Irreducible Pythagorean Representations of R. Thompson's Groups

Dilshan Wijesena Supervisor: Arnaud Brothier

Symmetry in Newcastle

August 2023

<ロ> (四) (四) (三) (三) (三) (三)

F is the group of piece-wise, linear homeomorphisms of [0,1] with finitely many non-differentiable points which are contained in the dyadic rationals.

イロン イヨン イヨン

F is the group of piece-wise, linear homeomorphisms of [0,1] with finitely many non-differentiable points which are contained in the dyadic rationals.

Exceptional Properties

- T, V first examples of infinite but finitely presented, simple groups [Thompson 65]
- 2 F is first example of torsion-free, infinite-dimensional group of type F_{∞} [Brown-Geoghegan 84]

Exceptional Properties

- T, V first examples of infinite but finitely presented, simple groups [Thompson 65]
- 2 F is first example of torsion-free, infinite-dimensional group of type F_{∞} [Brown-Geoghegan 84]
- $3 \operatorname{Rep}(F)?$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Exceptional Properties

- T, V first examples of infinite but finitely presented, simple groups [Thompson 65]
- 2 F is first example of torsion-free, infinite-dimensional group of type F_{∞} [Brown-Geoghegan 84]
- $3 \operatorname{Rep}(F)?$

Known Irreducible Representations of F

- Rep induced from the Cuntz algebra [Birget 04, Nekrashevich 04, Barata-Pinto 19, Arujo-Pinto 20, Guimaraes-Pinto 22];
- 2 Bernoulli reps for $0 and <math>\phi \in S_1$ [Garncarek 12, Olesen 16] ;
- 3 Jones' rep coming from certain trivalent tensor categories [Jones 19].

Jones' machinery: from simple objects build complicated objects.

- Jones' machinery can used to build representations of *F*:
 - **Simple objects:** (Finite-dimensional) Hilbert space \mathfrak{H} and an isometry between Hilbert spaces.
 - **Complicated objects:** Jones' representation $\sigma : F \rightharpoonup \mathscr{H}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Jones' machinery: from simple objects build complicated objects.

- Jones' machinery can used to build representations of *F*:

 - **Complicated objects:** Jones' representation $\sigma : F \rightharpoonup \mathscr{H}$.

Theorem (Important applications)

- **1** New proof of [F, F], T, V are not Kazhdan groups [Brothier-Jones 19];
- 2 First known example of reps of F that are Ind-mixing [Brothier-W 22].
- 3 New families of irreducible reps of F [Jones 19], [Brothier-W 23];

Definition

A Pythagorean module (P-module) is a triple (A, B, \mathfrak{H}) where \mathfrak{H} is a Hilbert space, $A, B \in B(\mathfrak{H})$ satisfying the Pythagorean relation

 $A^*A + B^*B = \mathrm{id}.$

Definition

A Pythagorean module (P-module) is a triple (A, B, \mathfrak{H}) where \mathfrak{H} is a Hilbert space, $A, B \in B(\mathfrak{H})$ satisfying the Pythagorean relation

$$A^*A + B^*B = \mathrm{id}.$$

An *intertwinner* between P-modules (A, B, \mathfrak{H}) , (A', B', \mathfrak{H}') is a bounded linear map $\theta : \mathfrak{H} \to \mathfrak{H}'$ satisfying

$$\theta \circ A = A' \circ \theta$$
 and $\theta \circ B = B' \circ \theta$.

- P-modules are (unitarily) *equivalent* if there exists a unitary intertwinner between them.
- A sub-module of (A, B, \mathfrak{H}) is a Hilbert subspace $\mathfrak{H}' \subset \mathfrak{H}$ that is closed under A, B.

• Consider a P-module (A, B, \mathfrak{H}) .

• Associate each tree t with the direct sum $\mathfrak{H}_t := \mathfrak{H}^{\text{Leaves}(t)}$.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• Representatives of $[\land, (\xi_1, \xi_2)]$:

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへ(?)

