Irreducible Pythagorean Representations of R. Thompson's Groups

Dilshan Wijesena

Supervisor: Arnaud Brothier

Symmetry in Newcastle

August 2023

Richard Thompson's Groups $F \subset T \subset V$ [Thompson 65, Brown 87]

F is the group of piece-wise, linear homeomorphisms of $[0,1]$ with finitely many non-differentiable points which are contained in the dyadic rationals.

Richard Thompson's Groups $F \subset T \subset V$ [Thompson 65, Brown 87]

F is the group of piece-wise, linear homeomorphisms of $[0,1]$ with finitely many non-differentiable points which are contained in the dyadic rationals.

Remarkable Richard Thompson's Groups

Exceptional Properties

$1 T, V$ first examples of infinite but finitely presented, simple groups [Thompson 65]
$2 F$ is first example of torsion-free, infinite-dimensional group of type F_{∞} [Brown-Geoghegan 84]

Remarkable Richard Thompson's Groups

Exceptional Properties

$1 T, V$ first examples of infinite but finitely presented, simple groups [Thompson 65]
$2 F$ is first example of torsion-free, infinite-dimensional group of type F_{∞} [Brown-Geoghegan 84]
$3 \operatorname{Rep}(F)$?

Remarkable Richard Thompson's Groups

Exceptional Properties

$1 T, V$ first examples of infinite but finitely presented, simple groups [Thompson 65]

2 F is first example of torsion-free, infinite-dimensional group of type F_{∞} [Brown-Geoghegan 84]
$3 \operatorname{Rep}(F)$?

Known Irreducible Representations of F

1 Rep induced from the Cuntz algebra [Birget 04, Nekrashevich 04, Barata-Pinto 19, Arujo-Pinto 20, Guimaraes-Pinto 22];

2 Bernoulli reps for $0<p<1$ and $\phi \in S_{1}$ [Garncarek 12, Olesen 16] ;
3 Jones' rep coming from certain trivalent tensor categories [Jones 19].

Vaughan Jones' Machinery [Jones-17]

Jones' machinery: from simple objects build complicated objects.

■ Jones' machinery can used to build representations of F :
■ Simple objects: (Finite-dimensional) Hilbert space \mathfrak{H} and an isometry between Hilbert spaces.
■ Complicated objects: Jones' representation $\sigma: F \frown \mathscr{H}$.

Vaughan Jones' Machinery [Jones-17]

Jones' machinery: from simple objects build complicated objects.

■ Jones' machinery can used to build representations of F :
■ Simple objects: (Finite-dimensional) Hilbert space \mathfrak{H} and an isometry between Hilbert spaces.
■ Complicated objects: Jones' representation $\sigma: F \frown \mathscr{H}$.

Theorem (Important applications)

1 New proof of $[F, F], T, V$ are not Kazhdan groups [Brothier-Jones 19];
2 First known example of reps of F that are Ind-mixing [Brothier-W 22].
3 New families of irreducible reps of F [Jones 19], [Brothier-W 23];

Pythagorean Module

Definition

A Pythagorean module (P-module) is a triple (A, B, \mathfrak{H}) where \mathfrak{H} is a Hilbert space, $A, B \in B(\mathfrak{H})$ satisfying the Pythagorean relation

$$
A^{*} A+B^{*} B=\mathrm{id}
$$

Pythagorean Module

Definition

A Pythagorean module (P-module) is a triple (A, B, \mathfrak{H}) where \mathfrak{H} is a Hilbert space, $A, B \in B(\mathfrak{H})$ satisfying the Pythagorean relation

$$
A^{*} A+B^{*} B=\mathrm{id}
$$

■ An intertwinner between P-modules $(A, B, \mathfrak{H}),\left(A^{\prime}, B^{\prime}, \mathfrak{H}^{\prime}\right)$ is a bounded linear map $\theta: \mathfrak{H} \rightarrow \mathfrak{H}^{\prime}$ satisfying

$$
\theta \circ A=A^{\prime} \circ \theta \text { and } \theta \circ B=B^{\prime} \circ \theta .
$$

- P-modules are (unitarily) equivalent if there exists a unitary intertwinner between them.
- A sub-module of (A, B, \mathfrak{H}) is a Hilbert subspace $\mathfrak{H}^{\prime} \subset \mathfrak{H}$ that is closed under A, B.

