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THEOREM (B. KEREKJARTO (1941))

Every triply transitive group of continuous transformations of the
circle or the sphere is permutationally isomorphic to

= PGL(2,R)
m PGL(2,C) or PGL(2,C) x (complex conj.)
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THEOREM (T. G. OSTROM AND A. WAGNER (1959))

A finite projective plane admitting a doubly transitive group of
automorphisms is Desarguesian.

L'2_transitive and flag-transitive designs’, Coding theory, design theory,
group theory (Burlington, VT), 13-30, Wiley.
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THEOREM (T. G. OSTROM AND A. WAGNER (1959))

A finite projective plane admitting a doubly transitive group of
automorphisms is Desarguesian.

“This was the first time 2-transitivity produced a complete classification of
finite geometries. Since then the notion of a geometric classification in terms of
a group-theoretic hypothesis has become commonplace. That was not the case
35 years ago, and it is a measure of these papers’ influence that this type of
hypothesis is now regarded as a natural extension of Klein's Erlangen program.”

L'2_transitive and flag-transitive designs’, Coding theory, design theory,
group theory (Burlington, VT), 13-30, Wiley.
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THEOREM (R. MouraNG (1932/33); G. PICKERT (1955))

Let T be a projective plane and let G < Aut(l"). If for every line ¢,
G(y) acts transitively on the points of '\ £,
then I' can be coordinatised by an alternative division ring.
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THEOREM (R. MouraNG (1932/33); G. PICKERT (1955))

Let T be a projective plane and let G < Aut(l"). If for every line ¢,
G(y) acts transitively on the points of '\ £,
then I' can be coordinatised by an alternative division ring.

point-wise stabiliser of £
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Frac

D. G. HicmMAN & J. E. MCLAUGHLIN (1961)

Let I' be a linear space and G < Aut(I).
G transitive on —> G primitive on

PRIMITIVE

G < Sym(€) does not preserve a partition of €, except the trivial ones:

= {Q}
m {{w} weQ}

2-transitive = 2-homogeneous =—> primitive = quasiprimitive

— innately transitive —> semiprimitive — transitive
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W. M. KANTOR (1987)

A projective plane 7 of order x admitting a point-primitive
automorphism group G is Desarguesian and G > PSL(3, x), or else
G is boring?.

K. THAS AND ZAGIER 2008

A non-Desarguesian projective plane m with Aut(7) point-primitive
has at least 4 x 10%2 points.

>The number of points (x*> 4 x + 1) is a prime and G is a regular or
Frobenius group of order dividing (x* + x + 1)(x + 1) or (x* + x + 1)x.
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B. X1a (2018)

If there is a finite non-Desarguesian flag-transitive projective plane
of order x with v = x? + x + 1 points, then

m v is prime with m = 8 (mod 24), and

m there exists a finite field F of characteristic 3, and m
elements, satisfying certain polynomial equations.
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N. GiLL (2016)

If G acts on a finite non-Desarguesian projective plane,
then

m the Sylow 2-subgroups of G are cyclic or generalised
quaternion, and

m if G is insoluble, then G/O(G) = SLy(5), SLa(5).2.
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N. GiLL (2016)

If G acts on a finite non-Desarguesian projective plane,
then

m the Sylow 2-subgroups of G are cyclic or generalised
quaternion, and

m if G is insoluble, then G/O(G) = SLy(5), SLa(5).2.

A finite projective plane with a transitive automorphism group is
Desarguesian.
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ITS, 1959
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Par J. TITS
SOMMAIRE Paces
INTRODUICTION «ccucioscsomsssssssnssussnenaeseasonsssnesnessssansissssstsssnssssssressiriisns 14
Cuarrree Premier. — Préliminaires, rappels 17
§ 1. Notations, terminologie ................. 17
§ 2. Collinéations de période 3 dans les plans projectifs . 18
§ 3. Principe de trialité a1
Cuarrree 11. — Propriéiés générales et classificatlon des trialités 25
§ 4 Points, droites et plans remarquables 25
§ 5. Equations, classifications 30
Cuarrrre 111, — Groupes des trialités de type I........ 36
§ 6. Définitions. Quelques & 36
§7Sh'ucuu:dngmpoﬁcl0+ 41
§ 8, Deux cas particuliers . 45
Crarrrae IV. — Les trialités de type IL..........ccooiiiiiniiiiniiiiinsiiinantanannisssnies 52
§ 9. Corps de caractéristique différente de 3 ........ccvvviiiiniiiiiiiii i 52
§ 10. Corps de caractéristique § ......... 54
58
58
60

JOHN BAMBERG SYMMETRIC FINITE GENERALISED POLYGONS



LISED POLYGONS

246
@145
347
0 167
@356
@ 257
@123

=N OO NP W

GENERALISED n-GON:
Incidence graph has girth = 2 x diameter = 2n.
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LISED POLYGONS

246
@145
347
0 167
@356
@ 257
@123

=N OO NP W

GENERALISED n-GON:
Incidence graph has girth = 2 x diameter = 2n.