• Representatives of $[\land, (\xi_1, \xi_2)]$:

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

• Representatives of $[\land, (\xi_1, \xi_2)]$:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

• Representatives of $[\land, (\xi_1, \xi_2)]$:

• F has an action on $\mathscr{H}_{A,B}$:

• Representatives of $[\land, (\xi_1, \xi_2)]$:

• F has an action on $\mathscr{H}_{A,B}$:

• Representatives of $[\land, (\xi_1, \xi_2)]$:

• F has an action on $\mathscr{H}_{A,B}$:

■ Denote by $\sigma := \sigma_{A,B} : F \to \mathcal{U}(\mathscr{H}_{A,B})$, called the Pythagorean representation given by A, B.

Extending to the Cuntz Algebra

The Cuntz algebra $\mathcal{O} := \mathcal{O}_2$ is the universal C^* -algebra generated by two isometries s_1, s_2 such that $s_1s_1^* + s_2s_2^* = \text{id [Cuntz 77]}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @

Extending to the Cuntz Algebra

The Cuntz algebra $\mathcal{O} := \mathcal{O}_2$ is the universal C^* -algebra generated by two isometries s_1, s_2 such that $s_1s_1^* + s_2s_2^* = \text{id [Cuntz 77]}$.

Proposition (Brothier-Jones 19, Brothier-W 23)

Every P-rep σ^{F} can be extended to a rep $\sigma^{\mathcal{O}}$ of \mathcal{O} .

Proof.

Define the isometries $S_1, S_2 \in B(\mathscr{H})$ with action given by:

$$x_1$$
 x_2 $\xrightarrow{s_1}$ x_2 x_1 x_2 $\xrightarrow{s_2}$ x_1 x_2 $\xrightarrow{s_2}$ x_1 x_2

It can be shown $S_1S_1^* + S_2S_2^* = id$. Setting $\sigma^{\mathcal{O}}(s_i) = S_i$ gives a representation of \mathcal{O} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへで

$$\mathfrak{H} \mathfrak{H} = \mathbf{C}, A = 1, B = 0: \ \sigma \cong 1_F \oplus \lambda_{F/F_{1/2}}.$$

- 1 $\mathfrak{H} = \mathbf{C}, A = 1, B = 0$: $\sigma \cong \mathbf{1}_F \oplus \lambda_{F/F_{1/2}}$.
- 2 $\mathfrak{H} = \mathbf{C}, A = B = 1/\sqrt{2}$: σ is the Koopman representation of $F \curvearrowright L^2[0,1]$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

- $\mathfrak{H} \mathfrak{H} = \mathbf{C}, A = 1, B = 0: \ \sigma \cong \mathbf{1}_F \oplus \lambda_{F/F_{1/2}}.$
- 2 $\mathfrak{H} = \mathbf{C}, A = B = 1/\sqrt{2}$: σ is the Koopman representation of $F \rightharpoonup L^2[0,1]$.
- **3** $\mathfrak{H} = \mathbf{C}, A = B = \phi \cdot 1/\sqrt{2}$ for $\phi \in S_1 : \sigma$ recovers family of irreducible representations from [Garncarek 12].

$$\mathbf{1} \ \mathfrak{H} = \mathbf{C}, A = 1, B = 0: \ \sigma \cong \mathbf{1}_F \oplus \lambda_{F/F_{1/2}}.$$

- 2 $\mathfrak{H} = \mathbf{C}, A = B = 1/\sqrt{2}$: σ is the Koopman representation of $F \curvearrowright L^2[0,1]$.
- **3** $\mathfrak{H} = \mathbf{C}, A = B = \phi \cdot 1/\sqrt{2}$ for $\phi \in S_1 : \sigma$ recovers family of irreducible representations from [Garncarek 12].

4
$$\mathfrak{H} = \mathbf{C}^2, A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} : \sigma \cong \lambda_{F/F_{1/3}}.$$

Motivation: Assign each P-rep from (A, B, \mathfrak{H}) to some number.

