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Preface

Self-similar groups (groups generated by automata) appeared in early eighties
as interesting examples. It was discovered that very simple automata generate
groups with complicated structure and exotic properties which are hard to find
among groups defined by more “classical” methods.

Let X be a finite alphabet and let X∗ denote the set of all finite words over X.
A faithful action of a group G on X∗ is said to be self-similar if for every g ∈ G
and x ∈ X there exist h ∈ G and y ∈ X such that

(0.1) g(xw) = yh(w)

for all words w ∈ X∗. Thus, self-similar actions agree with the self-similarity of the
set X∗ given by the shift map xw 7→ w.

One of aims of these notes is to show that self-similar groups are not only
isolated examples, but that they also have close connections with dynamics and
fractal geometry.

We will show, for instance, that self-similar groups appear naturally as iterated
monodromy groups of self-coverings of topological spaces (or orbispaces) and en-
code combinatorial information about dynamics of such self-coverings. Especially
interesting is the case of a post-critically finite rational function f(z). We will see
that iterated monodromy groups give a convenient algebraic way of characterizing
combinatorial (Thurston) equivalence of rational functions and that the Julia set
of f can be reconstructed from its iterated monodromy group.

In the other direction, we will associate a limit dynamical system to every
contracting self-similar action. The limit dynamical system consists of the limit
(orbi)space JG and of a continuous finite-to-one surjective map s : JG −→ JG,
which becomes a partial self-covering, if we endow JG with a natural orbispace
structure.

Since the main topic of the notes is geometry and dynamics of self-similar
groups, we do not go deep into rich and various algebraic aspects of groups gen-
erated by automata such as just-infiniteness, branch groups, growth, computation
of spectra, Lie methods, etc. A reader interested in these topics may read the
surveys [11, 52, 8].

The first chapter “Basic definitions and examples” serves as an introduction.
We define the basic terminology used in study of self-similar groups: automorphisms
of rooted trees, automata and wreath products. We define the notion of a self-
similar action giving several equivalent definitions and conclude with a sequence of
examples illustrating different aspects of the subject.

Second chapter “Algebraic theory” studies self-similarity of groups from al-
gebraic point of view. We show that the self-similarity can be interpreted as a
permutational bimodule, i.e., a set with two commuting (left and right) actions of

vii



viii PREFACE

the group. The bimodule associated with a self-similar action is defined as the set
M of transformations v 7→ xg(v) of the space of words X∗, where x ∈ X is a letter
and g ∈ G is an element of the self-similar group. It follows from the definition of a
self-similar action that for every m ∈M and h ∈ G compositions m ·g and g ·m are
again elements of M. We get in this way two commuting (left and right) actions of
the self-similar group G on M. The bimodule M is called self-similarity bimodule.
The self-similarity bimodules can be abstractly described as bimodules for which
the right action is free and has a finite number of orbits. A self-similarity bimodule
together with a choice of a basis (orbit transversal) of the right action uniquely
determines the self-similar action. Change of a basis of the bimodule changes the
action to a conjugate one.

Virtual endomorphisms is another convenient tool used to construct a permu-
tational bimodule, and thus the self-similar action. Virtual endomorphism φ of a
group G is a homomorphism from a subgroup of finite index Domφ ≤ G into G.
We show that the set of formal expressions of the form φ(g)h (with natural identifi-
cations) is a permutational bimodule and that one gets a self-similar action in this
way. If we start from a self-similar action, then the associated virtual endomorphism
φ is defined on a stabilizer of a letter x ∈ X in G by the condition that

g (xw) = xφ(g)(w)

for every w ∈ X∗ and g ∈ Domφ.
For example, the adding machine action, i.e., the natural action of Z on the

ring of diadic integers Z2 ≥ Z, where Z2 is encoded in the usual way by infinite
binary sequences, is the self-similar action defined by the virtual endomorphism
φ : n 7→ n/2. In this sense self-similar actions may be viewed as generalizations
of numeration systems. In Section 2.9 of Chapter 2, we apply the developed tech-
nique to describe self-similar actions of free abelian groups Zn, making the relation
between self-similar actions and numeration systems more explicit.

Section 2.11 introduces the main class of self-similar actions for these notes. It
is the class of the so called contracting actions. An action is called contracting if the
associated virtual endomorphism φ asymptotically shortens the length of elements
of the group. Contraction of a self-similar action corresponds to the condition of
expansion of a dynamical system. We show in the next chapters that if a self-
covering of a Riemannian manifold (or orbifold) is expanding, then its iterated
monodromy group is contracting with respect to a standard self-similar action.

The limit spaces and limit dynamical systems of contracting self-similar actions
are constructed and studied in Chapter 3. If M is the permutational bimodule
associated with a self-similar action of a group G, then its tensor power M⊗n is
defined in a natural way. It describes the action of G on the set of words of length
n and is interpreted as the n-th iteration of the self-similarity of the group. Passing
to (appropriately defined) limits as n goes to infinity, we get the left G-module
(G-space) M⊗ω = M ⊗M ⊗ . . . and the right G-module M⊗−ω = . . . ⊗M ⊗M.
The left G-space M⊗ω is naturally interpreted as the action of G on the space of
infinite words Xω = {x1x2 . . . : xi ∈ X}.

The right G-space XG = M⊗−ω is (if the action is contracting) a finite-
dimensional metrizable locally compact topological space with a proper co-compact
right action of G on it. The limit space XG can be also described axiomatically
as the unique proper co-compact G-space with a contracting self-similarity of the
action (Theorem 3.3.10). A right G-space X is called self-similar if the actions
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(X , G) and (X ⊗G M, G) are topologically conjugate. For the notion of contracting
self-similarity see Definition 3.3.8.

Another construction of a limit space is the quotient (orbispace) JG of the
action of G on XG (Section 3.5). The limit space JG can be also defined as the
quotient of the space of left-infinite sequences X−ω = {. . . x2x1 : xi ∈ X} by the
equivalence relation, which identifies two sequences . . . x2x1 and . . . y2y1 if there
exists a bounded sequence gn ∈ G such that gk (xk . . . x1) = yk . . . y1 for all k. Here
a sequence is called bounded if it takes a finite set of values. One can prove that
this equivalence is described by a finite graph labeled by pairs of letters and that
equivalence classes are finite. This gives us a nice symbolic presentation of the
space JG.

The limit space JG comes together with a natural shift map s : JG −→ JG and
(for every basis X of the self-similarity bimodule) with a Markov partition of the
dynamical system (JG, s). The shift is induced by the usual shift . . . x2x1 7→ . . . x3x2

and the elements of the Markov partition are the images of cylindrical sets of the
described symbolic presentation of JG. The elements of the Markov partition are
called (digit) tiles. Digit tiles can be also defined for the limit G-space XG and they
are convenient tools for the study of topology of XG.

The most well-studied contracting groups are the self-similar groups generated
by bounded automata. They can be defined as the groups whose digit tiles have
finite boundary. We show that this condition is equivalent to a condition studied
by S. Sidki in [116] and show an iterative algorithm which constructs graphs ap-
proximating the limit spaces JG of such groups. Groups generated by bounded
automata are defined and studied in Section 3.8, their limit spaces are considered
in Section 3.9 and Section 3.10, where we prove that for some of them the limit
spaces depend only on algebraic structure of the group and thus can be used to
distinguish groups up to isomorphisms.

Chapter 4 “Orbispaces” is a technical chapter in which we collect basic defi-
nitions related to the theory of orbispaces. Orbispaces are structures represented
locally as quotients of topological spaces by finite homeomorphism groups. They are
generalizations of a more classical definition of an orbifold introduced by W. Thurs-
ton (see [123] and [108]). A similar notion of a V-manifold was introduced earlier
by I. Satake [107]. We use in our approach pseudogroups and étale groupoids, fol-
lowing [22]. Most constructions in this chapter are well known, though we present
some new (and we hope natural) definitions, like the definition of an open map
between orbispaces and the notion of an open sub-orbispace. We also define the
limit orbispace JG of a contracting self-similar action and show that the shift map
s : JG −→ JG is a covering of the limit orbispace by its open sub-orbispace (is a
partial self-covering).

The orbispace structure on JG comes from the fact that the limit space JG
is the quotient of the limit space XG = M⊗−ω by the action of the group G.
Introduction of this additional structure on JG makes it possible to reconstruct the
group G itself from the partial self-covering s of JG as the iterated monodromy
group IMG (s). Hence, if we want to be able to go back and forth from self-similar
groups to dynamical systems, then we need to define iterated monodromy groups
in the general setting of orbispace mappings.

One can not avoid using orbispaces even in more classical situations like iter-
ations of rational functions. This was also noted by W. Thurston, who associated
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with every post-critically finite rational function its canonical orbispace, playing an
important role in the study of its dynamics (see [36, 89]).

Chapter 5 defines and studies iterated monodromy groups. If p : M1 −→ M
is a covering of a topological space (or orbispace)M by its open subset (open sub-
orbispace)M1, then the fundamental group π1(M, t) acts naturally by monodromy
action on the set of preimages p−n(t) of the basepoint under nth iteration of p. Let
us denote by Kn the kernel of the action. Then the iterated monodromy group of p
(denoted IMG (p)) is the quotient π1(M, t)

/⋂
n≥0Kn .

We show that IMG(p) has a “standard” faithful self-similar action over an
alphabet X of cardinality equal to the degree of p. The standard action depends
on a choice of paths connecting the basepoint to its preimages, but different choice
of paths corresponds to different choice of a basis of the associated self-similarity
bimodule. In particular, two different standard actions of IMG (p) are conjugate
and if the actions are contracting, then the limit spaces XIMG(p) and JIMG(p) (and
the limit dynamical system) depend only on the partial self-covering p.

Main result of the chapter is Theorem 5.4.3 showing that limit space JIMG(p) of
the iterated monodromy group of an expanding partial self-covering p :M1 −→M
is homeomorphic to the Julia set of p and moreover, that the limit dynamical system
s : JIMG(p) −→ JIMG(p) is topologically conjugate to the restriction of p onto the
Julia set. The respective orbispace structures on the Julia set and on the limit
space also agree.

Last chapter shows different examples of iterated monodromy groups and their
applications. We start with the case when a self-covering p :M −→M is defined
on the whole (orbi)space M. The case when M is a Riemannian manifold and p
is expanding was studied by M. Shub, J. Franks and M. Gromov. They showed
thatM is in this case an infra-nil manifold and that p is induced by an expanding
automorphism of a nilpotent Lie group (the universal cover of M). We show how
results of M. Shub and J. Franks follow from Theorem 5.4.3, also proving them
in a slightly more general situation. A particular case, when M is a torus Rn/Zn
corresponds to numeration systems on Rn and is related to self-affine digit tilings
of the Euclidean space, which were studied by many mathematicians.

Other interesting class of examples are iterated monodromy groups of post-
critically finite rational functions. A rational function f(z) ∈ C(z) is called post-
critically finite if orbit of every its critical point under iterations of f is finite. If
P is the union of orbits of critical points, then f is a partial self-covering of the
punctured sphere Ĉ\P . Then iterated monodromy group of f is, by definition, the
iterated monodromy group of this partial self-covering.

Closure of the iterated monodromy group of a rational function f in the au-
tomorphism group of the rooted tree X∗ is isomorphic to the Galois group of a
naturally defined extension of the field of functions C(t). This is the extension
obtained by adjoining solutions of the equation f◦n(x) = t for all n. These Galois
groups were considered by Richard Pink, who was the first to define the profinite
iterated monodromy groups.

Every post-critically finite rational function is an expanding self-covering of its
Thurston orbifold by its open sub-orbifold, therefore Theorem 5.4.3 can be applied
and we get a symbolic presentation of the action of the rational function on its
Julia set.
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Iterated monodromy groups are rather exotic from the point of view of group
theory. The only known finitely presented examples are the iterated monodromy
groups of functions with “smooth” Julia sets: zd, Chebyshev polynomials and Lattè
examples. Some of iterated monodromy groups of rational functions are groups of
intermediate growth (for instance IMG

(
z2 + i

)
), some are essentially new examples

of amenable groups (like IMG
(
z2 − 1

)
).

We finish Chapter 6 by a complete description of automata generating iterated
monodromy groups of polynomials and by an example showing how iterated mon-
odromy groups can be used to construct and to understand plane-filling dendrites
originating from matings of polynomials.

Acknowledgments.





CHAPTER 1

Basic definitions and examples

1.1. Rooted tree X∗ and its boundary Xω

We recall here the basic notions and facts about rooted trees and their auto-
morphism groups. For more details see the papers [54, 11, 115].

Let X be a finite set, which we call alphabet. By X∗ we denote the set

{x1x2 . . . xn : xi ∈ X}

of all finite words over the alphabet X, including the empty word ∅. In other terms,
X∗ is the free monoid generated by X. The length of a word v = x1x2 . . . xn (the
number of letters in it) is denoted |v|.

The set X∗ is naturally a vertex set of a rooted tree, in which two words
are connected by an edge if and only if they are of the form v and vx, where
v ∈ X∗, x ∈ X. The empty word ∅ is the root of the tree X∗. See Figure 1 for the
case X = {0, 1}.

The set Xn ⊂ X∗ is called nth level of the tree X∗. A map f : X∗ −→ X∗ is an
endomorphism of the tree X∗ if it preserves the root and adjacency of the vertices,
i.e., if for any two adjacent vertices v, vx ∈ X∗ the vertices f(v) and f(vx) are also
adjacent, so that there exist u ∈ X∗ and y ∈ X such that f(v) = u and f(vx) = uy.
It is easy to prove by induction on n that if f is an endomorphism then f(Xn) ⊆ Xn.
An automorphism is a bijective endomorphism.

An interesting object is the boundary of the tree X∗. Boundary of a tree is the
set of all its ends, i.e., infinite simple paths starting at some fixed vertex (e.g. at
the root). The boundary of the tree X∗ is naturally identified with the set Xω of all
infinite sequences (words) x1x2 . . ., where xi ∈ X. Here a sequence x1x2 . . . ∈ Xω is

Figure 1. Binary tree

1



2 1. BASIC DEFINITIONS AND EXAMPLES

identified with the end

∅, x1, x1x2, x1x2x3, . . .

of the tree X∗.
The set Xω is a countable direct power XN of the set X. We introduce topology

of the direct product of discrete sets X on Xω or, in other words, the topology
of coordinate-wise convergence. The space Xω is totally disconnected, metrizable,
compact and without isolated points, thus it is homeomorphic to the Cantor set.

The disjoint union X∗ t Xω has also a natural topology, in which the sequence
x1, x1x2, x1x2x3, . . . converges to the infinite word x1x2x3 . . .. It is the topology
defined by the basis

{vX∗ t vXω : v ∈ X∗} ,
where vX∗ and vXω are the sets of (resp. finite and infinite) words starting with
word v.

The space X∗ t Xω is compact and X∗ is a countable dense subset of isolated
points in it. This space is the natural compactification of the tree X∗ by its boundary
Xω (see [60] for this compactification in a more general setting of hyperbolic spaces).

Every endomorphism f : X∗ −→ X∗ can be extended uniquely to a continuous
map f : X∗ t Xω −→ X∗ t Xω. It is also easy to see that f : X∗ −→ X∗ is uniquely
determined by the induced map on Xω, since f(v) is the beginning of length |v| of
f(vx1x2 . . .) for any infinite word x1x2 . . ..

1.2. Groups acting on rooted trees

We are using left actions in most cases. So, the image of a point x under action
of an element g of a group is denoted g(x) and in the product g1g2 the element g2
acts first.

Let us denote by AutX∗ the group of all automorphisms of the rooted tree X∗.

Definition 1.2.1. An action of a group G by automorphisms of the tree X∗ is
said to be level-transitive if it is transitive on every level Xn of the tree X∗.

An action is level-transitive if and only if the induced action on the boundary
Xω is minimal (an action is said to be minimal if all its orbits are dense).

We have the following standard subgroups of a group acting on a rooted tree.

Definition 1.2.2. Let G ≤ AutX∗ be an automorphism group of the rooted
tree X∗.

(1) Vertex stabilizer is the subgroup Gv = {g ∈ G : g(v) = v}, where v ∈ X∗

is a vertex.
(2) nth level stabilizer is the subgroup StG(n) =

⋂
v∈Xn Gv.

(3) Rigid stabilizer of a vertex v ∈ X∗ is the group G[v] of all automorphisms
acting non-trivially only on the vertices of the form vu, u ∈ X∗, i.e.,
G[v] = {g ∈ G : g(u) = u for all u /∈ vX∗}.

(4) nth level rigid stabilizer RiStG(n) is the subgroup 〈G[v] : v ∈ Xn〉 gener-
ated by the union of rigid stabilizers of the vertices of the nth level.

We will write just St(n) or RiSt(n) if it is clear what G is under consideration.
We have the following easy properties of these subgroups.

Proposition 1.2.3. Let G be a level-transitive automorphism group of the
rooted tree X∗. Then
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(1) A vertex stabilizer Gv for v ∈ Xn is a subgroup of index |X|n in G.
(2) For every v ∈ X∗ and g ∈ G equalities g·Gv ·g−1 = Gg(v) and g·G[v]·g−1 =

G [g(v)] take place.
(3) The level stabilizers StG(n) are normal finite index subgroups of G and⋂

n≥1 StG(n) = {1}.
(4) If a word v is a beginning of a word u ∈ X∗ then Gu ≤ Gv and G[u] ≤ G[v].
(5) If words v, u ∈ X∗ are such that neither word is a beginning of the other,

then G[v] ∩G[u] = [G[v], G[u]] = {1}.
(6) The level rigid stabilizer RiStG(n) is a normal subgroup, which is equal to

the direct product
∏
v∈Xn G[v] of its subgroups.

It follows that that for a level-transitive group G ≤ AutX∗ only one of the
following two cases are possible.

a) All but finite number of level rigid stabilizers RiStG(n) are trivial.
b) All rigid stabilizers G[v] and RiStG(n) are infinite.

Definition 1.2.4. Let G ≤ AutX∗ be a level-transitive group.
If all rigid stabilizers RiStG(n) are infinite (equivalently, non-trivial), then we

say that G is weakly branch.
The group G is said to be branch if RiSt(n) has finite index in G for every n.

We will discuss branch groups in Section 1.8 in more detail.

Proposition 1.2.5. We have equality StAut X∗(n) = RiStAut X∗(n). The sub-
groups StAut X∗(n) form a system of neighborhoods of identity of a profinite topology
on Aut X∗ coinciding with the topology of pointwise convergence on X∗. �

1.3. Automata

1.3.1. Restrictions. Our main object of investigation are groups acting on
the rooted tree X∗. We need some nice way to define automorphisms of rooted
trees and to be able to perform computations with them. There where developed
different languages for this: automata, wreath products and tableaux (due to Leo
Kaloujnine).

Let g : X∗ −→ X∗ be an endomorphism of the rooted tree X∗. Consider a vertex
v ∈ X∗ and subtrees vX∗ and g(v)X∗. Here vX∗ is the subtree with the root v and
with the set of vertices equal to the set of words starting with v. Then we get a
map g : vX∗ −→ g(v)X∗, which is a morphism of rooted trees (see Figure 2).

The subtree vX∗ is naturally isomorphic to the whole tree X∗. The isomorphism
is the map vX∗ −→ X∗ : vw 7→ w. The same is true for g(v)X∗. Identifying vX∗ and
g(v)X∗ with X∗ we get an endomorphism g|v : X∗ −→ X∗. It is uniquely determined
by the condition

(1.1) g(vw) = g(v)g|v(w).

We call the endomorphism g|v restriction of g in v. We have the following
obvious properties of restrictions.

g|v1v2 = g|v1 |v2 ,(1.2)

(g1 · g2)|v = g1|g2(v) · g2|v.(1.3)
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Figure 2. Restriction

1.3.2. Portraits of automorphisms. Let g be an automorphism of the
rooted tree X∗. Then its portrait is the tree X∗ in which every vertex v ∈ X∗

is labeled by the permutation αv ∈ S (X) equal to the action of g|v on X.
For example, if |X| = 2 then we just have to distinguish active vertices, i.e., the

vertices for which g|v is non-trivial.
The portrait determines the automorphism g uniquely, since

g (x1x2 . . . xn) = g(x1)g|x1(x2)g|x1x2(x3) . . . g|x1...xn−1(xn).

1.3.3. Definition of automata. Let Q(g) = {g|v : v ∈ X∗} be the set of
restrictions of an endomorphism g of the tree X∗. Then Q(g) can be interpreted as
a set of internal states of an automaton, which being in a state g|v and reading on
input tape a letter x, types on the output tape the letter g|v(x) and goes to the
state g|v|x = g|vx.

Let us define this sort of automata formally. For general theory of automata
see [38]. For more facts on (groups of) automatic transformations see [54, 115,
120, 121].

Definition 1.3.1. An automaton A over the alphabet X is given by
(1) set of the states, usually also denoted by A;
(2) a map τ : A× X −→ X× A.

If τ(q, x) = (y, p), then y and p as functions of (q, x) are called output and transition
functions, respectively.

An automaton is said to be finite if its set of states is finite.

If we want to emphasize that A is an automaton over the alphabet X, then we
denote it (A,X).

We introduce the following notation. If τ(q, x) = (y, p), then we write

(1.4) q · x = y · p
and

y = q(x), p = q|x.
The last two notations agree with the interpretation of endomorphisms of trees as
automata.

It is convenient to define automata using their Moore diagrams. It is a directed
labeled graph with the vertices identified with the states of the automaton. If
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Figure 3. A Moore diagram

q · x = y · p then we have an arrow starting in q, ending in p and labeled by (x, y).
See Figure 3 for an example.

1.3.4. Automaton (A,Xn). If q is the current state of the automaton A and
it gets on input a finite word v ∈ X∗ then A processes it letter by letter: it reads
the first letter x of v, gives the letter q(x) on output, goes to the state q|x and is
ready to process the word v further. At the end it will give as output some word
of the same length as v and will stop at some state of A.

It is natural hence to consider the automaton (A,X) also as an automaton over
the alphabet Xn. The structure of the automaton (A,Xn) is defined by the following
recurrent rules:

q|∅ = q q|xv = q|x|v,(1.5)
q(∅) = ∅ q(xv) = q(x)q|x(v).(1.6)

Note that rules (1.5), (1.6) are interpreted as associativity, if we use nota-
tion (1.4):

q(xv) · q|xv = q · xv = (q · x) · v
= (q(x) · q|x) · v = q(x) · (q|x · v) = q(x) · (q|x(v) · q|x|v)

= q(x)q|x(v) · q|x|v.

If we identify a word v ∈ X∗ with the transformation w 7→ vw of the set
X∗, then equality q · v = q(v) · q|v becomes a correct equality of compositions of
transformations of the set X∗.

The image q(x1 . . . xn) of a word x1 . . . xn ∈ X∗ and the state q|x1...xn
can be

easily computed using the Moore diagram. There exists a unique directed path
starting in q with the consecutive arrows labeled by (x1, y1), . . . , (xn, yn) for some
y1, . . . , yn ∈ X. Then q(x1 . . . xn) = y1 . . . yn and q|x1...xn is the end of the path.

In the same way the action of q ∈ A on the space Xω can be defined and
computed. For every q and w = x1x2 . . . ∈ Xω there exists a unique path in the
Moore diagram starting at q and labeled by (x1, y1), (x2, y2), . . . for some y1y2 . . . ∈
Xω. Then y1y2 . . . = q(x1x2 . . .). There is no q|x1x2... for obvious reasons.

As an example consider the automaton with the Moore diagram shown on
Figure 3. Its right hand side state defines the trivial transformation of the set X∗.
The left hand side state a acts on the infinite sequence by the rule

a(11 . . . 1︸ ︷︷ ︸
k times

0x1x2 . . .) = 00 . . . 0︸ ︷︷ ︸
k times

1x1x2 . . . .
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This action coincides with the rule of adding 1 to a dyadic integer. The transfor-
mation a is called adding machine or odometer. For more details and generalizations
see Section 1.7.

Note that q(x1x2 . . .) is the limit of q(x1 . . . xn) as n goes to infinity, since
y1 . . . yn = q(x1 . . . xn) is a beginning of q(x1x2 . . .).

1.3.5. Composition of automata. In some sense a dual construction is com-
position, or multiplication of automata.

If (A,X) and (B,X) are two automata over alphabet X, then their product is
the automaton, denoted (A · B,X), whose set of states is the direct product of the
sets of states of A and B and whose transition and output functions are given by

(q1q2)(x) = q1 (q2 (x))(1.7)
(q1q2)|x = q1|q2(x)q2|x,(1.8)

where q1 ∈ A, q2 ∈ B and the pair (q1q2) is hence a state of A · B.
These rules may be also interpreted as associativity if we use notation 1.4:

q1q2(x) · (q1q2)|x = q1q2 · x
= q1 · (q2 · x) = q1 · (q2(x) · q2|x) = (q1 · q2(x)) · q2|x

=
(
q1 (q2 (x)) · q1|q2(x)

)
· q2|x = q1 (q2 (x)) ·

(
q1|q2(x)q2|x

)
Note that (1.8) coincide with (1.3) and it is easy to prove by induction that the

action of the state q1q2 on X∗ is equal to composition of the action of q1 and q2.
An important conclusion is that the set of all transformations defined by (finite)

automata is a semigroup under composition.

1.3.6. Dual automaton. The definition of an automaton is symmetric, in
the sense that if we interchange the alphabet with the set of states and the output
function with the transition function, then we get again an automaton.

Definition 1.3.2. If (A,X) is an automaton, then its dual is the automaton
(A,X)′ = (X′,A′), where the set of states X′ is in a bijective correspondence X −→
X′ : x 7→ x′ with the alphabet X and alphabet A′ is in a bijective correspondence
A −→ A′ : q 7→ q′ with the set of states A of the original automaton and we have

x′ · q′ = p′ · y′

in (X′,A′) if and only if we have

q · x = y · p
in (A,X).

If the alphabet X is larger than the set of states of an automaton A, then it may
be more convenient to draw not the Moore diagram of (A,X) but the dual Moore
diagram, i.e., the Moore diagram of the dual automaton (A,X)′.

The arrows of the dual Moore diagram show the action of the states on the
alphabet X and the labels show the state transitions. More precisely, for every pair
(q, x) ∈ A × X there is an arrow starting from x, ending in q(x) and labeled by
(q, q|x).

Suppose that q1 · · · qm is a product of states of A (i.e., a state of (Am,X))
then the restrictions (q1 · · · qm)|x and the image g1 · · · qm(x) can be conveniently
computed using the dual Moore diagram. The procedure is the same as that of
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Figure 4. Dual Moore diagram of the adding machine

computing images of words on Moore diagrams: one has to find the unique path
starting from the vertex x and labeled by (q1, p1), (q2, p2), . . . (qm, pm) for some pi ∈
A. Then p1 · · · pm = (q1 · · · qm)|x and the end of the path is the letter q1 · · · qm(x).

As an example, consider the dual diagram of the adding machine, shown on
Figure 4. Note that we usually do not draw the loops corresponding to the trivial
state. It is evident from the diagram that

an|0 =
{
an/2 if n is even,
a(n−1)/2 if n is odd,

an|1 =
{
an/2 if n is even,
a(n+1)/2 if n is odd.

The dual Moore diagrams of the automata (A,Xn) for a given automaton (A,X)
have rich geometric structure. They coincide as graphs with the Schreier graphs of
the action on Xn of the group generated by the states of (A,X). In particular, one
of the aims of Chapter 3 will be to show that in the case of so called “contracting
actions” the dual Moore diagrams (A,Xn) converge to some limit space.

1.3.7. Automata as endomorphisms of rooted tree. Let (A,X) be an
automaton and q ∈ A. Since the beginning of length n of the image q(w) depends
only on the beginning of the length n of the word w ∈ X∗, the map defined by q is
an endomorphism of the rooted tree X∗.

On the other hand, if f is an endomorphism of X∗, then, as it was mentioned
before, we get an automaton with the set of states Q(f) = {f |v : v ∈ X∗}.

It follows directly from (1.3) that the transformation g : X∗ −→ X∗ defined by a
state g of this automaton coincides with the original action of g. In particular, this
shows that every endomorphism is defined by a state of an automaton (by initial
automaton).

For example, Figure 5 shows the portrait of the adding machine as an auto-
morphism of the binary tree. We label the active vertices (i.e., the vertices v for
which the action of a|v on the first level X1 is non-trivial) by arcs. If some vertices
are not shown, then we assume that they are not active. The active vertices (the
switches) go all way to infinity along the right-most path of the tree.

1.3.8. Inverse automaton. An automaton A is said to be invertible if every
one of its states defines an invertible transformation of X∗.

It is easy to prove that an automaton is invertible if and only if every one of
its states defines an invertible transformation of X.
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Figure 5. Portrait of the adding machine

If (A,X) is an invertible automaton, then its inverse is the automaton
(
A−1,X

)
,

whose states are in a bijective correspondence A−1 −→ A : g−1 7→ g with the set of
states of A, and

g−1 · x = y · h−1

in
(
A−1,X

)
is equivalent to

g · y = x · h
in (A,X).

In particular, if A is finite, then A−1 is finite. We get that the set of all
automorphisms of the tree X∗ defined by states of finite automata is a group. This
group is called group of finite automata.

If we have the Moore diagram of an invertible automaton (A,X) then the Moore
diagram of the inverse automaton

(
A−1,X

)
is obtained by changing every label (x, y)

to (y, x). A vertex of the old Moore diagram corresponding to the state q ∈ A will
correspond to the state q−1 ∈ A−1 in the new diagram.

If we have the dual Moore diagram of the automaton (A,X), then in order to get
the dual Moore diagram of the inverse automaton we have to change the direction
of every arrow and change labels (q, p) to

(
q−1, p−1

)
.

1.3.9. Reduced automata. An automaton (A,X) is reduced if different states
of A define different transformations of X∗. If g is an endomorphism of the tree
X∗, then the automaton Q(g) = {g|v : v ∈ X∗} is reduced. Any automaton can
be reduced, i.e., there exists an algorithm which finds a reduced automaton whose
states define the same set of transformations as the given automaton. Reduction
of automata is described in [38].

1.4. Wreath products

Another convenient language (and notation) for automorphisms of the rooted
tree X∗ comes from the notion of a wreath product.

1.4.1. Permutational wreath products.

Definition 1.4.1. Let H be a group acting (from the left) by permutations on
a set X and let G be an arbitrary group. Then the (permutational) wreath product
H oG is the semi-direct product H nGX, where H acts on the direct power GX by
the respective permutations of the direct factors.
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Every element of the wreath product H o G can be written in the form h · g,
where h ∈ H and g ∈ GX. If we fix some indexing {x1, . . . , xd} of the set X,
then g can be written as (g1, . . . , gd) for gi ∈ G. Here gi is the coordinate of g,
corresponding to xi. Then multiplication rule for elements h · (g1, . . . , gd) ∈ H oG
is given by the formula

(1.9) α(g1, . . . , gd) · β(f1, . . . , fd) = αβ(gβ(1)f1, . . . , gβ(d)fd),

where gi, fi ∈ G, α, β ∈ H and β(i) is the image of i under the action of β, i.e.,
such an index that β(xi) = xβ(i).

1.4.2. Wreath recursion. We have the following well known fact.

Proposition 1.4.2. Denote by Aut X∗ the automorphism group of the rooted
tree X∗ and by S (X) the symmetric group of all permutations of X. Fix some
indexing {x1, . . . , xd} of X. Then we have an isomorphism

ψ : Aut X∗ −→ S (X) oAutX∗,

given by
ψ(g) = α(g|x1 , g|x2 , . . . , g|xd

),
where α is the permutation equal to the action of g on X ⊂ X∗.

Proof. It is obvious that the map ψ is a bijection, hence it is sufficient to
show that it is a homomorphism. But this follows directly from the definition of
wreath products and (1.3):

ψ(g)ψ(h) = α (g|x1 , g|x2 . . . , g|xd
) · β (h|x1 , hx2 . . . , h|xd

)

= αβ
(
g|h(x1)h|x1 , g|h(x2)hx2 , . . . , g|h(xd)h|xd

)
= αβ ((gh)|x1 , (gh)|x2 , . . . , (gh)|xd

) = ψ(gh).

�

We will usually identify g ∈ Aut X∗ with its image ψ(g) ∈ S (X) o Aut X∗, so
that we write

(1.10) g = α · (g|x1 , g|x2 , . . . , g|xd
),

where α is the permutation defined by g on the first level X of the tree X∗.
According to this convention, we have Aut X∗ = S (X) oAutX∗. The subgroup

(Aut X∗)X ≤ S (X) o Aut X∗ is the first level stabilizer St(1). It acts on the tree X∗

in the natural way
(g1, . . . , gd)(xiv) = xigi(v),

i.e., the ith coordinate of (g1, . . . , gd) acts on the ith subtree xiX∗.
The subgroup S (X) ≤ S (X) o AutX∗ is identified with the group of rooted

automorphisms α = α · (1, . . . , 1) acting by the rule

α(xv) = α(x)v.

Relation (1.10) is called wreath recursion. It is a compact way to define recur-
sively automorphisms of the rooted tree X∗. For example, the relation

a = σ(1, a),

where σ is the transposition (0, 1) of the alphabet X = {0, 1}, defines an auto-
morphism of the tree {0, 1}∗ coinciding with the transformation, defined by the
left-hand side state of the automaton, shown on Figure 3.
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In general, every invertible finite automaton with the set of states {g1, . . . , gn}
is described by recurrent formulae:

g1 = τ1 · (h11, h12, . . . , h1d)
g2 = τ2 · (h21, h22, . . . , h2d)
...
gn = τn · (hn1, hn2, . . . , hnd),

where hij = gi|xj
and τi is the action of gi on X.

Conversely, any set of formulae of this type, for which τi are arbitrary permu-
tations and each hij belongs to the set {g1, . . . , gn}, uniquely defines an invertible
automaton with the set of states {g1, . . . , gn}.

1.4.3. Case of a right action. A more classical notation of wreath product
uses right actions. Since we use mostly left actions, we keep notationH oG = HnGX

as it was defined above and use notation GwrH = GX oH when H acts on X from
the right side.

In this case the elements of GwrH are written in the form (g1, . . . , gn)π. The
multiplication rule for the elements of the wreath product GwrH is then

(1.11) (g1, . . . , gd)α · (h1, . . . , hd)β = (g1h1α , . . . , gdhdα)αβ

1.5. Self-similar actions

1.5.1. Definitions.

Definition 1.5.1. A faithful action of a group G on X∗ (or on Xω) is said to
be self-similar if for every g ∈ G and every x ∈ X there exist h ∈ G and y ∈ X such
that

(1.12) g(xw) = yh(w)

for every w ∈ X∗ (resp. w ∈ Xω).

We will denote self-similar actions as pairs (G,X), where G is the group and X
is the alphabet (that will mean that G acts on X∗ or Xω).

The pair (h, y) is uniquely determined by the pair (g, x), since the action is
faithful. Hence we get an automaton with the set of states G and with the output
and transition functions

g · x = y · h,
i.e., y = g(x) and h = g|x. This automaton is called the complete automaton of the
self-similar action. It is easy to prove by induction that the action on X∗ of the
state g is the same as the action of the element g of the group.

The next definition equivalent to 1.5.1 emphasizes this approach:

Definition 1.5.2. A faithful action of a group G on X∗ is self-similar if there
exists an automaton (G,X) such that the action of g ∈ G on X∗ coincides with the
action of the state g of the automaton.

The notation (G,X) for self-similar actions is therefore a partial case of notation
(A,X) for automata.

If we have a faithful action of G, then G is isomorphic to a subgroup of AutX∗,
with which it will be identified. So, we will in some cases talk about self-similar
subgroups of AutX∗, or self-similar automorphism groups of the tree X∗. Defini-
tion 1.5.1 is formulated in these terms in the following way.
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Definition 1.5.3. An automorphism group G of the rooted tree X∗ is self-
similar (or state-closed) if for every g ∈ G and v ∈ X∗ we have g|v ∈ G.

We say that a self-similar action of a group G is finite-state if every one of its
elements is finite-state as an automorphism of X∗, i.e., if the set {g|v : v ∈ X∗} is
finite for every g ∈ G.

1.5.2. Wreath recursion. Definition 1.5.3 can be written in terms of wreath
recursion in the following way.

Definition 1.5.4. An automorphism group G ≤ Aut X∗ is self-similar if

G ≤ S (X) oG.

Recall that G ≤ S (X) oG means that ψ(G) ≤ S (X) oG, where

ψ : Aut X∗ −→ S (X) oAutX∗

is the wreath recursion (see Proposition 1.4.2).
Thus, we get for every self-similar action the homomorphism

ψ : G −→ S (X) oG,

also called wreath recursion.
Wreath recursion determines the action of G on X∗, since it determines the

complete automaton of the action.

Proposition 1.5.5. Let G be a group and suppose that we have a homomor-
phism ψ : G −→ S (X) o G. Let (Aψ,X) be the automaton, whose output and
transition functions are given by

ψ(g) = σ · (g|x1 , g|x2 , . . . , g|xd
) ,

where σ ∈ S (X) is such that g(x) = σ(x) for all x ∈ X. Then the transformations
of X∗ defined by the states of Aψ give an action of the group G on X∗.

Proof. We must prove that the transformation defined by the state gh is
product of the transformations defined by g and by h. But this follows directly
from the definition of wreath product. �

The action of G on X∗ defined in Proposition 1.5.5 is the action defined by the
wreath recursion ψ.

Note that the action defined by a wreath recursion needs not to be faithful even
if the wreath recursion is an injective homomorphism.

Therefore the next definition is more general than Definition 1.5.1, but equiv-
alent to it in the case of faithful actions.

Definition 1.5.6. A self-similar action of a group G over an alphabet X is
determined by a homomorphism ψ : G −→ S (X) oG. It is the action on X∗, defined
in Proposition 1.5.5.
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1.5.3. Functionally recursive automorphisms. If G is generated by a fi-
nite set {g1, . . . , gn}, then the wreath recursion ψ : G −→ S (X) o G is uniquely
determined by its action on the generators, i.e., by equations of the form

(1.13)


ψ(g1) = τ1 · (h11, h12, . . . , h1d)
ψ(g2) = τ2 · (h21, h22, . . . , h2d)

...
ψ(gn) = τn · (hn1, hn2, . . . , hnd),

where τi ∈ S (X) and hij are elements of G. We usually omit ψ in wreath recursion,
identifying g with ψ(g).

The elements hij can be written as group words in gi. If we know that the
action of the group G is faithful, then wreath recursion (1.13) uniquely determines
the group G, since it determines recursively the action of the generators on the tree
X∗ (determining the complete automaton of the action).

As a corollary we get that the set of all finitely-generated self-similar groups
is countable. Moreover, for a given alphabet X the union of all finitely-generated
self-similar groups acting on X∗ is a countable group (see [24, 115]), called group
of functionally recursive automorphisms of X∗.

1.5.4. Groups generated by automata. If we have in (1.13) that hij all
belong to {g1, . . . , gn}, then the set {g1, . . . , gd} is a finite sub-automaton A of the
complete automaton of the action, and we say that the group G is generated by
the automaton A.

Let us formulate this as a separate definition (see [49]).

Definition 1.5.7. Let A be an invertible automaton. The group generated by
the automaton A is the group 〈A〉 generated by the transformations defined by all
states of A.

Groups generated by finite automata are precisely the groups which are defined
by wreath recursions (1.13) where hij ∈ {g1, . . . , gd}.

A group generated by a finite automaton is obviously finite-state and finitely
generated. Conversely, if the group G is self-similar, finite-state and finitely-
generated, then it is generated by a finite automaton. One can take all the automata
defining the generators of the group G and then take their disjoint union.

1.6. Grigorchuk group

Let us illustrate the introduced notions on one of the most famous examples
of a self-similar group. The study of the self-similar actions was stimulated by the
discoveries of amazing properties of this group and its analogs.

Grigorchuk group acts on X∗ for the alphabet X = {0 , 1} and is generated by
four automorphisms a, b, c, d of X∗, defined recursively by

a(0w) = 1w a(1w) = 0w
b(0w) = 0a(w) b(1w) = 1 c(w)
c(0w) = 0a(w) c(1w) = 1d(w)
d(0w) = 0w d(1w) = 1 b(w).

So, the Grigorchuk group is generated by the automaton shown on Figure 6.
The portraits of the generators are shown on Figure 7. Here also the switches (the
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Figure 6. The automaton generating the Grigorchuk group

Figure 7. Portraits of the generators of the Grigorchuk group

active vertices) are marked by arcs. The switches are arranged periodically with
period 3 along the right-most paths, as it is shown on the figure.

Looking at the transitions and output of the automaton, we see that the group
G is defined by the wreath recursion

a = σ, b = (a, c),
c = (a, d),
d = (1, b),

where σ is the transposition (0, 1) ∈ S ({0, 1}). We do not write trivial elements
of G × G and of S (X), so that a = σ means a = σ · (1, 1) and b = (a, c) means
b = 1 · (a, c).

The Grigorchuk group is the simplest example of an infinite finitely generated
torsion group (thus it is an answer to one of the Burnside problems). It is also the
first example of a group of intermediate growth (what answers the Milnor problem).
It has many other interesting properties such as just-infiniteness, finite width, etc.
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Let us prove that Grigorchuk group is an infinite torsion group, in order to
illustrate the use of self-similarity on a typical example.

The proof essentially coincides with the original proof in [47]. Our exposition
follows [64].

Recall that a group G is called a 2-group if for every element g ∈ G there exists
n ∈ N such that

g2n

= 1.

Theorem 1.6.1. The Grigorchuk group G is an infinite 2-group.

Proof. 1. Let us show that a2 = b2 = c2 = d2 = 1 and that {1, b, c, d} is a
subgroup isomorphic to Klein’s Viergruppe (Z/2Z)× (Z/2Z).

We have a2 = σ2 = 1. We also have

b2 = (a2, c2) = (1, c2), c2 = (a2, d2) = (1, c2), d2 = (1, b2),

what implies that b2 = c2 = d2 = 1, since we see that the set
{
1, b2, c2, d2

}
is

an automaton in which every state acts trivially on X, hence, by induction on the
length of words, every state acts trivially on the whole tree X∗.

We have

bc = (a, c)(a, d) = (1, cd)
cd = (a, d)(1, b) = (a, db)
db = (1, b)(a, c) = (a, bc),

hence the triple (bc, cd, db) satisfies the same recurrent relation as the triple (d, b, c).
Since recurrent relations determine the automorphisms uniquely, we get bc = d,
cd = b, db = c. Since the elements b, c, d are involutions, we also get cb = d, dc = b,
bd = c. This proves the isomorphism {1, b, c, d} ∼= (Z/2Z)× (Z/2Z).

Hence, the Grigorchuk group is a quotient of the free product

(Z/2Z) ∗ ((Z/2Z)× (Z/2Z)) .