FEIT-HIGMAN THEOREM (1964):
Thick = n € {2,3,4,6,8}.
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ALISED POLYGONS

EQUIVALENT DEFINITION

(1) there are no ordinary k-gons for 2 < k < n,

(11) any two elements are contained in some ordinary n-gon.
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LISED POLYGONS

EQUIVALENT DEFINITION

(1) there are no ordinary k-gons for 2 < k < n,

(11) any two elements are contained in some ordinary n-gon.

m order (s, t)

m every line has s + 1 points,
m every point lies on t + 1 lines.

m thick if s, t > 2.
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@ projective planes

@ generalised quadrangles

generalised hexagons

@ generalised octagons

JOHN BAMBERG SYMMETRIC FINITE GENERALISED POLYGONS



@ projective planes
Desarguesian planes — PSL(3, q).
@ generalised quadrangles

polar spaces associated with PSp(4,q),
PSU(4, q) and PSU(5, q), and their duals.

generalised hexagons

geometries for Gy(q) and 3Dy(q).

@ generalised octagons
geometries for 2F4(q).
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@ projective planes
Desarguesian planes — PSL(3, q).
@ generalised quadrangles

polar spaces associated with PSp(4,q),
PSU(4, q) and PSU(5, q), and their duals.

generalised hexagons

geometries for Gy(q) and 3Dy(q).

@ generalised octagons
geometries for 2F4(q).

Many other examples of projective planes and generalised
quadrangles known.
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Generalised hexagon
of order 2 (small)

Made by
jbamberg

$28.59

White Natural Versatile Plastic v

3D printed in white nylon plastic with a matte finish
and slight grainy feel.

= Qry 1 v BUY NOW
-_— - i - F’— [
- .

DIGITAL PREVIEW
Nota Photo

White Natural Versatile Plastic
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Building blocks of a building.

Important to groups of Lie type, in many ways.

Missing piece of the classification of spherical buildings.

Many connections to other things in finite geometry and
combinatorics.
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‘CLASSICAL —

Moufang, flag-transitive, point-primitive, and line-primitive.

MOUFANG FOR GENERALISED QUADRANGLES

For each path (v, v1, v2, v3), the group G‘E;l] N G‘E}] N GE] acts
transitively on '(v3) \ {v2}.

G\[,f.l] is the kernel of the action of G,, on I'(v;).
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Moufang
Antiflag-transitive
2-transitive
Flag-transitive

Point-primitive

Point-transitive
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Moufang
Antiflag-transitive
2-transitive Classical (Ostrom-Wagner 1959)
Flag-transitive

Point-primitive

Point-transitive
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Moufang

Antiflag-transitive

2-transitive Classical (Ostrom-Wagner 1959)
Flag-transitive Classical or small group (Kantor 1987)
Point-primitive Classical or small group (Kantor 1987)

Point-transitive

JOHN BAMBERG SYMMETRIC FINITE GENERALISED POLYGONS



Moufang

Antiflag-transitive

2-transitive Classical (Ostrom-Wagner 1959)
Flag-transitive Classical or small group (Kantor 1987)
Point-primitive Classical or small group (Kantor 1987)

Classical or some control over minimal

el i il normal subgroups (Gill 2007,2016)
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LISED QUADRANGLES

Rank 3 on points

]

Point-distance-transitive %-Moufang

!

Point and line dist.-transitive = Moufang

T~ |

Antiflag-transitive

|

Point or line primitive «——— Locally 2-transitive

l

Flag-transitive
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LISED QUADRANGLES

Rank 3 on points

]

Point-distance-transitive %-Moufang

!

Point and line dist.-transitive =~ Moufang g——— Fong, Seitz (1973)

T~ |

Antiflag-transitive

|

Point or line primitive «——— Locally 2-transitive

l

Flag-transitive
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ISED QUADRANGLES

Rank 3 on points

]

g 9 e 1 w
Point-distance-transitive 5-Moufang <= Thas Thas,VM (1991

!