- **Motivation:** Assign each P-rep from (A, B, \mathfrak{H}) to some number.
- **Naive attempt:** Let Pythagorean dimension be equal to dim(\mathfrak{H}).

- **Motivation:** Assign each P-rep from (A, B, \mathfrak{H}) to some number.
- **Naive attempt:** Let Pythagorean dimension be equal to dim(\mathfrak{H}).
- Problem: Every finite-dim P-module (A, B, S) decomposes as
 Sigma = Sigma : Sigma = Sigma : Sigma = Sigma : Sigma = Sigma = Sigma : Sigma = Sigma

- **Motivation:** Assign each P-rep from (A, B, \mathfrak{H}) to some number.
- **Naive attempt:** Let Pythagorean dimension be equal to dim(\mathfrak{H}).
- Problem: Every finite-dim P-module (A, B, S) decomposes as S = S₀ ⊕ 3 where S₀ is a *complete* sub-module and 3 is a *residual* space which does not contain any non-trivial sub-modules.

Definition (Brothier-W 23)

Let σ be a P-rep. The *Pythagorean dimension* dim_P(σ) is given by:

$$\dim_{P}(\sigma) = \min(\dim(A, B, \mathfrak{H}) : \sigma_{A, B} \cong \sigma).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

How to Compute the Pythagorean Dimension?

Example:

$$A = \begin{pmatrix} 0 & 0 & 1/2 \\ 1 & 0 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}, \ \mathfrak{H} = \mathbf{C}^3.$$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 11/20

How to Compute the Pythagorean Dimension?

Example:

$$A = \begin{pmatrix} 0 & 0 & 1/2 \\ 1 & 0 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}, \ \mathfrak{H} = \mathbf{C}^3.$$

Then $\mathfrak{H}_0 = \mathbf{C} e_1 \oplus \mathbf{C} e_2$, $\mathfrak{Z} = \mathbf{C} e_3$ with

$$A\!\!\upharpoonright_{\mathfrak{H}_0} = egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix}, \ B\!\!\upharpoonright_{\mathfrak{H}_0} = egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}.$$

Hence dim $(\mathfrak{H}) = 3$ but dim_P $(\sigma) \leq 2$.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 11/20

How to Compute the Pythagorean Dimension?

Example:

$$A = \begin{pmatrix} 0 & 0 & 1/2 \\ 1 & 0 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1/2 \\ 0 & 0 & 1/2 \end{pmatrix}, \mathfrak{H} = \mathbf{C}^3.$$

Then $\mathfrak{H}_0 = \mathbf{C} e_1 \oplus \mathbf{C} e_2$, $\mathfrak{Z} = \mathbf{C} e_3$ with

$$A\!\!\upharpoonright_{\mathfrak{H}_0} = egin{pmatrix} 0 & 0 \ 1 & 0 \end{pmatrix}, \ B\!\!\upharpoonright_{\mathfrak{H}_0} = egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix}.$$

Hence dim(\mathfrak{H}) = 3 but dim_P(σ) \leq 2.

Question 1: How can we compute the Pythagorean dimension?

Proposition (Brothier-W 23)

Consider a finite-dim P-module (A, B, \mathfrak{H}) with P-rep (σ, \mathscr{H}) . Then:

 $\mathfrak{H} = \mathfrak{H}_1 \oplus \mathfrak{H}_2 \oplus \cdots \oplus \mathfrak{H}_n \oplus \mathfrak{Z}$

where \mathfrak{H}_i are irreducible sub-modules and \mathfrak{Z} the largest residual subspace. This induces a decomposition of \mathscr{H} into subreps:

$$\mathscr{H} = \langle \mathfrak{H}_1 \rangle \oplus \langle \mathfrak{H}_2 \rangle \oplus \cdots \oplus \langle \mathfrak{H}_n \rangle.$$

$$\langle \mathfrak{H}_i \rangle := \overline{\bigsqcup_{t \text{ is a tree}}(\mathfrak{H}_i)_t / \cong} \subset \mathscr{H}, \ (\mathfrak{H}_i)_t =$$