Therefore, every element of the group G can be written in the form

s0as1as2a · · · sm−1asm,

where si ∈ {b, c, d} for i = 1, . . . ,m− 1 and s0, sm ∈ {1, b, c, d}.
2. Let G1 ≤ G be the stabilizer of the first level of the tree X∗, i.e., the subgroup
of elements of G which act trivially on X1. Every element g ∈ G1 is written (using
wreath recursion) as g = (g0, g1), where g0 = g|0 and g1 = g|1. We get from (1.3)
that the maps φi : g 7→ gi are homomorphisms from G1 to G. The homomorphisms
φi are called virtual endomorphisms associated with the self-similar action. We will
study virtual endomorphisms (homomorphisms from a subgroup of finite index into
the group) later in general.

One important observation is that the homomorphisms φi are onto, since

b = (a, c), aba = (c, a),(1.14)

c = (a, d), aca = (d, a),(1.15)

d = (1, b), ada = (b, 1),(1.16)
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so that,

φ0(b) = a, φ1(b) = c, φ0(aba) = c, φ1(aba) = a,

φ0(c) = a, φ1(c) = d, φ0(aca) = d, φ1(aca) = a,

φ0(d) = 1, φ1(d) = b, φ0(ada) = b, φ1(ada) = 1,

hence φ0(G1) = G and φ1(G1) = G.
We get instantly that G is infinite, since we have a map from a proper subgroup

G1 < G onto G. Another proof follows from the fact that G is level-transitive, what
also can be proved using surjectiveness of φi.
3. Let us prove that for every g ∈ G there exists n ∈ N such that g2n

= 1. Recall
that g can be written in the form

s0as1as2a · · · sm−1asm,

where si ∈ {b, c, d} for i = 1, . . . ,m − 1 and s0, sm ∈ {1, b, c, d}. The number of
non-unit generators in the shortest representation of g is called length of g.

We will prove the statement by induction on the length of g. It is true for
elements of length 1 (then g2 = 1). It is also easy to see that it is true for elements
of length 2, since

(ad)4 = (σ(1, b)σ(1, b))2 = (b, b)2 = 1

(ac)8 = (σ(a, d)σ(a, d))4 = (da, ad)4 = 1

(ab)16 = (σ(a, c)σ(a, c))8 = (ca, ac)8 = 1.

(The elements da, ca, ba are conjugate to ad, ac, ab, thus have the same order.)
Suppose that for all g ∈ G of length less than k there is n such that g2n

.
If the shortest word s0as1as2a · · · sm−1asm = g starts and ends with a (i.e., if
s0 = s1 = 1), then aga is shorter and has the same order as g, since they are
conjugate. If the first and the last letter of the word belongs to {b, c, d}, then we
also can find an element u ∈ {b, c, d} so that ugu is shorter than g (one has to take
u equal, say to the first letter of the word).

Hence, we may assume (after conjugating, if necessary g by b, c or d) that g is
of the form

as1as2 . . . ask/2

for si ∈ {b, c, d}.
If k/2 is even, then

g = (as1a) · s2 · (as3a) · · · sk/2 = (g0, g1).

But (1.14)–(1.16) imply that asia ∈ {b, c, d} × {a, 1} and si ∈ {a, 1} × {b, c, d}.
Therefore, the lengths of g0 and g1 are not greater than k/2 and by induction
hypothesis, there exists n ∈ N such that g2n

0 = g2n

1 = 1. But then also

g2n

=
(
g2n

0 , g2n

1

)
= 1.

Suppose now that k/2 is odd. Then

(1.17) g2 = (as1a) · s2 · (as3a) · · ·
(
ask/2a

)
· s1 · (as2a) · · · sk/2 = (h0, h1),

where hi have length at most 2 · k/2 = k.
We consider the next three cases.



16 1. BASIC DEFINITIONS AND EXAMPLES

(i) Some sj is equal to d. Then we will have once d = (1, b) and once ada = (b, 1)
in product (1.17), so that length of each of hi is at most k − 1. But then there
exists n ∈ N such that h2n

0 = h2n

1 = 1, and we get g2n+1
= 1.

(ii) Some sj is equal to c. Then sj = (a, d) and asja = (d, a), so that each
of hi either has length less than k or is equal to a word of length k involving d.
In the first case we can apply the induction hypothesis, while the second one was
considered in (i).

(iii) If neither (i) not (ii) holds, then g = abab · · · ab, which is of order at most
16. �

For more on the Grigorchuk group see [52] and the last chapter of [64].

1.7. Adding machine and self-similar actions of Zn

We describe here a class of self-similar actions of Zn. The proofs will appear
in Section 2.9 after a general theory is developed.

1.7.1. The adding machine. Let us define an automatic transformation a
over the alphabet {0, 1} by the recursion

a = σ(1, a),

or, in other words, by

a(0w) = 1w
a(1w) = 0a(w).

We see that a is defined by a two-state automaton. Its Moore diagram is shown
on Figure 3 on page 5. This automaton is called the (binary) adding machine or
the odometer.

The action of the infinite cyclic group Z generated by the transformation a is
self-similar and is also called adding machine action.

The recurrent definition of the transformation a coincides with the rule of
adding 1 to a dyadic integer. More precisely, one can prove (by induction on |n|)
that

an(x1x2 . . . xm) = y1y2 . . . ym

if and only if

y1 + y2 · 2 + y3 · 22 + y4 · 23 + · · ·+ ym · 2m−1 =(
x1 + x2 · 2 + x3 · 22 + x4 · 23 + · · ·+ xm · 2m−1

)
+ n (mod 2m).

The action of a on the infinite words is interpreted using the bijection

Φ : x1x2 . . . 7→
∞∑
k=1

xk · 2k−1

as addition of 1 to dyadic integers: Φ(a(w)) = Φ(w) + 1.
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1.7.2. Multi-dimensional adding machines. The adding machine example
can be generalized in a natural way to free abelian groups Zn.

Let B be an integral matrix with |detB| = d > 1. Then B(Zn) is a subgroup
of index d in Zn. Let X = {r1, . . . rd} be a coset transversal, i.e., a collection of
elements of Zn such that Zn =

⊔d
i=1B(Zn) + ri.

The matrix B will play the role of the base of a numeration system and the
elements r1, . . . , rd are the “digits”. We have B = 2 and {r1, r2} = {0, 1} for the
case of the binary adding machine and binary numeration system.

Let Ẑn be the profinite completion of Zn with respect to the series of finite
index subgroups

Zn > B(Zn) > B2(Zn) > . . . .

Then every element γ ∈ Ẑn can be written uniquely in the form

γ = ri0 +B(ri1) +B2(ri2) +B3(ri3) + · · ·

and the map Φ : γ 7→ ri0ri1 . . . is a homeomorphism between Ẑn and Xω.
The group Zn is a subgroup of the completion Ẑn and thus acts on it in the

natural way. Conjugating by Φ we get an action of Zn on Xω. The respective action
on X∗ is determined by the condition that

g(ri0ri1 . . . rim) = rj0rj1 . . . rjm

is equivalent to

g+ ri0 +B(ri1)+ · · ·+Bm(rim) = rj0 +B(ri1)+ · · ·+Bm(rim) (mod Bm+1(Zn))
It follows that

g · ri = rj · h
in the complete automaton of the action is equivalent to

g + ri = rj +B(h).

For example, if we identify Z2 with the additive group of the ring of Gaussian
integers Z[i] ⊂ C, then we can consider the numeration system on Z[i] with the
“base” (i − 1) and digits {0, 1}: every number a + bi ∈ Z[i] can be written in a
unique way as a sum

a+ bi =
m∑
k=0

ck · (i− 1)k

for some m ∈ N and ck ∈ {0, 1} (see [75]). Then we get the corresponding self-
similar “adding machine” action of Z[i] on {0, 1}∗.

1.8. Branch groups

Recall that an automorphism group G ≤ Aut X∗ is said to be branch if RiStG(n)
is a subgroup of finite index in G for every n (see Definition 1.2.4).

A group is said to be just infinite if it is infinite, but all of its proper quotients
are finite. Accordingly to a theorem of R. Grigorchuk and J. Wilson (see [126, 52,
127]) just infinite group is either a branch group, or contains a subgroup of finite
index which is a direct power Lk of a simple or a hereditary just infinite group L.
A group is said to be hereditary just infinite if it is residually finite and every its
subgroup of finite index is just-infinite.

Many branch groups are defined using their self-similar action on a regular
rooted tree (though, not all branch groups are self-similar). Actually, self-similarity
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is one of the most important tools in the study of branch groups and branch groups
were the starting point of the study of self-similar groups in general.

We have already mentioned the Grigorchuk group. It is probably the most
famous example of a branch group. Here we present some other examples.

For a detailed account on branch groups see [52, 11].

1.8.1. Gupta-Sidki group. Let p be an odd prime. The Gupta-Siki p-group
is generated by two automorphisms a, t of the tree X∗ = {0, 1, . . . , p− 1}∗, defined
by the recursion

a = σ, t = (a, a−1, 1, 1, . . . , 1, t),

where σ is the cyclic permutation (0, 1, . . . , p− 1) ∈ S (X).
It was defined for the first time in [62]. The Gupta-Sidki group is also an infinite

torsion group. For various properties of this group see the papers [113, 112, 9, 10].

1.8.2. Groups of P. Neumann’s type. Let A ≤ S (X) be a transitive per-
mutation group acting on X. For every x ∈ X and α ∈ A such that α(x) = x, define
an automorphism b(α,x) of the tree X∗ by the recurrent relation{

b(α,x) · x = x · b(α,x)
b(α,x) · y = α(y) · 1 if y 6= x,

or, in terms of wreath recursion

b(α,x) = α
(
1, . . . , 1, b(α,x), 1, . . . , 1

)
,

where b(α,x) in the right-hand side stays on the place corresponding to the letter x.
Let P(A) be the group, generated by all such b(α,x).

Recall that a group G is called perfect if the commutator subgroup G′ = [G,G]
coincides with G. A group is perfect if and only if any its abelian quotient is trivial.

Proposition 1.8.1. Let Ax denote the stabilizer of a point x ∈ X in A. Suppose
that A′x = Ax and the subgroups (Ax1 ∩Ax2)

′, x1 6= x2 generate A. Then P(A) is
perfect and P(A) = A o P(A).

Here the last equality means that the image of P(A) under the wreath recursion
coincides with A o P(A), since we, as usual, identify Aut X∗ with S (X) oAut X∗.

Proof. The subgroups Gx = 〈b(α,x) : α ∈ A,α(x) = x〉 are isomorphic to Ax
and thus are perfect. The group P(A) is generated by the union of the groups Gx,
therefore it is also perfect.

If α1, α2 ∈ Ax1 ∩Ax2 for x1 6= y1 ∈ X, then[
b(α1,x1), b(α2,x2)

]
= [α1, α2] (1, . . . , 1) ,

hence P(A) contains A. Therefore it also contains (1, . . . , 1, b(α,x), 1, . . . , 1) = b(α,x) ·
α−1, and consequently, it contains P(A)X. Therefore, the image of P(A) under the
wreath product recursion is equal to A o P(A). �

We can take, for example A equal to the alternating group Alt6. See [95] for
more on this example and its properties.
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1.8.3. Groups of J. Wilson’s type. Let A ≤ S (X) be a 2-transitive per-
mutation group acting on an alphabet of cardinality ≥ 3. The group W(A) is
generated by two copies of A. One is just A acting at the root of X∗, i.e., the set
of automorphisms (1, . . . , 1)α, for α ∈ A. The other is the set A of automorphisms

α = (α, α, 1, 1, . . . , 1), α ∈ A.

We fix here two letters x1, x2 ∈ X, corresponding to the first two coordinates in the
recursion.

Proposition 1.8.2. If A is perfect, then W(A) is also perfect and satisfies the
relation W(A) = A o W(A).

Proof. The group W(A) is generated by two copies of A, therefore is perfect,
if A is.

Let γ ∈ A be a permutation, fixing x1 and moving x2 to a different letter.
Then, for any two α, β ∈ A we have[

α, β
γ
]

=
([
α, β

]
, 1, . . . , 1

)
.

Similarly, if γ′ ∈ A fixes x2 and moves x1 to another letter, then[
α, β

γ′
]

= (1, [α, β], 1, . . . , 1).

Consequently, W(A) contains W(A)X. It also contains A, therefore W(A) =
A o W(A). �

We have the next result from [95], which is applicable both to groups P(A)
and W(A), when they satisfy the condition G = A oG.

Theorem 1.8.3. Let A be a non-abelian simple transitive subgroup of S (X).
If G is a perfect residually finite group such that G ∼= A oG, then

(1) All non-trivial normal subgroups of G have finite index, i.e., G is just-
infinite. (Actually, every non-trivial normal subgroup of G is equal to the
stabilizer of a level of X∗.)

(2) Every sub-normal subgroup of G is isomorphic to a finite direct power
of G, but G does not satisfy the ascending chain condition on subnormal
subgroups.

(3) G is minimal in sense of [102].

The groupsW (A) were used by J. Wilson in [128] to construct the first example
of a group of non-uniform exponential growth.

A finitely generated group G is said to have non-uniform exponential growth if
for every finite generating set S the number

e(S) = lim
n→∞

n
√
|BS(n)|

is greater than one, but infS e(S) = 1. Here BS(n) = {g1g2 · · · gn : gi ∈ S ∪ S−1}.
L. Bartholdi has shown in [7] that the group W (PSL(3, 2)), where PSL(3, 2)

acts on the projective plane X = P 2F2, is an example of a group of non-uniform
exponential growth.
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Figure 8. The lamplighter group

1.8.4. Tree-wreath products. There exists a general method, called tree
wreath products, which can be used to embed self-similar automorphism groups of
the tree X∗ into self-similar branch groups. Tree-wreath products were defined by
A. Brunner and S. Sidki in [26] and were used by S. Sidki and J. Wilson in [117]
to construct the first example of a branch group with free subgroups.

1.9. Other examples

1.9.1. Affine groups. The following self-similar action of the affine group
Zn o GL(n,Z) was constructed by A. Brunner and S. Sidki in [25].

The group Affine (Zn) = Zn o GL(n,Z) is the group of affine transformations
v 7→ A(v) + b of Zn, where A ∈ GL(n,Z) and b ∈ Zn. This action on Zn extends
to a continuous action of G on the set Zn2 of n-tuples of dyadic integers.

Let us identify the n-tuple( ∞∑
k=0

ak,12k,
∞∑
k=0

ak,22k, . . . ,
∞∑
k=0

ak,n2k
)
∈ Zn2 ,

where ak,i ∈ {0, 1}, with the infinite word

(a0,1, a0,2, . . . , a0,n)(a1,1, a1,2, . . . , a1,n)(a2,1, a2,2, . . . , a2,n) . . .

over the alphabet X = {0, 1}n. Then we get a continuous action of Affine (Zn) on
Xω.

One can prove that this action is self-similar and finite-state. This construction
actually defines a self-similar action of the affine group Affine (Zn2 ) over the ring of
dyadic integers Z2. It is proved in [25] than affine group over the ring Z(2) of
rational numbers with odd denominators is represented by finite automata.

See a general treatment of analogous actions of affine groups and their sub-
groups in [94].

1.9.2. Lamplighter group and generalizations. Consider the group gen-
erated by the automaton shown on Figure 8 over the alphabet X = {0, 1}.

The following proposition is due to R. Grigorchuk and A. Żuk [56]. Here we
present a different proof from [54].

Proposition 1.9.1. The group, generated by the transformations a and b is
isomorphic to the “lamplighter group”, i.e., to the semi-direct product (Z/2Z)Z o
Z, where Z acts on (Z/2Z)Z by the shift, or equivalently, to the wreath product
(Z/2Z) wr Z.

Proof. The generators can be written as

a = σ(b, a), b = (b, a).
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Let us identify the alphabet X = {0, 1} with the field F2 = Z/2Z. Then
b−1a = σ acts according to the rule

σ(x1x2 . . .) = (x1 + 1)x2x3x4 . . . .

Direct verification shows that b acts according to the rule

b(x1x2 . . .) = x1(x2 + x1)(x3 + x2)(x4 + x5) . . . .

Let us identify every x1x2 . . . ∈ Xω with the formal power series x1 + x2t +
x3t

2+ . . . ∈ F2[[t]]. It follows that this identification conjugates σ with the mapping
φσ : F (t) 7→ F (t) + 1 and b with φb : F (t) 7→ (1 + t)F (t). Therefore, the group
generated by a and b is isomorphic to the group generated by the transformations
φσ and φb. This group obviously consists of transformations of the form

(1.18) F (t) 7→ (1 + t)nF (t) +
+∞∑
s=−∞

ks(1 + t)s,

where n ∈ Z, and all but finite number of coefficients ks ∈ F2 are equal to zero.
Indeed, transformations of this type form a group containing φσ and φb, and on
the other hand

F (t) + (1 + t)s =
(
F (t) (1 + t)−s + 1

)
(1 + t)s = φsb · φc · φ−sb (F (t)) ;

therefore, all transformations of type (1.18) belong to the group generated by φσ
and φb.

It implies that the group generated by a and b is isomorphic to the group
(Z/2Z) wr Z, where the base of the wreath product (Z/2Z)Z is identified with the
normal subgroup of transformations

F (t) 7→ F (t) +
+∞∑
s=−∞

ks(1 + t)s,

onto which φb acts by conjugation as a shift:

(1 + t)−1

(
(1 + t)F (t) +

+∞∑
s=−∞

ks(1 + t)s
)

= F (t) +
+∞∑
s=−∞

ks+1(1 + t)s.

�

In the paper [56] this representation was used to compute the spectrum of the
Markov operator on the lamplighter group. It was also used in [53] to construct a
counterexample to the strong Atiyah conjecture.

The following generalization of the described group was defined by P. V. Silva
and B. Steinberg in [118].

If G is a finite group then its Cayley machine C(G) is the automaton with the
set of states and the alphabet both identified with G, whose transition and output
functions are defined by the equalities

g(h) = gh, g|h = gh.

The following is Theorem 3.1 of [118].

Theorem 1.9.2. Let G be a non-trivial finite group.
• The states of C(G) generate a free semigroup of transformations of X∗.
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• If G is abelian then the group generated by the automaton C(G) is isomor-
phic to Gwr Z.
• In general, the group generated by C(G) is isomorphic to N o Z where N

is a locally finite group.

1.9.3. Stabilizers of vertex-transitive actions. Suppose that Γ is a locally
finite graph and suppose that a group G acts by automorphism of the graph Γ and
that the action is faithful and transitive on the set of vertices. Then the stabilizer
G0 of a vertex v0 of Γ has a natural faithfull self-similar action on a rooted tree,
which is constructed in the following way.

Let {v1, v2, . . . , vd} be the vertices adjacent to v0. Choose elements gi ∈ G
such that gi(v0) = vi. The set {g1, . . . , gd} = X will be our alphabet. Let g ∈ G0

and gi ∈ X be arbitrary. Then ggi(v0) = g(vi) is a vertex adjacent to v0. Let
vj = ggi(v0). Then g−1

j ggi(v0) = v0, i.e., h = g−1
j ggi ∈ G0.

We see that for every g ∈ G0 and gi ∈ X there exist unique gj ∈ X and h ∈ G0

such that

(1.19) g · gi = gj · h
in G.

We define a self-similar action of G0 on X∗ by equations (1.19). Such actions
are completely described in terms of virtual endomorphisms in the paper [92].

1.10. Bi-reversible automata and free groups

1.10.1. Bi-reversible automata. A finite invertible automaton (A,X) is said
to be bi-reversible if its dual (A,X)′ and dual of its inverse

(
A−1,X

)′ are both
invertible (see [86]).

The dual of the automaton (A,X) is invertible if and only if the transformation
q 7→ q|x is a permutation of A for every x ∈ X.

For example, the dual (A,X)′ of the automaton shown on Figure 8 is not in-
vertible, while the dual

(
A−1,X

)′ of the inverse is.
An abstract commensurator CommG of a group G is the set of equivalence

classes of virtual automorphisms of G. A virtual automorphism of G is an isomor-
phism between its two subgroups of finite index. Two virtual automorphisms are
equivalent if their restrictions onto some subgroup of finite index are equal.

The set of all automorphisms of X∗ which are defined by states of bi-reversible
automata is a group called group of bi-reversible automata. This group is a sub-
group of CommF (X), where F (X) is the free group generated by X. Namely, it is
isomorphic to the group of the virtual automorphisms which are extendable to au-
tomorphisms of the directed Cayley graph of the group F (X) (see [86] Theorems 4
and 5).

The notion of bi-reversible automata is closely related to the theory of lattices
in the automorphism groups of regular (non-rooted) trees.

An example of such a lattice is the free group F (X) acting in the natural way on
its Cayley graph T . Let us denote, following [46], by C the commensurator of this
lattice in AutT , i.e., the set of elements g ∈ AutT such that g−1 ·F (X)·g∩F (X) has
finite index both in F (X) and in g−1 ·F (X) ·g. Let CO be the stabilizer of the vertex
1 ∈ T . Denote by Aut+ T the group of orientation preserving automorphisms of T .
Here orientation is given on the Cayley graph T by the generators X of F (X). Then
the mentioned isomorphism of the group of bi-reversible automata and a subgroup
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Figure 9. Bi-reversible automata

of the abstract commensurator of F (X) can be formulated in the following way
(see [46] Theorem 2.16).

Theorem 1.10.1. The group of bi-reversible automata is isomorphic to the
group CO ∩Aut+ T . Moreover, the action of the group of bi-reversible automata on
X∗ coincides with the action of CO ∩Aut+ T on X∗ ⊂ T .

For more on lattices in automorphism groups of regular trees and their com-
mensurators see the works [82, 13]

1.10.2. Free groups. The first example of a self-similar free group (i.e., a
faithfull self-similar action of a free group) was constructed by Y. Glasner and
S. Mozes in [46], using bi-reversible automata and theory of lattices in products of
trees.

Their construction of the free group is the following. We take a pair of different
primes p, l both congruent to 1 modulo 4. Then there exist exactly p + 1 integral
quaternions x = a + bi + cj + dk such that a is odd and positive, b, c, d are all
even, and the norm N(x) = a2 + b2 + c2 + d2 is equal to p. (See, for example [83]
for proofs.) Denote these quaternions by x1, x2, . . . , xp+1. Similarly there are l+ 1
quaternions q1, q2, . . . , ql+1 associated with the prime l.

It is known (see [46, 83] and the bibliography therein) that for any two quater-
nions qi, xj there is a unique pair qk(i;j), xm(i;j) satisfying

qi · xj = ±xl(i;j) · qk(i;j).

We interpret these equations (discarding ±) as definition of an automaton over
the alphabet X = {x1, x2, . . . , xp+1} with the set of states A = {q1, q2, . . . , ql+1}.
Then A generates a free group of rank l + 1. The smallest example is therefore an
automaton (A,X) with {|A|, |X|} = {6, 14}.

A possibly simpler example is the group generated by the automaton shown on
the left-hand side of Figure 9 over the alphabet X = {0, 1}.

This automaton is one of the automata described in [1]. There was posed a
conjecture in [116] (Section 4 Problem 2) that the group generated by a, b, c is free.
It is not known yet if this is true. Note that this automaton is bi-reversible (as are
the Glasner-Mozes examples). It is interesting that bi-reversibility was also used in
the paper [1], though the proof there is not complete and it is not known yet if the
statement of the main theorem is true.

1.10.3. Free product C2∗C2∗C2. The two 3-state automata over the 2-letter
alphabet shown on Figure 9 are bi-reversible.
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The following is a result of E. Muntyan and D. Savchuk. We will give a complete
proof, since it contains several useful techniques (like, for example, two different
ways to prove that some action is level-transitive).

Theorem 1.10.2. The group generated by the transformations

a = σ(b, b), b = (a, c), c = (c, a)

(i.e., the group generated by the automaton shown on the right-hand side of Fig-
ure 9) is isomorphic to the free product C2 ∗ C2 ∗ C2 of three groups of order 2.

Proof. We see that a2 = (b2, b2), b2 = (a2, c2) and c2 = (c2, a2), hence the
transformations a, b, c are of order two. In particular, every element of the group
G = 〈a, b, c〉 can be written as a word in the alphabet A = {a, b, c} without equal
consecutive letters.

Let us prove at first that the group G is infinite. It is sufficient to prove that the
element ab generates a level-transitive cyclic group (i.e., that it is level-transitive).
We will use the following lemma.

Lemma 1.10.3. Suppose that |X| = 2. Then an automorphism g ∈ Aut X∗ is
level-transitive if and only if for every n ≥ 0 the number of words v ∈ Xn with
active restrictions g|v is odd. �

Recall that an automorphism is said to be active if it acts non-trivially on the
first level of the tree. Proof of Lemma 1.10.3 is an easy induction on the level
number. See for example [54] Lemma 4.4 or [116] Corollary 21.

Lemma 1.10.4. The element ab ∈ G is level-transitive, hence the group G is
infinite.

Proof. Let p : AutX∗ −→ FN
2 be defined as p(g) = (p0, p1, . . .), where pn is

the parity of number of active restrictions g|v for |v| = n. We have to prove that
p(ab) = (1, 1, . . .).

It is straightforward that p ((g0, g1)) = (0, p(g0) + p(g1)) and p (σ(g0, g1)) =
(1, p(g0) + p(g1)). Here, for ξ = (p0, p1, . . .) ∈ FN

2 , we denote (1, ξ) = (1, p0, p1, . . .)
and (0, ξ) = (0, p0, p1, . . .).

It follows that p is a homomorphism of groups (it is, actually, the abelianiza-
tion).

We have ab = σ(ba, bc) and bc = (ac, ca). Therefore

p(bc) = (0, p(ac) + p(ca)) = (0, 0, 0, . . .)

and
p(ab) = (1, p(ba) + p(bc)) = (1, p(ab)) ,

hence p(ab) = (1, 1, 1, . . .) and ab is level-transitive. �

Let us denote the letters of the alphabet X by x0, x1. Then the recursions
defining the generators are written

a · x0 = x1 · b a · x1 = x0 · b
b · x0 = x0 · a b · x1 = x1 · c
c · x0 = x0 · c c · x1 = x1 · a

Let us interpret now the recursions above as a definition of an automaton (X,A)
with the set of states X = {x0, x1} over the alphabet A = {a, b, c} (so, for example,



1.10. BI-REVERSIBLE AUTOMATA AND FREE GROUPS 25

x0 ·a = b·x0). We see that this automaton is invertible. Let H̃ be the automorphism
group of the tree A∗ generated by the automaton (X,A).

Let T be the subtree of A∗ consisting of words which do not have equal con-
secutive letters. The empty word is the root of T . All vertices of the tree T have
degree 3. So, every vertex of T , except for the root, is adjacent to 2 vertices of the
next level. The tree T is the Cayley graph of the group C2 ∗ C2 ∗ C2.

Lemma 1.10.5. The tree T is invariant under the action of H̃.
Moreover, for every g ∈ H̃, t ∈ A and u, v ∈ A∗ the word g(uttv) has the form

u′t′t′v′, where g(uv) = u′v′ and |u| = |u′|, |v| = |v′|.

Proof. It follows from the equalities

x0 · aa = bb · x0, x0 · bb = aa · x0, x0 · cc = cc · x0

x1 · aa = cc · x1, , x1 · bb = aa · x1, x1 · cc = bb · x1.

�

Let H be the automorphism group of T generated by X = {x0, x1} (one can
prove that H is the same as H̃, i.e., that the action of H̃ is faithful on T , but we
do not need this fact).

Lemma 1.10.6. The group H is infinite.

Proof. Suppose that H is finite. Then every orbit of its action on the vertex
set of T has not more than |H| elements. Let g ∈ G be arbitrary. It can be written
as a word without equal consecutive letters, i.e., as a vertex of T . Let v ∈ X∗ be
arbitrary. We have g · v = u · h for u = g(v) and h = g|v. Let us consider elements
u, v ∈ X∗ as elements of H and the elements g, h as words of equal length belonging
to T . Then we get u−1 · g = h · v−1 and thus h is the image of g under the action
of u−1 on T . Therefore, for a given g ∈ G there is not more than |H| different
restrictions h = g|v and thus every element of G is defined by an automaton with
at most |H| states. But there are only finitely many such automata but the group
G is infinite. Contradiction. �

Let St(n) be the stabilizer of the nth level of the action of H on T .

Lemma 1.10.7. The stabilizers St(n) are pairwise different.

Proof. We have to find for every n ≥ 0 an element g ∈ H such that g ∈
St(n) \ St(n+ 1).

By Lemma 1.10.6 the group H is infinite and thus stabilizer St(n) is non-trivial.
Take any non-trivial h ∈ St(n) and let m ≥ n be the smallest number such that
h /∈ St(m+ 1). Let h̃ be a preimage of h in H̃. There exists v = a1a2 . . . am+1 ∈ T
be such that h(v) 6= v. Since m is smallest, we have h ∈ St(m) \ St(m + 1). Take
the element g̃ = h̃|a1...am−n

of H̃ and denote by g the image of g̃ in H. Let us prove
that g ∈ St(n) \ St(n+ 1).

Let v = t1t2 . . . tn be an arbitrary vertex of the nth level of T . Then we have

h̃ (a1a2 . . . am−nt1t2 . . . tn) = h̃ (a1a2 . . . am−n) g̃ (t1t2 . . . tn) .

It is possible that the word a1a2 . . . am−nt1t2 . . . tn does not belong to T . Then it
can be written in the form u1v

−1vu2, where u1v
−1 = a1 . . . am−n, vu2 = t1 . . . tn,
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where v−1 is the word v written in the opposite order and the word u1u2 be-
longs to T (here v and v−1 are the parts which cancel out if we reduce the word
a1a2 . . . am−nt1t2 . . . tn in C2 ∗ C2 ∗ C2).

Then Lemma 1.10.5 implies that

h̃ (a1a2 . . . am−nt1t2 . . . tn) = h̃
(
u1v
−1vu2

)
= u′1w

−1wu′2,

where u′1, w, u
′
2 are such that |u′1| = |u1|, |u′2| = |u2| and h̃(u1u2) = u′1u

′
2. But

h ∈ St(m), hence u1v
−1 = h̃(u1v

−1) = u′1w
−1 and u1u2 = h̃(u1u2) = u′1u

′
2.

Therefore, u1 = u′1, u2 = u′2 and w = v. Then

g̃ (t1t2 . . . tn) = wu′2 = vu2 = t1t2 . . . tn

and g ∈ St(n).
We also have

a1 . . . am+1 6= h̃ (a1 . . . am+1)

= h̃ (a1 . . . am−n) g̃ (am−n+1 . . . am+1)

= a1 . . . am−ng̃ (am−n+1 . . . am+1) ,

hence g̃ (am−n+1 . . . am+1) 6= am−n+1 . . . am+1 and thus g /∈ St(n+ 1). �

Lemma 1.10.8. The group H is level-transitive on T .

Proof. Let us prove by induction that action of H is transitive on the nth
level of the tree T . The statement is true for n = 1 (since x1 acts transitively on
A). Suppose that it is true for n = k and let us prove it for n = k + 1. There
exists g ∈ St(k) \ St(k+ 1). Take a vertex v ∈ Ak ∩T such that g permutes the two
vertices vt1 and vt2 of the level number k + 1, which are adjacent to v.

Let wx ∈ T be an arbitrary vertex, where w ∈ Ak and x ∈ A. By the inductive
assumption, there exists h ∈ H such that h(w) = v. Then h(wx) = vt1 or h(wx) =
vt2. In the second case we have gh(wx) = vt1. We see that every vertex of the level
number k + 1 can be mapped by an element of H to vt1, i.e., H acts transitively
on the level number k + 1. �

The statement of the theorem follows now from the last lemma. Suppose that on
the contrary, there exist non-empty words v ∈ T representing trivial automorphisms
of the tree X∗. Let K be the set of such words (i.e., the kernel of the homomorphism
C2 ∗ C2 ∗ C2 −→ Aut X∗).

If v belongs to K, then v · x0 = x0 · v0 and v · x1 = x1 · v1 for some v0, v1 ∈ K.
We get then x−1

0 · v = v0 · x−1
0 , x−1

1 · v = v1 · x−1
1 . This shows that x−1

0 (K) ⊆ K
and x−1

1 (K) ⊆ K, where K is seen as a subset of the tree T . But the group H
preserves the levels of the tree T , which are finite sets. Therefore, the set K is
H-invariant. This implies, by Lemma 1.10.8, that K is a union of levels of the tree
T . But every level, except for the root, has obviously non-trivial elements (like
abn−1 = σ(ban−1, bcn−1), for example). Hence K contains only the empty word
(the root of T ). �

1.10.4. Free group of rank 2. Let a, b, c be the generators of C2 ∗ C2 ∗ C2

from the previous example. Then x = ab and y = bc generate a free subgroup of
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Figure 10. Automaton generating F2

index 2 in 〈a, b, c〉 ' C2 ∗ C2 ∗ C2. This subgroup is self-similar, since

x = σ(ba, bc) = σ(x−1, y)

y = (ac, ca) = (xy, y−1x−1).

Thus, 〈x, y〉 is an example of a free self-similar group of rank 2. This group is
generated by a finite automaton with six states

{
x, y, x−1, y−1, xy, y−1x−1

}
. This

automaton is shown on Figure 10.
On the other hand, there are many examples of non-self-similar faithful actions

of free groups on the rooted tree X∗. M. Bchattacharjee has shown in [17] that
almost any k-tuple of automorphisms of X∗ are free generators of a free group. It
was though harder to give an example of a finite-state free automorphism group of
X∗. The first attempt was made in [1], though, as we already mentioned, a proof
that the proposed automata generate a free group is still not known. The first
example of a finite-state free group (for |X| = 4) is contained in [25], where affine
groups were represented by finite automata (see Subsection 1.9.1 in our book). The
first example of a free finite-state subgroup of AutX∗ for |X| = 2 was constructed
by A. Olijnyk [96, 97].





CHAPTER 2

Algebraic theory

We will study in this chapter algebraic aspects of self-similarity of group actions.
We will interpret notation g ·x = y ·h as a bimodule structure on the direct product
X × G. The notion of a permutational bimodule together with the natural notion
of tensor product will give us a convenient algebraic formalism for working with
self-similar groups.

We will also start to study an important class of contracting self-similar actions.
The next chapters will be devoted to geometric and dynamical aspects of contracting
actions, while here we collect their basic algebraic properties.

2.1. Permutational bimodules

2.1.1. Definitions.

Definition 2.1.1. Let G be a group. A permutational G-bimodule is a set M
together with commuting left and right actions of G on M. In other words, we have
two maps G×M −→M : (g,m) 7→ g ·m and M×G −→M : (m, g) 7→ m · g such
that

(1) 1 ·m = m · 1 = m for all m ∈M;
(2) (g1g2) ·m = g1 · (g2 ·m) and m · (g1g2) = (m · g1) · g2 for all g1, g2 ∈ G and

m ∈M;
(3) (g1 ·m) · g2 = g1 · (m · g2) for all g1, g2 ∈ G and m ∈M.

Two G-bimodules M1,M2 are isomorphic if there exists a bijection f : M1 −→
M2 which agrees with the left and the right actions, i.e., such that g · f(m) · h =
f(g ·m · h) for all g, h ∈ G and m ∈M1.

For a given permutational G-bimodule we denote by MG and GM the respec-
tive right and left G-modules (i.e., the set M with the right and the left actions
respectively).

Definition 2.1.2. A permutational bimodule M is called a covering bimodule
if the right module MG is free, i.e., if x · g = x implies g = 1 for any x ∈M.

We say that M is d-fold if the set of right G-orbits on M has cardinality d.

2.1.2. Bimodules associated to self-similar actions. Suppose that we
have a self-similar action (G,X).

The associated bimodule of the self-similar action (or the self-similarity bimod-
ule) is the direct product M = X×G with the right action given by

(x, g) · h = (x, gh),

and the left action by
h · (x, g) = (h(x), h|xg) .

29
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We will identify a letter x ∈ X with the pair (x, 1) ∈ X×G. Then the pair (x, g) is
written x · g, by definition of the right action.

In other words, we define the bimodule M in such a way that the equality
g · x = y · h holds in M if and only if g(xw) = yh(w) for all w ∈ X∗, i.e., if it holds
in the complete automaton of the action.

It follows directly from the definition of the right action that M = X · G is a
d-fold covering bimodule for d = |X|.

If we identify an element x · g ∈M with the map

w 7→ xg(w)

on X∗, then both left and right actions of G on M coincide with composition of
maps:

x · g (h (w)) = x · gh(w), h (x · g(w)) = h(x) · h|xg(w).
The axioms of bimodule easily follow from this interpretation (or from (1.3)).

2.2. Bases of a covering bimodule and wreath recursions

Suppose that M is a d-fold covering bimodule over G. Then basis of M is by
definition an orbit transversal X of the right action of G on M. It follows from the
definition that |X| = d and that every element m ∈ M is written in a unique way
in the form m = x · g, where x ∈ X and g ∈ G.

If X ·G = M is the bimodule associated to a self-similar action (G,X), then the
set X = {x = x · 1} is a natural basis of M.

It also follows that if X = {x1, . . . , xd} is a basis of M then a collection Y =
{y1, . . . , yd} is a basis of M if and only if there exists a permutation π ∈ S (d) and
elements gi ∈ G such that

yi = xπ(i) · gi.
A bijection α : M −→M is an automorphism of the right module MG if

α(m · g) = α(m) · g

for all m ∈M and g ∈ G. We denote the automorphism group of the right module
MG by Aut MG.

Proposition 2.2.1. Let M be a d-fold covering G-bimodule with a basis X =
{x1, . . . , xd}. Then the map, putting in correspondence to an automorphism α ∈
AutMG the element

π(g1, . . . , gd) ∈ S (X) oG,
where gi ∈ G and π ∈ S (X) are such that

α(xi) = π(xi) · gi
is an isomorphism between Aut MG and S (X) oG.

Proof. For any (ordered) basis Y = {y1, . . . , yd} of MG the map

α : xi 7→ yi

extends to a unique automorphism α ∈ Aut MG. It is the automorphism given by

α(xi · g) = yi · g.

On the other hand, if α is an automorphism of MG then {α(x1), . . . , α(xd)} is
a basis of MG.
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Consequently, the set AutMG is in bijective correspondence with the set of
ordered bases Y = {y1, . . . , yd}. The latter, as we know, is in bijective correspon-
dence with the group S (X) o G, where Y = {y1 = π(x1) · g1, . . . , yd = π(xd) · gd}
corresponds to π (g1, . . . , gd) ∈ S (X) oG.

We have to check that the obtained bijection α 7→ π · (g1, . . . , gd) is a homo-
morphism of groups.

Let α and β ∈ AutMG correspond to π (g1, . . . , gd) and σ (h1, . . . , hd). Then

α (β(xi)) = α (σ(xi) · hi) = α (σ(xi)) · hi = π(σ(xi))gσ(i)hi.

Hence, αβ corresponds to πσ
(
gσ(1)h1, . . . , gσ(d)hd

)
, what agrees with the multipli-

cation in S (X) oG. �

The left action of G on M commutes with the right action, so that we get for
every g ∈ G an automorphism ψ(g) ∈ AutMG:

ψ(g)(m) = g ·m.

The bimodule M is then uniquely determined by this structural homomorphism

ψ : G −→ AutMG
∼= S (X) oG,

which is called wreath recursion.
On the other hand, suppose that we have a homomorphism

ψ : G −→ S (X) oG.

Let M be the set X×G. For g1 ∈ G, let ψ(g1) = π · g1, where g1 ∈ GX is a function
X −→ G and π ∈ S (X) is a permutation. We define then the actions of G on M by

g1 · (x, g) · g2 = (π(x), g1(x)gg2) .

It is easy to check that then M is a G-bimodule with the structural homomor-
phism ψ.

2.3. Tensor products and self-similar actions

2.3.1. Tensor products of bimodules. Let M1 and M2 be permutational
G-bimodules. Then their tensor product M1⊗M2 is the quotient of the set M1×M2

by the equivalence relation

(x1 · g)⊗ x2 = x1 ⊗ (g · x2),

where g ∈ G, x1 ∈M1, x2 ∈M2 and x⊗ y = (x, y) ∈M1 ×M2.
The proof of the following proposition is straightforward.

Proposition 2.3.1. The quotient M1 ⊗M2 is well defined and the actions

g · (x1 ⊗ x2) = (g · x1)⊗ x2, (x1 ⊗ x2) · g = x1 ⊗ (x2 · g)

is a well defined bimodule structure on M1 ⊗M2.
If M1,M2,M3 are permutational G-bimodules, then the mapping

(x1 ⊗ x2)⊗ x3 7→ x1 ⊗ (x2 ⊗ x3)

induces an isomorphism of the bimodules (M1 ⊗M2)⊗M3 and M1⊗ (M2 ⊗M3).
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In particular, the nth tensor power

M⊗n = M⊗M⊗ · · · ⊗M︸ ︷︷ ︸
n times

of a G-bimodule M is defined.
We put M⊗0 equal to the group G with the natural G-bimodule structure. The

bimodules G⊗M and M⊗G are obviously isomorphic to M.
If M is a G-bimodule and M′ is a right (or left) G-module, then the right

module M⊗M′ (resp. left module M′⊗M) is defined. Also if M1 is a right module
and M2 is a left module, then the tensor product M1 ⊗M2 is also defined, but is
just a set.

Proposition 2.3.2. Let M1 and M2 be covering bimodules and let X1, X2 be
their bases. Then M1⊗M2 is a covering bimodule and the set X1⊗X2 = {x1⊗x2 :
x1 ∈ X1, x2 ∈ X2} is its basis.

Proof. Suppose that (m1 ⊗m2) · g = m1 ⊗m2. This means that there exists
h ∈ G such that m1 = m1 · h and m2 · g = h ·m2. The right action in M1 is free,
therefore h = 1. But then m2 · g = m2, what implies that g = 1. Consequently, the
bimodule M1 ⊗M2 has free right action, i.e., is a covering bimodule.

Let m1 ⊗ m2 be an arbitrary element of M1 ⊗M2. Then m1 = x1 · g1 and
g1 · m2 = x2 · g2 for some g1, g2 ∈ G and x1 ∈ X1, x2 ∈ X2. Then m1 ⊗ m2 =
(x1 · g1) ⊗m2 = x1 ⊗ (g1 ·m2) = x1 ⊗ (x2 · g2). Hence, the set X1 ⊗ X2 intersects
every right orbit of the bimodule M1 ⊗M2.

Suppose that x1 ⊗ x2 · g = y1 ⊗ y2 for some x1, y1 ∈ X1, x2, y2 ∈ X2 and g ∈ G.
Then there exists h ∈ G such that y1 · h = x1 and y2 = h · x2 · g. But X1 is a basis
of the bimodule M1, thus the first equality implies that h = 1 and x1 = y1. But
then y2 = x2 · g, thus g = 1 and x2 = y2. So, every right orbit of M1⊗M2 contains
not more than one element of X1 ⊗ X2. �

2.3.2. Associated self-similar action on X∗. As a corollary of Proposi-
tion 2.3.2 we get that if X is a basis of a covering bimodule M, then

Xn = {x1 ⊗ x2 ⊗ · · · ⊗ xn : xi ∈ X}

is a basis of the bimodule M⊗n. We will use the short-hand notation

x1x2 . . . xn = x1 ⊗ x2 ⊗ · · · ⊗ xn.