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 10]

- Consider a P-module (A, B, \mathfrak{H}).
- Associate each tree t with the direct sum $\mathfrak{H}_{t}:=\mathfrak{H}^{\text {Leaves }(t)}$.

■ Let $\mathscr{H}=\mathscr{H}_{A, B}$ be the completion of $\bigsqcup_{t \text { is a tree }} \mathfrak{H}_{t} / \cong$.

- \mathscr{H} is always an infinite-dimensional Hilbert space.

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 19]

- Representatives of $\left[\wedge,\left(\xi_{1}, \xi_{2}\right)\right]$:

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 19]

■ Representatives of $\left[\wedge,\left(\xi_{1}, \xi_{2}\right)\right]$:

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 19]

- Representatives of $\left[\wedge,\left(\xi_{1}, \xi_{2}\right)\right]$:

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 10]

- Representatives of $\left[\wedge,\left(\xi_{1}, \xi_{2}\right)\right]$:

- F has an action on $\mathscr{H}_{A, B}$:

$\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 19]

- Representatives of $\left[\wedge,\left(\xi_{1}, \xi_{2}\right)\right]$:

- F has an action on $\mathscr{H}_{A, B}$:

Jones' Machinery: Pythagorean Reps [Jones-17, Brothier-Jones 19]

- Representatives of $\left[\wedge,\left(\xi_{1}, \xi_{2}\right)\right]$:

- F has an action on $\mathscr{H}_{A, B}$:

$\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$

$\left(\xi_{1}, A \xi_{2}, B \xi_{2}, \xi_{3}\right) \quad\left(\xi_{1}, A \xi_{2}, B \xi_{2}, \xi_{3}\right)$
- Denote by $\sigma:=\sigma_{A, B}: F \rightarrow \mathcal{U}\left(\mathscr{H}_{A, B}\right)$, called the Pythagorean representation given by A, B.

Extending to the Cuntz Algebra

The Cuntz algebra $\mathcal{O}:=\mathcal{O}_{2}$ is the universal C^{*}-algebra generated by two isometries s_{1}, s_{2} such that $s_{1} s_{1}^{*}+s_{2} s_{2}^{*}=$ id [Cuntz 77].

Extending to the Cuntz Algebra

The Cuntz algebra $\mathcal{O}:=\mathcal{O}_{2}$ is the universal C^{*}-algebra generated by two isometries s_{1}, s_{2} such that $s_{1} s_{1}^{*}+s_{2} s_{2}^{*}=$ id [Cuntz 77].

Proposition (Brothier-Jones 19, Brothier-W 23)

Every P-rep σ^{F} can be extended to a rep $\sigma^{\mathcal{O}}$ of \mathcal{O}.

Proof.

Define the isometries $S_{1}, S_{2} \in B(\mathscr{H})$ with action given by:

It can be shown $S_{1} S_{1}^{*}+S_{2} S_{2}^{*}=$ id. Setting $\sigma^{\mathcal{O}}\left(s_{i}\right)=S_{i}$ gives a representation of \mathcal{O}.

Examples of Pythagorean Representations [Brothier-Jones 19]

1 $\mathfrak{H}=\mathbf{C}, A=1, B=0: \sigma \cong 1_{F} \oplus \lambda_{F / F_{1 / 2}}$.

Examples of Pythagorean Representations [Brothier-Jones 19$]$

1 $\mathfrak{H}=\mathbf{C}, A=1, B=0: \sigma \cong 1_{F} \oplus \lambda_{F / F_{1 / 2}}$.
$2 \mathfrak{H}=\mathbf{C}, A=B=1 / \sqrt{2}: \sigma$ is the Koopman representation of $F \frown L^{2}[0,1]$.