Proposition (Brothier-W 22)

Consider a finite-dim P-module (A, B, \mathfrak{H}) with P-rep (σ, \mathscr{H}) . Then:

$$\mathfrak{H} = \mathfrak{H}_1 \oplus \mathfrak{H}_2 \oplus \cdots \oplus \mathfrak{H}_n \oplus \mathfrak{Z}$$

where \mathfrak{H}_i are irreducible sub-modules and \mathfrak{Z} the largest residual subspace. This induces a decomposition of \mathcal{H} into subreps:

$$\mathscr{H} = \langle \mathfrak{H}_1 \rangle \oplus \langle \mathfrak{H}_2 \rangle \oplus \cdots \oplus \langle \mathfrak{H}_n \rangle.$$

Question 2: Are all subreps of σ in this form and when are they equivalent?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Diffuse Pythagorean Representations

Definition

- **1** A P-module (A, B, \mathfrak{H}) is *diffuse* if $\lim_{n\to\infty} p_n \xi = 0$ for all $\xi \in \mathfrak{H}$ and for all increasing sequences (p_n) of words in A, B.
- 2 A P-module is *atomic* if it does not contain any diffuse sub-modules.
- **3** A P-rep is *atomic* (*diffuse*) if from an atomic (diffuse) P-module.

Diffuse Pythagorean Representations

Definition

- **1** A P-module (A, B, \mathfrak{H}) is *diffuse* if $\lim_{n\to\infty} p_n \xi = 0$ for all $\xi \in \mathfrak{H}$ and for all increasing sequences (p_n) of words in A, B.
- **2** A P-module is *atomic* if it does not contain any diffuse sub-modules.
- **3** A P-rep is *atomic* (*diffuse*) if from an atomic (diffuse) P-module.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Let (A, B, \mathfrak{H}) be a diffuse finite-dimensional P-module. Then there exists a unique smallest complete sub-module $\mathfrak{K} \subset \mathfrak{H}$ of \mathscr{H} . Moreover, $\dim_{\mathbb{P}}(\sigma) = \dim(\mathfrak{K})$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Let (A, B, \mathfrak{H}) be a diffuse finite-dimensional P-module. Then there exists a unique smallest complete sub-module $\mathfrak{K} \subset \mathfrak{H}$ of \mathscr{H} . Moreover, $\dim_{P}(\sigma) = \dim(\mathfrak{K})$.

Counter-example in infinite-dimensional case.

Let $\mathfrak{H} = \ell^2(\mathbf{Z})$ and $A = B = S/\sqrt{2}$ which is the unilateral shift operator divided by $\sqrt{2}$. Each subspace

$$\Re_j := \ell^2(\{j, j+1, j+2, \dots\})$$

with $j \in \mathbf{Z}$ defines a complete sub-module but clearly have trivial intersection.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Let (A, B, \mathfrak{H}) be a diffuse finite-dim P-module. The associated P-rep of F is irreducible if and only if \mathfrak{H} is indecomposable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - のへへ

Let (A, B, \mathfrak{H}) be a diffuse finite-dim P-module. The associated P-rep of F is irreducible if and only if \mathfrak{H} is indecomposable.

Corollary

Every diffuse P-representation from a finite-dim P-module decomposes as a finite direct sum of irreducible diffuse P-representations.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Let (A, B, \mathfrak{H}) be a diffuse finite-dim P-module. The associated P-rep of F is irreducible if and only if \mathfrak{H} is indecomposable.

Corollary

Every diffuse P-representation from a finite-dim P-module decomposes as a finite direct sum of irreducible diffuse P-representations.