Point and line dist.-transitive =~ Moufang g——— Fong, Seitz (1973)

T~ |

Antiflag-transitive

|

Point or line primitive «——— Locally 2-transitive

l

Flag-transitive
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ISED QUADRANGLES

Kantor (1991)

Rank 3 on points)

]

g 9 e 1 w
Point-distance-transitive 5-Moufang <= Thas Thas,VM (1991

!

Point and line dist.-transitive =~ Moufang g——— Fong, Seitz (1973)

T~ |

Antiflag-transitive

|

Point or line primitive «——— Locally 2-transitive

l

Flag-transitive
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ISED QUADRANGLES

Kantor (1991)
Buekenhout, Van Maldeghem (1994)

Rank 3 on points

]

g 9 e 1 w
Point-distance-transitive 5-Moufang <= Thas Thas,VM (1991

!

Point and line dist.-transitive =~ Moufang g——— Fong, Seitz (1973)

T~ |

Antiflag-transitive

|

Point or line primitive «——— Locally 2-transitive

l

Flag-transitive
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ISED QUADRANGLES

Kantor (1991)
Buekenhout, Van Maldeghem (1994)
Rank 3 on points

]

g 9 e 1 w
Point-distance-transitive 5-Moufang <= Thas Thas,VM (1991

!

Point and line dist.-transitive =~ Moufang g——— Fong, Seitz (1973)

T~ |

Antiﬂag-transitivem

l B., Li, Swartz (2018)

Point or line primitive «——— Locally 2-transitive

l

Flag-transitive
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ISED QUADRANGLES

Kantor (1991)
Buekenhout, Van Maldeghem (1994)
Rank 3 on points

]

g 9 e 1 w
Point-distance-transitive 5-Moufang <= Thas Thas,VM (1991

Point and line dist.-transitive =~ Moufang g——— Fong, Seitz (1973)

T~ |

Antiﬂag-transitivem

l B., Li, Swartz (2018)
Point or line primitive <« Locally 2-transitive -
l B., Li, Swartz (2019+)

Flag-transitive
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THE GENERALISED QUADRANGLE OF ORDER (3,5)

m Derived from Sp(4,4)-GQ.

= Automorphism group: 2° : (3.4¢.2).
m Point-primitive

m Flag-transitive
]

Line-imprimitive

Picture courtesy of James Evans.
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—m

FoNG AND SEITZ (1973)
A finite thick generalised polygon satisfying the Moufang condition
is classical or dual classical.
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FoNG AND SEITZ (1973)
A finite thick generalised polygon satisfying the Moufang condition
is classical or dual classical.

BUEKENHOUT-VAN MALDEGHEM (1994)

m A finite thick generalised polygon with a group acting
distance-transitively on points is classical or GQ(3,5).
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FoNG AND SEITZ (1973)
A finite thick generalised polygon satisfying the Moufang condition
is classical or dual classical.

BUEKENHOUT-VAN MALDEGHEM (1994)

m A finite thick generalised polygon with a group acting
distance-transitively on points is classical or GQ(3,5).

m Distance-transitive = point-primitive.
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{ERALISED QUADRANGLES

B., Giupici, MORRIS, ROYLE, SPIGA (2012)
If G acts primitively on the points and lines of a thick GQ then:

m G is almost simple3.

m If G is also flag-transitive, then G is of Lie type.

3G has a unique minimal normal subgroup N, and N is a nonabelian simple
group: N < G < Aut(N)
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RALISED QUADRANGLES

B., Giupici, MORRIS, ROYLE, SPIGA (2012)
If G acts primitively on the points and lines of a thick GQ then:

m G is almost simple3.

m If G is also flag-transitive, then G is of Lie type.

Two known flag-transitive GQ's that are point-primitive but
line-imprimitive:

= GQ(3,5),
m GQ of order (15,17) arising from Lunelli-Sce hyperoval.