Examples of Pythagorean Representations [Brothier-Jones 19$]$

$1 \mathfrak{H}=\mathbf{C}, A=1, B=0: \sigma \cong 1_{F} \oplus \lambda_{F / F_{1 / 2}}$.
$2 \mathfrak{H}=\mathbf{C}, A=B=1 / \sqrt{2}: \sigma$ is the Koopman representation of $F \frown L^{2}[0,1]$.
$3 \mathfrak{H}=\mathbf{C}, A=B=\phi \cdot 1 / \sqrt{2}$ for $\phi \in S_{1}: \sigma$ recovers family of irreducible representations from [Garncarek 12].

Examples of Pythagorean Representations [Brothier-Jones 19$]$

$\boldsymbol{1} \mathfrak{H}=\mathbf{C}, A=1, B=0: \sigma \cong 1_{F} \oplus \lambda_{F / F_{1 / 2}}$.
$2 \mathfrak{H}=\mathbf{C}, A=B=1 / \sqrt{2}: \sigma$ is the Koopman representation of $F \frown L^{2}[0,1]$.
$3 \mathfrak{H}=\mathbf{C}, A=B=\phi \cdot 1 / \sqrt{2}$ for $\phi \in S_{1}: \sigma$ recovers family of irreducible representations from [Garncarek 12].
$4 \mathfrak{H}=\mathbf{C}^{2}, A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right): \sigma \cong \lambda_{F / F_{1 / 3}}$.

Pythagorean Dimension

■ Motivation: Assign each P-rep from (A, B, \mathfrak{H}) to some number.

Pythagorean Dimension

■ Motivation: Assign each P-rep from (A, B, \mathfrak{H}) to some number.
■ Naive attempt: Let Pythagorean dimension be equal to $\operatorname{dim}(\mathfrak{H})$.

Pythagorean Dimension

■ Motivation: Assign each P-rep from (A, B, \mathfrak{H}) to some number.
■ Naive attempt: Let Pythagorean dimension be equal to $\operatorname{dim}(\mathfrak{H})$.
■ Problem: Every finite-dim P-module (A, B, \mathfrak{H}) decomposes as $\mathfrak{H}=\mathfrak{H}_{0} \oplus \mathfrak{Z}$ where \mathfrak{H}_{0} is a complete sub-module and \mathfrak{Z} is a residual space which does not contain any non-trivial sub-modules.

Pythagorean Dimension

■ Motivation: Assign each P-rep from (A, B, \mathfrak{H}) to some number.
■ Naive attempt: Let Pythagorean dimension be equal to $\operatorname{dim}(\mathfrak{H})$.
■ Problem: Every finite-dim P-module (A, B, \mathfrak{H}) decomposes as $\mathfrak{H}=\mathfrak{H}_{0} \oplus \mathfrak{Z}$ where \mathfrak{H}_{0} is a complete sub-module and \mathfrak{Z} is a residual space which does not contain any non-trivial sub-modules.

Definition (Brothier-W 23)

Let σ be a P-rep. The Pythagorean dimension $\operatorname{dim}_{P}(\sigma)$ is given by:

$$
\operatorname{dim}_{P}(\sigma)=\min \left(\operatorname{dim}(A, B, \mathfrak{H}): \sigma_{A, B} \cong \sigma\right)
$$

How to Compute the Pythagorean Dimension?

Example:

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 / 2 \\
1 & 0 & 0 \\
0 & 0 & 1 / 2
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 / 2 \\
0 & 0 & 1 / 2
\end{array}\right), \mathfrak{H}=\mathbf{C}^{3} .
$$

How to Compute the Pythagorean Dimension?