Every element of M⊗n is uniquely written in the form v · g, where v ∈ Xn

and g ∈ G. In particular, for every pair g ∈ G, v ∈ Xn there exist a pair h ∈ G,
u ∈ Xn such that g · v = u · h in M⊗n. The pair u, v is uniquely defined due to
Proposition 2.3.2 and we denote u = g(v) and h = g|v. The following proposition
follows directly from the uniqueness and the definitions of permutational bimodules
and their tensor products.

Proposition 2.3.3. The map v 7→ g(v) defines an action of G on the tree
X∗ by automorphisms. It is the original action of G on X∗ if M is the bimodule,
associated to a self-similar action. If g · v = u · h in M⊗n then g(vw) = uh(w) for
every w ∈ X∗. The restriction map g 7→ g|v satisfies

(2.1) g|v1v2 = (g|v1) |v2 , (g1g2)|v = g1|g2(v)g2|v.
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The action of G on X∗ is defined by the automaton (G,X) whose output and tran-
sition functions are given by the condition

g · x = g(x) · g|x.

Proof. The proof is straightforward. The only thing to check is (2.1), which
follows directly from the axioms of a (covering) bimodule. �

The action described in Proposition 2.3.3 is called the (associated) self-similar
action defined by the bimodule M and its basis X. It is denoted by (G,M,X) or just
by (G,X), if it is clear what bimodule is considered.

2.3.3. Tensor power of self-similar actions. Recall that every self-similar
action (G,X) can be identified with its complete automaton (also denoted (G,X))
with the set of states G over the alphabet X (see Definition 1.5.2).

Using the complete automaton (G,X) we can construct the automaton (G,Xn)
(see 1.3.4 on page 5). It will also satisfy the conditions of Definition 1.5.2 and thus
will correspond to a self-similar action of G over the alphabet Xn.

This action is just the restriction of the action of G on X∗ onto the subset (Xn)∗

of words of length a factor of n, if we identify a word

(x1x2 . . . xn)(xn+1xn+2 . . . x2n) . . . (xkn+1xkn+2 . . . x(k+1)n) ∈ (Xn)∗

with the word x1x2 . . . x(k+1)n ∈ X∗.
The corresponding actions on Xω and (Xn)ω are conjugate and the conjugating

homeomorphism is the continuous extension of the above identification of finite
words.

It follows directly from Proposition 2.3.2 that the bimodule associated with the
action (G,Xn) is isomorphic to M⊗n. Moreover, the isomorphism is in a sense the
identical map

x1x2 . . . xn · g 7→ x1 ⊗ x2 ⊗ · · · ⊗ xn · g,
where on the left hand side we have an element of Xn · G and on the right hand
side is an element of M⊗n.

Since passing to (G,Xn) corresponds to passing to the nth tensor power of the
associated bimodule, the self-similar action (G,Xn) is called nth tensor power of
the action (G,X).

2.3.4. Conjugacy of associated actions.

Proposition 2.3.4. Let M a d-fold covering bimodule over G. Let X,Y be
its bases. Then the self-similar actions (G,X) and (G,Y) are conjugate and the
conjugating isomorphism is the map α : X∗ −→ Y∗ such that for every v ∈ X∗ there
exists αv ∈ G for which

v = α(v) · αv
in M. The map α is defined by the recurrent formula

(2.2) α(xw) = yhxα(w),

where hx ∈ G and y ∈ Y are such that x = y · hx and w ∈ X∗ is arbitrary.

Proof. Let v = xi1xi2 . . . xin be an arbitrary element of X∗. Proposition 2.3.2
implies that there exists a unique α(v) ∈ Y∗ such that v = α(v) · αv for some (also
uniquely defined) αv ∈ G.
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We have g · v = g(v) · g|v (where g(v) is computed using the associated action
of G on X∗), therefore g · v = α(g(v)) · αvg|v. On the other hand

g · v = g · α(v) · αv(v) = g(α(v)) · g|α(v)h(v),

where g(α(v)) is computed using the self-similar action (G,Y). Hence, α(g(v)) =
g(α(v)).

Recurrent formula (2.2) follows directly from the definition of α. �

Let us index the bases X = {x1, . . . , xd} and Y = {y1, . . . , yd} and consider
bijections xi ↔ i and yi ↔ i of X and Y with D = {1, 2, . . . , d}. Let α̃ be
the conjugator α, interpreted as an automorphism of the tree D∗, i.e., such that
α̃(i1 . . . in) = j1 . . . jn if and only if α(xi1 . . . xin) = yj1 . . . yjn . Then recurrent
definition (2.2) of the conjugator α can be written in terms of wreath recursion as

(2.3) α = π (h1α, h2α, . . . , hdα) ,

where π ∈ S (d) and hi are such that xi = yπ(i) · hi.

2.4. Left G-space M⊗ω

Let M be a d-fold covering bimodule over G and let X be its basis. Then we get
the associated self-similar action (G,X). It is an action by automorphisms of the
tree X∗, and thus it induces an action of G by homeomorphisms on its boundary
Xω.

The space Xω and the action of G on it can be naturally interpreted as an
infinite tensor power Mω = M⊗ω of bimodules.

Namely, we say that two infinite sequences a1, a2, . . . and b1, b2, . . . in M define
equal infinite products a1 ⊗ a2 ⊗ · · · and b1 ⊗ b2 ⊗ · · · if and only if there exists a
sequence gn ∈ G such that

a1 ⊗ a2 ⊗ · · · ⊗ an · gn = b1 ⊗ b2 ⊗ · · · ⊗ bn
for every n ≥ 1.

The defined set of expressions a1 ⊗ a2 ⊗ · · · (i.e., the quotient of the set of
infinite sequences by the described equivalence relation) is denoted by M⊗ω, or
just by Mω.

The equivalence relation agrees with the left action of G, so that

g · (a1 ⊗ a2 ⊗ · · · ) = (g · a1)⊗ a2 ⊗ · · ·

is a well defined left action of G on Mω.

Proposition 2.4.1. Let X be a basis of MG. Then every element of Mω can
be written in a unique way in the form x1 ⊗ x2 ⊗ . . . for xi ∈ X.

Proof. A direct corollary of Proposition 2.3.2 and definition of Mω. �

Proposition 2.4.1 shows that we have a natural bijection between Xω and Mω

given by
x1x2 . . . 7→ x1 ⊗ x2 ⊗ · · · .

We will write the infinite tensor product a1 ⊗ a2 ⊗ · · · just as a sequence a1a2 . . .
(so that the above bijection becomes tautological).

The left action of G on Mω = Xω will coincide with the associated self-similar
action of G on Xω.
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It follows from Proposition 2.3.4 that if X and Y are two bases of M, then
x1x2 . . . ∈ Xω and y1y2 . . .Y

ω represent the same point of Mω if and only if
α(x1x2 . . .) = y1y2 . . ., for α as in Proposition 2.3.4 (more precisely, α is the action
of the conjugator on the boundaries of the trees X∗ and Y∗).

But we know that α : Xω −→ Yω is a homeomorphism, therefore we get a well
defined topology on Mω, if we pull back the topology from Xω to Mω by the natural
bijection.

2.5. Virtual endomorphisms

2.5.1. Definitions.

Definition 2.5.1. A virtual homomorphism φ : G1 99K G2 is a homomorphism
of groups φ : Domφ −→ G2, where Domφ ≤ G1 is a subgroup of finite index called
the domain of the virtual homomorphism.

A virtual endomorphism of a group G is a virtual homomorphism φ : G 99K G.
The index [G1 : Domφ] is called the index of the virtual homomorphism φ and

is denoted indφ.
By Ranφ we denote the image of Domφ under φ.

We say that a virtual homomorphism φ is defined on an element g ∈ G1 if
g ∈ Domφ.

A composition of two virtual homomorphisms φ1 : G1 99K G2, φ2 : G2 99K G3

is defined on an element g ∈ G1 if and only if φ1 is defined on g and φ2 is defined
on φ1(g). Thus, the domain of the composition φ2 ◦ φ1 is the subgroup

Dom (φ2 ◦ φ1) = {g ∈ Domφ1 : φ1(g) ∈ Domφ2} ≤ G1.

Proposition 2.5.2. Let φ1 : G1 99K G2 and φ2 : G2 99K G3 be two virtual
homomorphisms. Then

[Domφ1 : Dom (φ2 ◦ φ1)] ≤ [G2 : Domφ2] = indφ2.

If φ1 is onto, then

[Domφ1 : Dom (φ2 ◦ φ1)] = [G2 : Domφ2] .

Proof. We have [Ranφ1 : Domφ2 ∩ Ranφ1] ≤ indφ2 and we have here equal-
ity in the case when φ1 is onto. Let T = {φ1(h1), φ1(h2), . . . φ1(hd)} be a left coset
transversal for Domφ2 ∩Ranφ1 in Ranφ1. Then for every g ∈ Domφ1 there exists
a unique φ1(hi) ∈ T such that φ1(hj)−1φ1(g) = φ1(h−1

i g) ∈ Domφ2. This is equiv-
alent to h−1

i g ∈ Dom (φ2 ◦ φ1) and the set {h1, h2, . . . , hd} is a left coset transversal
of Dom (φ2 ◦ φ1) in G1. Thus,

[G2 : Domφ2] = [Ranφ1 : Domφ2 ∩ Ranφ1] .

�

Corollary 2.5.3. A composition of two virtual homomorphisms is again a
virtual homomorphism. �
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2.5.2. Virtual endomorphisms associated with covering bimodules.
Let M be a d-fold covering G-bimodule and let x ∈M. Then the associated virtual
endomorphism φx is defined by the condition

g · x = x · φx(x).

Domain of φx is the subgroup Gx of those elements g ∈ G for which x and g · x
belong to the same right orbit.

Let us show that [G : Gx] ≤ d. If g1, . . . , gn are elements of G and n > d, then
some elements gi · x belong to one right orbit, since we have only d of them. But if
gi ·x = gj ·x ·h, then g−1

j gi ·x = x ·h, what implies that g−1
j gi ∈ Domφx, i.e., that

gi and gj belong to one left Domφx-coset.
In particular, if M is the associated bimodule of a self-similar action, then the

map φx : Gx → G defined by the formula

φx(g) = g|x

is a virtual endomorphism of G. Here Gx is the stabilizer of the one-letter word
x in G. This virtual endomorphism φx : G 99K G is called the endomorphism,
associated with the self-similar action.

For example, the associated virtual endomorphism of the adding machine action
is the map Z 99K Z : n 7→ n/2 with the domain equal to the set of even numbers.
This follows from the equality a2·0 = 0 ·a, where a is the adding machine a = σ(1, a)
defined over the alphabet X = {0 , 1}.

2.5.3. Conjugate virtual endomorphisms.

Definition 2.5.4. We say that virtual homomorphisms φ1, φ2 : G1 99K G2 are
conjugate if there exist g1 ∈ G1, g2 ∈ G2 such that Domφ1 = g−1

1 ·Domφ2 · g1 and

φ2(x) = g−1
2 φ1(g−1

1 xg1)g2

for all x ∈ Domφ2.

Definition 2.5.5. We say that a permutational bimodule M is irreducible if
for any x1, x2 ∈M there exist g1, g2 ∈ G such that g1 · x1 · g2 = x2.

A bimodule associated to a self-similar action is irreducible if and only if the
action is transitive on the first level X1 of the tree X∗.

Proposition 2.5.6. Let M be an irreducible d-fold covering G-bimodule. Then
every two associated virtual endomorphisms φx and φy are conjugate. If φ is con-
jugate to an associated virtual endomorphism φx then it is also associated with M,
i.e., there exists y ∈M such that φ = φy.

Proof. There exist g, h ∈ G such that y = g ·x ·h. Then for every f ∈ Domφy
we have f ·y = y ·φy(f), what is equivalent to the condition fg ·x ·h = g ·x ·hφy(f),
i.e., g−1fg · x = x · hφy(f)h−1. It follows that φy(f) = h−1φx(g−1fg)h.

Similar arguments show that if φ(f) = h−1φx(g−1fg)h, then φ is the virtual
endomorphism, associated with M and g · x · h ∈M. �
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2.5.4. The bimodule φ(G)G. Let us show that a covering bimodule is de-
termined uniquely by the associated virtual endomorphism.

Let φ be a virtual endomorphism of a group G. Let us define the set φ(G)G
of expressions of the form φ(g1)g0, where g1, g0 ∈ G. Two expressions φ(g1)g0 and
φ(h1)h0 are considered to be equal if and only if g−1

1 h1 ∈ Domφ, and

φ(g−1
1 h1) = g0h

−1
0 .

Definition 2.5.7. Let v = φ(g1)g0 ∈ φ(G)G and g ∈ G. The right action
of G on φ(G)G is defined by v · g = φ(g1)g0g and the left action is defined by
g · v = φ(gg1)g0.

The left and the right actions are well defined, since φ(g1)g0 = φ(h1)h0 implies

φ
(
g−1
1 h1

)
= φ

(
(gg1)

−1 (gh1)
)

= g0h
−1
0 = (g0g)(h0g)−1,

hence φ(gg1)g0 = φ(gh1)h0 and φ(g1)g0g = φ(h1)h0g.
It follows directly from the definitions that the right and the left actions com-

mute, and thus we get the bimodule φ(G)G.
It is easy to see that the bimodule φ(G)G is irreducible and has free right action

with the number of orbits equal to the index indφ = [G : Domφ].

Proposition 2.5.8. Let M be an irreducible d-fold covering G-bimodule and
let φ be the associated virtual endomorphism. Then the bimodules M and φ(G)G
are isomorphic.

Proof. Let φ = φx0 for x0 ∈ M. Let us define a map F : φ(G)G −→ M by
the formula

(2.4) F (φ(g1)g0) = g1 · x0 · g0.
If φ(g1)g0 = φ(h1)h0 then g−1

1 h1 · x0 = x0 · g0h−1
0 , thus h1 · x0 · h0 = g1 · x0 · g0,

hence the map F is well defined.
On the other hand, if h1 · x0 · h0 = g1 · x0 · g0 then g−1

1 h1 · x0 = x0 · g0h−1
0 , i.e.,

φ(g1)g0 = φ(h1)h0 and the map F is injective.
Since the bimodule M is irreducible, one can find for every x ∈ G elements

g1, g0 ∈ G such that x = g1 · x0 · g0, hence the map F is a bijection.
We have F (φ(g · g1)g0 · h) = gg1 · x0 · g0h = g · F (φ(g1)g0) · h, hence F is an

isomorphims of the bimodules. �

Propositions 2.5.6 and 2.5.8 imply the next corollary.

Corollary 2.5.9. The G-bimodules φ1(G)G and φ2(G)G are isomorphic if
and only if the virtual endomorphisms φ1 and φ2 are conjugate. �

2.5.5. Self-similar action in terms of φ. Let us describe the bases of the
bimodule φ(G)G and the associated self-similar action in terms of the virtual en-
domorphism φ.

It is easy to see that a set {φ(gi)hi}i=1,...,d is a basis of the bimodule φ(G)G
if and only if the set T = {gi} is a left coset transversal of Domφ, i.e., if G is the
disjoint union of the cosets gi Domφ. The sequence C = {hi} may be arbitrary.

Proposition 2.5.10. If X = {xi = φ(gi)hi}i=1,...,d is a basis of the bimod-
ule φ(G)G then the associated self-similar action (G,φ(G)G,X) is defined by the
formula:

(2.5) g · xi = xj · h−1
j φ(g−1

j ggi)hi,
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where j is such that g−1
j ggi ∈ Domφ (i.e., ggi ∈ gj Domφ).

Proof. Proof is a direct computation in φ(G)G. �

Equation (2.5) can be interpreted as a “φ”-adic adding machine, so that we get
in some sense generalized numeration systems (compare with 1.7).

We get from Proposition 2.3.4 and Corollary 2.5.9

Corollary 2.5.11. The associated virtual endomorphism determines the as-
sociated self-similar action uniquely up to a conjugacy. �

If we start from a given self-similar action (G,X), then it may be convenient to
know how one gets the elements gi, hi such that {xi = φ(gi)hi} = X. For example,
one can use then (2.5) to compute the action of group’s elements on words. The
answer is actually given in the proof of Proposition 2.5.8. Namely, if φ is associated
with x0 ∈ X (i.e., defined by the condition g · x0 = x0 · φ(g)), then gi and hi are
such elements of the group that

(2.6) gi · x0 = xi · h−1
i ,

since φ(gi)hi corresponds to gi · x0 · hi in the proof of Proposition 2.5.8.

2.6. Linear recursion

Let A,B be algebras over a field k. An (A−B)-bimodule is a right B-module
Φ together with a homomorphism ψ from A to the endomorphism algebra of the
right B-module Φ.

We write ψ(a) · ξ = a · ξ for a ∈ A, ξ ∈ Φ. Hence Φ is also a left A-module and
the left multiplication by A commutes with the right multiplication by B.

It is required in many definitions of a bimodule that the homomorphism ψ is
injective. We need to consider a more general definition.

On the rôle of (Hilbert) bimodules (or correspondencies) in C∗-algebras, see [29,
30, 69].

The trivial A-bimodule is the bimodule 1A := A with the left and right multi-
plications coinciding with the usual multiplication in A.

If M is a permutation G-bimodule and k is a field then the left and the right
actions of G on M are extended to a structure of a k[G]-bimodule on the linear
space 〈M〉k. Here 〈M〉k denotes the linear k-space with the basis M and k[G] is
the group algebra. The obtained k[G]-bimodule 〈M〉k is called linear span of the
permutation bimodule M.

In particular, if φ is a virtual endomorphism of G then we get the linear span
Φ = Φk of the permutation bimodule φ(G)G.

Let now M be a d-fold covering G-bimodule. Let X be its basis. Then the
right module of the span Φ = 〈M〉k is isomorphic to the free d-dimensional right
k[G]-module (k[G])d and X is a basis of this right module.

Therefore the left module structure is defined by a homomorphism of k-algebras

ψ : k[G] −→Md×d(k[G]),

where Md×d(k[G]) is the algebra of d × d matrices over k[G], i.e., the algebra
k[G]⊗k Md×d(k).

Note that the homomorphism ψ needs not to be injective even if the self-similar
action is faithful.



2.7. INVARIANT SUBGROUPS AND KERNEL OF SELF-SIMILAR ACTION 39

The homomorphism ψ is the linear recursion associated to the bimodule M (or
to the self-similar action, if M is the self-similarity bimodule).

The linear recursion is given by

(2.7) ψ(g) = (axy)x,y∈X , where axy =
{
h, if g · y = x · h,
0, if such h does not exist.

For instance, for the adding machine action a = σ(1, a) we have

ψ(a) =
(

0 a
1 0

)
.

In principle, linear recursion, when restricted to the group G is nothing more
than just another way to write the wreath recursion G −→ S (X) oG. It becomes,
however, very important and convenient in the cases when the group algebra, mea-
sures on groups or linear representations of G are considered.

For example, R. Grigorchuk, L. Bartholdi and A. Żuk used linear recursions
in [9, 56] to compute the spectra of Markov operators on Schreier graphs and Hecke
type operators of representations for some self-similar groups.

For more on linear recursions see the papers [114, 93, 91].

2.7. Invariant subgroups and kernel of self-similar action

2.7.1. (Semi-)Invariant subgroups. Let φ : G 99K G be a virtual endomor-
phism and let M = φ(G)G be the respective bimodule.

Definition 2.7.1. A subgroup H ≤ G is said to be φ-semi-invariant if

φ (H ∩Domφ) ≤ H.

A subgroup H ≤ G is said to be φ-invariant if H ≤ Domφ and φ(H) ≤ H.

If H is φ-semi-invariant, then the map φH : Domφ ∩ H −→ H is a virtual
endomorphism of H. Its index [H : DomφH ] is not greater than the index d =
[G : Domφ] of φ. We get a natural embedding φH(H)H −→ φ(G)G given by

φH(h1)h2 7→ φ(h1)h2,

which is well defined and injective by semi-invariance of H. Hence, the bimodule
M(H) = φH (H)H is a sub-bimodule of the H-bimodule M.

We have the following description of semi-invariant groups in terms of self-
similar actions.

Lemma 2.7.2. A subgroup H ≤ G is φ-semi-invariant if and only if there exists
a self-similar action (G,X) defined by a basis X of φ(G)G and a subset Y ⊆ X such
that φ(1)1 ∈ Y, the sub-tree Y∗ of X∗ is H-invariant and H|y ⊆ H for every y ∈ Y.

Proof. Suppose that H is φ-semi-invariant. Let M(H) = φH(H)H be the
corresponding sub-bimodule of M = φ(G)G.

The elements of M(H) are of the form φ(g)h for g, h ∈ H. Therefore, two
elements m1,m2 ∈ M(H) ⊂ M belong to one H-orbit if and only if they belong
to one right G-orbit. In particular, any basis Y of the H-bimodule M(H) can be
extended to a basis X ⊇ Y of the G-bimodule M.

Then it follows directly from Proposition 2.5.10 that the set Y∗ ⊆ X∗ is H-
invariant and that H|y ⊆ H for every y ∈ X.
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Suppose now that X and Y ⊆ X are such that H|y ⊂ H for all y ∈ Y. Let φy
be the virtual endomorphism associated with y ∈ Y. (If we choose y = φ(1)1, then
we recover the original virtual endomorphism φ). Take an arbitrary g ∈ Domφy.
Then by definition of the associated virtual endomorphism

g · y = y · φy(g),
hence φy(g) ∈ H for all g ∈ Domφy. �

Thus a subgroup H ≤ G is semi-invariant if and only if restriction of its action
on a subtree Y∗ of X∗ is self-similar. Note that a subgroup may be self-similar with
respect to the action defined by one basis and not to be self-similar with respect to
another action.

Note also that |Y| = [H : Domφ|H ] and |X| = [G : Domφ], therefore Y = X if
and only the indices of φ and φH coincide. If it is so, then Y∗ = X∗ and we say
that the subgroup H is transitive on the first level, for obvious reasons.

2.7.2. Quotients of virtual endomorphisms. Let a subgroup H E G be
normal and φ-semi-invariant. Take some virtual endomorphism

φ1(x) = g−1
1 · φ(g−1

2 xg2) · g1
conjugate to φ. Then g ∈ H ∩ Domφ1 implies that g−1

2 gg2 ∈ Domφ, but then
g−1
2 gg2 ∈ H∩Domφ, therefore φ

(
g−1
2 gg2

)
∈ H by φ-semi-invariance, hence φ1(g) =

g−1
1 · φ(g−1

2 gg2) · g1 ∈ H. Thus, any normal φ-semi-invariant subgroup is also φ1-
semi-invariant.

It is also straightforward to check that the H-bimodule M(H) = φH(H)H does
not depend on the choice of the associated virtual endomorphism φ, i.e., depends
only on H and the conjugacy class of φ.

Proposition 2.7.3. If H EG is a normal φ-semi-invariant subgroup, then the
formula

ψ(gH) = φ(g)H
for g ∈ Domφ gives a well defined virtual endomorphism ψ of the quotient G/H.

Proof. The domain of the map ψ is the image of the subgroup of finite index
Domφ under the canonical homomorphism G→ G/H and thus has finite index in
G/H. Suppose that g1H = g2H for some g1, g2 ∈ Domφ. Then g−1

1 g2 ∈ H∩Domφ,
so φ(g−1

1 g2) ∈ H, thus φ(g1)H = φ(g2)H. �

The virtual endomorphism ψ is called quotient of φ by the subgroup H and is
denoted φ/H.

2.7.3. Kernel of a self-similar action.

Proposition 2.7.4. Let M be an irreducible d-fold covering bimodule over G.
Let φ be the associated virtual endomorphism and choose some basis X of M. If N
is a normal subgroup of G then the following conditions are equivalent

(1) for all g ∈ N and m ∈M we have g ·m = m · h for some h ∈ N ,
(2) for all g ∈ N and x ∈ X we have g(x) = x and g|x ∈ N ,
(3) N is φ-invariant.

and they imply that
(4) N is contained in the kernel of the associated self-similar action.
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Proof. Condition (1) obviously implies (2). The converse implication follows
from the definition of a basis, since if (2) holds, then every m ∈M can be written
in the form m = x · f for some f ∈ G and then

g ·m = g · x · f = x · g|xf = x · f · f−1g|xf = m · f−1g|xf.
Condition (3) implies (2) by Proposition 2.5.10, since g−1

i ggi ∈ N ≤ Domφ

and h−1
i φ(g−1

i ggi)hi ∈ N for every g ∈ N if N is normal and φ-invariant.
On the other hand, (1) implies (3), since if φ is associated with M and m ∈M,

then for every g ∈ G we have g ·m = m · φ(g) for φ(g) ∈ N .
Implication (2)⇒(4) follows directly from the definition of an associated self-

similar action by induction on the length of words in X∗. �

As a corollary we get that if HEG is a normal subgroup, invariant with respect
to some virtual endomorphism φ associated with M, then it is invariant with respect
to every associated virtual endomorphism.

Therefore, we will say that a normal subgroup H E G is M-invariant if it is
invariant with respect to any virtual endomorphism associated with M.

Another corollary of Proposition 2.7.4 is the following description of the kernel
of a self-similar action.

Proposition 2.7.5. The kernel of a self-similar action of a group G with the
associated virtual endomorphism φ is equal to the subgroup

(2.8) K(φ) =
⋂
n≥1

⋂
g∈G

g−1 ·Domφn · g,

and is the maximal one among the normal φ-invariant subgroups.

Proof. It follows from the definition of the virtual endomorphism φ = φx0

that the subgroup Domφn is the stabilizer of the word xn0 ∈ X∗, thus the group⋂
g∈G g

−1 ·Domφn · g is the stabilizer of all vertices of the nth level of the tree X∗.
Therefore, the subgroup K(φ) is the kernel of the action.

The subgroup K(φ) is obviously φ-invariant and normal. If N is a φ-invariant
subgroup of G, then it is contained in the kernel of the action by Proposition 2.7.4.

�

2.7.4. Homomorphisms of self-similar groups.

Proposition 2.7.6. Let φi be a virtual endomorphism of a group Gi, i = 1, 2
and suppose that we have a homomorphism f : G1 −→ G2 such that

f−1 (Domφ2) ≤ Domφ1, f (Domφ1) ≤ Domφ2

and
f (φ1(g)) = φ2 (f(g))

for every g ∈ f−1 (Domφ2).
Then the subgroup f(G1) of G2 is φ2-semi-invariant and there exists an injec-

tive homomorphism f∗ : G1/K(φ1) −→ G2/K(φ2) (where K(φi) are the kernels of
the associated self-similar actions) such that the diagram

G1
f−→ G2y y

G1/K(φ1)
f∗−→ G2/K(φ2)
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is commutative, where the vertical arrows are the canonical epimorphisms. In par-
ticular, if f is surjective, then the groups G1/K(φ1) and G2/K(φi) are isomorphic
and the respective self-similar actions are conjugate.

Proof. Choose some basis X1 = {xi = φ1(ri) · 1}i=1,...,d of the bimodule
φ1(G1)G1. Here {ri}i=1,...,d is a left coset transversal of the subgroup Domφ1.

Consider the set X′2 = {x′i = φ2(f(ri)) · 1}i=1,...,d ⊂ φ2(G2)G2. If

f(ri)Domφ2 = f(rj)Domφ2,

then f(r−1
i rj) ∈ Domφ2, therefore r−1

i rj ∈ Domφ1 and thus i = j. Consequently,
the elements of X′2 ⊂ φ2(G2)G2 belong to different orbits of the right action and
the set X′2 can be extended to a basis X2 of φ2(G2)G2. Let F : X∗1 −→ X∗2 be the
natural extension of the map

F : φ1(ri) · 1 = xi 7→ x′i = φ2(f(ri)) · 1,

i.e., we put F (a1a2 . . . an) = F (a1)F (a2) . . . F (an) for a1a2 . . . an ∈ X∗1.
Suppose that g · xi = xj · h for g, h ∈ G1. Then r−1

j gri ∈ Domφ1 and
h = φ1

(
r−1
j gri

)
, hence f

(
r−1
j gri

)
= f(rj)−1f(g)f(ri) ∈ Domφ2 and f(h) =

φ2

(
f(rj)−1f(g)f(ri)

)
. Thus f(g) · F (xi) = F (xj) · f(h) and we get by induc-

tion on the length of words that g · v = u · h for v, u ∈ X∗1 and g, h ∈ G1 implies
f(g) · F (v) = F (u) · f(h).

Thus, the map F : X∗1 −→ X∗2 semi-conjugates the action of G1 on X∗1 to the
action of f(G1) on X∗2 and f(G1) is a self-similar subgroup of G2. This implies the
statement of the proposition. �

Note that in conditions of Proposition 2.7.6 we have

ker f ≤ Domφ1, φ1(ker f) ≤ ker f.

The first inclusion follows from the condition f−1 (Domφ2) ≤ Domφ1, the second
one from f (φ1(g)) = φ2(f(g)). Thus ker f is φ1-invariant.

On the other hand, if N ≤ G1 is a normal φ-invariant subgroup, then the
canonical homomorphism f : G1 −→ G2 = G1/N and the virtual endomorphisms
φ1 = φ and φ2 = φ1/N satisfy the conditions of Proposition 2.7.6.

2.8. Recurrent actions

2.8.1. If φ is onto, then every basis of φ(G)G is of the form {φ(gi) ·1}i=1,...,d,
where {gi} is a left coset transversal, since φ(gi)hi = φ(giri) · 1, where ri ∈ Domφ
are such that φ(ri) = hi.

Definition 2.8.1. A self-similar action is said to be recurrent (or fractal)
if it is transitive on the first level X1 of the tree X∗ and the associated virtual
endomorphism φx is onto, i.e., if φx(Domφ) = G.

We have the following description of recurrent actions in terms of permutational
bimodules.

Proposition 2.8.2. A self-similar action is recurrent if and only if the left
action of the associated bimodule is transitive.
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Proof. Let φ be the associated virtual endomorphism. Then the associated
bimodule and φ(G)G are isomorphic. If φ is onto then for every φ(g1)h1 and φ(g2)h2

we can find r ∈ G such that φ(rg1)h1 = φ(g2)h2, i.e., φ(g−1
2 rg1) = h2h

−1
1 . One can

take any r ∈ g2φ−1(h2h
−1
1 )g−1

1 .
On the other hand, if φ(G)G has a transitive right action, then for every h ∈ G

there exists g ∈ G such that g · (φ(1)1) = φ(1)h, i.e., φ(g) = h. �

As a corollary of Proposition 2.8.2 we get that the definition of a recurrent
action does not depend on the choice of the associated virtual endomorphism.

If the action is recurrent, then every element of the bimodule M = X · G can
be written in the form φ(g) · 1 ∈ φ(G)G = M, where g ∈ G and φ = φx0 is the
associated virtual endomorphism. In particular, the basis X is a set of elements of
the form xi = φ(rxi) · 1, where rxi are such that rxi · x0 = xi · 1.

Definition 2.8.3. Let (G,X) be a recurrent action. A set {rx0 , rx1 , . . . , rxd−1}
is a digit system (associated with initial letter x0) if rxi

· x0 = xi · 1 for any xi ∈ X,
i.e., if xi = φx0 (rxi) · 1.

2.8.2. Tensor powers of a recurrent action.

Proposition 2.8.4. Let M1 and M2 be irreducible covering G-bimodules. Let
φi be a virtual endomorphism associated with Mi.

If the bimodule M1 ⊗M2 is irreducible, then φ2 ◦ φ1 is its associated virtual
endomorphism.

If the bimodules M1 and M2 have transitive left actions, then the bimodule
M1 ⊗M2 also has transitive left action.

Proof. Let φi be associated with Mi and xi ∈ Mi, i = 1, 2. Let φ be the
virtual endomorphism associated with M1 ⊗M2 and x1 ⊗ x2. Then an element
g ∈ G belongs to Domφ if and only if g · x1 ⊗ x2 = x1 ⊗ x2 · h for some h ∈ G and
then h = φ(g). But then g ∈ Domφ1, g · x1 = x1 · φ1(g), and φ1(g) ∈ Domφ2 and
φ1(g) · x2 = x2 · φ2 ◦ φ1(g), therefore φ(g) = φ2 ◦ φ1(g). The converse implications
show that Domφ = Domφ2 ◦ φ1 and thus φ = φ2 ◦ φ1.

Suppose that the left actions are transitive on Mi. Then every element of Mi

can be written in the form g ·xi, where g ∈ G. Therefore, every element of M1⊗M2

can be written in the form g1 ·x1⊗g2 ·x2 for g1, g2 ∈ G. We can write x1 ·g2 = h ·x1

for some h ∈ G. Then g1 · x1 ⊗ g2 · x2 = g1h · x1 ⊗ x2, what proves that the left
action of G on M1 ⊗M2 is transitive. �

Corollary 2.8.5. If a self-similar action (G,X) is recurrent and φ is its as-
sociated virtual endomorphism, then it is level-transitive and its nth tensor power
is also recurrent with the associated virtual endomorphism φn.

Proof. Let M be the associated G-bimodule. Proposition 2.8.4 implies that
the bimodule M⊗n has transitive left action. It follows that the action of G on Xn

is transitive and that the nth tensor power (G,Xn) is recurrent.
If φ is associated with x ∈ X, then the virtual endomorphism, associated with

M⊗n and x⊗n ∈M⊗n is obviously φn. �

An interesting observation of Y. Muntyan and D. Savchuk is that if (G,X) is
a self-similar action of an infinite group G over a two-letter alphabet X, then it is
necessary level-transitive. See Lemmas 1.10.7 and 1.10.8 for the idea of the proof.
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2.9. Example: free abelian groups

2.9.1. Let us illustrate the developed technique and study self-similar actions
of free abelian groups. The results of this section where obtained (for the case
|X| = 2) jointly with S. Sidki in [94]. We use additive notation here.

We know (by Propositions 2.5.10 and 2.3.4) that every self-similar and tran-
sitive on X1 action is determined (up to a conjugacy) by the associated virtual
endomorphism. Consider such an action of G = Zn and let φ : Zn 99K Zn be the
associated virtual endomorphism. The map φ : Domφ −→ Zn can be extended in
a unique way to a linear map

A = Q⊗ φ : Q⊗ Zn = Qn → Qn,

since Q⊗Domφ = Qn.
Let A be the matrix of the linear map A = Q⊗ φ in the standard basis of the

group Zn ⊂ Qn (seen as a basis of the vector space Qn). The matrix A has rational
entries. Moreover, if k ∈ N is such that kZn ≤ Domφ then k ·A has integral entries.

If the self-similar action is recurrent (i.e., if φ is onto) and φ is invertible (we
will see that the last condition is satisfied for faithful actions of Zn), then the map
φ−1 is defined on the whole group Zn and is injective, therefore A−1 is a matrix
with integral entries.

Let X = {x0 = φ(r0) + h0, x1 = φ(r1) + h1, . . . , xd−1 = φ(rd−1) + hd−1} be a
basis of the bimodule φ(Zn) + Zn, i.e., {ri} is a coset transversal of Domφ. Recall
that if we start from a given self-similar action, then ri and hi are chosen so that
ri · x0 = xi · (−hi) for every 0 ≤ i ≤ d− 1 (see (2.6) on page 38).

Then by (2.5), equality g ·xi = xj ·h is equivalent to the conditions g+ri−rj ∈
Domφ and

(2.9) h = A (g + ri − rj) + hi − hj .

We will consider only recurrent actions in this section. Then every basis of
the bimodule φ(Zn) + Zn is of the form {x0 = φ(r0), x1 = φ(r1), . . . , xd−1 =
φ(rd−1)}, where {r0, r1, . . . , rd−1} is a coset transversal of A−1 (Zn). We say that
{r0, r1, . . . , rd−1} is a digit system, see Definition 2.8.3.

Then (2.9) is written

(2.10) h = A (g + ri − rj) ,

where j is such that g + ri − rj ∈ A−1 (Zn).
Let us rewrite Proposition 2.7.5 for the case of a commutative group.

Proposition 2.9.1. Let φ be a surjective virtual endomorphism of an abelian
group G. Then the kernel of the self-similar action defined by φ is the subgroup

K(φ) =
∞⋂
n=1

φ−n (G) .

We have the following criterion (see [94, 21]).

Proposition 2.9.2. Let A be a linear operator on Qn. Consider the virtual
endomorphism φ : v 7→ A(v) of the group Zn.

Then the subgroup K(φ) is trivial if and only if the characteristic polynomial
of A is not divisible by a monic polynomial with integral coefficients (or, in other
words, if and only if no eigenvalue of A is an algebraic integer).
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Proof. Let A be the matrix of A. All its entries are rational numbers. If it
is degenerate, then there exists a vector v ∈ Zn such that A(v) = 0. But then the
set of such vectors is an φ-invariant subgroup of Zn and K(φ) is non-trivial. Thus,
we may assume that A is non-degenerate.

Suppose that U = K(φ) is non-trivial. Then A(U) ≤ U . Let C be the restriction
of the linear operator A onto U ⊗ Q. Then the characteristic polynomial of C is
monic, has integral coefficients and is a factor of the characteristic polynomial of
A.

On the other hand, suppose that f(x) = xk + a1x
k−1 + · · · + ak ∈ Z[x] is

an irreducible factor of the characteristic polynomial of A. Let Û ≤ Qn be
the kernel of f (A). Then for arbitrary non-zero element v ∈ Û the vectors
v,A(v), A2(v), . . . Ak−1(v) form a basis of the space Û such that the matrix of
the operator A|Û with respect to it has integral entries. Take some q ∈ Z not equal
to zero such that the vectors qv, qA(v), qA2(v), . . . qAk−1(v) belong to Zn. Then
they form a basis of the vector space Û with respect to which the matrix of the
operator A|Û has integral entries. Then U = Û ∩ Zn is a non-trivial φ-invariant
subgroup and K(φ) is not trivial. �

2.9.2. “Sausage” automaton. As an example, consider the n× n matrix
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . . . . 1
1/2 0 . . . . . . 0

 .

It defines a virtual endomorphism φ : Zn 99K Zn whose domain is 〈2e1 =
(2, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . en = (0, 0, . . . , 1)〉 = 2Z⊕ Zn−1 and whose action
is given on the generators of the domain by

φ(2e1) = em, φ(ei) = ei−1, for i = 2, . . . , n.

The characteristic polynomial of this matrix is f(x) = xn − 1/2 and therefore
the virtual endomorphism φ defines a faithful self-similar action of Zn on the binary
tree. Let us choose the coset transversal R = {r0 = 0, r1 = e1} and let X = {0 =
φ(0) + 0, 1 = φ(e1) + 0} be the respective basis of the bimodule φ(Zn) + Zn. Let
us compute the action defined by the pair φ and X.

The only generator which does not belong to Domφ is e1. Then

e1 = σ(id, en),

since e1 · 0 = φ(e1 + r0 − r1) · 1 = 0 · 1 and e1 · 1 = φ(e1 + r1 − r0) · 0 = em · 0
by (2.10).

The action of ei on X∗ for i ≥ 2 is given by the recursion

ei = (ei−1, ei−1),

since ei · 0 = φ(ei + r0 − r0) · 0 = ei−1 · 0 and ei · 1 = φ(ei + r1 − r1) · 1 = ei−1 · 1 .
Thus the defined action of Zn on X∗ is generated by the automaton, shown on

Figure 1. It coincides with the adding machine action for the case n = 1.
Actually, it is a general method to construct a self-similar action of Gn having

a self-similar action of G.
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Figure 1. Automaton generating Zn

Suppose that we have a faithful self-similar action (G,X). If g · x = y · h for
g, h ∈ G and x, y ∈ X, then we set

(2.11) (g, g2, . . . , gn) · x = y · (g2, . . . , gn, h)

for (g, g2, . . . , gn) ∈ Gn.

Proposition 2.9.3. The recurrent relation (2.11) defines a faithful self-similar
action of the direct power Gn.

Proof. If we prove that (2.11) is a well defined bimodule structure on X×Gn,
then it will show that it defines an action of Gn on X∗. To this end it is sufficient
to check that (g′g′′) · x = g′ · (g′′ · x), which is easily done.

Note that if φx is the virtual endomorphism, associated with the action, then
φnx acts by the rule φnx(g1, . . . , gn) = (ψx(g1), . . . , ψx(gn)), where ψx is the virtual
endomorphism associated to the self-similar action of G. Since the action of G is
faithful, every normal ψx-invariant subgroup of G is trivial. This implies that every
normal φn-invariant subgroup of Gn is trivial, hence the action of Gn on X∗ is also
faithful (see Proposition 2.7.5). �

2.9.3. “A-adic” groups.

Lemma 2.9.4. Let G ≤ Aut X∗ be self-similar and let Ĝ be its closure in AutX∗.
Then Ĝ is also self-similar.

Proof. An automorphism g ∈ AutX∗ belongs to Ĝ if and only if for every
n ∈ N the action of g on first n levels of X∗ coincides with the action of some
element g′ ∈ G (where g′ depends on n). Therefore, if g ∈ Ĝ then for every x ∈ X

the restriction g|x also belongs to Ĝ, since the actions of g|x and g′|x ∈ G coincide
on the first n− 1 levels of the tree. �

Consider some faithful recurrent action of Zn on X∗. Denote Gk = φ−k(Zn) =
Domφk, where φ is the associated virtual endomorphism.

Lemma 2.9.5. The group Gk coincides with the stabilizer of the kth level of X∗

in G.
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Proof. Stabilizer of the kth level of a self-similar group G is equal to⋂
g∈G

g−1 ·Domφk · g,

where φ is the associated virtual endomorphism. We have in our case

g−1 ·Domφk · g = Domφn = φ−k (Zn) .

�

Let A be the linear operator Q⊗φ. Denote by ẐnA the completion of the group
Zn with respect to the sequence of finite-index subgroups

Zn > A−1 (Zn) > A−2 (Zn) > · · · > A−k (Zn) · · · .

In other words, it is the closure of Zn with respect to the metric

‖g1 − g2‖ = d−k, where k is maximal among such that g1 − g2 ∈ A−k (Zn).

Then ẐnA is a profinite abelian group. We call ẐnA group of integral A-adic vectors.
Let now R = {r0, r1, . . . , rd−1} be a digit system of the self-similar action, i.e.,

a coset transversal of A−1(Zn) in Zn. Then every element of ẐnA is written uniquely
in the form

(2.12) a = ri0 +A−1 (ri1) +A−2 (ri2) + · · · .

If we have an A-adic number (2.12), then its partial sums are given by

am = ri0 +A−1 (ri1) +A−2 (ri2) + · · ·+A−m (rim) .

The sequence am converges in ẐnA, since it is a Cauchy sequence with respect
to the defined metric.

Proposition 2.9.6. If a =
∑∞
k=0A

−k (rik) is an A-adic number, then the
sequence of its partial sums am seen as automorphisms of the tree X∗ converge in
AutX∗. The set of all limits coincides with the closure Ĝ of G = Zn in Aut X∗.
The map Ψ : Xω −→ Ĝ given by

Ψ(xi0xi1xi2 . . .) = ri0 +A−1(ri1) +A−2(ri2) + · · ·

is a homeomorphism.