Example:

$$A = \begin{pmatrix} 1/\sqrt{2} & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/\sqrt{6} & 1/2 \\ 0 & 1/2 & 1/\sqrt{6} & -1/2 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1/\sqrt{2} & 0 & 0 & -1/2 \\ 0 & 1/2 & 0 & 0 \\ 0 & -1/2 & 2/\sqrt{6} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Consider two full diffuse finite-dim P-modules (A, B, \mathfrak{H}) and (A', B', \mathfrak{H}') . The associated P-reps are equivalent iff the P-modules are equivalent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Consider two full diffuse finite-dim P-modules (A, B, \mathfrak{H}) and (A', B', \mathfrak{H}') . The associated P-reps are equivalent iff the P-modules are equivalent.

Counter-example in atomic case. Take $\mathfrak{H} = \mathbf{C}^2$ and let

$$A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
$$A' = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}, B' = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.$$

Then (A, B, \mathbf{C}^2) , (A', B', \mathbf{C}^2) are not equivalent P-modules but induce equivalent (irreducible) P-representations of F.

- $Irr_{diff}(d)$ the set of irreducible diffuse P-modules of P-dimension d;
- There is a group action of PSU(d) on $Irr_{diff}(d)$ by

$$u \cdot (A, B, \mathbf{C}^d) = (uAu^*, uBu^*, \mathbf{C}^d).$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 18/20

Irr_{diff}(d) the set of irreducible diffuse P-modules of P-dimension d;

• There is a group action of PSU(d) on $Irr_{diff}(d)$ by

$$u \cdot (A, B, \mathbf{C}^d) = (uAu^*, uBu^*, \mathbf{C}^d).$$

Theorem (Brothier-W 23)

- **1** A given finite-dim P-module is almost surely diffuse and irreducible.
- **2** $Irr_{diff}(d)$ is a smooth submanifold of $M_{2d,d}(\mathbf{C})$ of real dim $3d^2$.
- **3** $PSU(d)\setminus Irr_{diff}(d)$ is a manifold of dimension $2d^2 + 1$.
- **4** $PSU(d)\setminus Irr_{diff}(d)$ is in bijection with the set of all irreducible classes of diffuse P-reps of P-dim d.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● の Q () ●

We have the below functors:

 $\mathrm{Mod}_{\mathrm{full},\mathrm{diff}}^{\mathrm{FD}}(\mathcal{P}) \to \mathrm{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(\mathcal{F}) \to \mathrm{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(\mathcal{T}) \to \mathrm{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(\mathcal{V}) \to \mathrm{Rep}_{\mathrm{diff}}^{\mathrm{FD}}(\mathcal{O}).$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 19/20

We have the below functors:

$$\operatorname{Mod}_{\operatorname{full},\operatorname{diff}}^{\operatorname{FD}}(\mathcal{P}) \to \operatorname{Rep}_{\operatorname{diff}}^{\operatorname{FD}}(\mathcal{F}) \to \operatorname{Rep}_{\operatorname{diff}}^{\operatorname{FD}}(\mathcal{T}) \to \operatorname{Rep}_{\operatorname{diff}}^{\operatorname{FD}}(\mathcal{V}) \to \operatorname{Rep}_{\operatorname{diff}}^{\operatorname{FD}}(\mathcal{O}).$$

Theorem (Brothier-W 23)

Let X = F, T, V, O. Then:

- 1 $\operatorname{Mod}_{\operatorname{full},\operatorname{diff}}^{\operatorname{FD}}(\mathcal{P})$ is equivalent to $\operatorname{Rep}_{\operatorname{diff}}^{\operatorname{FD}}(X)$.
- **2** The categories $\operatorname{Rep}_{\operatorname{diff}}(X)$ are isomorphic for $X = F, T, V, \mathcal{O}$.
- **3** The categories $\operatorname{Rep}_{\operatorname{diff}}^{\operatorname{FD}}(X)$ are semi-simple.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

- Description of Pythagorean representations on classical Hilbert spaces.
- 2 Apply Jones' machinery to construct representations of Thompson-like groups.
- 3 Construction of a tensor product on the class of Pythagorean representations and studying the properties of the associated tensor category.