Example:

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 / 2 \\
1 & 0 & 0 \\
0 & 0 & 1 / 2
\end{array}\right), B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 / 2 \\
0 & 0 & 1 / 2
\end{array}\right), \mathfrak{H}=\mathbf{C}^{3} .
$$

Then $\mathfrak{H}_{0}=\mathbf{C} e_{1} \oplus \mathbf{C} e_{2}, \mathfrak{Z}=\mathbf{C} e_{3}$ with

$$
A \upharpoonright_{\mathfrak{H}_{0}}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), B \upharpoonright_{\mathfrak{H}_{0}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Hence $\operatorname{dim}(\mathfrak{H})=3$ but $\operatorname{dim}_{P}(\sigma) \leqslant 2$.

How to Compute the Pythagorean Dimension?

Example:

$$
A=\left(\begin{array}{ccc}
0 & 0 & 1 / 2 \\
1 & 0 & 0 \\
0 & 0 & 1 / 2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 / 2 \\
0 & 0 & 1 / 2
\end{array}\right), \mathfrak{H}=\mathbf{C}^{3}
$$

Then $\mathfrak{H}_{0}=\mathbf{C} e_{1} \oplus \mathbf{C} e_{2}, \mathfrak{Z}=\mathbf{C} e_{3}$ with

$$
A \upharpoonright_{\mathfrak{H}_{0}}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), B \upharpoonright_{\mathfrak{H}_{0}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Hence $\operatorname{dim}(\mathfrak{H})=3$ but $\operatorname{dim}_{P}(\sigma) \leqslant 2$.

Question 1: How can we compute the Pythagorean dimension?

How to Classify P-representations?

Proposition (Brothier-W 23)

Consider a finite-dim P-module (A, B, \mathfrak{H}) with P-rep (σ, \mathscr{H}). Then:

$$
\mathfrak{H}=\mathfrak{H}_{1} \oplus \mathfrak{H}_{2} \oplus \cdots \oplus \mathfrak{H}_{n} \oplus \mathfrak{Z}
$$

where \mathfrak{H}_{i} are irreducible sub-modules and \mathfrak{Z} the largest residual subspace. This induces a decomposition of \mathscr{H} into subreps:

$$
\mathscr{H}=\left\langle\mathfrak{H}_{1}\right\rangle \oplus\left\langle\mathfrak{H}_{2}\right\rangle \oplus \cdots \oplus\left\langle\mathfrak{H}_{n}\right\rangle .
$$

$$
\left\langle\mathfrak{H}_{i}\right\rangle:=\overline{\square_{t \text { is a tree }}\left(\mathfrak{H}_{i}\right)_{t} / \cong} \subset \mathscr{H}, \quad\left(\mathfrak{H}_{i}\right)_{t}=\underbrace{\mathfrak{H}_{i} \mathfrak{H}_{i}}_{\mathfrak{H}_{i}}
$$

How to Classify P-representations?

Proposition (Brothier-W 22)

Consider a finite-dim P-module (A, B, \mathfrak{H}) with P-rep (σ, \mathscr{H}). Then:

$$
\mathfrak{H}=\mathfrak{H}_{1} \oplus \mathfrak{H}_{2} \oplus \cdots \oplus \mathfrak{H}_{n} \oplus \mathfrak{Z}
$$

where \mathfrak{H}_{i} are irreducible sub-modules and \mathfrak{Z} the largest residual subspace. This induces a decomposition of \mathscr{H} into subreps:

$$
\mathscr{H}=\left\langle\mathfrak{H}_{1}\right\rangle \oplus\left\langle\mathfrak{H}_{2}\right\rangle \oplus \cdots \oplus\left\langle\mathfrak{H}_{n}\right\rangle .
$$

Question 2: Are all subreps of σ in this form and when are they equivalent?

Diffuse Pythagorean Representations

Definition

1 A P-module (A, B, \mathfrak{H}) is diffuse if $\lim _{n \rightarrow \infty} p_{n} \xi=0$ for all $\xi \in \mathfrak{H}$ and for all increasing sequences $\left(p_{n}\right)$ of words in A, B.
2 A P-module is atomic if it does not contain any diffuse sub-modules.
3 A P-rep is atomic (diffuse) if from an atomic (diffuse) P-module.