Proof. It is sufficient to prove that the sequence am is a Cauchy sequence
in AutX∗, in order to prove the convergence. But this follows from the condition
am1 − am2 ∈ A−min(m1,m2)(G) ⊂ St(min(m1,m2)).

Thus Ψ is well defined. If we prove that for every m and every g ∈ G there
exists a unique element of the form gm = ri0 + A−1 (ri1) + · · · + A−m (rim) such
that g− gm ∈ Gm+1, then this will imply that the map Ψ is bijective. Let us prove
it by induction on m. For every g ∈ G there exists a unique index i1 such that
g − ri1 ∈ A−1 (Zn). Hence, the statement is true for m = 1. Suppose that it is
true for m = k − 1, where k ≥ 2. Since g − gk−1 ∈ Gk = A−k(G) and the map
A is injective, there exists a unique h ∈ G such that g − gk−1 = A−k(h). Then
there exists a unique ik such that h− rik ∈ A−1 (Zn), i.e., g−

(
gk−1 +A−k(rik)

)
∈

A−k−1(rik). Then gk = gk−1 +A−k(rik).
Continuity of Ψ and its inverse follows now easily from the definitions of the

topologies on Xω and AutX∗. �
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Theorem 2.9.7. The closure Ĝ of Zn in Aut X∗ coincides with the group ẐnA of
A-adic vectors. They are both homeomorphic to Xω and the natural homeomorphism
Ψ : Xω −→ Ĝ (defined in Proposition 2.9.6) has the property that

g(w) = Ψ−1 (Ψ(w) + g)

for all w ∈ Xω and g ∈ Zn.
In particular, the natural action of Zn on its completion ẐnA = Ĝ is conjugate

to the action of Zn on Xω.

Proof. A straightforward corollary of (2.10) and uniqueness of the map Ψ. �

2.10. Rigidity

2.10.1. Level-transitive rooted trees. The aim of this section is to inves-
tigate when the group structure uniquely determines its action on a rooted tree. It
is based on the joint work [79] with Y. Lavreniuk.

It is not natural to formulate the result of this section only for the case of
regular rooted trees X∗ and self-similar actions. We need therefore some more
general definitions.

Let X = (X1, X2, . . .) be a sequence of finite sets (we assume that |Xi| ≥ 2 for
all i). We denote then by X∗ the set of all finite words x1x2 . . . xn, where xi ∈ Xi.
We include the empty word ∅ in X∗. The set X∗ has a structure of a rooted tree
defined in the same way as in the regular case: a vertex x1 . . . xn−1 is adjacent to a
vertex x1 . . . xn−1xn. The set Xn = {x1x2 . . . xn : xi ∈ Xi} is the nth level of the
tree X∗. We put X0 = {∅}.

The tree X∗ is called level-transitive (or spherically homogeneous) rooted tree
of spherical index (|X1|, |X2|, . . .). It is easy to see that a level-transitive rooted
tree is uniquely determined up to an isomorphism by its spherical index.

A regular rooted tree is the tree of a constant spherical index (d, d, d, . . .), i.e.,
a tree X∗ defined by one alphabet X (or X = (X,X, . . .) in terminology of this
section). Most rooted trees appearing in this book are regular.

The boundary of a level-transitive tree X∗ is the set Xω of infinite sequences
x1x2 . . ., where xi ∈ Xi. The boundary Xω comes with the natural topology of the
direct product

∏∞
i=1Xi of discrete sets and with the Bernoulli measure equal to

the direct product of the uniform probability measures on Xi.
If g is an automorphism of a level-transitive rooted tree X∗ with X = (X1, X2, . . .)

and v = x1x2 . . . xn is a vertex of the tree, then the restriction g|v is the automor-
phism of the tree X∗n, where Xn = (Xn+1, Xn+2, . . .) and is defined by the condition

g(x1 . . . xnyn+1 . . . ym) = g(x1 . . . xn)g|v(yn+1 . . . ym) for all yn+1 . . . ym ∈ X∗n.

So in general, g|v acts on a different tree than g does. This is the reason why
self-similar actions are defined only on regular trees (when Xn = X).

The notions of a level-stabilizer StG(n), rigid stabilizers G[v] and RiStG(n) are
defined in the same way as they were defined for the regular case in Definition 1.2.2.

2.10.2. Topological rigidity. We are going to prove the following theorem
and its corollaries. For the notion of a (weakly) branch group see Definition 1.2.4.

Theorem 2.10.1. Let G1 and G2 be weakly branch automorphism groups of
level-transitive rooted trees X∗ and Y∗ respectively. If ϕ : G1 −→ G2 is an isomor-
phism of abstract groups, then there exists a measure-preserving homeomorphism
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F : Xω1 −→ Xω2 such that
ϕ(g) (F (w)) = F (g(w))

for all w ∈ Xω1 and g ∈ G1, i.e., such that ϕ is induced by F .

This theorem follows from a more general result of M. Rudin (see [105]). How-
ever, we present here a more accessible proof from [79].

Lemma 2.10.2. Let G be an automorphism group of X∗ and let w ∈ X∗. If
h ∈ G[w] and g(w) 6= w, then

[h, g] 6= 1.

Here [h, g] = h−1g−1hg.

Proof. We have
(gh)|w = g|wh|w,

since h fixes w, and
(hg)|w = g|w,

since g moves w and h acts trivially outside wX∗|w|. Therefore hg 6= gh. �

The next is the main technical lemma used in the proof of Theorem 2.10.1. It
essentially coincides with Proposition 6.2 from [79], however we reproduce here a
much shorter proof found by C. Röver (see Lemma 5.7 in [103]).

Lemma 2.10.3. Suppose that G1 ≤ Aut X∗ and G2 ≤ Aut Y∗ are weakly branch
groups. Let ϕ : G1 −→ G2 be an isomorphism. If ϕ−1 (G2[v]) moves a vertex
u ∈ X∗, where v ∈ Y∗, then

ϕ (G1[u]) ∩ StG2 (|v|) ≤ G2[v].

Proof. Suppose that the lemma is false. Choose

g ∈
(
G1[u] ∩ ϕ−1 (StG2(n))

)
\ ϕ−1 (G2[v]) .

Then ϕ(g) /∈ G2[v], i.e., there exists a vertex w /∈ vY∗|v| moved by ϕ(g). We may
assume that v /∈ wY∗|w|, since otherwise we can replace w by a longer word.

The subgroup ϕ (G1[w])∩StG2(|u|) is non-trivial, since StG2(n) has finite index
in G2 and G1[w] is infinite. Take a non-trivial element h ∈ G1[w] ∩ ϕ (StG1 (|u|)).

We have then, by Lemma 2.10.2, [ϕ(g), h] 6= 1, i.e.,
[
g, ϕ−1(h)

]
6= 1. This

implies that there exists a vertex z ∈ X∗ moved by both g and ϕ−1(h). The vertex
z must belong to uX∗|u|, since g ∈ G1[u]. Its image ϕ−1(h)(z) also belongs to uX∗|u|,
since ϕ−1(h) ∈ StG1(|u|).

Let ĝ be a non-trivial element of G1[z] ∩ ϕ−1 (StG2 (|v|)) and let ĥ ∈ G2[v] be
such that ϕ−1

(
ĥ
)

moves u (ĥ exists by the condition of the lemma).

Then we again have 1 6=
[
ĝ, ϕ−1(h)

]
, by Lemma 2.10.2. We know that ĝ ∈

G1[z] ≤ G1[u] and ϕ−1(h) ∈ StG1(|u|), therefore
[
ĝ, ϕ−1(h)

]
= ĝ−1 · (ĝ)ϕ

−1(h) ∈
G1[u].

It follows (again by Lemma 2.10.2) that
[[
ĝ, ϕ−1(h)

]
, ϕ−1

(
ĥ
)]
6= 1.

On the other hand, [ϕ (ĝ) , h] |v = 1 (since h|v = 1), hence
[
[ϕ (ĝ) , h] , ĥ

]
= 1,

i.e.,
[[
ĝ, ϕ−1(h)

]
, ϕ−1

(
ĥ
)]

= 1. We get a contradiction. �
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Proposition 2.10.4. Let G1 ≤ Aut X∗ and G2 ≤ AutY∗ be weakly branch
groups. Then for every pair of positive integers n1, n2 such that |Xn1 | ≥ |Yn2 | and
for every isomorphism ϕ : G1 −→ G2 we have

ϕ (RiStG1(n1)) ≤ StG2(n2).

Recall that if X = (X1, X2, . . .), then Xn denotes the set X1 × · · · ×Xn.

Proof. For every v ∈ Xn1 put Wv to be the set of vertices u ∈ Yn2 moved by
ϕ (G1[v]).

If u ∈ Wv1 ∩Wv2 for different v1, v2 ∈ Xn1 , then Lemma 2.10.3 implies that
ϕ−1 (G2[u])∩ StG1(n1) ≤ G1[v1]∩G1[v2]. But then we get the contradiction {1} 6=
ϕ−1 (G2[u])∩ StG1(n1) ≤ G1[v1]∩G1[v2] = {1}. Therefore the sets Wv are disjoint
for v ∈ Xn1 . If a set Wv is not empty then it contains more than one element. The
union of the sets Wv has cardinality not greater than |Yn2 | ≤ |Xn1 |, while we have
|Xn1 | of them. Consequently, Wv0 is empty for some v0 ∈ Xn1 . This means that
ϕ (G1[v0]) ≤ St(n2).

Since G1 is level-transitive, for every v ∈ Xn1 there exists g ∈ G1 such that
v0 = g(v). Then

ϕ (G1[v]) = ϕ
(
g−1 ·G1[v0] · g

)
= ϕ(g)−1 · ϕ (G1[v0]) · ϕ(g)

≤ ϕ(g)−1 · St(n2) · ϕ(g) = St(n2).

�

Lemma 2.10.3 and Proposition 2.10.4 imply

Corollary 2.10.5. Let G1 ≤ AutX∗ and G2 ≤ AutY∗ be weakly branch
groups and let ϕ : G1 −→ G2 be an isomorphism. If |Xn1 | ≥ |Yn2 | then for every
v ∈ Yn2 and every vertex u ∈ Xn1 moved by ϕ−1 (G2[v]) we have

ϕ(G1[u]) ≤ G2[v].

We are ready to prove Theorem 2.10.1.

Proof of Theorem 2.10.1. Consider an infinite word w = x1x2 . . . ∈ Xω

and a number n ∈ N. The group ϕ−1 (G2[v]) is nontrivial for every v ∈ Yn, thus it
moves some vertex u ∈ X∗. The group G1 is level-transitive, therefore there exists
g ∈ G1 such that g(u) is of the form x1x2 . . . xn1 . We may assume that |Xn1 | ≥ |Yn|.
We have then, by Corollary 2.10.5, the inclusion

ϕ (G1[u]) ≤ G2[v],

hence

ϕ (G1[x1 . . . xn1 ]) = ϕ (G[g(u)]) = ϕ (G[u])ϕ(g)−1

≤ G2[v]ϕ(g)−1
= G2 [ϕ(g)(v)] .

Let us denote ϕ(g)(v) by vn. Note that if m ≥ n1 then we also have

ϕ (G1[x1 . . . xm]) ≤ G2[vn].

Thus we have proved that for every n ∈ N there exists a word vn ∈ Yn and
a number n1 such that ϕ (G1[x1 . . . xm]) ≤ G2[vn] for all m ≥ n1. If v′n and
v′′n ∈ Y∗ are two such words, then G2[v′n] ∩ G2[v′′n] is nontrivial, therefore v′n =
v′′n. This implies that the sequence {vn}n2∈N is unique. If n1 ≤ n2 then also
ϕ (G1[x1 . . . xm]) ≤ G2[vn1 ]∩G2[vn2 ] for m big enough. Therefore G2[vn1 ]∩G2[vn2 ]
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is nontrivial, hence vn1 is a beginning of vn2 and there exists an infinite word
y1y2 . . . ∈ Yω such that vn = y1 . . . yn for every n.

We get thus a unique map Fϕ : Xω −→ Yω : x1x2 . . . 7→ y1y2 . . . such that for
every n ∈ N there exists m ∈ N such that

(2.13) ϕ (G1[x1 . . . xm]) ≤ G2[y1 . . . yn].

It follows directly from the definition that Fϕ is continuous for every iso-
morphism ϕ : G1 −→ G2. We can define in the same way a continuous map
Fϕ−1 : Yω −→ Xω using the isomorphism ϕ−1. Then ϕ−1(y1y2 . . .) = a1a2 . . . is
equivalent to the condition that for every k ∈ N there exists n ∈ N such that

ϕ−1 (G2[y1 . . . yn]) ≤ G1[a1 . . . ak],

i.e.,
G2[y1 . . . yn] ≤ ϕ (G1[a1 . . . ak]) .

Let us find m ∈ N such that (2.13) holds. Then

G1[x1 . . . xm] ≤ G1[a1 . . . ak],

hence a1 . . . ak is a beginning of x1 . . . xm. Thus a1a2 . . . = x1x2 . . ., i.e., F−1
ϕ =

Fϕ−1 and Fϕ is a homeomorphism.
Let g ∈ G1, w = x1x2 ∈ Xω and y1y2 . . . = F (x1x2 . . .). Then for every n ∈ N

there exists n1 ∈ N such that for all m ≥ n1

ϕ (G1 [g(x1 . . . xm)]) = ϕ (G1[x1 . . . xm])ϕ(g)−1

≤ G2[y1 . . . yn]ϕ(g)−1
= G2 [ϕ(g)(y1 . . . yn)] ,

hence F (g(w)) = ϕ(g)(y1y2 . . .) = ϕ(g) (F (w)).
It remains to prove that the homeomorphism F is measure-preserving.
Let µ be the measure on Yω equal to the image under F of the Bernoulli measure

on Xω. Since the action ofG1 on Xω is ergodic with respect to the Bernoulli measure,
the action of G2 on Yω is ergodic with respect to µ. But the only probabilistic
measure on Yω with respect to which the action of G2 is ergodic is the Bernoulli
measure (see [54]). Thus µ coincides with the Bernoulli measure on Yω. �

Recall that an action of a group G on a measure space X is said to be ergodic
if every measurable G-invariant subset of X has either zero or full measure.

2.10.3. Geometric rigidity. We consider here also the general case of a level-
transitive rooted tree. It would be good to know when the homeomorphism F is
induced by an isomorphism of the rooted trees, i.e., when the group actions are
rigid on the trees (and not only on their boundaries).

Definition 2.10.6. An isomorphism ϕ : G1 −→ G2 of two level-transitive
automorphism groups of a rooted tree X∗ is called saturated if there exists a sequence
of subgroups Hn ≤ G1 such that

(1) Hn ≤ StG1(n) and ϕ (Hn) ≤ StG2(n),
(2) the actions of Hn and ϕ(Hn) on vXk is transitive for every k ≥ 1 and

v ∈ Xn.
A level-transitive group G ≤ AutX∗ is saturated if there exists a sequence

Hn ≤ G of characteristic subgroups for which (1) and (2) holds.

If a group is saturated, then every its automorphism is saturated.
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Proposition 2.10.7. Let Gi ≤ AutX∗ be weakly branch groups and let ψ :
G1 −→ G2 be a saturated isomorphism. Then ψ is induced by an automorphism F∗
of the rooted tree X∗.

Proof. Let v ∈ Xn be an arbitrary word of length n. The action of Hn on
vXω is minimal (i.e., every its orbit is dense), since the action of Hn is transitive
on vXk for every k ≥ 1. Let F : Xω −→ Xω be the homeomorphism, inducing the
isomorphism ϕ. Then for every v ∈ Xn the set F (vXω) is closure of an ψ(Hn)-orbit
on Xω and therefore is of the form uXω for u ∈ Xn. Put F∗(v) = u. It is easy to
see that so defined map F∗ : X∗ −→ X∗ is a bijection. If v ∈ Xn and vx ∈ Xn+1

are adjacent vertices, then vXω ⊃ vxXω, hence F (vXω) ⊃ F (vxXω) and therefore
F∗(v) and F∗(vx) are also adjacent. �

Definition 2.10.8. We say that a group G ≤ AutX∗ is wreath branch if it is
level transitive and RiStG(n) = StG(n) for every n ∈ N.

Examples of wreath branch groups include the full automorphism group AutX∗

of the tree X∗ and every self-similar group G for which the decomposition G = H oG
is true for some H ≤ S (X). So, the P. Neumann and J. Wilson type examples are
wreath branch.

Theorem 2.10.9. If G1, G2 are wreath branch automorphism groups of X∗ and
ϕ : G1 −→ G2 is an isomorphism, then ϕ is induced by an automorphism of the
tree X∗.

Proof. A direct corollary of Propositions 2.10.7 and 2.10.4. �

Corollary 2.10.10. Every automorphism of the group AutX∗ is inner. Hence
AutAutX∗ = AutX∗. �

Rigidity may be used to distinguish different groups acting on rooted trees. As
an example consider the following criterion. For the definition of the groupsW(Ai)
see 1.8.3.

Proposition 2.10.11. Let A1, A2 ≤ S (X) be perfect 2-transitive permutation
groups. Then the groups W(A1) and W(A2) are isomorphic as abstract groups if
and only if A1 and A2 are conjugate in S (X).

Proof. We have W(Ai) = Ai o W(Ai), by Proposition 1.8.2. Consequently,
W(Ai) are wreath branch (see Definition 2.10.8). If ψ : W(A1) −→ W(A2) is an
isomorphism, then it is induced by a conjugation in Aut X∗, due to Theorem 2.10.9.
But Ai as a permutation group of X coincides with the set of permutations defined
by W(Ai) on the first level X of the tree X∗. �

2.10.4. Theorem of R. Grigorchuk and J. Wilson. Let X = (X1, X2, . . .)
be a sequence of alphabets defining a level-transitive rooted tree X∗, as above.
Recall that a group G ≤ AutX∗ is branch if the rigid stabilizer RiStG(n) is a
subgroup of finite index in G for every n (see Definition 1.2.4).

The following rigidity theorem is proved in [55].

Theorem 2.10.12. Let G ≤ AutX∗ be a branch group and suppose that
(*) for each vertex u ∈ X∗ the stabilizer Gu acts as a (transitive) cyclic group

of prime order on the edges descending from u (i.e., on the set uX|u|+1);
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(**) whenever u, u′ are incomparable (i.e., neither word is a beginning of the
other) and v = uw ∈ X∗, there is an element g ∈ G such that g(u′) = u′

and g(v) 6= v.

Let Y = (Y1, Y2, . . .) be another sequence defining a level-transitive rooted tree
Y∗ and suppose that G acts on Y∗ faithfully as a branch group. Then there is an
isomorphism of the rooted tree Y∗ with a tree obtained from X∗ by deletion of levels,
which conjugates the respective actions of G.

Here deletion of levels is passing from the tree defined by the sequence X =
(X1, X2, . . .) to the tree defined by a sequence of the form

(X1 ×X2 × · · · ×Xn1 , Xn1+1 ×Xn1+2 × · · · ×Xn2 , . . .)

for some sequence n1 < n2 < . . .. The set of vertices of the new tree is the subset
of X∗ consisting of words of the lengths 0, n1, n2, etc.

2.11. Contracting actions

2.11.1. Definition and the nucleus.

Definition 2.11.1. A self-similar action (G,X) is called contracting (or hyper-
bolic) if there exists a finite set N ⊂ G such that for every g ∈ G there exists k ∈ N
such that g|v ∈ N for all words v ∈ X∗ of length ≥ k. The minimal set N with this
property is called the nucleus of the self-similar action.

Remark. We allow the action here to be non-faithful. In this case self-similar
action is the action defined by a covering G-bimodule M and its basis X. The re-
strictions g|v are understood then in terms of permutational bimodules (see Propo-
sition 2.3.3).

It follows from the definition that every contracting action is finite-state.
The nucleus of a contracting action is unique and is equal to the set

N =
⋃
g∈G

⋂
n≥0

{g|v : v ∈ X∗, |v| ≥ n} .

If an element g ∈ G belongs to a cycle of the Moore diagram of the complete
automaton (G,X), i.e., if g|v = g for some v ∈ X∗ \ {∅}, then g belongs to the
nucleus by above equality. Moreover, it is easy to see that the nucleus is precisely
the set of all restrictions of elements belonging to the cycles.

If A,B are subsets of the group G and V ⊂ X∗, then by A · B we denote the
set {ab : a ∈ A, b ∈ B} ⊂ G and by A|V we denote the set of the restrictions
{a|v : a ∈ A, v ∈ V }. We also write Ak as a short notation for A ·A · · ·A︸ ︷︷ ︸

k times

.

Lemma 2.11.2. A self-similar action of a group G with a generating set S =
S−1, 1 ∈ S is contracting if and only if there exists a finite set N and a number
k ∈ N such that (

(S ∪N )2
)
|Xk ⊆ N .

Proof. Induction on the length of the group’s element using (1.2) and (1.3).
�
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Figure 2. Nucleus of the adding machine action

As an example of a contracting action, one can take the adding machine action
of the group Z. If we take S = {−1, 0, 1} then 2S = {−2,−1, 0, 1, 2}. The restric-
tions of the elements of 2S in the words of length > 1 are {−1, 0, 1}, so the nucleus
is the set {−1, 0, 1}.

Actually, all examples mentioned in 1.8 are contracting. An action of Zn de-
scribed in 1.7 is contracting if and only if the matrix B = A−1 is expanding, i.e.,
has all eigenvalues greater than one in absolute value (see Section 2.12 below). The
examples from 1.9 are all not contracting.

The Grigorchuk group (see Section 1.6) is also contracting. The nucleus of
the Grigorchuk group coincides with the automaton defining the generators and is
shown on Figure 6 on page 13. Most of its properties are proved using contraction.
Contraction is used in various arguments which use induction on the length of group
elements. See for example the proof of Theorem 1.6.1.

It follows from Definition 2.11.1 that restrictions of the elements of the nucleus
N also belong to the nucleus. Thus the N is a subautomaton of the complete
automaton (G,X) of the action. So we will consider the nucleus of a contracting
action as an automaton, rather than just a subset of the group. For instance, the
nucleus of the adding machine has the diagram shown on Figure 2.

Every state of a nucleus has an incoming arrow, i.e., for every g ∈ N there
exists x ∈ X and h ∈ N such that g = h|x, since otherwise we can remove g without
affecting the conditions of Definition 2.11.1.

If the automaton N is the nucleus of some contracting self-similar group, then
the group 〈N〉 generated by N is also contracting with nucleus N .

Proposition 2.11.3. Let a self-similar action of a finitely generated group G
be recurrent and contracting with the nucleus N . Then G = 〈N〉.

Proof. Let S be a finite generating set of the group G. There exist n such
that for every g ∈ S and v ∈ Xn the restriction g|v belongs to N . Then the
restriction of any element of G in any word of length n is a product of elements of
N . Consequently, the range of φn belongs to the subgroup generated by N . But
the action is recurrent, so the range of φn is equal to G and G is generated by
N . �

Corollary 2.11.4. There exists an algorithm which, given two automata over
an alphabet X generating recurrent contracting groups G1, G2, decides wether G1

and G2 are equal subgroups of AutX∗.

Proof. The equality of two transformations defined by finite automata is algo-
rithmically decidable (see [38], for example). Therefore, if an automaton generates
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a contracting group, then the nucleus of the group can be effectively computed.
One has just to find a set N , satisfying the conditions of Lemma 2.11.2, then the
nucleus will be a subset of N , which is easy to find. But two recurrent finitely
generated contracting groups coincide if and only if their nuclei coincide, by Propo-
sition 2.11.3. �

It is not clear however, if there exists an algorithm deciding wether an automa-
ton generates a recurrent (or a contracting) group.

2.11.2. Hyperbolic bimodules. The next proposition will be our main tech-
nical tool for the study of contracting groups.

Proposition 2.11.5. Suppose that a self-similar action (G,X) is contracting.
Let Y ⊂M be a finite set. Then the set of all possible elements h ∈ G such that

(2.14) yi1 ⊗ y2 ⊗ · · · ⊗ ym = v · h,
in M⊗m for some yi ∈ Y and v ∈ Xm, is finite.

Proof. It is sufficient to prove the proposition for some set Y′ ⊇ Y, so we may
assume that the set Y is of the form {x · g : x ∈ X, g ∈ A}, where the set A ⊂ G
contains the nucleus N of the action and is state-closed, i.e., for every g ∈ A and
v ∈ X∗ the restriction g|v also belongs to A. We can do this, since the action is
finite-state.

There exists a number k such that A2|v ⊆ N ⊆ A for every word v ∈ X∗ of
length greater or equal to k. It follows then by induction (using Proposition 2.3.3)
that A2n|v ⊆ An for every v ∈ Xk and every n ∈ N.

It is sufficient to find a finite set B such that it contains all h, which appear
in (2.14) for numbers m divisible by k.

We can write

y1 ⊗ y2 ⊗ · · · ⊗ ym = v1 · h1 ⊗ v2 · h2 ⊗ · · · ⊗ vm/k · hm/k,

where hi ∈ G and vi ∈ Xk for all i. The elements hi belong to Ak, since A
is state-closed. But then h1 · v2 = h1(v2) · h1|v2 and h1|v2 also belongs to Ak,
so (h1|v2h2) |v3 ∈ A2k|v3 ⊆ Ak, and we get an inductive proof of the fact that
v1 · h1 ⊗ v2 · h2 ⊗ · · · ⊗ vm/k · hm/k = u · h for some h ∈ Ak. �

Proposition 2.11.6. Suppose that the action of the group G defined by a bi-
module M and a basis X is contracting. Let Y ⊂M be any finite subset. Then there
is a finite set N (Y) ⊂ G such that for every g ∈ G there exists n0 ∈ N such that if
g · y1 ⊗ · · · ⊗ yn = z1 ⊗ · · · ⊗ zn · h for yi, zi ∈ Y and n ≥ n0 then h ∈ N (Y).

Proof. Let N be the nucleus of the action (G,X). Let A be the set of elements
h ∈ G such that y1⊗· · ·⊗yn = v ·h for some n ∈ N, y1⊗· · ·⊗yn ∈ Yn and v ∈ Xn.
The set A is finite by Proposition 2.11.5.

Take any g ∈ G. There exists n0 such that g|v ∈ N for all words v ∈ X∗ of
length ≥ n0. Suppose that

g · y1 ⊗ · · · ⊗ yn = z1 ⊗ · · · ⊗ zn · h
for some yi, zi ∈ Y and h ∈ G. Let y1⊗ · · · ⊗ yn = v1 ·h1 and z1⊗ · · · ⊗ zn = v2 ·h2

for v1, v2 ∈ Xn and h1, h2 ∈ G. The elements h1, h2 belong to the finite set A. But
then

g · y1 ⊗ · · · ⊗ yn = g · v1 · h1 = z1 ⊗ · · · ⊗ zn · h = v2 · h2h,
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hence h2h = g|v1h1, so h = h−1
2 g|v1h1, and we can take N (Y) = A−1 · N ·A. �

Corollary 2.11.7. Suppose that the self-similar action (G,X) associated to a
bimodule M and a basis X is contracting. Let Y be another basis of M. Then the
action (G,Y) is also contracting and the conjugating transformation α defined in
Proposition 2.3.4 is finite-state.

Proof. A direct corollary of Proposition 2.11.6 and the definition of the con-
jugator α given in Proposition 2.3.4. �

Definition 2.11.8. We say that a permutational G-bimodule M is hyperbolic
if for some (and thus for all) its bases X the associated self-similar actions (G,X)
are contracting.

2.11.3. Contraction coefficient. If the group G is finitely generated, then
contraction of the action is equivalent to contraction of the length of the group
elements under the restrictions.

If G is a group generated by a finite set S = S−1 then by l(g) = lS(g) we
denote the word length of the group element g ∈ G, i.e., the minimal length of a
representation of g as a product of elements of S.

Definition 2.11.9. Let G be a finitely generated group with a self-similar
action (G,X). The number

(2.15) ρ = lim sup
n→∞

n

√
lim sup
l(g)→∞

max
v∈Xn

l (g|v)
l(g)

is called the contraction coefficient of the action.
Let φ be a virtual endomorphism of the group G. The number

(2.16) ρφ = lim sup
n→∞

n

√
lim sup

g∈Domφn,l(g)→∞

l (φn (g))
l(g)

,

is called the contraction coefficient (or the spectral radius) of the virtual endomor-
phism φ.

Lemma 2.11.10. The limits (2.15) and (2.16) are finite and they do not depend
on the choice of the generating set S.

Proof. It is clear that ρφ ≤ ρ ≤ maxg∈S,x∈X l(g|x), where S is the generating
set. This proves that the limits are finite.

If l1 and l2 are the length functions on G computed with respect to finite
generating sets S1 and S2 and if C is any number greater than l1(s2) and l2(s1) for
all s1 ∈ S1, s2 ∈ S2, then

C−1l2(g) ≤ l1(g) ≤ Cl2(g)
for every g ∈ G. Therefore,

ρ1 = lim sup
n→∞

n

√
lim sup
l(g)→∞

max
v∈Xn

l1 (g|v)
l1(g)

≤ lim sup
n→∞

n

√
C2 lim sup

l(g)→∞
max
v∈Xn

l2 (g|v)
l2(g)

= ρ2.

In the same way we prove that ρ2 ≤ ρ1, thus ρ1 = ρ2. Consequently, the value
of the contraction coefficient ρ does not depend on the choice of the generating set
of the group. The same is obviously true for the contraction coefficient ρφ of the
virtual endomorphism. �
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Proposition 2.11.11. The action is contracting if and only if its contraction
coefficient ρ is less than 1.

Let the action be level-transitive. If it is contracting, then ρ = ρφ < 1. If ρ < 1,
then the action is contracting.

For example, for the adding machine action and for the Grigorchuk group we
have ρ = ρφ = 1/2. If a group is finite-state and not contracting then ρ = ρφ = 1.

Lemma 2.11.12. Let G be a finitely generated group with a contracting self-
similar action. Then there exist a number M > 0 and a positive integer n such that
for every g ∈ G and every word v ∈ Xn the inequality

(2.17) l (g|v) ≤
l(g)
2

+M

holds.
Conversely, if there exist M,n and l0 such that inequality (2.17) holds for all

v ∈ Xn and g such that l(g) > l0, then the action is contracting.

Proof. Let M be the maximal length of the elements of the nucleus N . There
exists a number n ∈ N such that for every element g ∈ G of the length ≤ 2M and
every word v ∈ Xn we have g|v ∈ N .

Let g ∈ G be an arbitrary element. We can write it in the form g = g1 · · · gkgk+1,
where k =

⌊
l(g)
2M

⌋
, l(gi) = 2M for all 1 ≤ i ≤ k and l(gk+1) < 2M . Then for every

v ∈ Xn the restriction g|v can be written in the form h1h2 · · ·hk+1, where hi ∈ N .
Consequently

l(g|v) ≤ (k + 1)M =
(⌊

l(g)
2M

⌋
+ 1
)
M ≤

(
l(g)
2M

+ 1
)
M =

l(g)
2

+M.

Suppose now that l (g|v) < l(g)
2 +M for all g such that l(g) ≥ l0 and v ∈ Xn.

Let L = maxl(g)<l0,v∈Xn l(g|v). Then l (g|v) < l(g)
2 +M + L for all g ∈ G. Denote

M1 = M + L.
Let v = v0v1 . . . vk, where vi ∈ X∗ are such that vi ∈ Xn for all 1 ≤ i ≤ k and

|v0| < n. Then

l (g|v0v1...vk
) <

l (g|v0)
2k

+
M1

2k−1
+

M1

2k−2
+ · · ·+M1 <

l (g|v0)
2k

+ 2M1.

Therefore, the lengths of the restrictions g|v for all the words v ∈ X∗, of the
length greater than n · maxv∈X∗,|v|<n

log l(g|v)
log 2 is less than 1 + 2M1, so the action

is contracting with the nucleus contained in the set of the elements of length <
1 + 2M1. �

Proof of Proposition 2.11.11. We have ρφ ≤ ρ, so it is sufficient to prove
that the action is contracting if and only if ρ < 1 and that in the level-transitive
case ρφ < 1 implies ρφ ≥ ρ.

Suppose that ρ < 1. Let ρ1 be an arbitrary number such that 1 > ρ1 > ρ.
Then there exist n0 and l0 such that

l (g|v) < ρn1 l(g)

for all g ∈ G, and v ∈ Xn such that l(g) > l0 and n > n0. Then Lemma 2.11.12
implies that the action is contracting.
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Suppose now that the action is contracting. We may assume that the generating
set S contains all restriction of every one of its elements, since there exists only a
finite number of them. Then l (g|v) ≤ l(g) for all g ∈ G and all v ∈ X∗.

There exist by Lemma 2.11.12 numbers n0 ∈ N and M > 0 such that for every
word v ∈ Xn0 and g ∈ G the inequality

l (g|v) < M +
l(g)
2

holds.
Suppose that v ∈ Xn, where n > n0. We can write v as a product v0v1 . . . vk,

where k =
⌊
n
n0

⌋
≥ n

n0
− 1, |vi| = n0 for 1 ≤ i ≤ k and |v0| < n0. Then for every

g ∈ G

l (g|v) = l (g|v0 |v1 . . . |vk
) < M +

1
2

(
M +

1
2

(
· · ·+

(
M +

1
2
l (g|v0)

)))
<

2M +
l (g|v0)

2k
≤ 2M +

l(g)
2k

Hence,

n

√
lim sup
l(g)→∞

max
v∈Xn

l (g|v)
l(g)

≤ n

√
lim sup
l(g)→∞

(
2−k +

2M
l(g)

)
= n
√

2−k ≤ 2−
1

n0
+ 1

n

Consequently
ρ ≤ lim

n→∞
2−

1
n0

+ 1
n = 2−

1
n0 < 1.

Suppose now that the action is level-transitive. Let ρφ be the contraction
coefficient of the virtual endomorphism φ. Let us prove that ρφ ≥ ρ, if ρφ < 1.

Let ρ1 be any number such that ρφ < ρ1 < 1. Then there exist n0, l0 ∈ N
such that for all n > n0 and g ∈ Domφn such that l(g) > l0 the inequality
l (φn (g)) < ρn1 l(g) holds.

Let us pass to the nth power of the self-similar action. The associated virtual
endomorphism of the nth power action is φn. Let r be an upper bound on the length
of the elements of a coset transversal and a sequence, defining the nth power.

Then, by (2.5), for every v ∈ (Xn)k and g ∈ G we have

l(g|v) ≤ l0 + 2r + ρn1 (l0 + 4r + ρn1 (l0 + 4r + · · ·+ ρn1 (2r + l(g))))

<
4r + l0
1− ρn1

+ ρnk1 l(g),

and Lemma 2.11.12 implies that the action is contracting. So we may assume that
all restrictions of the elements of the generating set also belong to the generating
set, so that l(g|v) ≤ l(g) for all g ∈ G and v ∈ X∗.

Let us denote C = 4r+l0
1−ρn

1
. If v ∈ Xm is an arbitrary word, then we can take its

beginning v′ of the length n
⌊
m
n

⌋
, so that

l(g|v) ≤ l(g|v′) < ρm1 l(g) + C.

Consequently

ρ ≤ lim sup
m→∞

m

√
lim sup
l(g)→∞

(
C

l(g)
+ ρm1

)
= ρ1.
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Therefore we have ρ1 ≥ ρ for every ρ1 such that 1 > ρ1 > ρφ . But this is
possible only in the case when ρφ ≥ ρ. �

2.12. Finite-state actions of Zn

Theorem 2.12.1. Suppose we have a faithful self-similar recurrent action of
Zn and let A = Q⊗ φ be the associated linear map. Then the following conditions
are equivalent:

(1) The action is finite-state.
(2) The action is contracting.
(3) The linear map A is contracting, i.e., its spectral radius is less than one.

Proof. Condition (3) implies (2) by Proposition 2.11.11. Implication (2)⇒(1)
is obvious. So we have to prove that (1) implies (3).

Let us fix a basis {e1, e2, . . . , en} of the group Zn and consider it as an orthonor-
mal basis of the Euclidean space Rn. Let {ε1, ε2, . . . , εn} be the basis of Cn = C⊗Zn
with respect to which A has normal Jordan form. Let (ξ1(g), ξ2(g), . . . , ξn(g)) de-
notes the coordinates of g ∈ Zn with respect to the basis {εi}.

Suppose that ρ(A) ≥ 1. Let λ be the eigenvalue of A such that |λ| ≥ 1. There
exists an index i such that ξi (A (g)) = λ · ξi(g) for every g ∈ Zn. Let us assume,
without lost of generality, that i = 1.

There exists g ∈ Zn such that ξ1(g) 6= 0, since Zn has rank n. Let us fix such
g. We are going to find a sequence {gm = g|vm} of restrictions of g such that
{|ξ1(gm)|} is non-decreasing. We will define the sequence inductively. Put g0 = g
and suppose that we have defined gm.

Let R = {r0, r1, . . . , rd−1} be the digit system defining the action. Then the
restriction of gm in a one-letter word xi is equal by (2.10) to A(gm + ri − r′i),
where r′i ∈ R is defined by the condition gm + ri − r′i ∈ A−1 (Zn). Let us denote
di = ri − r′i. We have

∑d−1
i=0 di = 0, since

∑d−1
i=0 (ri − r′i) =

∑d−1
i=0 ri −

∑d−1
i=0 r

′
i, and

{r′i} is a permutation of {ri}. Hence restrictions of gm in one-letter words are equal
to A(gm + di).

We have
∑d
i=1 zi =

∑d
i=1 ξ1 (A (di)) = 0, hence the point ξ = ξ1 (A(gm)) =

λ · ξ1 (gm) is a baricenter of the points ξ + zi. Then either all numbers zi are equal
to zero, or one of points ξ + zi is outside the circle γ = {z ∈ C : |z| = |ξ|}.
Otherwise the baricenter of the points ξ + zi and γ will be on the same side of the
tangent line to γ at ξ (see Figure 3).

Hence, either all numbers zi = ξ1 (A(di)) are equal to zero, or there exists i0
such that |ξ1 (A(gm + di0))| = |ξ1 (A (gm)) + zi0 | > |ξ1 (A (gm))|. We choose in the
first case gm+1 equal to A (gm + di) for arbitrary i, then

|ξ1 (gm+1)| = |ξ1 (A (gm)) + zi| = |ξ1 (A (gm))| = |λ| · |ξ1 (gm)| .

In the second case we put gm+1 = A (gm + di0). Then

|ξ1 (gm+1)| = |ξ1 (A (gm)) + zi| > |ξ1 (A (gm))| = |λ| · |ξ1 (gm)| .

Then the sequence |ξ1 (gm) | is non-degreasing and all its elements are non-zero.
Since the action is finite-state, the set of values of the sequence ξ1 (gm) is finite.

It follows then from the inequalities above that |λ| = 1 and in all but finite number
of cases all zi are equal to zero. Then starting from some m we will always have
ξ1 (gm+1) = λ · ξ1 (gm). The sequence ξ1 (gm) has finite number of different values,
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Figure 3.

hence λ is a root of unity. But this is impossible by Proposition 2.9.2. We get a
contradiction proving the implication (1)⇒(3). �

It is a result of [94] (Theorem 5.2) that for all n and d there exists only a finite
number of conjugacy classes of n × n matrices A, which are matrices of virtual
endomorphisms associated with finite state recurrent action of Zn over alphabet X
of cardinality d.

For example, the matrix A is conjugate in the case n = d = 2 to one of the
matrices (

0 1
1/2 0

)
,

(
1/2 −1
1/2 0

)
,

(
1/2 −1/2
1/2 1/2

)
,

(
0 1
−1/2 0

)
,

(
−1/2 −1
1/2 0

)
,

(
−1/2 −1/2
1/2 −1/2

)
,

If we choose the digit system {r0 = (0, 0), r1 = (1, 0)}, then the respective
actions of the generators a = (1, 0), b = (0, 1) of Z2 are given (in multiplicative
notation) by the recurrent relations{

a = σ(1, b)
b = (a, a) ,

{
a = σ(1, ab)
b = (a−1, a−1) ,

{
a = σ(1, ab)
b = σ(a−1, b) ,

{
a = σ(1, b−1)
b = (a, a) ,

{
a = σ(1, a−1b)
b = (a−1, a−1) ,

{
a = σ(1, a−1b)
b = σ(b−1, a−1) .

Hence, Proposition 2.3.4 implies that every finite-state recurrent action of Z2

over a two-letter alphabet is conjugate with one of the six descibed actions.
For n = 3 we will get 14 such conjugacy classes, for n = 4 there are 36 of them

and for n = 5 there are 58 classes (see [94]).

2.13. Defining relations and word problem

2.13.1. Subgroups En. Consider some self-similar action (G,X) and let M =
X×G be the self-similarity bimodule.
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The subgroups En(G) = En, n ≥ 0, are defined as

En = {g ∈ G : g · v = v · 1, for all v ∈ Xn}.

In other words, g belongs to En if and only it belongs to the nth level stabilizer
StG(n) and every one of its restrictions g|v in words of length n is trivial.

Proposition 2.13.1. (1) The subgroup En is the kernel of the wreath recursion

ψn : G −→ S (Xn) oG

associated with the bimodule M⊗n (i.e., with the self-similar action (G,Xn)).
(2) The subgroups En are normal, M-invariant and En ≥ En−1.

Proof. First claim follows directly from the definition of the wreath recursion
(see Proposition 2.2.1 and the definition of the wreath recursion after it).

The subgroup En is normal, since it is a kernel. Inclusion En ≥ En−1 is obvious.
For g ∈ En and x ∈ X we obviously have g · x = x · h for some h ∈ En−1 ≤ En,
what implies that En is invariant with respect to the virtual endomorphism φx,
associated with x ∈ X and M. Hence G is M-invariant (see Proposition 2.7.4). �

We denote by E∞(G) = E∞ the union
⋃∞
n=0 En. It is also a normal M-invariant

subgroup of G. Hence, it is a subgroup of the kernel K of the self-similar action.

Proposition 2.13.2. If the self-similar action (G,X) is contracting and no
element of the nuceus belongs to the kernel K of the action, then E∞ = K.

Proof. We have to prove the inclusion K ≤ E∞. Let g ∈ K be arbitrary. Then
there exists n ∈ N such that g|v is an element of the nucleus for every v ∈ Xn. Note
that g(v) = v, since g acts trivially on X∗. But then g|v ∈ K∩N = {1}, therefore
g ∈ En ≤ E∞. �

2.13.2. L-presentations. Proposition 2.13.2 describes the kernel of a con-
tracting action in much more convenient terms than the general Proposition 2.7.5
does. However, in many cases an explicit description of the defining relations of a
contracting self-similar groups can be found.

In most cases contracting self-similar groups are not finitely presented, but one
can usually find a rather simple recursive presentation called finite L-presentation.

The first example of an L-presentation was found by I. Lysionok in [84]. He
showed that the Grigorchuk group G admits the presentation

G =
〈
a, c, d | τ i (a)2 , τ i (ad)4 , τ i (adacac)4 , (i ≥ 0)

〉
,

where τ is the endomorphism of the free group 〈a, c, d〉 given by

τ(a) = aca,

τ(c) = cd,

τ(d) = c.