3G has a unique minimal normal subgroup N, and N is a nonabelian simple
group: N < G < Aut(N)

JOHN BAMBERG SYMMETRIC FINITE GENERALISED POLYGONS



EERRCOTR A NoTsEELL
THEOREM (THE ‘O’NAN-ScOTT’ THEOREM)

Suppose a finite permutation group G acts primitively on a set ).
Then one of the following occurs:

K Abelian

Kq subdirect K
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EERRCOTR A NoTsEELL
THEOREM (THE ‘O’NAN-ScOTT’ THEOREM)

Suppose a finite permutation group G acts primitively on a set ).
Then one of the following occurs:

K Abelian

(HC)  K.Inn(K) < G < K.Aut(K)

Q = K, holomorph action

(SD) K =TK QG < TK(Out(T) x S),
Q= kal, diagonal action
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K Abelian

Kq subdirect K
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K regular

Kq subdirect K

Point-primitive & line-transitive®

“B., Glasby, Popiel, Praeger 2017

3

JOHN SYMMETRIC FINITE GENERALISED POLYGONS



Kq subdirect K

Point-primitive*

“B., Popiel, Praeger 2019
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K Abelian

K regular

Kq subdirect K

Point-primitive (aim)
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B., PoPIEL, PRAEGER (2019)

If G acts primitively on the points of a thick GQ, not affine, then
one of the following occurs:

type soc(G) necessary conditions

HS T x T T has Lie type with Lie rank <7

SD Tk T has Lie type with Lie rank < 8,
or T = Alt, with m < 18, or T sporadic

CD (T . T has Lie type with Lie rank < 3,
or T = Alt,, with m < 9, or T sporadic

PA T :

AS, TW - some information on fixities

REMARK

With some extra work, we think HS can be removed completely.
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ALISED HEXAGONS AND OCTAGONS

SCHNEIDER & VAN MALDEGHEM (2008)

A group acting flag-transitively, point-primitively and
line-primitively on a generalised hexagon or octagon is almost
simple of Lie type.
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ALISED HEXAGONS AND OCTAGONS

SCHNEIDER & VAN MALDEGHEM (2008)

A group acting flag-transitively, point-primitively and
line-primitively on a generalised hexagon or octagon is almost
simple of Lie type.

B., GLASBY, POPIEL, PRAEGER, SCHNEIDER (2017)
A group acting point-primitively on a generalised hexagon or
octagon is almost simple of Lie type.
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LISED HEXAGONS AND OCTAGONS

SCHNEIDER & VAN MALDEGHEM (2008)

A group acting flag-transitively, point-primitively and
line-primitively on a generalised hexagon or octagon is almost
simple of Lie type.

B., GLASBY, POPIEL, PRAEGER, SCHNEIDER (2017)
A group acting point-primitively on a generalised hexagon or
octagon is almost simple of Lie type.

MORGAN & POPIEL (2016)
Moreover, if T < G < Aut(T) with T simple, then

(1) T # *Ba(q) or °Ga(q);
(11) if T =2F4(q), then T is the classical generalised octagon or
its dual.
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ANTIFLAG
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ANTIFLAG

(GENERALISED QUADRANGLE

Given an antiflag (P, ¢), there is a unique line m on P concurrent
with 2.
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ANTIFLAG

(GENERALISED QUADRANGLE

Given an antiflag (P, ¢), there is a unique line m on P concurrent
with 2.
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THEOREM (B., L1, SWARTZ 2018)

Let Q be a finite thick generalised quadrangle and suppose
G < Aut(Q) acting on the . Then Q is
classical or GQ(3,5), GQ(5,3).

STRATEGY

m G acts quasiprimitively on points OR lines.

G point-primitive & line-imprimitive =—> Q = GQ(3,5).

m Reduce to G acting primitively on both points and lines of almost simple type.

| Tp|® > | T| where soc(G) = T; use the characterisation result by Alavi and
Burness to determine possibilities for G and Gp.
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GROUPS-ON-GRAPHS GEOMETRY

Locally 3-arc transitive Antiflag transitive

Locally 2-arc transitive  Transitive on collinear point-pairs and
concurrent line-pairs

Edge transitive Flag transitive
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THEOREM (B., L1, SWARTZ (SUBMITTED))

If Q is a thick locally (G, 2)-transitive generalised quadrangle, then
one of the following holds:

m Q= GQ(3,5), GQ(5,3), or

m Q is classical.

STRATEGY

G acts quasiprimitively on points OR lines.
= G point-quasiprimitive & line-nonquasiprimitive =—> Q = GQ(3,5).
m Reduce to G acting primitively on points, almost simple type, socle of Lie type.

| Tp|® > | T| where soc(G) = T; use the characterisation result by Alavi and
Burness to determine possibilities for G and Gp.
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OBLEMS

Show that if G acts flag-transitive on a finite GQ, then G acts
primitively on points OR lines.

Are all point-primitive GQ's point-distance-transitive?
Find new generalised hexagons and octagons.
Show that if G acts primitively on the points of a finite GQ,

and intransitively on the lines, then the G-orbits on lines
divide them in half. (James Evans)
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