Diffuse Pythagorean Representations

Definition

1 A P-module (A, B, \mathfrak{H}) is diffuse if $\lim _{n \rightarrow \infty} p_{n} \xi=0$ for all $\xi \in \mathfrak{H}$ and for all increasing sequences $\left(p_{n}\right)$ of words in A, B.
2 A P-module is atomic if it does not contain any diffuse sub-modules.
3 A P-rep is atomic (diffuse) if from an atomic (diffuse) P-module.

Example 1: $A=B=1 / \sqrt{2}$

Example 2: $A=1, B=0$

Unique Smallest Complete Sub-module

Theorem (Brothier-W 23)

Let (A, B, \mathfrak{H}) be a diffuse finite-dimensional P-module. Then there exists a unique smallest complete sub-module $\mathfrak{K} \subset \mathfrak{H}$ of \mathscr{H}. Moreover, $\operatorname{dim}_{P}(\sigma)=\operatorname{dim}(\mathfrak{K})$.

Unique Smallest Complete Sub-module

Theorem (Brothier-W 23)

Let (A, B, \mathfrak{H}) be a diffuse finite-dimensional P-module. Then there exists a unique smallest complete sub-module $\mathfrak{K} \subset \mathfrak{H}$ of \mathscr{H}.
Moreover, $\operatorname{dim}_{P}(\sigma)=\operatorname{dim}(\mathfrak{K})$.

Counter-example in infinite-dimensional case.

Let $\mathfrak{H}=\ell^{2}(\mathbf{Z})$ and $A=B=S / \sqrt{2}$ which is the unilateral shift operator divided by $\sqrt{2}$. Each subspace

$$
\mathfrak{K}_{j}:=\ell^{2}(\{j, j+1, j+2, \ldots\})
$$

with $j \in \mathbf{Z}$ defines a complete sub-module but clearly have trivial intersection.

Irreducibility of Diffuse P-representations

Theorem (Brothier-W 23)
Let (A, B, \mathfrak{H}) be a diffuse finite-dim P-module. The associated P-rep of F is irreducible if and only if \mathfrak{H} is indecomposable.

Irreducibility of Diffuse P-representations

Theorem (Brothier-W 23)
Let (A, B, \mathfrak{H}) be a diffuse finite-dim P-module. The associated P-rep of F is irreducible if and only if \mathfrak{H} is indecomposable.

Corollary

Every diffuse P-representation from a finite-dim P-module decomposes as a finite direct sum of irreducible diffuse P-representations.

Irreducibility of Diffuse P-representations

Theorem (Brothier-W 23)

Let (A, B, \mathfrak{H}) be a diffuse finite-dim P-module. The associated P-rep of F is irreducible if and only if \mathfrak{H} is indecomposable.

Corollary

Every diffuse P-representation from a finite-dim P-module decomposes as a finite direct sum of irreducible diffuse P-representations.

Example:

$A=\left(\begin{array}{cccc}1 / \sqrt{2} & 0 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / \sqrt{6} & 1 / 2 \\ 0 & 1 / 2 & 1 / \sqrt{6} & -1 / 2 \\ 0 & 0 & 0 & 0\end{array}\right), B=\left(\begin{array}{cccc}1 / \sqrt{2} & 0 & 0 & -1 / 2 \\ 0 & 1 / 2 & 0 & 0 \\ 0 & -1 / 2 & 2 / \sqrt{6} & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.

Equivalence of Diffuse P-representations

Theorem (Brothier-W 23)
Consider two full diffuse finite-dim P-modules (A, B, \mathfrak{H}) and $\left(A^{\prime}, B^{\prime}, \mathfrak{H}^{\prime}\right)$. The associated P-reps are equivalent iff the P-modules are equivalent.

Equivalence of Diffuse P-representations

Theorem (Brothier-W 23)

Consider two full diffuse finite-dim P-modules (A, B, \mathfrak{H}) and $\left(A^{\prime}, B^{\prime}, \mathfrak{H}^{\prime}\right)$. The associated P-reps are equivalent iff the P-modules are equivalent.