This presentation was used later by R. Grigorchuk in [50] to construct the first
example of a finitely presented amenable, but not elementary amenable group, thus
answering a question of M. Day [32].

A more general class of recursive presentations generalizing the presentation of
I. Lysionok is defined in the following way (see [51, 6] and Section 4.2 of [11]).
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Definition 2.13.3. An endomorphic presentation is a presentation of the form〈
S

∣∣∣∣∣∣ Q ∪
⋃
ϕ∈Φ∗

ϕ (R)

〉
,

where S is a finite set of generators, Q and R are sets of elements of the free group
F (S) generated by S, Φ is a set of endomorphisms of F (S) and Φ∗ is the monoid
generated by Φ (i.e., the closure of Φ ∪ {id} under composition).

The endomorphic presentation is finite if the sets Q,R and Φ are finite. It is
called ascending if the set Q is empty. If Φ consists of one endomorphism, then the
endomorphic presentation is called L-presentation.

The following is a result of L. Bartholdi [6].

Theorem 2.13.4. Let G be a finitely generated, contracting, regular branch
group. Then G has a finite endomorphic presentation. However, G is not finitely
presented.

A self-similar group G is said to be regular branch if there exists a finite-index
subgroup K ≤ G such that KX ≤ ψ (K), where ψ : G −→ S (X) o G is the wreath
recursion (see 1.5.2).

See the paper [6] for various examples of groups admitting finite endomorphic
presentations.

2.13.3. Growth of orbits.

Definition 2.13.5. Let G be a finitely generated group, acting on a set A.
Growth degree of the G-action is the number

γ = sup
w∈A

lim sup
r→∞

log |{g(w) : l(g) ≤ r}|
log r

,

where l(g) is the length of a group element with respect to some fixed finite gener-
ating set of G.

One can show, in the same way as in Proposition 2.11.10, that the growth
degree γ does not depend on the choice of the generating set of G.

Proposition 2.13.6. Suppose that a self-similar action (G,X) is contracting.
Then the growth degree of the action of G on Xω is not greater than log |X|

− log ρ , where
ρ is the contraction coefficient of (G,X).

Proof. The statement is more or less classical. See, for instance similar state-
ments in [59, 9, 42].

Let ρ1 be such that ρ < ρ1 < 1. Then there exists C > 0 and n ∈ N such that
for all g ∈ G we have l(g|x1x2...xn) < ρn1 · l(g) + C.

Then cardinality of the set B(w, r) = {g(w) : l(g) ≤ r}, where w = x1x2 . . . ∈
Xω, is not greater than

|X|n · |{B (xn+1xn+2 . . . , ρ
n
1 · r + C)| ,

since the map σn : x1x2 . . . 7→ xn+1xn+2 . . . maps B(w, r) into B (σn(w), ρn1 · r + C)
and every point of Xω has exactly |X|n preimages under σn. The map σn is the nth
iteration of the shift map σ(x1x2 . . .) = x2x3 . . ..
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Let k =
⌊

log r
−n log ρ1

⌋
+ 1. Then ρnk1 · r < 1 and the number of the points in the

ball B(w, r) is not greater than

|X|nk ·
∣∣B (σnk (w) , R

)∣∣ ,
where

R = ρnk1 · r + ρ
n(k−1)
1 · C + ρ

n(k−2)
1 · C + · · ·+ ρn1 · C + C < 1 +

C

1− ρn1
.

But |B(u,R)| for all u ∈ Xω is less than K1 = |S|R, where S is the generating
set of G (we assume that S = S−1 3 1). Hence,

|B(w, r)| < K1 · |X|
n

(
log r

−n log ρ1
+1

)

= K1 · exp
(

log |X| log r
− log ρ1

+ n log |X|
)

= K2 · r
log |X|
− log ρ1 ,

where K2 = K1 · |X|n. Thus, the growth degree is not greater than log |X|
− log ρ1

for every

ρ1 ∈ (ρ, 1), so it is not greater than log |X|
− log ρ . �

Lemma 2.13.7. Let (G,X) be a contracting faithful self-similar action of an
infinite finitely generated group G. Then its contraction coefficient is greater or
equal to 1/|X|.

Proof. Let φ = φx be the virtual endomorphism of G associated with the
action and x ∈ X. Then the parabolic subgroup P (φ) = ∩n≥0 Domφn is the
stabilizer of the word w = xxx . . . ∈ Xω. The subgroup P (φ) has infinite index in
G, otherwise

⋂
g∈G g

−1Pg = K(φ) has finite index, and G does not act faithfully.
Consequently, the G-orbit of w is infinite. Then there exists an infinite sequence of
generators s1, s2, . . . of the group G such that the elements of the sequence

w, s1(w), s2s1(w), s3s2s1(w), . . .

are pairwise different. This implies that the growth degree of the orbit Gw

γ = lim sup
r→∞

log |{g(w) : l(g) ≤ r}|
log r

is greater than or equal to 1, thus the growth degree of the action of G on Xω is
not less than 1, and by Proposition 2.13.6, 1 ≤ log |X|

− log ρ . �

2.13.4. Word problem algorithm. The proof of the next proposition will
give an effective algorithm of solving the word problem in contracting groups. This
is essentially the algorithm described already in [47] for the Grigorchuk group (see
Chapter 3 of [11] for more information and bibliography). Here we show an inter-
esting relation between the geometry of the self-similar action and its algorithmic
properties.

Proposition 2.13.8. If there exists a faithful contracting action of a finitely-
generated group G then for any ε > 0 there exists an algorithm of polynomial
complexity of degree not greater than log |X|

− log ρ + ε solving the word problem in G.



64 2. ALGEBRAIC THEORY

Proof. We assume that the generating set S is symmetric (i.e., that S = S−1)
and contains restrictions of all its elements, so that always l(g|v) is not greater than
l(g).

Let us denote by F the free group generated by S. For every g ∈ F we denote
by ĝ the canonical image of g in G.

Let 1 > ρ1 > ρ. Then ρ1 · |X| > 1 by Lemma 2.13.7. There exist n0 and l0 such
that for every word v ∈ X∗ of length n0 and every g ∈ G of length ≥ l0 we have

l (g|v) < ρn0
1 l(g).

Assume that we know for every g ∈ F of length less than l0 if ĝ is trivial or
not. Assume also that we have a table of all relations of the form ĝ · v = u · ĥ where
g, h ∈ F , v, u ∈ Xn0 and l(g) ≤ l0, l(h) < ρn0

1 l(g).
Then we can compute in l(g) steps, for any g ∈ F and v ∈ Xn0 , an element

h ∈ F and a word u ∈ Xn0 such that ĝ · v = u · ĥ and l(h) < ρn0
1 l(g). If v 6= u then

we conclude that ĝ is not trivial and stop the algorithm. If for all v ∈ Xn0 we have
v = u, then ĝ is trivial if and only if all obtained restrictions ĥ = ĝ|v are trivial.
We know whether ĥ is trivial if l(h) < l0. We proceed further applying the above
computations for those h, which have the length not less than l0.

So on each step the length of the elements becomes smaller and the algorithm
stops in not more than − log l(g)

n0 log ρ1
steps. On each step the algorithm branches into

|X|n0 algorithms. Since ρ1 · |X| > 1, the total time is bounded by

l(g)
(
1 + (ρ1 · |X|)n0 + (ρ1 · |X|)2n0 + · · ·+ (ρ1 · |X|)n0·b− log l(g)/n0 log ρ1c

)
<

l(g)
(ρ1 · |X|)n0 − 1

(
(ρ1 · |X|)n0−log l(g)/ log ρ1 − 1

)
=

l(g) (ρ1 · |X|)n0

(ρ1 · |X|)n0 − 1

(
(ρ1 · |X|)− log l(g)/ log ρ1 − (ρ1 · |X|)−n0

)
=

C1l(g)
(

exp
(

log l(g)
(

log |X|
− log ρ1

− 1
))
− C2

)
= C1l(g)− log |X|/ log ρ1 −C1C2l(g),

where C1 = (ρ1·|X|)n0

(ρ1·|X|)n0−1 and C2 = (ρ1 · |X|)−n0 . �



CHAPTER 3

Limit spaces

3.1. Limit G-space XG
3.1.1. Definition of XG in terms of G-bimodules. Let us fix some hy-

perbolic G-bimodule M (recall that it just means that the associated self-similar
actions are contracting).

We say that a sequence x1, x2, . . . of elements of some set is bounded if the set
{xi} of values of the sequence is finite.

Let Ω(M) be the set of all bounded sequences . . .⊗ x2 ⊗ x1 of elements of M.
We write the sequences in the opposite direction, since we are going to define the
left G-space XG = M⊗−ω = . . .⊗M⊗M.

Definition 3.1.1. Two sequences . . . ⊗ x2 ⊗ x1, . . . ⊗ y2 ⊗ y1 ∈ Ω(M) are
asymptotically equivalent if there exists a bounded sequence gn ∈ G such that

gn · xn ⊗ xn−1 ⊗ · · · ⊗ x1 = yn ⊗ yn−1 ⊗ · · · ⊗ y1
in M⊗n for every n ≥ 1.

The quotient of set Ω(M) by the asymptotic equivalence relation is denoted
M⊗−ω, or XG and is called limit G-space.

Compare the definition of M⊗−ω with the definition of the G-space M⊗ω in
Section 2.4. We will introduce a topology on M⊗−ω later.

It is easy to see that the space M⊗−ω is a right G-space, i.e., that the right
action

(. . .⊗ x2 ⊗ x1) · g = . . .⊗ x2 ⊗ (x1 · g)
is a well defined action on M⊗−ω.

We will write the sequence . . .⊗x2⊗x1 often just as a left-infinite word . . . x2x1.

Lemma 3.1.2. Let Y ⊂M be a finite subset and let Y−ω ⊂ Ω(M) be taken with
the topology of a direct product of discrete sets Y. Then the asymptotic equivalence
relation is closed on Y−ω.

Proof. We have to prove that if C ⊂ Y−ω is closed then its saturation [C] is
closed in Y−ω. Saturation of C is the set of all points which are equivalent to some
points of C.

Let the set N (Y) be as in Proposition 2.11.6. Let us construct a labelled
directed graph (also denoted N (Y)), whose set of vertices is N (Y), in which we
have an arrow from a vertex g1 to a vertex g2 if and only if there exists a pair
(y1, y2) ∈ Y×Y such that g1 · y1 = y2 · g2. The respective arrow will be labelled by
(y1, y2).

We are going to prove the following lemma, which will be also used in proof of
another proposition.

65
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Lemma 3.1.3. Two sequences . . . y2y1, . . . z2z1 ∈ Y−ω are asymptotically equiv-
alent if and only if there exists a directed path . . . e2e1 in the graph N (Y), which
ends in the vertex 1 and is such that the edge ei is labelled by (yi, zi).

Proof. If such a path exists and if gi is the beginning of the edge ei (and the
end of the edge ei+1) then, by construction of the graph, we have

gn · ynyn−1 . . . y1 = znzn−1 . . . z1,

and the sequences . . . y2y1 and . . . z2z1 are asymptotically equivalent.
On the other hand, suppose that the sequences . . . y2y1 and . . . z2z1 are asymp-

totically equivalent. Let {gn} be a bounded sequence such that gn · ynyn−1 . . . y1 =
znzn−1 . . . z1. It follows from the definition of tensor product that for every pair
n > m of indices there exists an element gn,m ∈ G such that

gn · ynyn−1 . . . ym−1 = znzn−1 . . . zm−1 · gn,m,
gn,m · ymym−1 . . . y1 = zmzm−1 . . . z1.

It follows from Proposition 2.11.6 that there exists n0 ∈ N such that gn,m ∈
N (Y) for every pair n,m such that n−m ≥ n0.

Let Km be the set of the elements gn,m ∈ N (Y) for all n ≥ m + n0. The set
Km is finite and not empty. We also have for every hm ∈ Km that

hm · ymym−1 . . . y1 = zmzm−1 . . . z1.

If hm is an element of Km, then there exists an element hm−1 of Km−1 such that
hm · ym = zm · hm−1. Since the inverse limit of a sequence of finite non-empty sets
is non-empty, there exists a sequence hm ∈ Km such that hm · ym = zm · hm−1 for
all m ≥ 1. This sequence gives the necessary path in N (Y). �

The set of all left-infinite directed paths in the graph N (Y) is obviously a com-
pact subset of the space E−ω, where E is the set of edges of N (Y). The map putting
into correspondence to a path . . . e2e1 with consecutive labels . . . (y2, z2)(y1, z1) the
pair (. . . y2y1, . . . z2z1) is continuous. Hence, the asymptotic equivalence relation
on Y−ω is a compact and thus closed subset of Y−ω × Y−ω.

Suppose now that C ⊂ Y−ω is closed. Then its full preimage C × Y−ω under
the projection map onto the first factor is closed in Y−ω × Y−ω. The intersection
of C × Y−ω with the asymptotic equivalence relation is also a closed subset C of
Y−ω ×Y−ω. Then the saturation [C]∩Y−ω of C in Y−ω is equal to projection of C
onto the second factor of the direct product, therefore is compact as a continuous
image of a compact set. We have proved that [C] ∩ Y−ω is closed. �

Now we are ready to introduce the topology on M⊗−ω.

Definition 3.1.4. Let π : Ω(M) −→ M⊗−ω be the quotient map. Then a
subset C ⊂ M⊗−ω is closed if and only if for every finite set Y ⊂ M the set
π−1 (C ∩ π (Y−ω)) ∩ Y−ω is closed in Y−ω.

In other words, we introduce on M⊗−ω the coarsest topology for which the
restriction of π onto Y−ω is continuous for every finite Y ⊂M.

3.1.2. Definition of XG in terms of the action (G,X).

Proposition 3.1.5. Let X be a basis of M. Then every element . . . a2a1 ∈
M⊗−ω can be written in the form . . . x2x1 · g for some xi ∈ X and g ∈ G.
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Proof. The element an . . . a2a1 ∈ M⊗n can be written uniquely in the form
vn · gn for some vn ∈ Xn and gn ∈ G.

The set of possible gn is finite by Proposition 2.11.5. The space X−ω is compact,
thus there exists a monotone sequence nk such that vnk

converges to some sequence
. . . x2x1 and gnk

= g is constant. Let us prove that . . . x2x1 · g = . . . a2a1.
Let us fix some n. The sequence vnk

converges to . . . x2x1, hence there exists
k0 such that the end of length n of the word vnk

is equal to xn . . . x1 for all k ≥ k0.
We have for every k ≥ k0:

ank
ank−1 . . . an+1an . . . a1 = vnk

· g = unk
xn . . . x2x1 · g,

where unk
is the beginning of length nk − n of the word vnk

.
It follows now from the definition of tensor product that ank

ank−1 . . . an+1 =
unk
·hn,k and hn,k ·anan−1 . . . a1 = xn . . . x1 ·g for some hn,k. The set of possible hn,k

is finite by Proposition 2.11.5, what proves that . . . a2a1 = . . . x2x1 · g in XG. �

Let us denote by X−ω · G ⊂ Ω(M) the set of sequences . . . x2x1 · g for xi ∈ X
and g ∈ G. We introduce on it the direct product topology, where X and G are
discrete.

Proposition 3.1.6. Two elements . . . x2x1 · g and . . . y2y1 · h of X−ω · G are
asymptotically equivalent if and only if there exists a left-infinite directed path
. . . e2e1 in the Moore diagram of the nucleus N ending in the vertex hg−1 such
that the edge ei is labelled by (xi, yi).

The quotient of X−ω · G ⊂ Ω(M) by the asymptotic equivalence relation is
homeomorphic to XG.

Proof. The first part of the proposition follows from Lemma 3.1.3. The set
X−ω ·G intersects every equivalence class, due to Lemma 3.1.5. Consequently, the
quotients of X−ω ·G and of Ω(M) by the asymptotic equivalence relation coincide
as sets.

Let us prove that the quotient topology coincides with the topology, introduced
on XG before.

Let π : Ω(M) −→ XG be the canonical projection. We have to prove that
C ⊂ XG is closed in XG if and only if the set π−1(C) ∩ X−ω · G is closed in the
product topology on X−ω ·G.

Suppose that π−1(C)∩X−ω ·G is closed in X−ω ·G. Let Y ⊂M be an arbitrary
finite subset. LetB be the set of elements g ∈ G such that there exist asymptotically
equivalent sequences . . . x2x1 · g ∈ X−ω ·G and . . . y2y1 ∈ Y−ω. The set B is finite
by Proposition 2.11.5. The set π−1(C)∩X−ω ·B is closed and contains all elements
of Y−ω, which are asymptotically equivalent to some elements of π−1(C)∩X−ω ·G.
Therefore, applying Lemma 3.1.2 to the finite set Y ∪ (X ·B), we conclude that the
set π−1(C) ∩ Y−ω is closed in Y−ω. Hence, the set C is closed in XG.

Suppose now that the set C ⊂ XG is closed in XG. It follows that the set
π−1(C) ∩ X−ω · B is closed for every finite set B ⊂ G. But this implies that the
set π−1(C) ∩ X−ω · G is closed in the product topology on X−ω · G, since G is
discrete. �

The action of G on XG is defined in terms of X−ω ·G by

(. . . x2x1 · g) · h = . . . x2x1 · gh.
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Example. In the case of the adding machine action of Z = 〈a〉 one sees on the
diagram of the nucleus (Figure 2 on page 54) that two sequences are asymptotically
equivalent if and only if they are either equal or are of the form

. . . 0001xmxm−1 . . . x1 · an . . . 1110xmxm−1 . . . x1 · an,

where xmxm−1 . . . x1 ∈ X∗ is an arbitrary finite (possibly empty) word, or of the
form

. . . 000 · an+1 . . . 111 · an.
But this is the usual identification of dyadic expansions of reals, i.e., two se-

quences . . . x2x1 · an, . . . y2y1 · am are equivalent if and only if

n+
∞∑
i=1

xi · 2−i = m+
∞∑
i=1

yi · 2−i.

Consequently, the limit space XG is the real line R with the natural action of
Z on it.

3.1.3. Generation of the asymptotic equivalence relation. Actually one
does not need to know the nucleus of the action in order to describe the asymptotic
equivalence relation on X−ω ·G. It is sufficient to know the automaton generating
the action, as the next proposition shows.

Proposition 3.1.7. Let (G,X) be a contracting action of a finitely generated
group. Let (A,X) be a finite automaton generating the action. Denote by D ⊂
(X−ω ·G)× (X−ω ·G) the set of pairs (. . . x2x1 · 1, . . . y2y1 · g) such that there exists
a path . . . e2e1 in the Moore diagram of A ending in g and such that (xi, yi) is the
label of ei. Then the G-invariant equivalence relation on X−ω · G generated by D
coincides with the asymptotic equivalence relation.

Proof. If . . . e2e1 is a path in A labelled by . . . (x2, y2)(x1, y1) and ending in g,
then . . . x2x1 and . . . y2y1 ·g are asymptotically equivalent, since then gk ·xk . . . x1 =
yk . . . y1 · g, where gk is the beginning of the arrow ek. Therefore D belongs to the
asymptotic equivalence relation.

On the other hand, suppose that . . . x2x1 · h, . . . y2y1 · g are asymptotically
equivalent. Multiplying by h−1 from the right, if necessary, we may assume that
h = 1.

There exists a bounded sequence gk, k = 0, 1, . . ., of elements of the group G
such that gk · xk = yk · gk−1 and g0 = h. If gk = hm . . . h2h1 is a representation of
gk as a product of states of A or their inverses, then

gk−1 = gk|xk
= hm|hm−1···h2h1(xk) · hm−2|hm−3···h2h1(xk) · · ·h2|h1(xk) · h1|xk

is also a representation of gk−1 as a product of states of A or their inverses. It
follows that for some m ∈ N there exist representations gk = hm,k · · ·h2,kh1,k of gk
as a product of exactly m elements of A ∪ A−1 such that

gk · xk = (hm,k · · ·h2,kh1,k) · xk,0
= (hm,k · · ·h3,kh2,k) · xk,1 · h1,k−1

= (hm,k · · ·h4,kh3,k) · xk,2 · (h2,k−1h1,k−1) = . . .

= xk,m · (hm,k−1 · · ·h2,k−1h1,k−1) = yk · gk−1,
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Or, in a more compact notation:

(3.1) hi,k · xk,i−1 = xk,i · hi,k−1, xk,0 = xk, xk,m = yk.

We get hence the following sequence of elements of X−ω ·G:

w0 = . . . x2,0x1,0 · 1 = . . . x2x1 · 1,
w1 = . . . x2,1x1,1 · h1,0,

w2 = . . . x2,2x1,2 · h2,0h1,0

...
wm = . . . x2,mx1,m · hm,0hm−1,0 · · ·h1,0 = . . . y2y1 · h.

But then the pairs

(w0, w1),(
w1 · h−1

1,0, w2 · h−1
1,0

)
,(

w2 · (h2,0h1,0)
−1
, w3 · (h2,0h1,0)

−1
)

...(
wm−1 · (hm−1,0 · · ·h1,0)

−1
, wm · (hm−1,0 · · ·h1,0)

−1
)

belong to D, what proves that (. . . x2x1 · 1, . . . y2y1 · h) belongs to the G-invariant
equivalence relation generated by D. �

3.1.4. Basic properties of XG.

Proposition 3.1.8. The limit space XG is metrizable and has topological di-
mension ≤ |N | − 1, where N is the nucleus of the action.

Proof. It follows from Proposition 3.1.6 that every asymptotic equivalence
class on X−ω ·G has not more than |N | elements.

Now by Theorem 4.2.13 from [39], the quotient space XG is metrizable, since
it is a quotient of a locally compact separable metrizable space X−ω ·G by a closed
equivalence relation with compact equivalence classes. The assertion about dimen-
sion follows from the fact that the space X−ω · G is 0-dimensional and that every
equivalence class is of cardinality ≤ |N |, due to the Hurewicz formula (see [76] page
52). �

The next two properties of XG follow directly from the definition of the asymp-
totic equivalence relation. The proof consists of just showing that the asymptotic
equivalence is invariant under the respective transformations.

Proposition 3.1.9. The map

. . . a3a2a1 7→ . . . (a2n . . . an+1) (an . . . a1)

from Ω(M) to Ω (M⊗n) induces a G-equivariant homeomorphism

M⊗−ω −→
(
M⊗n

)⊗−ω
.

This is an analog of the fact that the action of G on (Xn)ω is topologically
conjugate to the action on Xω.
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Proposition 3.1.10. The map

. . . a2a1 7→ . . . a2a1 ⊗ v
induces for every n ≥ 0 and v ∈M⊗n a continuous map ζ 7→ ζ ⊗ v of M⊗−ω.

Note that for the case n = 0 (when M⊗n = G) Proposition 3.1.10 gives the left
action of G on M⊗−ω. The map ζ 7→ ζ ⊗ v is not in general a homeomorphism for
n > 0.

3.2. Digit tiles

3.2.1. Let us fix some hyperbolic G-bimodule M and a basis X of M. Let N
be the nucleus of the action (G,X).

Definition 3.2.1. The (digit) tile T = T (X) = T (M,X) is the image of X−ω ·1
in XG, i.e., the set of points of XG which can be represented in the form . . . x2x1

for xi ∈ X.

The following is a direct corollary of Proposition 3.1.6.

Proposition 3.2.2. Two sequences . . . x2x1, . . . y2y1 ∈ X−ω represent the same
point of the tile T (X) if and only if there exists a path . . . e2e1 in the Moore diagram
of the nucleus N such that the arrow e1 ends in the trivial state and every arrow
ei is labeled by (xi, yi).

The tile T (X) is homeomorphic to the quotient of the space X−ω by the described
equivalence relation. �

The second statement of the proposition follows from compactness of T and
X−ω.

We also get immediately that

(3.2) XG =
⋃
g∈G
T · g =

⋃
v∈M⊗n

T ⊗ v

and that

(3.3) T =
⋃
v∈Xn

T ⊗ v

for every n ∈ N.
The sets T ⊗ v for v ∈ M⊗n are called tiles of nth level. It follows from

Proposition 3.2.2 that the map ξ 7→ ξ⊗ v is an injective continuous map from T to
T ⊗ v. It is thus a homeomorphism, since the tiles are compact.

Our aim is to study topology of the tiles and to show how few combinatorial
data related to the tiles determine the topology of XG.

The first step is the following lemma.

Lemma 3.2.3. A subset C ⊂ XG is closed if and only if the set C ∩ T · g is
closed for every g ∈ G.

Proof. Suppose that C ∩ T · g is closed for every g ∈ G. Denote by Cg the
preimage of C∩T ·g in X−ω ·g. The sets Cg are then closed and

⋃
g∈G Cg is therefore

closed in X−ω ·G. This implies that C is closed due to Proposition 3.1.6. � �

Corollary 3.2.4. A subset U ⊂ XG is open if and only if the set U ∩ T · g is
relatively open in T · g for every g ∈ G. �
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3.2.2. Adjacency of tiles.

Proposition 3.2.5. Two tiles T ⊗ v1 and T ⊗ v2 of nth level intersect if and
only if there exists h ∈ N such that h · v1 = v2.

Proof. If the tiles T ⊗v and T ⊗u intersect then there exist two asymptotically
equivalent sequences of the form . . . x2x1⊗ v and . . . y2y1⊗u. Then it follows from
Proposition 3.1.6 that there exists an element h of the nucleus such that h · v = u.

Suppose now that there exists h ∈ N such that h · v = u. The element h is a
restriction of some element of the nucleus. Therefore there exists a letter x1 ∈ X
and an element h1 ∈ N such that h1|x1 = h. Then h1 · x1v = y1u for some
y1 ∈ X. Similarly, there exists a letter x2 ∈ X and an element h2 ∈ N such that
h2 · x2x1v = y2y1u for some y2 ∈ X. Thus, inductively we prove that there exist
infinite sequences . . . x2x1v, . . . y2y1u ∈ X−ω ·G and an infinite sequence h1, h2, . . .
of elements of the nucleus such that hn · xn . . . x2x1v = yn . . . y2y1u for all n ∈ N.
Therefore the sets X−ωv and X−ωu have two asymptotically equivalent elements,
and the tiles T ⊗ v and T ⊗ u intersect. �

In particular, two tiles T · g1 and T · g2 of the 0th level intersect if and only
if g1g−1

2 ∈ N . So, if G is finitely generated and the action is recurrent, then the
adjacency graph of the tiles of the 0th level coincides with the Calley graph of G
with respect to the generating set N .

3.2.3. Boundary of tiles.

Definition 3.2.6. We say that a contracting action of a group G satisfies the
open set condition if for any element g of the nucleus there exists a finite word
v ∈ X∗ such that g|v = 1.

The following is a complete answer on the question when two tiles have disjoint
interiors.

Proposition 3.2.7. If the action satisfies the open set condition then the set

D = T ∩
⋃

g∈G,g 6=1

T · g

is equal to the boundary of T , the set T is the closure of its interior and any two
tiles of one level have disjoint interiors.

If the action does not satisfy the open set condition then D = T and every tile
is covered by other tiles of the same level.

Proof. Suppose that the action satisfies the open set condition. We are going
to prove at first that T \D is dense in T .

Let N = {h1, h2, . . . , hm}. Let the word w1 ∈ X∗ be such that h1|w1 = 1. We
can find inductively for every hi a word wi ∈ X∗ for which hi|w1w2...wi = 1. Then
restriction of every element of the nucleus in the word w = w1w2 . . . wm will be
trivial.

Let ξ ∈ T be an arbitrary point. Let U 3 ξ be its neighborhood. The set
U contains the image of a cylindrical set X−ωu for some u, i.e., the tile T ⊗ u.
Consider the tile T ⊗ wu ⊂ T ⊗ u ⊂ U . Let ζ ∈ T ⊗ wu be an arbitrary point.
It is represented by a sequence . . . x2x1wu ∈ X−ω. Suppose that . . . y2y1w′u′ · g is
another sequence representing the same point ζ, where |w′| = |w|, |u′| = |u| and
g ∈ G. Then there exists a sequence {gn}n≥0 of the elements of the nucleus such
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that gi · xi = yi · gi−1 for all i ≥ 1 and g0 · wu = w′u′ · g. But g0|w = 1, so g = 1.
Consequently, the point ζ does not belong to any tile T · g with g 6= 1, i.e., it does
not belong to D. We have proved that any neighborhood U of the point ξ contains
an element of the set T \D.

The set
⋃
g∈G,g 6=1 T · g is closed by Lemma 3.2.3. Consequently, T \ D is an

open dense subset of T . In particular, D contains the boundary of T . But if ζ ∈ D
is an arbitrary point, then it also belongs to some other tile T · g and thus every its
neighborhood contains a point of T · g \D · g, i.e., a point which does not belong
to T . Therefore every point of D is a boundary point and D coincides with the
boundary of T .

Suppose now that the action does not satisfy the open set condition, i.e., that
there exists an element h ∈ N having no trivial restrictions. Then we can find
a subautomaton N1 of the nucleus, which contains only states implementing non-
trivial transformations (take just all restrictions of the element h).

Let ξ ∈ T be an arbitrary point and let U be its neighborhood. Then U
contains a tile T ⊗ u for some u ∈ X∗.

Since the subautomaton N1 is finite, its Moore diagram has an infinite to the
left path . . . e2e1. Let . . . x2x1 be the sequence of the letters which are read on the
left parts of its labels. Then there exists a path γ such that on its left parts of
the labels the sequence . . . x2x1u is read. Then it will end in a non-trivial state g
and . . . x2x1u = . . . y2y1 · g in XG for some . . . y2y1 ∈ X−ω, thus the point . . . x2x1u
belongs to D. So, every neighborhood of the point ξ intersects with D, i.e., D is
dense. But D is also closed, thus T = D. �

Corollary 3.2.8. Suppose that a contracting action of a group G on X∗ satis-
fies the open set condition. Then a sequence . . . x2x1 ∈ X−ω represents a point of the
boundary of T if and only if there exists a left-infinite path in the Moore diagram of
the nucleus N which ends in a non-trivial state and is labeled by . . . (x2, y2)(x1, y1).

Proof. A direct corollary of Propositions 3.2.7 and 3.2.5. �

One can also describe the boundary of the tile using only the automaton gen-
erating the action, without computing the nucleus.

Proposition 3.2.9. Suppose that the automaton (A,X) generates a contracting
group action (G,X). Then:

(1) the action satisfies the open set condition if and only if for every state
g ∈ A there exists a word v ∈ X∗ such that g|v is trivial;

(2) if the action satisfies the open set condition then a point ξ ∈ T be-
longs to the boundary of the tile if and only if there exists a path . . . e2e1
in the Moore diagram of A ending in a non-trivial state and labeled by
. . . (x2, y2)(x1, y1), where . . . x2x1 or . . . y2y1 represents the point ξ.

Proof. If the action satisfies the open set condition, then for every g ∈ G
there exists v ∈ X∗ such that g|v is trivial. One has just to find a word v1 ∈ X∗ such
that g|v1 belongs to the nucleus and then a word v2 ∈ X∗ such that g|v1v2 = g|v1 |v2
is trivial. On the other hand, if for every g ∈ A there exists v ∈ X∗ such that g|v is
trivial, then for every g−1 ∈ A−1 there exists g(v) ∈ X∗ such that g−1|g(v) = g|−1

v =
1. We can find then for every product g = gngn−1 · · · g1 of states of A∪A−1 a word
vn such that g|vn

= 1. We do it inductively: find a word v1 such that g1|v1 = 1
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and then for every i = 2, . . . , n find a word vi = uivi−1 such that gi|gi−1···g1(ui)|ui

is trivial. Then

gi · · · g1|vi = gi · · · g1|uivi−1 =

gi|gi−1···g1(ui)|gi−1···g1(vi) (gi−1 · · · g1) |vi−1 =

1|
gi−1···g1(vi)

· 1 = 1.

Thus the first claim of the proposition is proved.
Suppose that ξ ∈ T belongs to the boundary of the tile. Then it belongs also

to a tile T · g, by Proposition 3.2.7. So it can be represented by two asymptot-
ically equivalent sequences . . . x2x1 · 1 and . . . y2y1 · g. Proposition 3.1.7 implies
then that there exists a path . . . e2e1 in the Moore diagram of A labeled either by
. . . (x̃2, z2)(x̃1, z1) or by . . . (z2, x̃2)(z1, x̃1) for some . . . z2z1 ∈ X−ω and ending in a
non-trivial state, where . . . x̃2x̃1 represents the point ζ = . . . x2x1. �

3.2.4. Connectedness of tiles. The following is a joint result with result of
E. Bondarenko.

Proposition 3.2.10. Let Tn be the graph with the set of vertices Xn in which
two vertices v1, v2 are connected by an edge if and only if there exists h ∈ N such
that h · v1 = v2 · 1. Then the following conditions are equivalent

(1) The tile T is connected.
(2) The graphs Tn are connected for all n ≥ 1.
(3) The graph T1 is connected.

Proof. Implication (1)⇒ (2) follows directly from Proposition 3.2.5.
Implication (2) ⇒ (3) is trivial. Let us prove that (2) implies (1). Suppose

that the graphs Tn are connected but the tile T is not.
Then there exists a closed nonempty set A ⊂ T with a nonempty closed com-

plement T \A. Let Aω ⊂ X−ω be the preimage of A under the canonical projection
X−ω −→ T . Then the set Aω is also closed and has non-empty closed complement.

For every n ∈ N, let An ⊂ Xn be the set of all possible endings of length n of
the infinite words belonging to Aω. Since the set Aω is closed, a sequence . . . x2x1

represents an element of A if and only if xnxn−1 . . . x1 ∈ An for every n ∈ N.
There exists n0 such that for all n ≥ n0, the sets An are not equal to Xn. Since

the graph Tn is connected there exists a word vn ∈ An and an element sn ∈ N
such that sn · vn ∈ Xn \ An. It follows from compactness that there exists an
increasing sequence nk such that both sequences vnk

and snk
· vnk

converge to
certain elements ξ = . . . x2x1 and ζ = . . . y2y1 of X−ω respectively. Then ξ ∈ Aω
and ζ ∈ X−ω \Aω, since both sets Aω and X−ω \Aω are closed. For every n ∈ N the
element xnxn−1 . . . x1 is an ending of vnk

and ynyn−1 . . . y1 is an ending of snk
·vnk

,
for all sufficiently big k. Let gn = snk

|u, where vnk
= uxn . . . x1. Then gn ∈ N and

gn ·xnxn−1 . . . x1 = ynyn−1 . . . y1. Therefore, ξ and ζ are asymptotically equivalent
and represent equal elements of T , what contradicts to the choice of the set A.

It is sufficient now to prove that (3) implies (2). We argue by induction on
n. Suppose that T1 and Tn−1 are connected. If {v1, v2} is an edge of Tn−1, then
for every letter x ∈ X the pair {v1x, v2x} is an edge of Tn. Hence, Tn−1x is a
connected subgraph of Tn. Let {x, y} be an arbitrary edge of the graph T1. There
exists an element g ∈ N such that g · x = y · 1. It follows from the definition of the
nucleus that there exists a pair of words v, u ∈ Xn and an element h ∈ N such that
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h ·v = u ·g. Then we get an edge {vx, uy} of the graph Tn and thus the components
Tn−1x and Tn−1y are connected by an edge in Tn, if x, y are connected by an edge
in T1. Hence, connectivity of T1 and Tn−1 implies connectivity of Tn. �

3.3. Uniform structure on XG
3.3.1. Definition of the uniformity. We continue to study in this section

the topology of XG using digit tiles.

Proposition 3.3.1. Let Un(ζ) for ζ ∈ XG and n ∈ N denote the union of the
tiles of nth level to which ζ belongs. Then {Un(ζ)}n∈N is a base of neighborhoods
of ζ.

Proof. We have to prove that Un(ζ) are neighborhoods of ζ and that every
neighborhood of ζ contains Un(ζ) for some n ∈ N.

The first claim follows from the fact that the set

Un(ζ) \
⋃

v∈M⊗n,ζ /∈T ⊗v

T ⊗ v = XG \
⋃

v∈M⊗n,ζ /∈T ⊗v

T ⊗ v

contains ζ and is open by Lemma 3.2.3.
Let us prove the second claim. Let U 3 ζ be any neighborhood of ζ. Then the

preimage Û of U in X−ω · G is a neighborhood of every preimage . . . x2x1 · g of ζ.
Therefore Û contains the sets of the form X−ωxn . . . x1 · g. We can find a common
n for all preimages of ζ (since there is only a finite number of them). But then
Un(ζ) ⊂ U . �

Note that Proposition 3.3.1, Proposition 3.2.5 and (3.3) is a complete descrip-
tion of the topological space XG together with the action of G.

We will use the following proposition in construction of orbispace structure on
JG.

Lemma 3.3.2. The map Tx : XG −→ XG : ζ 7→ ζ ⊗ x is open for every x ∈M.

The map Tx was defined in Proposition 3.1.10.

Proof. Let us fix some associated self-similar action (G,X) and let x ∈ X.
Suppose that U ⊂ XG is open and let ξ ∈ U be an arbitrary point. There exists
n ∈ N such that Un−1(ζ) ⊆ U .

Let us show that Un (ζ ⊗ x) ⊆ Un−1(ζ) ⊗ x, what will prove that ζ ⊗ x is an
internal point of Tx (U), i.e., that Tx is open. Suppose that ζ ⊗ x belongs to a tile
T ⊗ xn . . . x1 · g, where xn . . . x1 ∈ Xn and g ∈ G. Then it can be represented both
by a sequence . . . xn+1xn . . . x1 · g ∈ X−ω ·G and by the sequence . . . y3y2h(x) · h|x,
where . . . y3y2 · h represents ζ.

There exists hence a path . . . e2e1 in the Moore diagram of the nucleus labeled
by . . . (x3, y3)(x2, y2)(x1, h(x)) and ending in h|xg−1. Let f be the end of the path
. . . e3e2. Then . . . x3x2 = . . . y3y2 · f in XG, hence ζ = . . . x3x2 · f−1h. We have

f · x1 = h(x) · h|xg−1,

hence
f−1h · x = f−1 · h(x) · h|x = x1 ·

(
h|xg−1

)−1
h|x = x1 · g

what implies that image of the tile T ⊗xn . . . x2 ·f−1h ⊆ Un−1 (ζ) under Tx is equal
to T ⊗ xn . . . x1 · g.
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We have proved that every tile of nth level containing ζ ⊗ x is covered by
Un−1 (ζ)⊗ x, i.e., that Un (ζ ⊗ x) ⊆ Un−1 (ζ)⊗ x. �

Another aspect of Proposition 3.3.1 is that it shows that the space XG has a
natural uniform structure.

See [20] for the definition of a uniform structure. We will use the following
notation.

If R1, R2 are two entourages (or just relations) on a set A, then R1 +R2 is the
entourage

(x, y) ∈ R1 +R2 ⇔ ∃z ∈ A : (x, z) ∈ R1, (z, y) ∈ R2.

The entourages nRi are defined for n ∈ N then in the natural way.
We write d(x, y) ≤ Ri if (x, y) ∈ Ri.
Definition 3.3.3. Let ∆n for n ∈ N be the set of pairs (ζ1, ζ2) ∈ XG×XG which

belong to two tiles T1, T2 of nth level such that T1 ∩ T2 6= ∅. In other words, ∆n

is the union of the sets (T ⊗ v1)× (T ⊗ v2), v1, v2 ∈M⊗n, which have non-empty
intersection with the diagonal of XG ×XG.

Proposition 3.3.4. The set {∆n}n≥0 is an entourage base of a uniform struc-
ture on XG compatible with the topology on it.

Proof. It is easy to see that ∆n is symmetric. By Proposition 3.2.5

∆n =
⋃

v∈M⊗n,g∈N

(T ⊗ v)× (T ⊗ g · v) ,

where N is the nucleus. Therefore,

2∆n =
⋃

v∈M⊗n,g∈N 2

(T ⊗ v)× (T ⊗ g · v) .

There exists n0 such that N 2|Xn0 ⊂ N , by definition of the nucleus. Let u ∈ Xn0 ,
v ∈M⊗n and g ∈ N 2 be arbitrary. Then

(T ⊗ u⊗ v)× (T ⊗ g · u⊗ v) = (T ⊗ u⊗ v)× (T ⊗ u′ ⊗ g|u · v)
⊂ (T ⊗ v)× (T ⊗ g|u · v) ,

where u′ = g(u) ∈ Xn0 and g|u ∈ N . Thus,

2∆n+n0 ⊂ ∆n.

We also have that
⋂
n≥0 ∆n is equal to the diagonal, due to the definition of the as-

ymptotic equivalence relation. All this implies that {∆n}n≥0 is a base of entourages
of a uniform structure on XG.

Let Un(ζ) be as in Proposition 3.3.1 and denote ∆n(ζ) = {ξ : (ξ, ζ) ∈ ∆n}.
Then we have

∆n+n0(ζ) ⊆ Un(ζ) ⊆ ∆n(ζ).
Hence, ∆n(ζ) is a base of neighborhoods of ζ. This means that the uniform structure
is compatible with the topology on XG. �

Proposition 3.3.5. The action of G on XG is uniformly equicontinuous, i.e.,
for every entourage U the intersection

⋂
g∈G U · g is an entourage.

Here G acts on XG ×XG by the diagonal action (ξ1, ξ2) · g = (ξ1 · g, ξ2 · g).

Proof. Direct corollary of the definition of the uniformity on XG. �
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3.3.2. Axiomatic description of XG. Let M be a hyperbolic G-bimodule.
We allow the associated self-similar action to be non-faithful.

Let X be a locally compact topological space with a proper co-compact right
action of G. Since the action is co-compact, there exists a unique uniformity on X
such that the action of G on X is uniformly equicontinuous. It is the uniformity
U whose base of entourages is the set of all G-invariant open neighborhoods of the
diagonal in X × X . The uniformity U is complete.

We say that a relation R ⊂ X × X is bounded if there exists a compact set
C ⊂ X ×X such that R ⊂

⋃
g∈G C · g. Here G acts on the direct square X ×X by

the diagonal action. If R1 and R2 are bounded relations, then the relation R1 +R2

is bounded.

Lemma 3.3.6. If the group G is finitely generated then there exists a bounded
relation V such that

⋃
n≥1 nV = X × X .

Proof. Let K ⊂ X be a compact set such that
⋃
g∈GK · g = X and let

S = S−1 3 1 be a finite generating set of G. Let relation V ⊂ X × X be the set of
pairs of the form (ξ1 · g, ξ2 · sg), where ξ1, ξ2 ∈ K, g ∈ G and s ∈ S. It is obvious
that V is bounded.

Any two points ζ1, ζ2 ∈ X can be written in the form ζ1 = ξ1 · g, ζ2 = ξ2 ·
sn · · · s2s1g for ξ1, ξ2 ∈ K, g ∈ G and si ∈ S. It is easy to see that then (ζ1, ζ2) ∈
nV . �

The set of all bounded relations on X is a structure of an asymptotic topology
(see [37, 90]).

