructible right ideal I corresponds to a sub-JT-algebra of F1:
namely, that containing all trees with leaves from I.

It also corresponds to an open of Cantor space: namely, that
containing all infinite extensions of words in I.
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The pseudogroup associated to F1

Theorem
The pseudogroup PAut(F1) is the Cuntz pseudogroup S2, i.e., the
free pseudogroup generated by elements ℓ, r satisfying

ℓ∗ℓ = r∗r = 1 ℓ∗r = r∗ℓ = ⊥ ℓℓ∗ ∨ rr∗ = 1 .

Proof.
Any h ∈ PAut(F1) can be written as h = ( x1 x2 ⋯

y1 y2 ⋯ ) where both rows
are antichains in {ℓ, r}∗. Such an h corresponds

y1x
∗
1 ∨ y2x

∗
2 ∨ . . . ∈ S2 .
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The pseudogroup associated to F1

In fact, due to an observation of Freyd, JT is equivalent to the
category of sheaves on PAut(F1) = S2. So JT is really the
topos-theoretic incarnation of S2.

Of course, we can translate this into the language of étale
groupoids. The groupoid associated to S2 is the Cuntz groupoid G2,
whose object-space is Cantor space 2ω, and whose arrows V→ W
are integers i such that eventually Vn = Wn−i.

So JT-algebras can also be identified with equivariant sheaves on
G2. These are equally well sheaves on Cantor space A→ 2ω

endowed with a homeomorphism A ≅ A + A liǒting 2ω ≅ 2ω + 2ω.
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Topology and algebra in JT

Proposition
A space internal to JT is a real-world space A endowed with an
isomorphism A→ A + A.

Proposition
Let k be a (real-world) commutative ring. A k-module internal to
JT is a real-world k-module A with an isomorphism A→ A⊕ A.

Proposition
The ring of k-linear endomorphisms of the free k-module k(F1) in
JT is the Leavitt algebra L2,k.
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Analysis in JT

Danger! I am not an analyst.

Proposition
The ring of complex numbers in JT is the real-world ring C(2ω)
with self-similarity induced from 2ω ≅ 2ω + 2ω.

Proposition
A Hilbert space internal to JT is a real-world Hilbert C(2ω)-module
H endowed with a linear isomorphism H→ H⊕ H compatible with
the self-similarity of C(2ω).
Question: is this the same as a Hilbert O2-module?
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Analysis in JT

Proposition
The ring of endomorphisms of the free complex vector space
C(F1) in JT is the convolution algebra Cc(G2).
Proposition
F1 has decidable equality, and so C(F1) is an inner product space
in JT. Its norm-completion ℓ2(F1) is the real-world Hilbert
C(2ω)-module completion of Cc(G2).
I believe that, in fact:

Proposition
The C∗-algebra of bounded linear operators on ℓ2(F1) in JT is the
reduced C∗-algebra of G2.
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Generalisations



Generalised self-similarity

We have seen that JT encodes the circle of structures associated to
the Cuntz C∗-algebra O2.

In 2007, Tom Leinster described a general way of building
“self-similar toposes” like JT.

Using this, one can exhibit other self-similar toposes which encode
structures linked to, say, directed (higher) graphs or self-similar
groups and groupoids—but also more exotic things.
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Directed graphs

A directed graph G = (V, E) comprises a set of vertices V and an
indexed family of sets of edges E = (Evw)v,w∈V.
Given a vector of sets (Xv)v∈V we can define a new vector XG by(XG)v = ∏w∈V(Xw)Evw .
Definition
A Jonsson–Tarski graph algebra over G is a vector of sets (Xv)v∈V
equipped with an isomorphism X→ XG.

Proposition (Leinster)
The category JTG of Jonsson–Tarski graph algebras is a topos.

So we can play the same game as before.
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Directed graph toposes

Definition
The Jonsson–Tarski graph algebra F1 is the free Jonsson–Tarski
algebra on the constant vector 1 = (1, 1, . . . ).
We find, for example:

• The space O(F1) is the path space P(G);
• The pseudogroup PAut(F1) is the Cuntz–Kreiger pseudogroup;
• The associated étale groupoid is the graph groupoid G.
• JTG is the category of equivariant sheaves on G.
• The ring of linear endos of k(F1) is the Leavitt path k-algebra;
• (Hopefully) B(ℓ2(F1)) = C∗red(G).
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Self-similar group actions

A self-similar action of a group G on a set A is a function

δ∶G × A→ A × G (g, a)↦ (g ⋅ a, g∣a) .
satisfying associativity and unit laws. For any right G-set X, there is
a right G-set structure on XA given by(ϕ ⋅ g)(a) = ϕ(g ⋅ a) ⋅ g∣a .
Definition
A Nekrashevych algebra over δ is a right G-set X equipped with an
equivariant isomorphism X→ XA.

Proposition
The category JTδ of Nekrashevych algebras is a topos.

And we can calculate away as before.
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Self-similar directed graphs

If G = (E, V) is a directed graph, define G2 ∶= (E2, V) where(E2)uw = ∑v∈V Euv × Evw .

Definition
A Leinster algebra is a directed graph G = (E, V) together with an
identity-on-vertices isomorphism G→ G2.

Proposition (Leinster)
The category JTL of Leinster algebras is a topos.

The calculations in this case are interesting!
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Self-similar directed graphs

Definition
The Leinster algebra FE is the free Leinster algebra on an edge.

Proposition
Aut(FE) is Thompson’s group F.
Proposition
The pseudogroup PAut(FE) is the free pseudogroup generated by
elements ℓ, r satisfying

ℓ∗ℓ = r∗r = 1 ℓℓ∗ ∨ rr∗ = 1
ℓ∗rr = r∗ℓℓ = ⊥ ℓ∗rℓ = ℓ∗r r∗ℓr = r∗ℓ .

25



Self-similar directed graphs

The space O(FE) turns out to be the following combinatorial
interval. Write Q2 for the set of dyadic rationals.

Definition
The combinatorial interval I is the set[0, 1] ∪ {x+ ∶ x ∈ Q2 ∩ (0, 1]} ∪ {x− ∶ x ∈ Q2 ∩ [0, 1)}
topologised with basic open sets[a, b] ∪ {x+ ∶ x ∈ Q2 ∩ (a, b]} ∪ {x− ∶ x ∈ Q2 ∩ [a, b)}
for a, b ∈ Q2 ∩ [0, 1].
I think I is the primitive spectrum of the Farey AF algebra. So is the
C∗-algebra of PAut(FE) related to the Farey AF algebra?
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