Counter-example in atomic case.
Take $\mathfrak{H}=\mathbf{C}^{2}$ and let

$$
\begin{gathered}
A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
A^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0
\end{array}\right), B^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) .
\end{gathered}
$$

Then $\left(A, B, \mathbf{C}^{2}\right),\left(A^{\prime}, B^{\prime}, \mathbf{C}^{2}\right)$ are not equivalent P -modules but induce equivalent (irreducible) P -representations of F.

Manifold of Irreducible Classes

■ $\operatorname{Irr}_{\text {diff }}(d)$ the set of irreducible diffuse P -modules of P -dimension d;

- There is a group action of $\operatorname{PSU}(d)$ on $\operatorname{Irr}_{\text {diff }}(d)$ by

$$
u \cdot\left(A, B, \mathbf{C}^{d}\right)=\left(u A u^{*}, u B u^{*}, \mathbf{C}^{d}\right)
$$

Manifold of Irreducible Classes

- $I r r_{\text {diff }}(d)$ the set of irreducible diffuse P-modules of P-dimension d;
- There is a group action of $\operatorname{PSU}(d)$ on $\operatorname{Irr}_{\text {diff }}(d)$ by

$$
u \cdot\left(A, B, \mathbf{C}^{d}\right)=\left(u A u^{*}, u B u^{*}, \mathbf{C}^{d}\right)
$$

Theorem (Brothier-W 23)

1 A given finite-dim P-module is almost surely diffuse and irreducible.
$2 \operatorname{Irr}_{\text {diff }}(d)$ is a smooth submanifold of $M_{2 d, d}(\mathbf{C})$ of real $\operatorname{dim} 3 d^{2}$.
$3 \operatorname{PSU}(d) \backslash / r_{\text {diff }}(d)$ is a manifold of dimension $2 d^{2}+1$.
$4 \operatorname{PSU}(d) \backslash \operatorname{Irr}_{\text {diff }}(d)$ is in bijection with the set of all irreducible classes of diffuse P-reps of P-dim d.

Isomorphism of Categories

We have the below functors:

$\operatorname{Mod}_{\text {full,diff }}^{\mathrm{FD}}(\mathcal{P}) \rightarrow \operatorname{Rep}_{\text {diff }}^{\mathrm{FD}}(F) \rightarrow \operatorname{Rep}_{\text {diff }}^{\mathrm{FD}}(T) \rightarrow \operatorname{Rep}_{\text {diff }}^{\mathrm{FD}}(V) \rightarrow \operatorname{Rep}_{\text {diff }}^{\mathrm{FD}}(\mathcal{O})$.

Isomorphism of Categories

We have the below functors:
$\operatorname{Mod}_{\text {full,diff }}^{\mathrm{FD}}(\mathcal{P}) \rightarrow \operatorname{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(F) \rightarrow \operatorname{Rep}_{\text {diff }}^{\mathrm{FD}}(\boldsymbol{T}) \rightarrow \operatorname{Rep}_{\text {diff }}^{\mathrm{FD}}(\boldsymbol{V}) \rightarrow \operatorname{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(\mathcal{O})$.

Theorem (Brothier-W 23)

Let $X=F, T, V, \mathcal{O}$. Then:
$1 \operatorname{Mod}_{\text {full,diff }}^{\mathrm{FD}}(\mathcal{P})$ is equivalent to $\operatorname{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(X)$.
2 The categories $\operatorname{Rep}_{\text {diff }}(X)$ are isomorphic for $X=F, T, V, \mathcal{O}$.
3 The categories $\operatorname{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(X)$ are semi-simple.

Future Research Directions

1 Description of Pythagorean representations on classical Hilbert spaces.
2 Apply Jones' machinery to construct representations of Thompson-like groups.
3 Construction of a tensor product on the class of Pythagorean representations and studying the properties of the associated tensor category.