The tensor product X ⊗G M is defined as the quotient of the topological space
X ×M (where M has the discrete topology) by the equivalence relation

ξ ⊗ g · a ∼ ξ · g ⊗ a.
Then ξ ⊗ a 7→ ξ ⊗ a · g is a well-defined action by homeomorphisms of G on

X ⊗M.

Definition 3.3.7. The G-space X is said to be self-similar if the dynamical
systems (X , G) and (X ⊗M, G) are topologically conjugate, i.e., if there exists a
homeomorphism Φ : X ⊗M −→ X such that Φ(ξ ⊗ a · g) = Φ(ξ ⊗ a) · g. The
homeomorphism Φ is called self-similarity structure on X .

Let now X be self-similar. We will write just ξ⊗a instead of Φ(ξ⊗a), identifying
X ⊗M with X by the homeomorphism Φ. If v ∈ M⊗n and ξ ∈ X , then ξ ⊗ v is
defined inductively by

ξ ⊗ (u⊗ a) = (ξ ⊗ u)⊗ a.
If R is a relation on X and v ∈M⊗n, then by R⊗ v we denote the relation

{(ξ ⊗ v, ζ ⊗ v) : (ξ, ζ) ∈ R}.

Definition 3.3.8. We say that the self-similarity structure on X is contracting
if for every bounded relation V ⊂ X ×X and entourage U there exists n1 ∈ N such
that V ⊗ v ⊆ U for all v ∈M⊗n, n ≥ n1.

Lemma 3.3.9. Suppose that the group G is finitely generated and the self-
similarity structure on X is contracting. Let Y ⊂ M be a finite set. Then for
every sequence . . . x2x1 ∈ Y−ω and for every ξ ∈ X the sequence ξ ⊗ xn . . . x2x1 is
convergent and the limit F (. . . x2x1) does not depend on ξ.
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Moreover, the convergence is uniform on compact sets over ξ and uniform on
Y−ω over . . . x2x1, i.e., for every compact set B ⊂ X and every entourage U ∈ U
there exists n0 such that

(3.4) d(ζ ⊗ xn . . . x2x1, F (. . . x2x1)) ≤ U
for all ζ ∈ B, n ≥ n0 and . . . x2x1 ∈ Y−ω.

Proof. Let V be a bounded relation such that
⋃
n≥1 nV = X × X . We may

assume that V is an entourage. There exists n0 such that 2V ⊗ v ⊆ V for all
v ∈M⊗n, n ≥ n0, hence (2kV )⊗ v ⊆ kV for all k ∈ N.

Take any ξ ∈ X . There exists k ∈ N such that d(ξ⊗ yn . . . y2y1, ξ) ≤ kV for all
n ≤ n0 and all yi ∈ Y.

Let us prove that d(ξ⊗yn . . . y2y1, ξ) ≤ 2kV for all n ≥ 1. It is true by definition
of k for all n ≤ n0. Let us prove it by induction on n. Suppose that it is true for
all n < m. Then

d(ξ ⊗ ym . . . y2y1, ξ)
≤ d(ξ ⊗ ym . . . y2y1, ξ ⊗ yn0 . . . y2y1) + d(ξ ⊗ yn0 . . . y2y1, ξ)

≤ 2kV ⊗ (yn0 . . . y2y1) + kV ⊆ kV + kV = 2kV,

what finishes the inductive argument.
For every entourage U there exists m0 ∈ N such that 2kV ⊗ v ⊆ U for all

v ∈ M⊗n, n ≥ m0. Then d(ξ ⊗ xn1 . . . x2x1, ξ ⊗ xn2 . . . x2x1) ≤ U for every
sequence . . . x2x1 ∈ Y−ω and every pair of indices n1 ≥ n2 ≥ m0, i.e., the sequence
{ξ⊗xn . . . x2x1} is Cauchy, and thus is convergent. Note that the estimates do not
depend on . . . x2x1.

If ζ ∈ X is another point, then there exists p ∈ N such that d(ξ, ζ) ≤ pV . For
every entourage U there exists n1 such that pV ⊗ xn . . . x2x1 ⊂ U for all n ≥ n1.
Then

d(ξ ⊗ xn . . . x2x1, ζ ⊗ xn . . . x2x1) ≤ U
for all n ≥ n1, what implies that the limit of the sequence {ξ ⊗ xn . . . x2x1} does
not depend on ξ.

Let us proove that convergence is uniform. There exists, by compactness of B,
a number r0 such that diameter of B is less than r0V . Fix some point ξ ∈ B. There
exists an entourage U ′ such that 2U ′ ≤ U . There exists a number n0 such that
d(ξ ⊗ xn . . . x2x1, F (. . . x2x1)) ≤ U ′ and r0V ⊗ xn . . . x2x1 ⊆ U ′ for all n ≥ n1 and
. . . x2x1 ∈ Yω. The first inequality follows from the fact that the estimates, proving
that ξ ⊗ xn . . . x2x1 is a Cauchy sequence, did not depend on . . . x2x1 ∈ Y−ω.

Then

d(ζ ⊗ xn . . . x2x1, F (. . . x2x1))

≤ d(ζ ⊗ xn . . . x2x1, ξ ⊗ xn . . . x2x1) + d(ξ ⊗ xn . . . x2x1, F (. . . x2x1))

≤ U ′ + U ′ ≤ U.
�

Theorem 3.3.10. Let M be a hyperbolic bimodule over a finitely generated
group G and let X be a locally compact right G-space such that

(1) the action of G on X is proper and co-compact;
(2) the G-space X is self-similar with a contracting self-similarity.
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Then there exists a uniformly continuous homeomorphism F : XG −→ X such that

F (ξ · g) = F (ξ) · g and F (ξ ⊗ x) = F (ξ)⊗ x
for all ξ ∈ XG, g ∈ G and x ∈M.

Proof. Let us define the map F , using Lemma 3.3.9, by the formula

F (. . . x2x1) = lim
n→∞

ξ ⊗ xn . . . x2x1,

and let us prove that it satisfies the necessary conditions.
1. F is well defined. Suppose that bounded sequences . . . y2y1 and . . . x2x1 define
one point of XG, i.e., that they are asymptotically equivalent. Then there exists
a bounded sequence {gk} of elements of the group G such that gn · yn . . . y2 =
xn . . . x2x1. Let us find a constant sub-sequence g = gnk

. Then

F (. . . x2x1) = lim
k→∞

ξ ⊗ xnk
. . . x2x1

= lim
k→∞

ξ ⊗ g · ynk
. . . y2y1 = lim

k→∞
ξ · g ⊗ ynk

. . . y2y1 = F (. . . y2y1),

since the limit in Lemma 3.3.9 does not depend on ξ.
2. Equivariance. Equalities

F (ξ · g) = F (ξ) · g and F (ξ ⊗ x) = F (ξ)⊗ x
follow directly from the definitions.
3. F is uniformly continuous. Choose some basis X of the bimodule M. Let N be
the nucleus of the action (G,X). Let V be as in Lemma 3.3.6. Choose some point
ξ ∈ X . We know that there exists k ∈ N such that d(ξ⊗xn . . . x2x1 ·g, ξ) ≤ 2kV for
all n, xi ∈ X and g ∈ N (see proof of Lemma 3.3.9). This implies that d(F (. . . x2x1 ·
g), ξ) ≤ 3kV . (One can find n such that d(F (. . . x2x1), ξ ⊗ xn . . . x2x1) ≤ kV .)
Consequently, the set F (T ·N ) has diameter not greater than 6kV , where T is the
digit tile of the action (G,X).

For every entourage U there exists n0 ∈ N such that 6kV ⊗ v ⊂ U for all
v ∈M⊗n, n ≥ n0, due to definition of a contracting self-similarity. Then

d(F (. . . xnxn+1 ⊗ g · an . . . a2a1), F (. . . ynyn+1 ⊗ an . . . a2a1))

= d(F (. . . xnxn+1 · g)⊗ an . . . a2a1, F (. . . ynyn+1)⊗ an . . . a2a1)
≤ 6kV ⊗ an . . . a2a1 ⊆ U,

for all xi, yi, ai ∈ X, g ∈ N and n ≥ n0. This proves that F is uniformly continuous
(see the definition of the uniform structure on XG).
4. F is surjective. There exists a compact set B ⊂ X such that

⋃
g∈GB · g = X .

Since X ⊗M = X , this also implies that
⋃
v∈M⊗n B ⊗ v = X for every n ≥ 0.

Let us prove now that the set

B′ = F (T ) ∪
⋃
v∈X∗

B ⊗ v

is compact. Let {Ai}i∈I be an open cover of B′. The set F (T ) is compact as a
continuous image of a compact set. Let us choose a finite cover {Ai}i∈I′ of F (T )
and let A =

⋃
i∈I′ Ai. The set A is an open neighborhood of F (T ). We can find

for every ξ ∈ F (T ) an entourage Uξ such that Uξ(ξ) = {ζ : d(ξ, ζ) ≤ Uξ} is a
subset of A. We get an open cover of F (T ) by the sets Uξ(ξ), which has a finite
subcover {Uξ1(ξ1), . . . , Uξs

(ξs)}. Take U =
⋃s
i=1 Uξi

. Then the U -neighborhood of
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F (T ) is contained in A. By (3.4), there exists n0 such that B ⊗ v belongs to the
U -neighborhood of F (T ) for all v ∈ M⊗n, n ≥ n0, thus B ⊗ v ⊂ A for all such
v. Let now {Ai}i∈I′′ be a finite cover of the compact set

⋃
v∈Xn,n<n0

B ⊗ v. Then
{Ai}I′∪I′′ is a finite cover of the set B′, hence B′ is compact.

The action of G on X is proper, therefore it follows from the compactness of
B′ that there exists a finite set C ⊂ G such that if B⊗ v1 · g∩B⊗ v2 6= ∅, for some
v1, v2 ∈ X∗ and g ∈ G, then g ∈ C.

Take now an arbitrary point ξ ∈ X . For every n ∈ N there exists vn ∈ Xn and
gn ∈ G such that ξ ∈ B ⊗ vn · gn. Then B ⊗ v1 ∩ B ⊗ vn · gng−1

1 3 ξ · g−1
1 , hence

gng
−1
1 ∈ C and the sequence {gn} is bounded. Therefore, there exists a sequence nk

such that the sequence vnk
converges to some . . . x2x1 ∈ X−ωtX∗ and the sequence

gnk
= g is constant.
For every n there exists k0 such that vnk

ends by xn . . . x1 for all k ≥ k0. Then

ξ ∈ (B ⊗ xnk
xnk−1 . . . xn+1)⊗ xn . . . x2x1 · g ⊂ B′ ⊗ xn . . . x2x1 · g,

and (3.4) applied to the compact set B′ implies that F (. . . x2x1 · g) = ξ.
5. F is injective. Suppose that we have F (. . . x2x1 · g) = F (. . . y2y1 · h) for some
. . . x2x1, . . . y2y1 ∈ X−ω, g, h ∈ G, where X is a fixed basis of M. We have for every
n

F (. . . xn+2xn+1)⊗ xn . . . x2x1 · g = F (. . . yn+2yn+1)⊗ yn . . . y2y1 · h.
Thus, there exist ξ, ζ ∈ F (T ) such that ξ⊗ xnxn−1 . . . x1 · g = ζ ⊗ ynyn−1 . . . y1 · h.
By definition of tensor product, there exists gn ∈ G such that ξ = ζ · gn and
gn · xnxn−1 . . . x1 · g = ynyn−1 . . . y1 · h. The set F (T ) is compact, thus the first
equality implies that the set of possible gn is finite. Then the second equality
implies that . . . x2x1 · g and . . . y2y1 · h are asymptotically equivalent, so that F is
injective.

This finishes the proof of the theorem, since every continuous bijection between
locally compact Hausdorff spaces is a homeomorphism. �

3.4. Connectedness of XG
Theorem 3.4.1. Let G be a finitely generated group with a contracting recurrent

action (G,X). Then the limit G-space XG is connected and locally connected.

Let us prove the following technical lemma.

Lemma 3.4.2. Suppose that an action (G,X) of a finitely generated group G is
recurrent and contracting. Let M = X ·G be the self-similarity bimodule and let N
be the nucleus. Then there exists a finite set B ⊂ G such that for any pair of words
v, u ∈ X∗ of equal lengths there exists a sequence h1, h2, . . . , hm ∈ N such that

(hmhm−1 · · ·h1) · v = u

in M⊗n and (hkhk−1 · · ·h1)|v ∈ B for all 1 ≤ k ≤ m.

Proof. The group G is generated by N , due to Proposition 2.11.3. For every
pair x, y ∈ X of letters there exists g ∈ G such that g ·x = y in M. Let us write g as
a product gm · · · g1 of elements of N and let M be maximal value of m for all pairs
x, y ∈ X. Denote by A = NM the set of all elements of G which can be represented
as products of at most M elements of the nucleus.

There exists, by Proposition 2.11.5 a finite set B ⊂ G such that A ⊆ B and
(BA) |X ⊂ B. Let us prove by induction on the length n of the words v and u that
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this set B satisfies the conditions of the lemma. The statement of the lemma is
true for n = 1 by the choice of A. Suppose that it is true for n and let us prove it
for n+ 1.

For every h ∈ N there exists a pair of words vh, uh ∈ Xn and h′ ∈ N such that
h′ ·vh = uh ·h. Let vx0 and uy0 be arbitrary words of length n+1, where v, u ∈ Xn

and x0, y0 ∈ X. There exists an element g ∈ G which can be written as a product
g = gM · · · g1 of the elements of the nucleus such that g · x0 = y0.

There exists a sequence hm1,1, hm1−1,1, . . . , h1,1 ∈ N such that

(hm1,1hm1−1,1 · · ·h1,1) · v = vh1

and (hk,1 · · ·h1,1) |v ∈ B for all 1 ≤ k ≤ m1.
We can now apply g′1 and get g′1 · vg1 = ug1 · g1. There exists, by induction

hypothesis, a sequence hm2,2, hm2−1,2, . . . , h1,2 ∈ N such that

(hm2,2hm2−1,2 · · ·h1,2) · ug1 = vg2

and (hk,2 · · ·h1,2) |uh1
∈ B for all 1 ≤ k ≤ m2. Then we can apply g′2 and get

g′2 · vh2 · h1 · x0 = ug2 · g2g1 · x0.
We continue the process further and finally get a sequence

(3.5) g′M , . . . , hm3,3, . . . , h1,3, g
′
2, hm2,2, . . . , h1,2, g

′
1, hm1,1 . . . , h1,1

such that
(hmi,i · · ·h1,i) · ugi−1 = vgi

,

(hk,i · · ·h1,i) |ugi−1
∈ B for all 1 ≤ k ≤ mi and i ≥ 2 and g′i · vgi

= ugi
· gi for all

i ≥ 1. Note that then

(hk,i · · ·h1,i · · ·h1,1) |v ∈ B · gi−1 · · · g1
for 1 ≤ k < mi and

(hmi,i · · ·h1,i · · ·h1,1) |v = gi−1 · · · g1.
There exists also a sequence hr, . . . , h1 ∈ N such that

(hr · · ·h1) · ugM
= u

and (hk · · ·h1) |ugM
∈ B for all 1 ≤ k ≤ r. Appending this sequence to the beginning

of the sequence (3.5) we get a sequence fN , fN−1, . . . , f1 ∈ N such that

(fN · · · f1) · vx0 = uy0

and (fk · · · f1) |v ∈ B ·A for all 1 ≤ k ≤ N . Then

(fk · · · f1) |vx0 ∈ B ·A|x0 ⊂ B
and thus the sequence fN , . . . , f1 satisfies the conditions of the lemma. �

Proof of Theorem 3.4.1. Let B be as in Lemma 3.4.2. For every n ∈ N
let Γn be the graph with the set of vertices Xn · B in which two vertices v1 · g1
and v2 · g2 are connected by an edge if and only if there exists an element h ∈ N
such that h · v1 · g1 = v2 · g2. We have proved that the set Xn belongs to one
connected component of the graph Γn. Repeating the arguments from the proof of
Proposition 3.2.10 we get that the tile T belongs to one connected component C of
T ·B.

If g1, g2 ∈ G are such that g1g−1
2 ∈ N , then C · g1 ∩ C · g1 ⊃ T · g1 ∩ T · g2 6= ∅

due to Proposition 3.2.5. The set N generates the group G, hence we obtain that
the space XG is connected.
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For a point ξ ∈ XG and n ∈ N denote by Un the union of the sets of the form
C · v containing ξ, where v ∈M⊗n. Then Un is a base of connected neighborhoods
of ξ by Proposition 3.3.1. �

Arguments similar to those of the proof of Lemma 3.4.2 where used at first by
K. Pilgrim and P. Haissinsky in their proof that the space JG is locally connected
for recurrent actions (private communication).

Corollary 3.4.3. If an action (G,X) of a finitely-generated groups is con-
tracting and recurrent then the limit space XG is path connected and locally path
connected.

Proof. Every locally compact metrizable connected and locally connected
space is path connected and locally path connected. �

3.5. Limit space JG
3.5.1. Definition and basic properties. Let us denote by JG = XG/G the

space of orbits of the right action of G on XG.
Since the action of G on XG is described in terms of the space X−ω ·G just as

multiplication
(. . . x2x1 · h) · g = . . . x2x1 · hg,

we can encode the points of JG by left-infinite sequences . . . x2x1 ∈ X−ω.
The corresponding equivalence relation is described in the following way.

Definition 3.5.1. Two sequences . . . x2x1, . . . y2y1 ∈ X−ω are asymptotically
equivalent if there exists a bounded sequence {gn} of elements of G such that

gn(xn . . . x1) = yn . . . y1

for all n ≥ 1.

The proof of the following proposition is straightforward.

Proposition 3.5.2. The quotient of the space X−ω by the asymptotic equiva-
lence relation is homeomorphic to the space JG. The homeomorphism sends the
equivalence class of the sequence . . . x2x1 ∈ X−ω to the orbit of the image of
. . . x2x1 · 1 in XG. �

Let us list topological properties of the space JG. The proofs are identical to the
proofs of the similar properties of XG (or follow directly from them). The statement
about connectedness is proved similarly to the proof of Proposition 3.2.10.

Theorem 3.5.3. Two sequences . . . x2x1, . . . y2y1 are asymptotically equivalent
if and only if there exists a left-infinite path . . . e2e1 in the Moore diagram of the
nucleus such that the edge ei is labelled by (xi, yi).

The topological space JG is compact, metrizable and has topological dimension
≤ |N | − 1. It is connected if the group G is finitely generated and level-transitive.
It is locally connected if the group G is finitely generated and recurrent.

The following proposition also follows directly from its analog for XG (Propo-
sition 3.1.7).
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Proposition 3.5.4. Let (G,X) be a contracting action of a finitely generated
group. Let (A,X) be a finite automaton generating the action. Denote by D ⊂
X−ω × X−ω the set of pairs (. . . x2x1, . . . y2y1) such that there exists a path . . . e2e1
in the Moore diagram of A such that (xi, yi) is the label of ei. Then the equivalence
relation on X−ω generated by D coincides with the asymptotic equivalence relation.

Note that the equivalence generated by D will be automatically closed.

3.5.2. Limit dynamical system and its Markov partition. A special
property of the limit space JG is existence of the shift map. It is easy to see that
the asymptotic equivalence relation on X−ω is invariant under the shift map

σ : . . . x2x1 7→ . . . x3x2,

therefore σ induces a continuous map s : JG −→ JG. It is surjective and every
point ζ ∈ JG has not more than d = |X| preimages under s.

The dynamical system (JG, s) is called limit dynamical system of the self-similar
action.

The images of the tiles T ⊗ v, v ∈ Xn are also called tiles of nth level of JG
and are denoted Tv. In particular, T∅ = JG.

We see that Tv =
⋃
x∈X Tvx and that s(Tvx) = Tv for every v ∈ X∗ and x ∈ X.

One can prove, in the same way as for the tiles of XG that the following propo-
sition holds.

Proposition 3.5.5. If the action satisfies the open set condition then every
tile Tv is equal to the closure of its interior, any two different tiles of one level have
disjoint interiors and boundary of Tv for v ∈ Xn is equal to Tv ∩

⋃
u∈Xn,u 6=v Tu.

Consequently, if the action satisfies the open set condition then every collection
{Tv}v∈Xn is a Markov partition of the limit dynamical system (JG, s).

3.5.3. Schreier graphs as approximations of JG. Let G be a group gen-
erated by a finite set S and acting on a set M . Then the corresponding Schreier
graph Γ(S,M) is the graph with the set of vertices M and set of arrows S ×M ,
where the arrow (s, v) starts in v and ends in s(v). The simplicial Schreier graph
Γ(S,M) remembers only the vertex adjacency: its set of vertices is M and two
vertices are adjacent if and only if one is an image of another under the action of
a generator s ∈ S.

If (G,X) is a self-similar action and G is generated by a finite set S, then we
get a sequence Γn = Γ (S,Xn) of Schreier graphs of the action of G on the levels Xn

of the tree X∗ (and the sequence Γn = Γ (S,Xn) of the respective simplicial Schreier
graphs).

If (G,X) is generated by a finite automaton (A,X), then the graphs Γ (A,Xn)
coincide with the dual Moore diagrams of the automata (A,Xn) (see the end of
Subsection 1.3.6).

Note first of all that Definition 3.5.1 can be formulated in the following way.

Proposition 3.5.6. Let (G,X) be a contracting self-similar action of a group
generated by a finite set S. Then sequences . . . x2x1, . . . y2y1 ∈ X−ω are asymptot-
ically equivalent with respect to the action if and only if there exists a number C
such that the distance between xn . . . x2x1 and yn . . . y2y1 in Γ(S,Xn) is less than
C.
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Proof. If the vertices xn . . . x2x1 and yn . . . y2y1 are on distance less than C in
Γ (S,X), then there exists an element gn ∈ G such that gn (xn . . . x2x1) = yn . . . y2y1
and g is product of less than C elements of S ∪ S−1. The set of such elements gn
is finite, i.e., the sequence {gn} is bounded.

On the other hand, if {gn} is a bounded sequence, then there exists C such
that every gn is a product of less than C elements of S ∪ S−1. �

Corollary 3.5.7. Let (G1,X) and (G2,X) be contracting self-similar actions
and let S1 and S2 be finite generating sets of G1 and G2, respectively. Suppose that
for every n ∈ N the identical map on Xn is an isomorphism of the simplicial Schreier
graphs Γ (S1,X

n) and Γ (S2,X
n). Then the limit dynamical systems (JG1 , s) and

(JG2 , s) are topologically conjugate. In particular, the limit spaces JG1 and JG2 are
homeomorphic. �

Example. The simplicial Schreier graphs Γ (S,Xn) of the action of the Grig-
orchuk group with respect to the standard generating set S = {a, b, c, d} coincides
with the simplicial Schreier graphs of the dihedral group generated by the trans-
formations

a = σ, B = (a,B).
This follows from the fact that for every v ∈ X∗ and g ∈ {b, c, d} either g(v) =

B(v) or g(v) = v, what is easily checked looking at the wreath recursions or portraits
defining the automorphisms b, c and d.

Consequently, the limit dynamical system of the Grigorchuk group coincides
with that of the dihedral group. We will see later (Subsection 6.3.1) that the limit
space of the dihedral group is the segment [0, 1] on which the shift s acts as the tent
map x 7→ |2x− 1|.

This example shows that just the limit dynamical system (JG, s) carries less
information then the group action. This is the reason why it is important to consider
the limit space JG as the orbispace of the action of G on XG, i.e., to preserve the
information about the stabilizers (isotropy groups) of the action. We will do this
in Section 4.6.

The next proposition is proved in the same way as Proposition 3.2.5.

Proposition 3.5.8. Two tiles Tv1 and Tv2 of nth level intersect if and only if
there exists an element g ∈ N such that g(v1) = v2. �

Proposition 3.5.8 shows that two tiles Tv, Tu for v, u ∈ Xn are adjacent if and
only if the vertices v and u are adjacent in the graph Γ (N ,X).

This (together with Proposition 3.3.1) implies that the Schreier graphs Γ (S,Xn)
are good approximations of the limit space JG. A more precise statement is the
following theorem. (Another interpretation will be given in Section 3.7).

Theorem 3.5.9. A compact Hausdorff space X is homeomorphic to the limit
space JG if and only if there exists a collection T = {Tv : v ∈ X∗} of closed subsets
of X such that the following conditions hold.

(1) T∅ = X and Tv =
⋃
x∈X Txv for every v ∈ X∗.

(2) The set
⋂∞
n=1 Txnxn−1...x1 contains only one point for every word . . . x2x1 ∈

X−ω.
(3) The intersection Tv ∩ Tu for u, v ∈ Xn is non-empty if and only if there

exists an element s of the nucleus such that s(v) = u.
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If X is a metric space then condition (2) is equivalent to the condition

lim
n→∞

max
v∈Xn

diam(Tv) = 0.

Proof. The limit space JG satisfies the conditions of the theorem for the sets
Tv = Tv.

Suppose now that a topological space X satisfies the conditions of the theorem
for a collection T = {Tv}v∈X∗ . Let us prove that the map

Π : . . . x2x1 7→
∞⋂
n=1

Txnxn−1...x1

is a continuous surjection from X−ω to X . Let A ⊆ X be a closed subset. Denote
by An the set of all the words v ∈ Xn for which the set Tv has a non-empty
intersection with A. Then obviously, A ⊆

⋂∞
n=1

⋃
v∈An

Tv. On the other hand, if
a point a does not belong to A, then the set of the words v ∈

⋃
n≥1An such that

a ∈ Tv, is finite. Otherwise there would exist an infinite word . . . x2x1 ∈ X−ω such
that the intersection

⋂
n≥1 Txn...x1 contains a and a point of A, what contradicts to

condition (2). Hence

A =
∞⋂
n=1

⋃
v∈An

Tv.

Denote

A∗ =
∞⋂
n=1

⋃
v∈An

X−ωv.

If a word ξ = . . . x2x1 belongs to A∗ then for any n ≥ 1 the word xnxn−1 . . . x1

belongs to An. But then Π(ξ) ∈ A. On the other hand, if Π(ξ) belongs to A then
for any n ∈ N the word xnxn−1 . . . x1 belongs to An, so ξ ∈ A∗. Thus, A∗ is equal
to the preimage of A under Π. The set A∗ is closed, so the preimage of every closed
set under the map Π is closed and the map is continuous. The fact that it is onto
follows directly from condition (1) of the theorem.

Since the spaces X−ω and X are compact, the surjection Π is closed, so it is a
quotient map. Thus it is sufficient to prove that Π(ξ) = Π(ζ) if and only if ξ and
ζ are asymptotically equivalent.

Suppose that Π(. . . x2x1) = Π(. . . y2y1). Then for every n the sets Txnxn−1...x1

and Tynyn−1...y1 intersect, thus xnxn−1 . . . x1 = s(ynyn−1 . . . y1) for some element of
the nucleus. Thus ξ and ζ are asymptotically equivalent.

On the other hand, if ξ = . . . x2x1 and ζ = . . . y2y1 are asymptotically equiv-
alent, then for every n ∈ N there exists an element sn of the nucleus such that
xnxn−1 . . . x1 = sn(ynyn−1 . . . y1), so the sets Txnxn−1...x1 and Tynyn−1...y1 intersect
for every n, hence Π(ξ) = Π(ζ). �

3.6. Self-similar subgroups

Suppose that we have a self-similar contracting action (G,X). Recall that
H ≤ G is a self-similar subgroup if there exists a subset Y ⊂ X such that g ·x = y ·h
for g ∈ H and x ∈ Y implies that y ∈ Y and h ∈ H (see 2.7.1, in particular
Lemma 2.7.2 and a comment after its proof).
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A subgroup is self-similar with respect to some action associated with a G-
bimodule M if and only if it is semi-invariant with respect to some virtual endo-
morphism associated with M.

We say that a subgroup H ≤ G is bi-invariant if it is self-similar and g ·x = y ·h
for y ∈ Y and h ∈ H implies that g ∈ H and x ∈ Y (i.e., if the converse implication
to that of the definition of a self-similar group is also true).

Theorem 3.6.1. Suppose that (G,X) is a contracting self-similar action and
let H ≤ G be a self-similar subgroup with the respective H-invariant alphabet Y ⊂
X. Then the action (H,Y) is also contracting and there exists an H-equivariant
continuous map F : XH −→ XG. Let f : JH −→ JG be the induced map of the
orbit spaces.

(1) If H is bi-invariant then F and f are injective.
(2) If H is transitive on the first level then f is surjective.
(3) If H is normal, bi-invariant and transitive on the first level, then F is a

homeomorphism.
The map f : JH −→ JG agrees with the shift maps on the limit spaces (i.e., f is a
semi-conjugacy of the limit dynamical systems).

Proof. The fact that (H,Y) is contracting is straightforward.
It follows directly from the definition of a self-similar subgroup that if two

sequences . . . a2a1 ·g and . . . b2b1 ·h, where ai, bi ∈ Y and g, h ∈ H are asymptotically
equivalent with respect to the action (H,Y), then they are asymptotically equivalent
with respect to the action of G on X∗. If the subgroup H is bi-invariant, then the
converse implication is also true.

This means that the natural embedding Y−ω ·H ↪→ X−ω ·G induces a continuous
H-equivariant map F : XH −→ XG which will be injective in the case when H is
bi-invariant.

It is easy to see that the induced map f : JH −→ JG is well defined and agrees
with the shifts.

If the subgroup H is transitive on the first level then Y = X and thus the
induced map f : JH −→ JG is surjective.

It remains to prove that if H is normal, bi-invariant and transitive on the first
level, then F is surjective.

Let us prove that if g ·xi = xj ·h then the coset h ·H depends only on the coset
g ·H and does not depend on xi, xj and that the map g ·H 7→ h ·H is an injective
endomorphism of G/H.

Fix some x ∈ X. Then there exist hi, hj ∈ H such that hi · x = xi · h′i and
hj ·x = xj ·h′j (we use that H is transitive on the first level and self-similar). Then
g · xi = xj · h is equivalent to g · xi · h′i = xj · hh′i, i.e., to h−1

j ghi · x = x · hh′i.
If g′ is another element of the coset gH and g′ · xk = xl · h′ then we similarly

get h−1
l g′hk · x = x · h′h′k for some hl, hk, h′k ∈ H. Then(

h−1
l g′hk

)−1 (
h−1
j ghi

)
· x = x · (hh′i) (h′h′k)

−1
.

But
(
h−1
l g′hk

)−1 (
h−1
j ghi

)
∈ H, hence (hh′i) (h′h′k)

−1 ∈ H, i.e., hH = h′H. The
fact that ψ : gH 7→ hH is an endomorphism of G/H is straightforward. This
endomorphism is injective by definition of a bi-invariant group.

There exists a finite subset N of G/H such that for every g ∈ G we have
ψn(g) ∈ N for all n big enough (one can take N equal to the image of the nucleus
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Figure 1. The self-similarity graph of the adding machine

in G/H). Let N be the minimal set having this property. Then the set N is
invariant under ψ, thus it is permuted by ψ. But this means that N = G/H, since
G/H =

⋃
n∈N ψ

−n(N) and ψ is injective.
We have proved that G/H is finite and ψ is an automorphism of G/H. Then

there exists a number k such that ψk is identical. This means that g|vH = gH for
every word v ∈

(
Xk
)n and for every g ∈ G.

Consider an arbitrary sequence . . . a2a1 · g ∈ X−ω ·G and the sequence

g−1 · akn . . . a1 · g = vn · g−1|akn...a1g, n ≥ 1,

where vn ∈ Xkn is equal to g−1(akn . . . a1). We have g−1|akn...a1g ∈ H by the choice
of k. The set of possible g−1|akn...a1g is finite, thus there exists a sequence ni such
that vni converges to some sequence . . . b2b1 and the sequence g−1|akn...a1g = h ∈ H
is constant. Then . . . b2b1 · h ∈ X−ω ·H is asymptotically equivalent to . . . a2a1 · g,
what proves that F is surjective. �

3.7. Limit space JG as a hyperbolic boundary

3.7.1. Self-similarity graph.

Definition 3.7.1. Let M be a d-fold covering bimodule over a finitely gener-
ated group G. For given finite generating set S of G and basis X of M we define
the self-similarity graph Σ(G,S,X) as the graph with the set of vertices X∗ and two
vertices v1, v2 ∈ X∗ belonging to a common edge if and only if either vi = xvj for
some x ∈ X (the vertical edges) or s(vi) = vj for some s ∈ S (the horizontal edges),
where {i, j} = {1, 2}.

As an example, see a part of the self-similarity graph of the adding machine on
Figure 1.

If all restrictions of the elements of the generating set S also belong to S, then
the self-similarity graph Σ(G,S,X) is an augmented tree in sense of V. Kaimanovich
(see [70]).

The definition of the self-similarity graph depends on the choice of the gener-
ating set S. We will use the classical notion of quasi-isometry in order to make it
more canonical (see [61, 45]).
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Definition 3.7.2. Two metric spaces X and Y are said to be quasi-isometric if
there exists a map (which is called then quasi-isometry) f : X −→ Y and constants
L > 1, C > 0 such that

(i)

L−1dX(x1, x2)− C < dY(f(x1), f(x2)) < LdX(x1, x2) + C,

for all x1, x2 ∈ X and
(ii) for every y ∈ Y there exists x ∈ X such that dY(y, f(x)) < C.

We will also use later the following equivalent definition.

Definition 3.7.3. (1) Two maps f1, f2 : X −→ Y are shift-equivalent if

sup
x∈X

dY(f1(x), f2(x)) <∞.

(2) A map f : X −→ Y is quasi-Lipschitz if there exist C1, C2 > 0 such that

dY(f(x1), f(x2)) ≤ C1dX(x1, x2) + C2

for all x1, x2 ∈ X.
(3) Maps f1 : X −→ Y and f2 : Y −→ X is a pair of inverse quasi-isometries if

they are quasi-Lipschitz and f1 ◦ f2 and f2 ◦ f1 are shift-equivalent to the identical
maps.

It is easy to prove that f is a quasi-isometry in the sense of Definition 3.7.2
if and only if it belongs to a pair of inverse quasi-isometries in the sense of Defi-
nition 3.7.3. Moreover, the inverse of a quasi-isometry is defined uniquely up to a
shift-equivalence.

Let us show that the self-similarity graph Σ(G,S,X) depends, up to a quasi-
isometry, only on the bimodule M.

Lemma 3.7.4. Let G be a group with a self-similar action, and let M be the
self-similarity bimodule.

(1) The self-similarity graphs Σ(G,S1,X) and Σ(G,S2,X), where S1, S2 are
two different finite generating sets of the group G, are quasi-isometric.

(2) If X and Y are bases of M, then Σ(G,S,X) and Σ(G,S,Y) are quasi-
isometric.

(3) The self-similarity graph of the nth tensor power of the self-similar action
is quasi-isometric to the self-similarity graph of the original action.

Proof. 1) The identical map on the set of vertices Σ(G,S1,X) −→ Σ(G,S2,X)
is a quasi-isometry. The constant L is any number such that the length of every
element of one of the generating sets has length less than L with respect to the
other generating set. The constant C can be any positive number.

2) Let α : X∗ −→ Y∗ be the isomorphism conjugating the actions (G,X) and
(G,Y) (see Proposition 2.3.4). It is finite-state by Proposition 2.11.7. Let us prove
that the map α is a quasi-isometry of the self-similarity graphs Σ(G,S,X) and
Σ(G,S,Y). The map α preserves the horizontal edges, since it conjugates the
actions.

If (v, xv) is a vertical edge, then α (xv) = α(x)α|x(v) = α(x)hxα(v), where hx
is such that x = α(x)·hx in M (see Proposition 2.3.4). Let L be the maximal length
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of the elements hx ∈ G for all x ∈ X. Then distance between α(v) and hxα(v) in
Σ(G,S,Y) is not greater than L, therefore

d (α(v), α(xv)) ≤ d (α(v), hxα(v)) + d (hxα(v), α(xv)) ≤ L+ 1.

3) The set of vertices of Σ(G,S,Xn) is equal to {∅}∪Xn ∪X2n ∪X3n ∪ . . .. Let
F : Σ(G,S,Xn) −→ Σ(G,S,X) be the natural inclusion of the vertex sets.

It is easy to see that d(F (u), F (v)) ≤ n ·d(u, v) and d(F (u), F (v)) ≥ d(u, v) for
all u, v ∈ Σ(G,S,X).

For every vertex v = x1x2 . . . xm ∈ X∗ of the graph Σ(G,S,X) there exists a
vertex xrxr+1 . . . xm belonging to the vertex set of the graph Σ(G,S,Xn), which
is at the distance less than n from v (one must take r to be the minimal number,
such that m − r + 1 is divisible by n). So the map F satisfies both conditions of
Definition 3.7.2. �

3.7.2. Hyperbolicity of the self-similarity graph. Let us recall the defi-
nition of Gromov-hyperbolic metric spaces [60].

Let X be a metric space with the metric d(·, ·). The Gromov product of two
points x, y ∈ X with respect to the basepoint x0 ∈ X is the number

〈x · y〉 = 〈x · y〉x0 =
1
2

(d (x, x0) + d (y, x0)− d (x, y)) .

Definition 3.7.5. A metric space X is said to be Gromov-hyperbolic if there
exists δ > 0 such that the inequality

(3.6) 〈x · y〉 ≥ min (〈x · z〉 , 〈y · z〉)− δ
holds for all x, y, z ∈ X.

The standard definition requires that inequality (3.6) holds for any choice of the
basepoint. However we can fix the basepoint and these two versions of definition
will be equivalent (see, for example, Proposition 1.2 in [31]).

If a proper geodesic metric space (for instance a graph) is quasi-isometric to a
hyperbolic space, then it is also hyperbolic. For proofs of the mentioned facts and for
other properties of hyperbolic spaces and groups look one of the books [60, 31, 45].

Theorem 3.7.6. If the action of a finitely-generated group G is contracting
then the self-similarity graph Σ(G,S,X) is a Gromov-hyperbolic space.

Proof. It is sufficient to prove that some quasi-isometric graph is hyperbolic.
Therefore, we can change by statement (1) of Lemma 3.7.4 the set of generators S
so that it will contain all restrictions of its elements and that there exists N ∈ N
such that for every element g ∈ G of length ≤ 4 and any word x1x2 . . . xN ∈ X∗,
the restriction g|x1x2...xN

belongs to S. Then the length of any restriction of an
element g ∈ G is not greater then the length of g.

After passing to the Nth power of the action (using Lemma 3.7.4) if necessary,
we may assume that g|x ∈ S for every g ∈ G of length ≤ 4 and x ∈ X.

Let us prove the following lemma.

Lemma 3.7.7. Any two vertices w1, w2 of the graph Σ (G,S,X) can be written
in the form w1 = a1a2 . . . anw,w2 = b1b2 . . . bmg(w), where ai, bi ∈ X, w ∈ X∗,
g ∈ G, l(g) ≤ 4 and d(w1, w2) = n+m+ l(g).

Then the Gromov product 〈w1 · w2〉 with respect to the basepoint ∅ is equal to
|w| − l(g)/2.
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Here l(g) denotes the length of the element g with respect to some fixed finite
generating set of the group.

Proof. Let v1 = w1, v2, . . . vk = w2 be the consecutive vertices of the shortest
path connecting the vertices w1 and w2. Then every vi+1 is obtained from vi by
application of one of the following procedures:

(1) deletion of the first letter a ∈ X in vi (descending edges);
(2) appending a letter a ∈ X to the beginning of vi (ascending edges);
(3) application of an element of S to vi (horizontal edges);

If the path has three consecutive vertices vi, vi+1, vi+2 such that vi+1 = avi,
a ∈ X and vi+2 = s(vi+1) for s ∈ S then vi+2 = bs′(vi), where b = s(a) ∈ X and
s′ = s|a ∈ S. We replace the segment {vi, vi+1, vi+2} of the path by the segment
{vi, s′(vi), bs′(vi) = vi+2}.

If the path has three consecutive vertices vi, vi+1, vi+2 such that vi+1 = s(vi)
for s ∈ S and vi+1 = avi+2 then vi = s−1(avi+2) = bs′(vi+2), where b = s−1(a) ∈ X
and s′ = s−1|a ∈ S. Then we replace the segment {vi, vi+1, vi+2} of the path by
the segment {vi = bs′(vi+2), s′(vi+2), vi+2}.

Let us perform these replacements as many times as possible. Then we will not
change the length of the path, so each time we will get a geodesic path connecting
the vertices w1, w2. Note that a geodesic path can not have a descending edge next
after an ascending one. Therefore, eventually after a finite number of replacements
we will get a geodesic path in which we have at first only descending, then horizontal
and then only ascending edges. Then w1 = a1a2 . . . anw,w2 = b1b2 . . . bmg(w), with
ai, bi ∈ X, w ∈ X∗, g ∈ G, and d(w1, w2) = n+m+ l(g).

Suppose that l(g) > 4. Let w = aw′, a ∈ X and denote b = g(a) and h = g|a.
Then we have l (h) ≤ l(g)−3. Since w1 = a1a2 . . . anaw

′ and w2 = b1b2 . . . bmbh(w′),
we have d(w1, w2) ≤ n+ 1 +m+ 1 + l(h) ≤ n+m+ l(g)− 1, which contradicts to
the fact that the original path was the shortest one.

We have

〈w1 · w2〉 =
1
2

(n+ |w|+m+ |w| − (n+m+ l(g))) = |w| − l(g)
2
.

�

Let us take three points w1, w2, w3. We can write them by Lemma 3.7.7 as

w1 = a1a2 . . . anw, w2 = b1b2 . . . bmg1(w)

and
w2 = b1b2 . . . bpu, w3 = c1c2 . . . cqg2(u),

where ai, bi, ci ∈ X, g1, g2 ∈ G, l(g1), l(g2) ≤ 4 and

〈w1 · w2〉 = |w| − l(g1)/2, 〈w2 · w3〉 = |u| − l(g2)/2.
We can assume that p ≤ m. Then |u| ≤ |w| = |g1(w)|, so we can write u = vg1(w)
for some v ∈ X∗. Then w3 = c1c2 . . . cqg2(v)hg1(w), where h = g2|v. We have
l(h) ≤ l(g2) ≤ 4 and d(w1, w3) ≤ n+ l(h) + l(g1) + q + |v|, hence

〈w1 ·w3〉 =
1
2
(n+ |w|+ q+ |v|+ |w| − d(w1, w3)) ≥ |w| − (l(h) + l(g1))/2 ≥ |w| − 4.

Finally, min(〈w1 · w2〉, 〈w2 · w3〉) ≤ 〈w1 · w2〉 ≤ |w|, so

〈w1 · w3〉 ≥ min(〈w1 · w2〉, 〈w2 · w3〉)− 4,
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and the graph Σ (G,S,X) is 4-hyperbolic. �

3.7.3. The space JG as a hyperbolic boundary. Let X be a hyperbolic
space. We say that a sequence {xn} of points of X converges to infinity if the
Gromov product 〈xn · xm〉 goes to infinity when m,n → ∞. This definition does
not depend on the choice of the basepoint. We say that two sequences {xn} and
{yn}, convergent to infinity, are equivalent if limn,m→∞〈xn · ym〉 =∞.

The set of the equivalence classes of the sequences convergent to infinity in the
space X is called the hyperbolic boundary of the space X and is denoted ∂X. If a
sequence {xn} converges to infinity, then its limit is the equivalence class a ∈ ∂X,
to which belongs {xn} and we say that {xn} converges to a.

If a, b ∈ ∂X are two points of the boundary, then their Gromov product is
defined as

〈a · b〉 = sup
{xn}∈a,{ym}∈b

lim inf
m,n→∞

〈xn · ym〉.

For every r > 0 define

Vr = {(a, b) ∈ ∂X× ∂X : 〈a · b〉 ≥ r}.
Then the set of entourages {Vr : r ≥ 0} is a basis of a uniform structure on ∂X
(see [45] for proofs). We introduce on the boundary ∂X the topology defined by
this uniform structure.

Theorem 3.7.8. The limit space JG of a contracting action of a finitely gen-
erated group G is homeomorphic to the hyperbolic boundary ∂Σ(G,S,X) of the self-
similarity graph Σ(G,S,X). Moreover, there exists a homeomorphism F : JG −→
∂Σ(G,S,X), such that D = F ◦ π, were π : X−ω −→ JG is the canonical projection
and D : X−ω −→ ∂Σ(G,S,X) carries every sequence . . . x2x1 ∈ X−ω to its limit

lim
n→∞

xnxn−1 . . . x1 ∈ ∂Σ(G,S,X).

Proof. We will need the following well known result (see, for example [31]
Theorem 2.2).

Lemma 3.7.9. Let X1,X2 be proper geodesic hyperbolic spaces and let f1 :
X1 −→ X2 be a quasi-isometry. Then a sequence {xn} of points of X1 converges to
infinity if and only if the sequence {f1(xn)} does. The map ∂f1 : {xn} 7→ {f1(xn)}
defines a homeomorphism ∂f1 : ∂X1 −→ ∂X2 of the boundaries.

We pass, using Lemma 3.7.9, to an Nth power of the self-similar action in the
same way as in the proof of Theorem 3.7.6, so that we may assume that for every
g ∈ G such that l(g) ≤ 4 and for every a ∈ X the restriction g|a belongs to the
generating set and that the nucleus of the action is contained in the generating set
S.

Suppose that the sequence {wn} converges to infinity. Choose its convergent
subsequence in X−ω∪X∗. Suppose its limit is . . . x2x1 ∈ X−ω. The Gromov product
〈wi · wj〉 with respect to the basepoint ∅ is equal to |w| − l(g)/2 ≤ |w|, where w
and g are as in Lemma 3.7.7. It follows that the length of w goes to infinity as
i, j → ∞. Consequently, if . . . y2y1 ∈ X−ω is another accumulation point of {wn},
then there exists n and g ∈ G such that l(g) ≤ 4 and g(xn . . . x1) = yn . . . y1. Thus,
all accumulation points of {wn} in X−ω are asymptotically equivalent to . . . x2x1.

If on the other hand, {wn} is a sequence convergent to . . . x2x1 in X−ω, then for
every n ∈ N, if wi and wj have a common ending of length ≥ n, then 〈wi ·wj〉 ≥ n.
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Hence, every sequence {wn} ⊂ X∗ convergent in X∗tX−ω is convergent to infinity in
Σ(G,S,X), and if two sequences converge to one point of X−ω, then they converge
to one point of the hyperbolic boundary.

Thus, the map D : X−ω −→ ∂Σ(G,S,X) is surjective and the map F : JG −→
∂Σ(G,S,X), satisfying the conditions of the theorem, is uniquely defined.

Let A = {g ∈ G : l(g) ≤ 4} and for every n ∈ N define

Un = {(w1v, w2s(v)) : w1, w2 ∈ X−ω, v ∈ Xn, s ∈ A} ⊂ X−ω × X−ω.

By Ũn we denote the image of Un in JG×JG. If n0 is such that g|v belongs to the
nucleus whenever l(g) ≤ 4 and |v| ≥ n0, then

∆n ⊆ Ũn ⊆ ∆n−n0 ,

where ∆n are the images in JG × JG of the entourages given in Definition 3.3.3
(see the first equality in the proof of Proposition 3.3.4 on page 75). Consequently,
the base of entourages Ũn defines the topology of JG.

On the other hand, Lemma 3.7.7 implies

Vn−2 ⊆ D ×D(Un) ⊆ Vn,

hence the map F is a homeomorphism. �

As an example, consider the adding machine action. It is not hard to prove (or
even to see) that its self-similarity graph (shown on Figure 1) is quasi-isometric to
the hyperbolic plane H, whose boundary is homeomorphic to the circle.

3.8. Groups of bounded automata

3.8.1. Tiles with finite boundary and bounded automata. Ideas of this
section are close to the paper [116] by S. Sidki. The central idea of [116] is to
stratify the group of finite automata using the cyclic structure of automata. We
will try to do this using the topological dimension of the limit space. The groups
with zero dimensional limit space are exactly the subgroups of the finitary group.
Hence, the finitary groups are “rank 0” in our classification.

The next step is the one-dimensional limit space. It seems, however, that more
important is the dimension of the boundary of the tiles. In this line, the next “rank
1” step should be the case when the boundary is finite. This condition does not
correspond exactly to the case when the limit space has dimension 1 (there are
one-dimensional limit spaces with infinite boundary of the tile), but it has many
important group-theoretical and dynamical implications.

Note that self-similar spaces (fractals) having finite boundaries of “tiles” (i.e.,
of the parts similar to the whole fractal) where studied by different authors from
the point of view of harmonic analysis and Brownian motion on fractals. Such
classes of fractals where called post-critically finite self-similar sets, nested fractals
or finitely ramified fractals. See the papers [74, 73, 81, 106] for properties of such
self-similar sets.

We will see that the tiles of a contracting self-similar group are finite, i.e., the
limit space is “post-critically finite”, if and only if the group is generated by bounded
automata in the sense of S. Sidki. This shows an interesting relation between two
notions which appeared totally independently in different parts of Mathematics:
Analysis on Fractals and Automata Groups.
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Similarly as finite boundary of tiles is an important condition making possible
to study, for example, the Brownian motion on the fractal, the class of groups
generated by bounded automata is the most studied and most convenient class of
self-similar groups.

Most of the examples, mentioned in Chapter 1 belong to this class. In partic-
ular such are the Grigorchuk group [47], the adding machine action of Z and all
examples of Section 1.8. These particular examples where generalized to different
classes of groups acting on rooted trees: branch groups [52], GGS-groups [15], AT
groups [88, 104], spinal groups [11]. All groups belonging to these classes have
finite boundary of tiles (if they are finite-state). Also the groups constructed by
V. Sushchansky [119] are generated by bounded automata, though they are not
self-similar.

3.8.2. Growth of activity of automata. We remind here some results of
S. Sidki and show their relation to the properties of limit spaces.

Let us denote by α(k, q) the number of words v ∈ Xk such that q|v 6= 1, where
q is an automorphism of the tree X∗.

S. Sidki used in [116] function θ(k, q) equal to the number of words v ∈ Xk

such that q|v is active, i.e., acts non-trivially on X1, but our approach is equivalent
to his.

Suppose that (A,X) is a finite automaton. Denote by A′ the set of non-trivial
states of A. Consider the vector space RA′ . Then the adjacency matrix of A′ is the
matrix of the linear operator A given by

A(q) =
∑
x∈X

π(q, x),

where π(q, x) is equal to q|x if q|x 6= 1 and zero otherwise. Let the linear functional
I : RA′ −→ R be given on the basis A′ by I(q) = 1.

It follows that
α(k, q) = I

(
Ak(q)

)
.

Hence, the generating function of the sequence α(k, q) is the rational function

(3.7) Bq(t) =
∞∑
k=0

α(k, q)tk = I

( ∞∑
k=0

tkAk(q)

)
= I

(
(1− tA)−1 (q)

)
.

The general facts about rational generating functions imply that the limit

α(q) = lim
k→∞

k
√
α(k, q)

exists and is equal to one of the positive eigenvalues of A (note that α(k, q) is
monotone on k).

If α(q) = 1, then α(k, q) has polynomial growth of some degree n(q) ∈ N. If
n(q) = 0, then α(k, q) is periodic and thus bounded.

It is straightforward that

(3.8) α(k, q1q2) ≤ α(k, q1) + α(k, q2), and α(k, q−1) = α(k, q).

It follows that the set Bn(X) = Bn of finite-state automorphisms q of X∗ such
that α(k, q) is bounded by a polynomial of degree ≤ n, is a group.

A finite-state automorphism q belongs to B0 if and only if α(k, q) is bounded.
The group B0 = B0(X) is the group of bounded automata.
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Thus a finite-state automorphism q of the tree X∗ is bounded if and only if the
number of words v ∈ Xn such that q|v 6= 1 is uniformly bounded. In this case the
activity of q is concentrated around a finite number of “directions” of the tree X∗.

An automatic transformation q of X∗ is said to be finitary (see [54]) if there
exists n ∈ N such that q|v = 1 for all v ∈ Xn (i.e., if q changes at most first n letters
of every word). The minimal number n is called depth of q.

In other words, q is finitary if and only if α(k, q) is equal to zero for all k big
enough. It follows from (3.8) that the set of all finitary automatic transformations
of X∗ is a locally finite group.

Similarly, for every a > 1 the set of finite-state automorphisms q ∈ AutX∗ such
that α(q) ≤ a (or α(q) < a) is a group, since (3.8) implies that

α(q1q2) ≤ max (α(q1), α(q2)) , and α
(
q−1
)

= α(q).

3.8.3. Growth of the nucleus. Consider now a contracting group G ≤
AutX∗. Let N be its nucleus and let N ′ = N \ {1}.

The growth of α(k, q) for q ∈ N determines the growth of α(k, g) for all g ∈ G.

Lemma 3.8.1. For every g ∈ G there exist coefficients cs ∈ N, for s ∈ N ′ and
a number n0 ∈ N such that

α(k, g) =
∑
s∈N ′

cs · α(k − n0, s)

for all k ≥ n0.

Proof. Take n0 ∈ N such that g|v ∈ N for every v ∈ Xn0 . Let then cs be the
number of words v ∈ Xn0 such that g|v = s. Then the equality from the lemma
obviously holds. �

Corollary 3.8.2. (1) If N ⊂ Bn, then G ≤ Bn.
(2) α(g) ≤ maxs∈N α(s) for every g ∈ G. �

Inequality (2) of the corollary can be also written as equality

max
g∈G

α(g) = max
s∈N

α(s).

Let us denote α(G) = maxg∈G α(g).

Proposition 3.8.3. Let A be the adjacency matrix of N ′ = N \ {1}. Then
α(G) is equal to the principal eigenvalue of A.

If α(G) = 1 and n is the multiplicity of the eigenvalue 1 of the matrix A, then
G ≤ Bn−1 and G 6≤ Bn−2.

Proof. We have

α(A) = lim
k→∞

k

√∑
s∈N ′

α(k, s)

and, by (3.7):
∞∑
k=0

tk
∑
s∈N ′

α(k, s) = I

( ∞∑
k=0

tkAk

(∑
s∈N ′

s

))
= I

(
(1− tA)−1

(∑
s∈N ′

s

))
,

where I is the linear functional mapping a vector of RN ′
to the sum of its coor-

dinates. The statement of proposition follows now from Perron-Frobenius theo-
rem. �



94 3. LIMIT SPACES

If we pass to the nth power of the action, then the number α(G) is changed to
α(G)n. Hence the number

h(G) =
logα(G)
log |X|

does not change after passing to tensor powers of actions. Note also that α(k, g) ≤
|X|k for all g and k, therefore α(G) ≤ |X|, i.e., h(G) ≤ 1.

Proposition 3.8.4. If the action satisfies the open set condition, then h(G) <
1.

Proof. We know that α(G) = maxs∈N α(s). If the action satisfies the open
set condition, then we can find a word v ∈ X∗ such that s|v = 1 for all s ∈ N
(see the proof of Proposition 3.2.7). Then if w ∈ X∗ is any word containing v as a
subword, then s|w = 1 for all s ∈ N . Hence, α(k, s) is not greater than the number
p(k,w) of words of length k, which do not contain the word v. But it is well known
that this implies that limn→∞

n
√
p(k, s) < |X|. �

3.8.4. Relation with the boundary of T . The number h(G) measures the
size of the boundary of the tile, as the following proposition shows.

Proposition 3.8.5. Suppose that the action satisfies the open set condition.
Let bk be the number of words v ∈ Xk such that T ⊗ v intersects the boundary of
T . Then

lim
k→∞

k
√
bk = α(G),

and the sequence bk is bounded if and only if G ≤ B0.

Proof. Denote by b̃k the number of pairs (v, q) ∈ Xk ×N ′ such that the tile
T ⊗ v intersects the tile T · q.

Proposition 3.2.5 implies that

(3.9) b̃k =
∑
q∈N ′

α(q, k).

Consequently, the generating function
∑∞
k=0 b̃kt

k is rational and

lim
k→∞

k

√
b̃k = max

q∈N
α(q).

It follows from Propositions 3.2.7 and 3.2.5 that

|N |−1b̃k ≤ bk ≤ b̃k,
what finishes the proof. �

Corollary 3.8.6. Suppose that the action of G is contracting and satisfies
the open set condition. Then its tile T has finite boundary if and only if G is a
subgroup of the group of bounded automata B0. �

Proof. If the boundary of T has b points, then the sequence bk in Proposi-
tion 3.8.5 is bounded by b · |N |, since every point belongs to not more than |N |
tiles. Consequently, α(q, k) is also bounded for every q ∈ N , due to (3.9). Thus
N ⊂ B0, what implies G ≤ B0, by Corollary 3.8.2.

If G ≤ B0, then by Proposition 3.8.5, the number of tiles of kth level, intersect-
ing the boundary of T is uniformly bounded. But this is possible only when the
boundary is finite. �
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3.8.5. Structure of bounded automata. We say that an automatic trans-
formation q is bounded if it belongs to B0, i.e., if it is defined by a bounded au-
tomaton. The following is proved in [116] (Corollary 14).

Proposition 3.8.7. An automatic transformation is bounded if and only if it is
defined by a finite automaton in whose Moore diagram every two non-trivial cycles
are disjoint and are not connected by a directed path.

Here a cycle is trivial if it has only one vertex, which is the trivial state. In
particular, every finitary transformation is bounded, since it has no non-trivial
cycles.

Consider an arbitrary element g ∈ B0. If g is not finitary, then there exists an
infinite word x1x2 . . . such that all restrictions g|x1...xn are non-trivial. Then two of
these restrictions, say g|x1...xn

and g|x1...xm
, m > n, are equal. Thus the restriction

h = g|x1...xn
belongs to a cycle, i.e., there exists v ∈ X∗ such that h|v = h (in our

case v = xn+1 . . . xm).
This proves that for every element g ∈ B0 there exists n ∈ N such that every

restriction g|v for every v ∈ Xn either is finitary or belongs to a cycle.
Suppose now that g ∈ B0 belongs to a cycle., i.e., that there exists a non-empty

word v = x1x2 . . . xn ∈ X∗ such that g|v = g. Then for every word v1 ∈ Xn different
from v the restriction g|v1 is finitary. Otherwise we get either two intersecting cycles
or two cycles connected by a directed path, what contradicts with Proposition 3.8.7.

Hence, if we pass to the alphabet Xn, then g is given by a recursion

g = π(g1, g2, . . . , gdn),

where gi = g for one of the indices and gj is finitary for all j 6= i.
The following is a joint result with E. Bondarenko (see [19]).

Theorem 3.8.8. Every self-similar finitely generated subgroup G of B0 is con-
tracting. Its nucleus is equal to the set of restrictions of elements of cycles of the
Moore diagram of (G,X), i.e., to the set of elements g ∈ G for which there exist
h ∈ G and v, u ∈ X∗, v 6= ∅ such that h|v = h and h|u = g.

Proof. Let S be a finite automaton, generating G, i.e., a finite generating set
such that s|x ∈ S for all s ∈ S and x ∈ X. Then the non-trivial cycles of S are
disjoint. Let n1 be a common multiple of their lengths and let S1 ⊂ S be their
union. We can make n1 sufficiently big, replacing it by its multiple, so that for
every s ∈ S and every v ∈ Xn1 the restriction s|v is either finitary or belongs to S1.
We may also assume that n1 is bigger than the depth of every finitary element of
S. Then for every finitary s ∈ S and v ∈ Xn1 the restriction s|v1 is trivial.

If we choose n1 so that it satisfies all the above conditions, then for every s ∈ S
and every v ∈ Xn1 the restriction s|v is either finitary, or belongs to S1. In the first
case, s|vu = 1 for all u ∈ Xn1 . In the second case s|vu1 = s|v for a unique word
u1 ∈ Xn1 and s|vu is finitary for any u ∈ Xn1 , u 6= u1. Hence s|vuw = 1 for all
u,w ∈ Xn1 , u 6= u1.

Denote by S0 the set of finitary elements of S. Let N1 be the set of all elements
h ∈ G \ 1 such that there exists a unique word u(h) ∈ Xn1 such that h|u(h) = h and
for all words u ∈ Xn1 not equal to u(h) the restriction h|u belongs to 〈S0〉. It is
easy to see that the set N1 is finite (every its element h is uniquely defined by the
permutation it induces on Xn1 and its restrictions in the words u ∈ Xn1 , note also
that the group 〈S0〉 is finite).
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Let us denote by l1(g) the minimal number of elements of S1 ∪ S−1
1 in a de-

composition of g into a product of elements of S ∪ S−1.
Let us prove that there exists for every g ∈ G a number k such that for every

v ∈ Xn1k the restriction g|v belongs to N1 ∪ 〈S0〉. We will prove this by induction
on l1(g).

If l1(g) = 1, then g = h1sh2, where h1, h2 ∈ 〈S0〉 and s ∈ S1. The elements
h1, h2 are finitary, thus there exists k such that for every v ∈ Xn1k the restriction
hi|v is trivial. Then we have h1sh2|v = s|h2(v), thus g|v is either equal to s ∈ N1 or
belongs to S0 ∪ S−1

0 . Thus the claim is proved for the case l1(g) = 1.
Suppose that the claim is proved for all elements g ∈ G such that l1(g) < m.

Let g = s1s2 . . . sk, where si ∈ S ∪ S−1. For every u ∈ Xn1 the restriction si|u
is equal either to si or belongs to S0. Consequently, either g|u = g for one u and
g|v ∈ 〈S0〉 for all v ∈ Xn1 \ {u}, or l1(g|u) < l1(g) for every u ∈ Xn1 . In the first
case we have g ∈ N1 and in the second we apply the induction hypothesis, and the
claim is proved.

The set N1 obviously belongs to the nucleus. Consequently, the group G is
contracting with the nucleus equal to {g|v : g ∈ N1, v ∈ X∗, |v| < n1}, which is
equal to the set of restrictions of the states belonging to the cycles of (G,X). �

3.8.6. Connectedness of tiles.

Proposition 3.8.9. Let G be a finitely-generated recurrent subgroup of B0(X).
Then there exists n ∈ N and a basis Y of M⊗n such that the self-similar action
(G,Y) is a subgroup of B0(Y) and its tile T (Y) is connected.

Proof. Let N be the nucleus of the action of G on X∗. Recall that it consists
of all cycles of the complete automaton of (G,X) and their restrictions.

Let us take n such that it is a multiple of lengths of every cycle of the nucleus
and greater than the depth of every its finitary element.

Let us pass to the nth tensor power of the action, i.e., to the action of G defined
by the basis Xn of M⊗n. Then N is also the nucleus of the nth tensor power and
every element g ∈ N of the nucleus is either rooted (i.e., changes at most the first
letter x ∈ Xn of a word xv) or there exists a unique x ∈ Xn such that g|x = g,
whereas for any y ∈ Xn, y 6= x the restriction g|y is rooted. Let N0 be the set of
rooted elements of N and let N1 = N \N0.

The tile T (Xn) coincides with the tile T (X) and is connected if and only if the
graph Tn is connected, where Tn is as in Proposition 3.2.10. Recall that Tn is the
graph with the set of vertices Xn in which vertices v, u ∈ Xn are connected by an
edge in Tn if and only if there exists g ∈ N such that g · v = y · 1.

If g ∈ N0 is rooted, then g ·v = g(v) ·1 for any v ∈ Xn. Therefore, if G0 = 〈N0〉
is transitive on Xn, then the tile T (Xn) = T (X) is connected and there is nothing
to prove.

Suppose that G0 is not transitive on Xn. Let T 0
n be the subgraph of Tn in

which two vertices v, u ∈ Xn are connected by an edge if and only if there exists
s ∈ N0 such that s(v) = u. Note that connected components of T 0

n are exactly the
G0-orbits of Xn.

Lemma 3.8.10. Let Rn be the graph with the set of vertices Xn where two
vertices u, v ∈ Xn are connected by an edge if and only if there exists g ∈ N such
that g · u = v · h with rooted h. Then Rn is connected.
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Proof. The action of G = 〈N〉 is transitive on Xn, therefore the Schreier
graph of the action is connected. The Schreier graph is the graph with the set of
vertices Xn where two vertices v, u ∈ Xn are connected by an edge if and only if
there exists s ∈ N such that s(v) = u. The graph Rn is obviously a subgraph of
the Schreier graph.

For every g ∈ N there exists at most one word v ∈ Xn such that the restriction
g|v is not rooted. Therefore, in every cycle of the action of g on Xn at most one
respective edge of the Schreier graph is absent in Rn. Hence, Rn is also connected.

�

Choose a spanning forest T ′ of T 0
n . The graph T 0

n and its spanning forest T ′

are subgraphs of Rn. Hence we can extend T ′ to a spanning tree R′ of Rn. For
every edge (v, u) ∈ R′ \T ′ there exists s(v, u) = s ∈ N such that s ·v = u ·h and the
restriction h is rooted. Let us choose such an element s(v, u) for every (v, u) ∈ R′\T ′
and denote h(v, u) = h = s(v, u)|v. Note that if s · v = u · h, then s−1 · u = v · h−1.
We may thus assume that s(v, u) = s(u, v)−1 and h(v, u) = h(u, v)−1.

Choose an element v0 ∈ Xn. For every v ∈ Xn there exists a unique simple path
e1e2 . . . ek in R′ starting in v and ending in v0. Denote γ(v) = h(e1)h(e2) · · ·h(ek),
where h(ei) is defined above for ei ∈ R′ \ T ′ and is identical for ei ∈ T ′. Then γ(v)
is rooted for every v ∈ Xn. It is also easy to see that γ(v) is constant on components
of T ′, i.e., on G0-orbits of Xn.

Let us change the basis Xn of M⊗n to Y = {v · γ(v) : v ∈ Xn}. Let T1(Y) be
the graph with the set of vertices Y in which two vertices y1, y2 are connected by
an edge if and only if there exists an element g of the nucleus of the action (G,Y)
such that g · y1 = y2 · 1. We have to prove that the graph T1(Y) is connected.

If g ∈ G0, v · γ(v) ∈ Y then g · v = u · 1 for some u ∈ Xn and γ(u) = γ(v), since
u and v belong to the same G0-orbit. Therefore,

g · v · γ(v) = u · γ(v) = u · γ(u),

i.e., every element g ∈ N0 acts as a rooted automorphism on Y∗. Moreover, the
bijection v 7→ v · γ(v) conjugates the action of g on Xn to the action of g on Y. In
particular G0-orbits are connected subgraphs of T1(Y).

If g ∈ N1 then there exists a unique vg ∈ Xn such that g · vg = u · g for some
u ∈ Xn. If vg 6= v ∈ Xn then g · v = w · h for some w ∈ Xn, where h is rooted.

Consider g′ = γ(u)−1gγ(vg), denote v′g = γ(vg)−1 ·vg, then v′g and vg belong to
the same G0-orbit, hence γ(vg) = γ(v′g). Let u′ = γ(u)−1 · u, then u′ ∈ Xn belongs
to the same G0-orbit with u, hence γ(u′) = γ(u). We have therefore

g′ · v′g · γ(v′g) = γ(u)−1g · vg · γ(vg) = γ(u)−1 · u · gγ(vg)
= u′ · gγ(vg) = u′ · γ(u′) · γ(u)−1gγ(vg) = u′ · γ(u′) · g′.

If v′ ∈ Xn \ {v′g} then the word v = γ(vg) · v′ is different from vg and

g′ · v′ · γ(v′) = γ(u)−1gγ(vg) · v′ · γ(v′) = γ(u)−1g · v · γ(v′)
= γ(u)−1 · w · hγ(v′) = w′ · hγ(v′) = w′ · γ(w′) · γ(w)−1hγ(v),

where g ·v = w ·h, w′ = γ(u)−1 ·w. We have h, γ(w), γ(v) ∈ N0, hence γ(w)−1hγ(v′)
is a rooted automorphism of Y∗.

We have proved that g′ belongs to the nucleus of the action of G on Y∗.
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Take now an edge in e = (v, w) ∈ R′ \ T ′. Let s = s(e) ∈ N1 and h = h(e) =
s|v ∈ N0 be the respective elements (then s · v = w · h) and consider the element
s′ = γ(u)−1sγ(vs), where vs and u are such that s · vs = u · s. Then for the vertex
v′ = γ(vs)−1 · v by the above calculations, we have

s′ · v′ · γ(v′) = w′ · γ(w′) · γ(w)−1hγ(v),

where w′ = γ(u)−1·w. But γ(w) = hγ(v), by definition of γ, hence γ(w)−1hγ(v) = 1
and s′ gives us an edge from v′ to w′ in T1(Y). Hence, the G0-orbit G0(v′) = G0(v)
is connected in T1(Y) to the G0-orbit G0(w′) = G0(w). Connectedness of R′ implies
now connectedness of T1(Y). �

3.9. One-dimensional subdivision rules

3.9.1. Tile diagrams. We present here an iterative algorithm which can be
used to produce approximations of the limit space of a group generated by a
bounded automaton.

Let G be a self-similar finitely generated group of bounded automata and let
N be its nucleus. Then the Moore diagram of the set of non-finitary elements of
N is a disjoint union of simple cycles. We assume also that the tile T of the group
is connected.

A sequence . . . x2x1 ∈ X−ω represents a point of ∂T if and only if there exists
a left-infinite directed edge-paths . . . e2e1 in the Moore diagram of N labeled by
labels . . . (x2, y2)(x1, y1) and ending in a non-trivial state. Such a path is obviously
(pre-)periodic, i.e., is of the form (em . . . en+1)−ωen . . . e1, where em . . . en+1 is one
of the cycles of the nucleus. Thus there is only a finite number of them and it is
easy to find all such paths.

Two sequences . . . x2x1 and . . . y2y1 represent the same point of T if and only
if there exists a path . . . e2e1 in N labeled by . . . (x2, y2)(x1, y1) and ending in the
trivial state.

Thus, we can effectively find the points of the boundary ∂T finding all sequences
encoding them.

Definition 3.9.1. A tile diagram is a compact connected topological space Γ
together with a bijective correspondence between ∂T and a set of marked points of
Γ.

If Γ is a tile diagram, then its inflation Γ · X is the tile diagram obtained by
the following procedure

(1) Take |X| copies Γ · x of Γ. Here x ∈ X is a label, and if v is a point of Γ,
then v · x is the corresponding point of Γ · x.

(2) Identify two points v1 ·x1 and v2 ·x2 if and only if v1 and v2 are marked in
Γ and the corresponding points ξ1, ξ2 ∈ ∂T are such that ξ1⊗x1 = ξ2⊗x2

in XG.
(3) A point v ·x is marked and corresponds to a point ζ ∈ ∂T if and only if v is

marked in Γ and ζ = ξ⊗x ∈ ∂T , where ξ ∈ ∂T is the point corresponding
to v.

Condition of connectedness of the tile T ensures that inflation of a tile diagram
is again connected.

The inflation Γ · X can be easily computed using the nucleus and Proposi-
tion 3.1.6.
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Figure 2. The automaton generating IMG
(
z2 − 1

)
We denote by Γ ·Xn the nth iteration of the inflation. The space Γ ·Xn consists

of |X|n pieces Γ·v, v ∈ Xn, glued together using the adjacency rule of tiles, described
above.

If we rescale the spaces Γ · Xn so that its pieces Γ · v become small, then the
space Γ · Xn will be a good approximation of the tile T . The original shape of Γ is
irrelevant.

A trivial example of a tile diagram is the tile T itself with the identical bi-
jection between its boundary and marked points. But the notion of inflation of a
tile diagram is purely combinatorial (unlike the tile, which may have complicated
topology).

We may for example consider only tile diagrams Γ which are graphs such that
marked points are vertices. It is easy to see that inflation of a graph will be again
a graph.

3.9.2. Examples.
Basilica graphs. Consider the group generated by the automaton shown of Fig-

ure 2. We will see later that it is the iterated monodromy group IMG
(
z2 − 1

)
of

the polynomial z2 − 1.
The nucleus of IMG

(
z2 − 1

)
is equal, by Theorem 3.8.8, to {1, a, b, a−1, b−1}.

The boundary of the tile T is {0−ω, (01)−ω, (10)−ω}. All these points are identified
with one point in JG. We have also the following identifications of the points of T :

0−ω1 ∼ (10)−ω0 ∼ (01)−ω1.

Consequently if A,B and C are the marked points of a tile diagram Γ, corre-
sponding to the points 0−ω, (01)−ω and (10)−ω, respectively, then in the inflated
diagram Γ · X the point A · 0 becomes A, B · 0 becomes C, C · 1 becomes B, and
the points A · 1, B · 1 and C · 0 are glued together and not marked.

If we start from the graph Γ shown on the left-hand side part of Figure 3, then
the right-hand side of the figure shows the graph Γ · X6. If we now identify the
points (10)−ω, 0−ω and (01)−ω, we get a graph shown on Figure 4, which is an ap-
proximation of the limit space of the group IMG

(
z2 − 1

)
, which is homeomorphic,

as we will see, to the Julia set of the polynomial z2 − 1.
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Figure 3. Basilica graphs

Figure 4. Approximation of JIMG(z2−1)

Sierpinski gasket. Let X = {0, 1, 2} and consider the group G generated by the
automaton shown on Figure 5. The central vertex of the Moore diagram corre-
sponds to the trivial state.

It is the group generated by transformations bi defined by the condition bi(iw) =
iw and bi(jw) = kw, where {i, j, k} = {0, 1, 2}.

A straightforward check (for example using Theorem 3.8.8) shows that the
automaton shown on Figure 5 is the nucleus of the action. The Moore diagram of the
nucleus shows that the boundary of the tile T consists of three points represented
by the words 0−ω, 1−ω and 2−ω and that we have identifications

0−ω1 ∼ 0−ω2, 1−ω0 ∼ 1−ω2, 2−ω0 ∼ 2−ω1

in the tile. Take the tile diagram Γ, shown on the left-hand side of Figure 6. The
right-hand side of Figure 6 shows the diagram Γ · X5. We see from the diagrams
that the tile T and the limit space JG is the Sierpinski gasket.

3.10. Uniqueness of the limit space

The aim of this section is to show that the limit space XG and the action of
G on it are uniquely determined by algebraic structure of G for a wide class of
self-similar groups.
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Figure 5. Automaton generating “Sierpinski group”

Figure 6. Approximation of the Sierpinski gasket

3.10.1. Finite-state conjugator.

Proposition 3.10.1. Let G1 and G2 = αG1α
−1 be two conjugated self-similar

groups generated by bounded automata over the alphabet X and suppose that their
centralizers in Aut X∗ are trivial. Then the conjugator α is finite-state.

We use left actions here, so that gα = αgα−1.

Proof. We may assume, due to Proposition 3.8.9 and Corollary 2.11.7 that
the tiles of G1 are connected.

Take any u ∈ X∗ and let k = |u|. Let N1 and N2 be the nuclei of the groups
G1 and G2, respectively. They are also their generating sets. There exists for every
element a ∈ N1 an element b ∈ N1 and a word w ∈ Xk such that b|w = a.

Let Tk(Gi) denote the graph with set of vertices Xk where v1, v2 ∈ Xk are
connected by an edge if and only if there exists g ∈ Ni such that g · v1 = v2 · 1.
The graphs Tk(G1) is connected for every k, since we assume that the tiles of G1

are connected (see Proposition 3.2.10).
Let us choose a simple path in Tk(G1) from u to w and a simple path from

b(w) to u. Let τ1 and τ2 be the consecutive products of the generators along the



102 3. LIMIT SPACES

respective paths, so that τ1 ·u = w ·1 and τ2 ·b(w) = u ·1. Therefore, τ2bτ1 ·u = u ·a.
It follows that

aα|u = (τ2bτ1)
α|α(u) = τα2 |αb(w) · b

α|α(w) · τ
α
1 |α(u)

The elements gα, for g ∈ N1 are generators of G2. The elements τα1 and τα2 are
products of the generators gα along simple paths in the graph of the action of G2 on
Xk with respect to the generating set Nα

1 . Therefore, τα1 |uα = b1|u1 · b2|u2 · · · br|ur ,
where bs are equal to some gα, g ∈ N1 and u1, u2, . . . , ur are the vertices of the
path. These vertices are pairwise different, thus the length of τα1 |uα with respect to
the generating set N2 of G2 is not greater than the sum

∑
g∈N1

∑
v∈Xk lN2 (gα|v).

The same is true about the length of the restriction τα2 |wbα .
But the sum

∑
v∈Xk lN2 (gα|w) is not greater than ClN2 (gα) for some fixed

C ≥ 1, by definition of a bounded automaton. Therefore, the lengths of τα1 |uα and
τα2 |wajα

i
are not greater than R = C

∑
g∈N1

lN2 (gα).

So we get a uniform bound 3R on the length of the element aα|u , where a ∈ N1

and u ∈ X∗ are arbitrary. But the centralizer of G1 is trivial, thus α|u is uniquely
determined by the values of aα|u , hence there is only a finite number of possibilities
for α|u, and the automorphism α is finite-state. �

Let us investigate the possible structure of the conjugator α.

Proposition 3.10.2. Let G1 and G2 be recurrent groups acting on X∗. Suppose
that they are conjugate by a finite-state automorphism of X∗. Let Mi be the self-
similarity Gi-bimodule, i = 1, 2. Then there exists n ∈ N, a bijection f : M⊗n1 −→
M⊗n2 and a finite-state automorphism α ∈ AutX∗ such that

f(g ·m · h) = gα · f(m) · hα,
for all g, h ∈ G1 and m ∈M⊗n1 .

In other words, after we pass to the power Xn of the alphabet, the conjugator α
can be chosen of the form

α = σ (g1 · α, g2 · α, . . . , gdn · α) ,

where gi ∈ G2, σ ∈ S (Xn).

Proof. For every u ∈ X∗ the image of the stabilizer Gu of the vertex u in G1

under the restriction map |u is G1 (definition of a recurrent action) and the same
is true for G2. This implies that for every u ∈ X∗ we have Gα|u1 = G2 (apply the
restriction map |u to the equality Gαu = Gα(u)).

Thus, every restriction α|u of a (finite-state) conjugator is a (finite-state) con-
jugator.

Note that if G2α = G2β, i.e., if α = hβ for some h ∈ G2, then α|u = h|β(u) ·β|u,
hence G2α|u = G2β|u. Thus, if we identify in the automaton defining α the states,
which belong to the same right coset of G2 in Aut X∗, then we get a graph of a well
defined automaton (without the output function), which we will denote A.

Let u, v ∈ Xk be arbitrary finite words of the same length. It follows from the
properties of recurrent actions that there exists g ∈ G1 such that g ·u = v · 1. Then
gα|α(u) = α|vα|−1

u , hence α|v = h · (α|u) for some h ∈ G2, i.e., G2α|v = G2α|u.
This implies that the value of π(q, x), where π is the transition function of A,

depends only on the state q. The automaton A is finite, hence we can find a state
q1 = G2 · α|u and a number n such that π(q1, x1 . . . xn) = q1 for all x1 . . . xn ∈ Xn.
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This means that β = α|u can be written with respect to the alphabet Xn in the
form

β = σ · (g1 · β, g2 · β, . . . , gdn · β) ,

what finishes the proof, since Gα|u1 = G2. �

3.10.2. Uniqueness of XG. See Definitions 1.2.4 and 2.10.6 for the notions
of a weakly branch group and a saturated isomorphism.

Theorem 3.10.3. Let Gi, i = 1, 2, be recurrent weakly branch groups generated
by bounded automata over the alphabet X and let Mi, i = 1, 2 be the self-similarity
Gi-bimodule. Suppose that ψ : G1 −→ G2 is a saturated isomorphism. Then

(1) there exists n ∈ N and a bijection Ψ : M⊗n1 −→M⊗n2 such that

Ψ(g ·m · h) = ψ(g) ·Ψ(m) · ψ(h)

for all g, h ∈ G and m ∈M⊗n1 ,
(2) there exists a homeomorphism F : XG1 −→ XG2 such that

F (ζ · g) = F (ζ) · ψ(g)

for all ζ ∈ XG1 and g ∈ G1.

Proof. Since (M⊗n)⊗−ω = M⊗−ω for every hyperbolic bimodule M, (1) im-
plies (2).

Statement (1) follows directly from Propositions 2.10.7 and 3.10.2 �

Example. Consider the following two groups. The group G1 is generated by

a1 = σ(1, a2), a2 = (1, a3), a3 = (a1, 1)

and the group G2 is generated by

a1 = σ(1, a2), a2 = (1, a3), a3 = (1, a1).

We will see later that these groups are iterated monodromy groups of polyno-
mials z2 + c, where c is either the real root of the polynomial x3 + 2x2 + x+ 1 (for
G1) or one of the two complex roots (for G2).

It is not hard to prove that these groups are weakly branch. (In fact, we have
inclusion G′i > G′i×G′i.) Let G20

i = Gi and define inductively G2n

i to be equal to the
subgroups generated by the squares of the elements of G2n−1

i . Then the subgroups
G2n

i belong to the level stabilizer St(n) and act level-transitively on the subtrees
with the roots on the nth level. This is proved by simple inductive arguments. It
is also obvious that if ψ : G1 −→ G2 is an isomorphism, then ψ

(
G2n

1

)
= G2n

2 , i.e.,
every isomorphism between G1 and G2 is saturated.

Consequently, if the groups G1 and G2 are isomorphic, then we can apply
Theorem 3.10.3 and conclude, for example, that the limit spaces JG1 and JG2 are
homeomorphic.

We will prove later that limit spaces of the iterated monodromy groups G1 and
G2 are homeomorphic to the Julia sets of the respective polynomials. These Julia
sets are called in the literature “Airplane” and “Douady Rabbit” (see [89]) and are
shown on Figure 7.

It is more or less evident from Figure 7 that these Julia sets are not home-
omorphic, hence the groups G1 and G2 are not isomorphic. An accurate proof,
for example, is to show that it is possible to cut the Rabbit into three connected



104 3. LIMIT SPACES

Figure 7. Airplane and Rabbit

components by deletion of a point, while the Airplane can be divided not more than
into two components.

It seems however, that it is hard to prove that the groups G1 and G2 are not
isomorphic, using “classical” group-theoretical invariants.



CHAPTER 4

Orbispaces

4.1. Pseudogroups and étale groupoids

We present here the main definitions and properties of pseudogroups of local
homeomorphisms and étale groupoids. Our approach is similar to that of [22],
where more details can be found.

4.1.1. Pseudogroups.

Definition 4.1.1. Let X be a topological space. A pseudogroup of local home-
omorphisms of X is a collection H of homeomorphisms H : U1 −→ U2 between
open subsets of X (including the empty, or zero homeomorphism 0 : ∅ −→ ∅),
which satisfies the next conditions.

(1) Composition: if H1 : U1 −→ U2, H2 : U3 −→ U4 belong to H then
H1 ◦H2 : H−1

2 (U4 ∩ U1) −→ H1(U4 ∩ U1) also belongs to H.
(2) Inversion: if H : U1 −→ U2 belongs to H then H−1 : U2 −→ U1 belongs

to H.
(3) Restriction: if H : U1 −→ U2 belongs to H and U ′1 ⊂ U1 is an open subset,

then H|U ′1 : U ′1 −→ H(U ′1) belongs to G.
(4) Union: if H : U −→ V is a homeomorphism between two open sets

and there exists a cover {Ui} of U by open subsets Ui ⊂ U such that
H|Ui

: Ui −→ H(Ui) belongs to H, then H also belongs to H.

If G is a group acting on X by homeomorphisms, then it generates a pseu-
dogroup of local homeomorphisms, whose elements are unions of restrictions of
group elements onto open sets.

4.1.2. Etale groupoids. A groupoid (G,X ) is a small category of isomor-
phisms. Here G is the set of morphisms and X is the set of objects of the category.
We identify every object x ∈ X with the trivial automorphism idx of x, thus X is
the set of units of the groupoid G. The set of units X is denoted sometimes G(0).

Every element g of a groupoid G is an isomorphism from its source s(g) = g−1g
to its range r(g) = gg−1. A product g1g2 is defined if and only if r(g2) = s(g1).

We denote by G(2) the set of composable pairs (g1, g2) ∈ G × G, i.e., such pairs
that g1g2 is defined. The groupoid structure is defined by the multiplication map

G(2) −→ G : (g1, g2) −→ g1g2,

and the inversion map
G −→ G : g −→ g−1.

A topological groupoid is a groupoid (G,X ) with topology on G (and induced
topology on X = G(0) ⊂ G), for which these maps are continuous. It is called étale
if the maps s : g 7→ g−1g and r : g 7→ gg−1 are étale, i.e., are homeomorphisms in a

105
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neighborhood of each point g ∈ G. An equivalent condition is that the set G(0) and
the maps s and r are open.

Two points x, y ∈ X belong to the same G-orbit if there exists g ∈ G such
that x = s(g) and y = r(g), i.e., if the objects x, y are isomorphic in the respective
category.

The set of G-orbits is denoted G\X . If G is a topological groupoid, then the set
of orbits is a topological space with the quotient topology.

The isotropy group of a point x ∈ X is the set Gx of groupoid elements g ∈ G
such that s(g) = r(g) = x, i.e., the automorphism group of the object x in the
category (G,X ). If x, y ∈ X belong to one G-orbit, then their isotropy groups Gx
and Gy are isomorphic. If h ∈ G is such that s(h) = x and r(h) = y then the map
g 7→ h · g · h−1 is an isomorphism Gx −→ Gy.

We always assume that the space of units X and the spaces on which groups
and pseudogroups act are locally compact and Hausdorff.

4.1.3. Groupoid of germs and associated pseudogroup. If H is a pseu-
dogroup of local homeomorphisms of a topological space X , then its groupoid of
germs is the set of equivalence classes of pairs (H,x), where H : U −→ V is an
element of H and x ∈ U . Two pairs (H1, x1), (H2, x2) are identified if and only if
x1 = x2 = x and there exists a neighborhood U of x such that H1|U = H2|U . The
germ topology is defined by the basis of opens sets of the form

UH = {(H,x) : x ∈ U},
where H : U −→ V is an arbitrary element of H. Then the maps (H,x) 7→ x and
(H,x) 7→ H(x) are homeomorphisms UH −→ U and UH −→ H(U), respectively.

It is easy to prove that groupoid of germs is an étale groupoid with respect to
the multiplication

(H1, x)(H2, y) = (H1H2, y),
where the product is defined if and only if H2(y) = x. The space of units is equal
to the set of germs (Id, x), x ∈ X . The natural identification (Id, x) 7→ x is a
homeomorphism of the space of units with X . The source and the range maps are
defined by

s(H,x) = x, r(H,x) = H(x).
If G is a discrete group acting on a topological space X , then we can also define

the groupoid of action with the set of elements G×X and multiplication

(h1, x)(h2, y) = (h1h2, y),

where the product is defined if and only if h2(y) = x. The space of units is also
naturally identified with X with the same formulae for the source and the range
maps as in the case of the groupoid of germs.

The groupoid of germs is a quotient of the groupoid of the action. The groupoid
of germs coincides with the groupoid of action if and only if every non-trivial element
of G acts non-trivially on every non-empty open subset of X .

If G is the groupoid of germs of a pseudogroup H acting on X , then H can be
reconstructed as the pseudogroup of open G-sets. A subset H ⊂ G is a G-set if the
maps

s|H , r|H : H −→ X
are homeomorphisms. Then the map s(h) 7→ r(h), h ∈ H is a well defined homeo-
morphisms from s(H) to r(H), which we will also denote by H. If H1 and H2 are
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Figure 1.

G-sets, then H1H2 = {h1h2 : hi ∈ Hi} is also a G-set defining the homeomorphism
H1 ◦H2. It is also easy to prove that the set of all open G-sets is a pseudogroup of
local homeomorphisms of X .

One can prove that the pseudogroup of G-sets of the groupoid G of germs of a
pseudogroup H coincides with H.

4.2. Orbispaces

4.2.1. Proper groupoids. A groupoid (G,X ) is said to be proper if the map

(s, r) : G −→ X ×X

is proper, i.e., if for any compact subset K ⊂ X ×X the set {g ∈ G : (s(g), r(g)) ∈
K} is compact.

A groupoid G is proper if and only if for any compact subset K ⊂ X the set
{g ∈ G : s(g), r(g) ∈ K} is compact.

A pseudogroup of local homeomorphisms is said to be proper if its groupoid of
germs is proper.

Recall that an action of a discrete group G on a topological space X is called
proper if for every compact setK ⊂ X the set of elements g ∈ G such that g(K)∩K 6=
∅ is finite. An action is proper if and only if the groupoid of the action is proper.

We have the following well known (at least for the group case) fact.

Proposition 4.2.1. If (G,X ) be a proper groupoid, then the space of orbits
G\X is Hausdorff.

Proof. Suppose that x, y ∈ G\X are two different points of the space of orbits
and let x̃, ỹ be some their preimages in X .

Let Kx and Ky be compact neighborhoods of the points x̃ and ỹ respectively.
The sets Bx = {g ∈ G : s(g) = x̃, r(g) ∈ Ky} and By = {g ∈ G : s(g) ∈
Kx, r(g) = ỹ} are compact. The points x̃ and ỹ belong to different orbits, therefore
x̃ /∈ s(By) and ỹ /∈ r(Bx). The sets s(By) and r(Bx) are compact as continuous
images of compact sets.
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The space X is Hausdorff and locally compact, therefore there exist compact
neighborhoods K ′x ⊆ Kx and K ′y ⊆ Ky of the points x̃ and ỹ such that K ′x∩s(By) =
∅ and K ′y ∩ r(Bx) = ∅.

Let A = {g ∈ G : s(g) ∈ K ′x, r(g) ∈ K ′y}. The set A is compact, x̃ /∈ s(A) and
ỹ /∈ r(A). The sets s(A) and r(A) are compact, therefore the sets Ux = K ′x \ s(A)
and Uy = K ′y \r(A) are neighborhoods of the points x̃ and ỹ. There are no elements
g ∈ G such that s(g) ∈ Ux and r(g) ∈ Uy, i.e., the images of Ux and Uy in G\X are
disjoint neighborhoods of the points x and y. �

4.2.2. Equivalence of groupoids. A model example of an étale groupoid is
the groupoid of germs of transition maps in an atlas of a manifold. Namely, ifM is
a manifold and A is its atlas consisting of charts qi : Xi −→M, where Xi are open
subsets of Rn, then the respective groupoid of changes of charts is the groupoid of
germs of the maps

q−1
j ◦ qi : q−1

i (qi (Xi) ∩ qj (Xj)) −→ q−1
j (qi (Xi) ∩ qj (Xj))

which are considered as local homeomorphism of the disjoint union
⊔
i Xi.

Two atlases are equivalent if their union is again an atlas. Manifolds are then
defined as equivalence classes of atlases. Note that the groupoid of changes of charts
is always proper and free (a groupoid is free if all its isotropy groups are trivial).

The notion of an orbispace is a generalization of these notions. The only con-
dition that we drop is the freeness of the groupoid. But we need to generalize the
notion of equivalence of atlases, what is done here.

If A ⊂ X then restriction of G onto A is the groupoid G|A = {g ∈ G :
s(g), r(g) ∈ A}. It is the maximal subgroupoid of G with the space of units A.

Definition 4.2.2. An equivalence of two étale groupoids (G1,X1) and (G2,X2)
is an étale groupoid G (denoted G1 ∨ G2) with the space of units X1 t X2 (t is
the disjoint union of topological spaces) such that restriction of G1 ∨ G2 onto Xi
coincides with Gi for i = 1, 2 and every G1 ∨ G2-orbit is a union of a G1-orbit and a
G2-orbit.

Two pseudogroups of local homeomorphisms are said to be equivalent if their
groupoids of germs are equivalent. This can be formulated without use of groupoids
in the following terms.

Definition 4.2.3. Let (H1,X1) and (H2,X2) be pseudogroups of local home-
omorphisms. An equivalence E : H1 −→ H2 is a collection of homeomorphisms
U1 −→ U2, where U1 ⊂ X1 and U2 ⊂ X2 are open subsets, such that H =
H1 tH2 tE t E−1 is a pseudogroup of local homeomorphisms of the space X1 tX2

and every H-orbit is a union of an H1-orbit and an H2-orbit.

If E1 : H1 −→ H2 and E2 : H2 −→ H3 are equivalences, then E−1
1 : H2 −→ H1

and E2 ◦ E1 : H1 −→ H3 are equivalences.
If E : H1 −→ H2 is an equivalence in the sense of Definition 4.2.3 and Gi

is the groupoid of germs of Hi, then the respective equivalence in the sense of
Definition 4.2.2 is the groupoid G1 ∨ G2 equal to the disjoint union of G1, G2, the
space of germs of E and the space of germs of E−1. We will denote this equivalence
of groupoids also by E : G1 −→ G2.
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4.2.3. Restrictions and localizations. We will often use two important
ways to define an equivalence of étale groupoids: restrictions and localizations.

Let (G,X ) be an étale groupoid and let X ′ ⊂ X be an open subset intersecting
every G-orbit. Then restriction G′ of the groupoid G onto X ′ is an étale groupoid
(G′,X ′) equivalent to (G,X ). The equivalence map is the collection of local home-
omorphisms between open subsets U ′ ⊂ X ′ and U ⊂ X , which are defined by
G-sets.

One can prove that two groupoids are equivalent if and only if they are restric-
tions of one groupoid.

If U = {Ui}i∈I is a cover of X by open subsets indexed by some set I, then
localization of the groupoid G onto U (see [63]) is the groupoid (GU ,XU ), where:

(1) the set of units XU is equal to the disjoint union
⊔
i∈I (Ui, i), where (Ui, i)

is a copy of Ui;
(2) the set of elements GU is equal to the set of triples (i, g, j), where g ∈
G, i, j ∈ I are such that s(g) ∈ Uj and r(g) ∈ Ui.

(3) the groupoid structure is given by the equalities

s(i, g, j) = (s(g), j), r(i, g, j) = (r(g), i)

and
(i, g1, k) · (k, g2, j) = (i, g1g2, j).

(4) The topology on GU is given by the basis of open set of the form {(i, g, j) :
g ∈ H}, where H is any open G-set such that s(H) ⊆ Uj and r(H) ⊆ Ui.

It is not hard to see that the localization (GU ,XU ) is equivalent to (G,X ). The
equivalence groupoid (G ∨GU ,X tXU ) is the groupoid of germs of the pseudogroup
generated by union of the pseudogroup associated with (G,X ) and the set of local
homeomorphisms Ii : (Ui, i) −→ Ui : (x, i) 7→ x.

One can also prove that two groupoids are equivalent if and only if they have
a common localization. More on equivalence of groupoids see [22] and [63].

4.2.4. Orbispaces.

Definition 4.2.4. An orbispace O is an equivalence class of proper pseu-
dogroups. Every pseudogroup (H,X ) belonging to the class is called pseudogroup
of changes of charts of the orbispace. The space |O| of orbits of the pseudogroup of
changes of charts is the underlying space of the orbispace. The cannonical quotient
map q : X −→ |O| is the uniformizing map.

Every equivalence E : (G1,X1) −→ (G2,X2) induces a homeomorphism of the
spaces of orbits G1\X1 and G2\X2. Therefore, the underlying space is defined
uniquely up to a homeomorphism.

The pseudogroup of changes of charts (H,X ) (and the respective groupoid of
germs, which is called groupoid of changes of charts) together with the uniformizing
map q : X −→ |O| is called atlas of the orbispace O.

We use pseudogroups and their groupoids of germs interchangeably, keeping in
mind the relation between them described in 4.1.3.

We will usually denote the underlying space |O| just by O, when it does not
lead to a confusion.

If (G1,X1) and (G2,X2) are two atlases of an orbispace O, i.e., two equiv-
alent étale groupoids, then we want to have a preferred equivalence groupoid
(G1 ∨ G2,X1 t X2), called the union of the atlases. The union of the atlases is
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given by an equivalence E : G1 −→ G2 (see Definition 4.2.3 and comments after it).
Therefore, every time when we introduce a new atlas (G′,X ′) of an orbispace O,
we fix an equivalence E : G′ −→ G with some old atlas (G,X ). If E1 : G1 −→ G
and E2 : G2 −→ G are two such preferred equivalences, then the preferred equiv-
alence between G1 and G2 is E−1

2 ◦ E1. The preferred equivalence is introduced in
many cases implicitly (for example, if the new atlas is given as a restriction or a
localization of an old one).

Isotropy group of a point x ∈ O is the isotropy group of any its preimage in
an atlas (G,X ) of O. We denote it Gx. The isotropy group is unique up to an
isomorphism, since isotropy groups of points belonging to one orbit of a groupoid
are isomorphic.

4.2.5. Rigid orbispaces. An orbispace is rigid if its atlas is a Hausdorff
groupoid.

Example. Consider a bouquet X of three segment, i.e., the space [0, 1] ×
{a, b, c}/ ∼, where ∼ is the equivalence relation (0, a) ∼ (0, b) ∼ (0, c). Denote by
O the equivalence class of (0, a). Let the group G = S (a, b, c) be acting on X by
permutations of the second coordinate.

The underlying space of the orbispace G\X is homeomorphic to [0, 1]. Let
σ = (a, b) be the transposition. Then every neighborhood of the germ (σ,O),
contains germs of the trivial transformation, hence every two neighborhoods of
(σ,O) and (id,O) intersect and the respective groupoid of germs is not Hausdorff.

4.2.6. Orbispaces with additional structure. If we have some local struc-
ture (like C(k)-differentiable, analytic, piecewise linear, Riemannian, etc.), then or-
bispace with this structure is defined by pseudogroups of local homeomorphisms
preserving the structure.

For example, a differentiable n-dimensional orbifold is an orbispace defined by
an atlas (H,X ), where X is a disjoint union of open subsets of Rn and H is a pseu-
dogroup of local diffeomorphisms. Equivalence between atlases of n-dimensional
orbifolds must be also given by local diffeomorphisms.

4.3. Open sub-orbispaces and coverings

4.3.1. Open mappings of orbispaces.

Definition 4.3.1. An open map f :M1 −→M2 between orbispaces is defined
by an open continuous functor of groupoids F : (G1,X1) −→ (G2,X2), where (Gi,Xi)
is an atlas ofMi.

Proposition 4.3.2. An open functor F is uniquely determined by its restriction
F |X1 : X1 −→ X2 onto the spaces of units.

A continuous open map F : X1 −→ X2 defines an open map of orbispaces if and
only if for every germ g = (H,x) ∈ G1 there exists a germ F (g) = (H ′, F (x)) ∈ G2

such that

(4.1) H ′ ◦ F = F ◦H

on some neighborhood of x.

Proof. It is sufficient to show that the germ (H ′, F (x)), satisfying (4.1) is
unique.
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Consider an arbitrary neighborhood U of the point x, on which the homeomor-
phism H is defined. The set F (U) is a neighborhood of the point F (x), since the
map F is open. We have a commutative diagram of continuous maps

U
H−→ H(U)yF yF

F (U) H′

−→ F ◦H(U)

with surjective vertical arrows. Then the mapH ′, closing the diagram is unique. �

One may interpret (4.1) as an explicit formulation of the condition that equal
points must have equal images.

Definition 4.3.3. An open map f of orbispaces is an embedding if the functor
F is full, i.e., if every element g ∈ G2 such that s(g), r(g) ∈ F (X1) belongs to F (G1).

If an open embedding of an orbispace M1 into an orbispace M2 is fixed, then
we say that M1 is an open sub-orbispace ofM2.

Definition 4.3.4. Let (G′i,X ′i ) and (G′′i ,X ′′i ) be atlases, defining the same
orbispace structure on Mi, where i = 1, 2. Two functors F ′ : G′1 −→ G′2 and
F ′′ : G′′1 −→ G′′2 define the same open map f : M1 −→ M2 if and only if it is
possible to extend the functors F ′ and F ′′ to a functor F : G′1 ∨ G′′1 −→ G′2 ∨ G′′2 .

We have the following obvious corollary of Proposition 4.3.2.

Proposition 4.3.5. Two maps F ′ : X ′1 −→ X ′2 and F ′′ : X ′′1 −→ X ′′2 define the
same open map f :M1 −→M2 if and only if their union satisfies the condition of
Proposition 4.3.2. �

Let f : M1 −→ M2 be an open map defined by a functor F . The map f
induces the map |f | : |M1| −→ |M2| of the underlying spaces by the rule

|f |(q1(x̃)) = q2(F (x̃)),

where q1, q2 are the uniformizing maps. Definition 4.3.1 implies that the map |f | is
well defined. It is also easy to see that the map |f | does not depend on the choice
of atlases. If the open map is an embedding then the induced map is injective.

We will usually use the same notation for the map f : M1 −→ M2 and the
induced map |f | : |M1| −→ |M2|.

Let x1 ∈ M1 and x2 ∈ M2 be such that f(x1) = x2. Choose their preimages
x̃i ∈ q−1

i (xi) so that F (x̃1) = x̃2. Then restriction fx1 of the functor F onto the
isotropy group of the point x̃1 is a homomorphism from the isotropy group Gx1

of x1 to the isotropy group Gx2 of x1. If the map f is an embedding then the
homomorphism fx1 is surjective.

Let f1 : M1 −→ M2 and f2 : M2 −→ M3 be two open maps of orbispaces.
Passing to localizations, we can find such atlases (Gi,Xi), i = 1, 2, 3, that fi is
defined by a functor Fi : Gi −→ Gi+1, i = 1, 2. Then the functor F2 ◦F1 : G1 −→ G3

defines the composition f2 ◦f1 :M1 −→M2 of the maps. It is easy to prove, using
Proposition 4.3.5 that the composition f2 ◦ f1 depends only on the maps f1 and
f2. It is also easy to see that a composition of two open embeddings is an open
embedding.
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4.3.2. Equivalences as open maps. An embedding f : M1 −→ M2 is
called unbranched if it is defined by a functor which is étale on the unit spaces of
the atlases (or, equivalently, étale on the groupoids of changes of charts).

Proposition 4.3.6. An open embedding f :M1 −→M2 is unbranched if and
only if it induces an isomorphism of the isotropy groups in every point x ∈M1.

Proof. It is obvious that if the map f is unbranched, then it induces isomor-
phisms of the isotropy groups.

Suppose that we have an open functor F : G1 −→ G2, inducing isomorphism of
the isotropy groups. We have to prove that restriction of F onto the unit spaces
X1 and X2 of the groupoids G1 and G2 is a local homeomorphism. Suppose the
contrary is true. Since the space X1 is locally compact, there is a point x ∈ X1 such
that every neighborhood of x contains points y, z such that y 6= z and F (y) = F (z).
Then we can find two sequences yn, zn ∈ X1 such that yn 6= zn, F (yn) = F (zn) for
every n and limn→∞ yn = limn→∞ zn = x.

By definition of an embedding, there exist gn ∈ G1 such that s(gn) = yn, r(gn) =
zn and F (gn) = 1F (yn). The set {yn, zn}n≥1 ∪ {x} is compact in X1. The groupoid
G1 is proper, hence the set {gn} is contained in some compact set. Therefore, we
can find a convergent subsequence {gnk

}k≥1. Let g be its limit. Then we have
limk→∞ F (gnk

) = F (g). Then F (gnk
) = 1F (ynk

) implies that F (g) = F (1x) =
1F (x). We know that F induces isomorphism of the isotropy groups, therefore, the
last equality implies that g = 1x. But the groupoid G1 is étale, i.e., the element 1x
has an open neighborhood containing units only, what contradicts to the fact that
all gnk

are not units. �

Definition 4.3.7. An open embedding f : M1 −→ M2 is called equivalence
(or isomorphism) if it is unbranched and surjective on the underlying spaces.

It is easy to see that if F : (G1,X1) −→ (G2,X2) defines an open map, which
is an equivalence, then the set of local homeomorphism of the form F ◦H, where
H is a change of charts in (G1,X1), is an equivalence of the groupoids F : (G1,X1)
and (G2,X2) in the sense of Definition 4.2.3.

It is also not hard to prove that orbispaces M1 and M2 are defined by equiv-
alent atlases if and only if there exists an equivalence f :M1 −→M2.

4.4. Coverings and skew-products

4.4.1. Coverings.

Definition 4.4.1. A covering P : (Ĝ, X̂ ) −→ (G,X ) of étale groupoids is an
étale surjective functor such that for every g ∈ G and for every x̂ ∈ F−1(s(g)) there
exists a unique element ĝ ∈ Ĝ such that s (ĝ) = x̂ and F (ĝ) = g. A covering is said
to be d-fold if every point x ∈ X has exactly d preimages.

A covering of orbispaces is an open map defined by a covering of their atlases.

Proposition 4.4.2. Let p : M̂ −→M be a d-fold covering of orbispaces defined
by a functor P : (Ĝ, X̂ ) −→ (G,X ). Then for every point x ∈ M and every
x̂ ∈ p−1(x) the induced homomorphism px̂ : Gx̂ −→ Gx of the isotropy groups is
injective. The following equality holds for every x ∈M:∑

x̂∈p−1(x)

|Gx|
|Gx̂|

= d.
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Proof. Let z ∈ X be a preimage of x. Injectivity of px̂ follows directly from
Definition 4.4.1. It follows also that the isotropy group Gz ∼= Gx of the point z
acts on the set P−1(z) by permutations. The orbits of this action are in bijective
correspondence with the points of p−1(x) and the stabilizer of a point y ∈ P−1(z)
is the isotropy of this point in Ĝ. This implies the statement of the proposition. �

Let p : M̂ −→ M be a d-fold covering of orbispaces defined by a covering of
atlases P : (X̂ , Ĝ) −→ (X ,G). Let U = {Ui}i∈I be an open cover of the space
X such that there exists a homeomorphism νi : Ui × D −→ P−1(Ui), such that
P (νi(x, a)) = x for all x ∈ Ui and a ∈ D (here D = {1, 2, . . . , d} is a discrete set).
Such a cover exists by definition.

Then the collection Û =
{
Û(i,a) = νi (Ui × {a})

}
(i,a)∈I×D

is an open cover of

the space X̂ and we get a map between localizations of the atlases

PU :
(
ĜÛ , X̂Û

)
−→ (XU ,GU ) : ((i, a), g, (j, b)) 7→ (i, P (g), j),

where (i, a), (j, b) ∈ I ×D, g ∈ Ĝ. The map PU is called localization of the covering
P .

It is easy to see that the localization PU is a functor, defining the same covering
as the functor P . Hence, every covering can be graded in the sense of the following
definition.

Definition 4.4.3. Let (G,X ) be an atlas of an orbispace M. A covering,
graded by a set D over the atlas (G,X ) is a |D|-fold covering p : M̂ −→M, defined
by the projection P : X × D −→ X : (x, a) 7→ x, where X × D is the unit space of
some atlas of the orbispace M̂.

4.4.2. Cocycles and skew products. Suppose that we have a graded cov-
ering. Then for every h ∈ G and every preimage (x, a) of the point x = s(h) there
exists a unique preimage ĥ of h such that s

(
ĥ
)

= (x, a). Then r
(
ĥ
)

= (r(h), b),
where σ(h) : a 7→ b is some permutation of the set D.

The map σ : G −→ S (D) is a continuous homomorphism (functor) of groupoids.
A continuous homomorphism from a groupoid to a group is called cocycle.

Let us consider the general situation. Let G be a topological group with a
fixed continuous action on a topological space D. Suppose that we have a cocycle
σ : G −→ G, where G is an étale groupoid. We will denote the image of a point
a ∈ D under the action of σ(g) by σ(g, a).

Definition 4.4.4. The skew product groupoid Goσ is the direct product G×D
of topological spaces with the multiplication

(4.2) (g1, a1) · (g2, a2) = (g1g2, a2),

where the left hand side product is defined if and only if the product g1g2 is defined
and σ(g2, a2) = a1.

The space of units of the groupoid G o σ is X × D, where X is the space of
units of the groupoid G. The source and range maps are defined by the rules

(4.3) s(g, a) = (s(g), a), r(g, a) = (r(g), σ(g, a)).
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Proposition 4.4.5. Let G be an étale groupoid and let σ : G −→ G be a cocycle,
where the topological group G acts continuously on D. Then the skew product Goσ
is an étale groupoid.

Proof. It is easy to check that the skew product groupoid is well defined and
that multiplication and inversion (given by (g, a)−1 =

(
g−1, σ

(
g−1, a

))
) are contin-

uous. We have to prove that the source and range maps are local homeomorphisms.
If (g, a) ∈ Goσ is an element of Goσ, then it has a neighborhood of the form U×D,
where U an open G-set containing g. Then, the restrictions of s, r : GoD −→ X ×D
onto U × D are given by

s(h, a) = (s(h), a) , r(h, a) = (r(h), σ(h, a)) ,

and are homeomorphisms, since s|U , r|U are homeomorphisms, σ(h, a) is continuous
on h and is a homeomorphism D −→ D on a. �

When G is the symmetric group S (D) acting on the discrete set D, then the
projection (g, a) 7→ g is a |D|-fold covering map. We have the following proposition,
whose proof is straightforward.

Proposition 4.4.6. Let G be an étale groupoid and let σ : G −→ S (D) be a
cocycle. Then the projection map P : G o σ −→ G : (g, a) 7→ g is a covering.

Let P :
(
Ĝ,X × D

)
−→ (G,X ) be a projection, defining a graded covering, and

let σ be the respective cocycle. Then Ĝ = G o σ (i.e., the identical map on X × D

induces an isomorphism of the groupoids
(
Ĝ,X × D

)
and (G o σ,X × D)). �

The covering P : G o σ −→ G : (g, a) 7→ g is the covering defined by the cocycle
σ.

In general, skew products G o σ together with the projection are fiber bundles
over the orbispace defined by the atlas G. For example, an n-dimensional vector
bundle is the skew product G o σ, where σ is a cocycle from G to the general
linear group GL(n,R) (with the natural action on Rn). If G is a groupoid of
changes of charts in an atlas of an n-dimensional orbifold, then the derivative
D : G −→ GL(n,R) (which is defined in the obvious way on germs of changes of
charts) defines the atlas G oD of the tangent bundle TM of the orbifold.

If (G1,X1) and (G2,X2) are atlases of one orbispace M, then cocycles σ1 :
G1 −→ G and σ2 : G2 −→ G define the same fiber bundle if and only if σ1 and σ2

are restrictions of one cocycle σ : G1 ∨G2 −→ G defined on the union of the atlases.

4.4.3. Pull-back. Let f :M1 −→ M be an open map of orbispaces and let
p : M̂ −→M be a covering. Then there exists a unique orbispace M̂1, a covering
p1 : M̂1 −→M1 and an open map f̂ : M̂1 −→ M̂ such that the diagram

(4.4)
M̂1

f̂−→ M̂yp1 yp
M1

f−→ M

is commutative. The covering p1 is the pull-back of p by f and is constructed in
the following way.
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Let (G1,X1) and (G,X ) be atlases of the orbispaces M1 and M such that the
map f is defined by a functor F : G1 −→ G, and the covering p is defined by a
cocycle σ : G −→ S (D). We can find such atlases passing to localizations.

Then the composition σ1 = σ ◦ F is a cocycle σ1 : G1 −→ S (D) defining
the covering p1 : M̂1 −→ M1, where M̂1 is the orbispace defined by the atlas
(G1 o σ1,X1 × D).

We also get a functor F̂ : G1 o σ −→ G o σ acting by the rule

F̂ (g, a) = (F (g), a).

It defines the open map f̂ : M̂1 −→ M̂.
If f is an embedding, then f̂ is obviously also an embedding and p1 is called

restriction of p onto the sub-orbispace M1.

4.5. Partial self-coverings

A partial self-covering is a covering map f :M1 −→M of an orbispaceM by
its open sub-orbispace M1. So, an embeddingM1 ↪→M is fixed.

If we have two partial self-coverings f1 :M1 −→M and f2 :M2 −→M, then
there composition f2 ◦ f1 :M2 −→M is defined as the composition f2 ◦ f◦1 , where
f◦1 :M3 −→M2 is the restriction of f1 onto the sub-orbispaceM2 (i.e., pull-back
of f1 by the embeddingM2 ↪→M). ThenM3 is a sub-orbispace ofM1, and thus
is also a sub-orbispace ofM. See the diagram below.

M3 ↪→ M1 ↪→ Myf◦1 yf1
M2 ↪→ Myf2
M

In particular, we can define for every partial self-covering f : M1 −→ M its
iterates fn = f◦n :Mn −→M.

Definition 4.5.1. Let p : M1 −→ M be a partial self-covering and let e :
M1 ↪→ M be the embedding. Suppose that f : M◦ −→ M is an open map and
let p◦ : M◦1 −→ M◦ be the pull-back of p by f . Then we have an open map
f1 :M◦1 −→M1 such that p◦f1 = f ◦p◦. Suppose that we also have an embedding
e0 :M◦1 ↪→M◦ making the diagram

M◦1
f1−→ M1ye◦ ye

M◦ f−→ M

commutative. We say then that M◦ is invariant under p−1 and that the obtained
partial self-covering p◦ ofM◦ by its sub-orbispace M◦ is pull-back of p by f .

If f : M◦ −→ M is an embedding, then the partial self-covering p◦ is called
restriction of p ontoM◦.

The case when f is an equivalence is considered in the next definition.
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Definition 4.5.2. Two partial self-coverings p′ :M′1 −→M′ and p′′ :M′′1 −→
M′′ are said to be conjugate if there exist equivalences f1 : M′1 −→ M′′1 and
f :M′ −→M′′ such that the diagrams

M′1
f1−→ M′′1ye′ ye′′

M′ f−→ M′′
,

M′1
f1−→ M′′1yp′ yp′′

M′ f−→ M′′

are commutative. Here e′ :M′1 ↪→M′ and e′′ :M′′1 ↪→M′′ are the embeddings.

4.6. Limit orbispace JG
4.6.1. Definition.

Proposition 4.6.1. Let (G,X) be a self-similar contracting action and let XG
be the respective limit G-space. Then the action of G on XG is proper.

Proof. Let T ⊂ XG be the digit tile of the action. If C ⊂ XG is compact,
then it is a subset

⋃
h∈A T ·h for some finite set A ⊂ G by Proposition 3.3.1 (we use

only that U1(ζ) is a neighborhood of ζ). If C ·g∩C 6= ∅, then there exist g1, g2 ∈ A
such that T · g1g ∩ T · g2 6= ∅. This implies that g1gg−1

2 ∈ N , by Proposition 3.2.5,
i.e., that g ∈ A−1NA. �

Proposition 4.6.2. Suppose that the action (G,X) is faithful. Let g ∈ G and
suppose that there exists an open set U ⊂ XG such that ζ · g = ζ for every ζ ∈ U .
Then g = 1.

Proof. If ζ ∈ U is represented by a sequence . . . x2x1 · h, then there exists
k ∈ N such that the tile T ⊗ xk . . . x1 · h is a subset of U .

Let {f1, . . . , fm} be the nucleus N of the action, where f1 6= 1. Find a word
v1 ∈ X∗ such that f1(v1) 6= v1 and then define inductively vi to be a word of the
form vi−1v, where v = ∅ if fi|vi−1 = 1 and v is such that fi|vi−1(v) 6= v otherwise.
Then we have fi(vi) 6= vi or fi|vi = 1. At the end we get a word vm such that for
every fi ∈ N we have fi(vm) 6= vm or fi|vm = 1, since vi is a beginning of vm.

Consider now an arbitrary point . . . y2y1vmxk . . . x1 ·h. It represents a point of
T ⊗xk . . . x1 ·h ⊂ U , therefore . . . y2y1vmxk . . . x1 ·h is asymptotically equivalent to
the point . . . y2y1vmxk . . . x1 · hg. This implies that there exists an element f ∈ N
such that f · vmxk . . . x1 · h = vmxk . . . x1 · hg. But by the choice of vm, we have
either f · vm = u · f ′ for u 6= vm and f ′ ∈ N , or f · vm = vm · 1. The first case is
impossible, and the second implies that hg = h, i.e., that g = 1. �

Definition 4.6.3. Limit orbispace JG is the orbispace defined by the atlas
equal to the pseudogroup generated by the right action of G on XG.

Let us denote the groupoid of germs of the action of G on XG by (GG,XG). The
action of G on XG is right, while all groupoids act on their spaces of units from the
left. Therefore, in order to keep uniform notations for all groupoids, the element
(g, ξ) of the groupoid of (germs of) the action corresponds to the transformation
ζ 7→ ζ · g−1.

Proposition 4.6.1 implies that (GG,XG) is proper. Proposition 4.6.2 implies
that the groupoid of germs in our case coincides with the groupoid of the action.
Which in turn shows that it is Hausdorff, thus the limit orbispace is rigid.
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The action of G on X defines the action cocycle on the groupoid GG, i.e., a
functor σ : GG −→ S (X) by the natural rule

σ(g, ξ)(x) = g(x).

Recall that the skew product GGoσ acts on the space XG×X, and its elements
are triples (ξ, g, x), where ξ ∈ XG and g ∈ G (here (g, ξ) is an element of the
groupoid GG, i.e., the germ of the transformation ζ 7→ ζ · g−1 at a neighborhood of
ξ ∈ XG).

We have

s(ξ, g, x) = (ξ, x) ∈ XG × X

r(ξ, g, x) = (ξ · g−1, g(x)) ∈ XG × X

Multiplication is defined by the formula

(ξ1, g1, x1) · (ξ2, g2, x2) = (ξ2, g1g2, x2),

where the product is defined if and only if ξ1 = ξ2 · g−1
2 and g2(x2) = x1. Let us

denote by J ◦G the orbispace defined by the atlas (XG × X,GG o σ).
The projection Ps : (ξ, g, x) 7→ (g, ξ) of the skew product (GGoσ,XG×X) onto

(GG,XG) defines a covering of the orbispace JG by the orbispace J ◦G. We denote
the covering by s : J ◦G −→ JG.

Let us define a functor EJ : (GG o σ,XG × X) −→ (GG,XG) by the formula

EJ(ξ, g, x) = (g|x, ξ ⊗ x) .

Direct computations show that EJ is a functor. It is open by Lemma 3.3.2.
It is easy to see that if the action of G on X∗ is recurrent, then the functor EJ

defines an open embedding J ◦G ↪→ JG, which is identical on the underlying space
JG. Therefore, we assume in the recurrent case that the orbispace J ◦G is an open
sub-orbispace of JG. Then the covering s : J ◦G −→ JG acts on the underlying
spaces as the shift s : JG −→ JG, defined in 3.5.2.

The limit orbispaces JG and J ◦G are path connected and locally path connected
if the action is recurrent (see Corollary 3.4.3).

Theorem 4.6.4. The partial self-covering s : J ◦G −→ JG depends only on the
self-similarity bimodule M.

Proof. Let X = {x1, x2, . . . , xd} and Y = {y1, y2, . . . , yd} be two bases of the
bimodule M. Then (possibly after changing the indexing) there exists a collection
{r1, r2, . . . , rd} ⊂ G such that yi = xi · ri.

Let us define a map F : XG×Y −→ XG×X of the unit spaces of the skew product
groupoids by the formula F (ξ, yi) = (ξ, xi). Then F is a homeomorphism and can
be extended to a functor F (ξ, g, yi) = (ξ, g, xi) (it is a functor, since g(xi) = xj
implies g(yi) = yj). It follows directly from the definitions that this functor is an
equivalence (it is even an isomorphism of groupoids).

The functor F obviously agrees with the projections Ps, i.e., Ps(F (ξ, yi)) =
Ps(ξ, yi) = ξ. On the other hand, EJ(F (ξ, yi)) = EJ(ξ, xi) = ξ⊗xi, and EJ(ξ, yi) =
ξ⊗yi = ξ⊗xi · ri. Thus EJ(F (ξ, yi)) differs from EJ(ξ, yi) on action of an element
of the group G, so that the functors EJ ◦ F and EJ are equivalent, i.e., define the
same map of the orbispaces. �
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Remark. It follows that the partial self-covering s : J ◦G −→ JG depends only
on the right G-space XG and the self-similarity XG ⊗M = XG, i.e., that it is
uniquely defined in conditions of Theorem 3.3.10.

4.6.2. Non-faithful actions. We will have to consider also the case when
the action (G,X) is not faithful. Then the action of G on XG may be not rigid, i.e.,
the groupoid of germs may be different from the groupoid of the action. The limit
orbispaces JG and J ◦G are defined then using the groupoid of germs.

Proposition 4.6.5. Suppose that we have a recurrent contracting action (G1,X).
Let G be the quotient of G1 by the kernel of the action. Then the partial self-covering
s1 : J ◦G1

−→ JG1 is a restriction of the partial self-covering s : J ◦G −→ JG. More-
over, the respective embeddings JG1 ↪→ JG and J ◦G1

↪→ J ◦G are homeomorphisms
of the underlying spaces.

Suppose in addition that the canonical epimorphism π : G1 −→ G is such that
π(g1g2g3) = 1 implies g1g2g3 = 1 whenever gi are elements of the nucleus of the
action (G1,X). Then the partial self-coverings are conjugate.

Proof. We have to prove that there exist embeddings of orbispaces e : JG1 −→
JG and e◦ : J ◦G1

−→ J ◦G, such that the diagrams of orbispace mappings

(4.5)
J ◦G1

e◦−→ J ◦Gyp1 yp
JG1

e−→ JG

, and
J ◦G1

e◦−→ J ◦Gyε1 yε
JG1

e−→ JG
are commutative. Here ε1 : J ◦G1

−→ JG1 and ε : J ◦G −→ JG are the natural
embeddings.

The spaces XG1 and XG are quotients of the spaces X−ω ·G1 and X−ω ·G by the
asymptotic equivalence relation. Let π : G1 −→ G be the canonical epimorphism.
Consider the map

E(. . . x2x1 · g) = . . . x2x1 · π(g).

It is easy to see that E agrees with the asymptotic equivalence relation and the
group actions, so that it defines a continuous map E : XG1 −→ XG such that
E(ξ · g) = E(ξ) · π(g) for all ξ ∈ XG1 and g ∈ G1. It follows that E can be extended
to a functor E : G1 −→ G between the groupoids of germs. It acts by the rule

E(g, ξ) = (π(g), E(ξ))

for all g ∈ G1 and ξ ∈ XG1 . It is also straightforward that the map

E◦(ξ, g, x) = (E(ξ), π(g), x)

is a functor E◦ : G1 oσ −→ Goσ between the atlases of the orbispaces J ◦G1
and J ◦G.

Straightforward computations show that E and E◦ define open maps e : JG1 −→ JG
and e◦ : J ◦G1

−→ J ◦G such that the diagrams (4.5) are commutative.
The functors E : G1 −→ G and E◦ : G◦1 −→ G◦ define embeddings, since they

are surjective.
Suppose now that the epimorphism π is such that π(g1g2g3) = 1 implies

g1g2g3 = 1 whenever gi are elements of the nucleus. We have to prove that the
functors are equivalences, i.e., that they are étale. Let us prove that E is étale, the
case of E◦ will easily follow.
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Figure 2. A G-path

Let N1 and N be the nuclei of the actions (G1,X) and (G,X), respectively.
Take any ξ = . . . x2x1 · g ∈ XG1 and consider its neighborhood U1(ξ) (see Proposi-
tion 3.3.1). It is sufficient to prove that restriction of E on U1(ξ) is injective, since
the neighborhood U1(ξ) is compact.

Suppose that we have ζ1, ζ2 ∈ U1(ξ) such that E(ζ1) = E(ζ2). Then ζ1 =
. . . y2y1·h1g and ζ2 = . . . z2z1·h2g, for some h1, h2 ∈ N1 and . . . y2y1, . . . z2z1 ∈ X−ω.

We have . . . y2y1 · π(h1g) = . . . z2z1 · π(h2g) in XG, i.e., . . . y2y1 · π(h1) =
. . . z2z1 · π(h2). It follows that there exists a bounded sequence gk ∈ G such that
π(gk) · yk . . . y1 · π(h1) = zk . . . z1 · π(h2). Then gk · yk . . . y1 = zk . . . z1 · g′k, where
π(g′kh1) = π(h2). But g′k ∈ N1 for all sufficiently big k, therefore g′kh1 = h2 and
. . . y2y1 · h1g = . . . z2z1 · h2g in XG1 . �

4.7. Paths in an orbispace

4.7.1. G-paths and their homotopy. We again follow the exposition in [22].
Let (G,X ) be an étale groupoid. A G-path γ = (g0, γ1, g1, . . . , γk, gk) from a

point x ∈ X to a point y ∈ X consists of:

(1) a subdivision a = t0 ≤ t1 ≤ . . . ≤ tk = b of a real interval [a, b],
(2) continuous maps γi : [ti−1, ti] −→ X , i = 1, 2, . . . , k,
(3) elements gi ∈ G, i = 0, 1, . . . , k such that s(gi) = γi(ti) for i = 1, 2, . . . , k,

r(gi) = γi+1(ti) for i = 0, 1, . . . , k − 1, s(g0) = x and r(gk) = y.

Two paths are equivalent if one can pass from one to the other using the
following operations and their inverses.

(1) Subdivision: add a new division point t′i ∈ [ti−1, ti] together with the unit
element g′i = γi(t′i) and replace γi : [ti−1, ti] by its restrictions γ|[ti−1,t′i]

,
γ|[t′i,ti].

(2) For each i = 1, . . . , k choose a continuous function hi : [ti−1, ti] −→ G, such
that s(hi(t)) = γi(t) for all t ∈ [ti−1, ti] and replace γi by γ′i(t) = r(hi(t))
for i = 1, . . . , k, gi by g′i = hi+1(ti)gihi(ti)−1 for i = 1, . . . , k − 1, g0 by
g′0 = h1(t0)g0 and gk by g′k = gkhk(tk)−1. (See Figure 3.)
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Figure 3. Equivalence of paths

Definition 4.7.1. Two paths γ and γ′ (parameterized by the interval [0, 1])
are homotopic if one can pass from the first to the second by a finite sequence of
the following operations:

(1) equivalence of paths,
(2) elementary homotopies: an elementary homotopy between two paths γ

and γ′ is a family, parameterized by s ∈ [s0, s1], of paths γs = (gs0, . . . , g
s
k)

over the subdivision 0 = ts0 ≤ ts1 ≤ · · · ≤ tsk = 1, where tsi , γ
s
i and gsi

depend continuously on the parameter s, the elements gs0 and gsk are in-
dependent of s and γs0 = γ, γs1 = γ′.

The set of homotopy classes of paths is a groupoid under the natural operation
of multiplication of paths. It is called the fundamental groupoid and is denoted
π1(G).

Remark. We multiply G-paths in the same order as we compose functions: if
γ1, γ2 are two paths parametrized by the interval [0, 1], then their product γ1γ2 is
the path equal to γ2 on [0, 1/2] and to γ1 on [1/2, 1], after reparametrization. This
is made to agree with the multiplication of elements of groupoids.

The space of units of the fundamental groupoid is identified in the natural way
with X . We have s(γ) equal to (the trivial path at) the beginning of the path γ
and r(γ) equal to (the trivial path at) the end of the path γ.

The isotropy group of a point x ∈ X in the fundamental groupoid is called
fundamental group of the étale groupoid and is denoted π1(G, x).

An étale groupoid (G,X ) is said to be path connected if for any two points
x, y ∈ X there exists a path starting in x and ending in y. An étale groupoid is
path connected if and only if its fundamental groupoid is transitive. If the groupoid
is path connected, then the fundamental group π1(G, x) does not depend, up to an
isomorphism, on the point x.

An orbispace is path connected if some (and thus all) its groupoids of changes
of charts are path connected. An orbispace is path connected if and only if its
underlying space is such. The fundamental group π1(M) of a path connected
orbispaceM is the fundamental group π1(G, x), where (G,X ) is some of its atlases
and x ∈ X . Since the group π1(G, x) does not depend on the choice of (G,X ) and
x ∈ X , the fundamental group of a path connected orbispace is well defined.

See [22] for more on fundamental groups of orbispaces and étale groupoids.
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4.7.2. Induced homomorphisms. Let F : G1 −→ G2 be a continuous func-
tor and let γ = (g0, γ1, g1, . . . , γk, gk) be a path in G1. Then

F (γ) = (F (g0), F ◦ γ1, F (g1), . . . , F ◦ γk, F (gk))

is a G2-path called image of γ under F .
It is easy to see that images of equivalent (homotopic) paths are equivalent

(resp. homotopic).
Consequently, every continuous functor F : (G1,X1) −→ (G2,X2) induces a

functor F∗ : π1(G1) −→ π1(G2) of the fundamental groupoids by the rule F∗(γ) =
F (γ).

If f : M1 −→ M2 is an open map of path connected orbispaces given by a
functor F : G1 −→ G2 in some atlases, then we get the induced homomorphism of the
fundamental groups F∗ : π1(G1, t) −→ π1(G1, F (t)). The obtained homomorphism
f∗ : π1(M1) −→ π1(M2) is defined up to a conjugacy in π1(M2).

4.7.3. Universal covering. An atlas (G,X ) of an orbispaceM is said to be
locally simply connected if the space X is locally simply connected. It is easy to see
that if some atlas of an orbispace is locally simply connected, then every its atlas
is such. We say that an orbispace is locally simply connected if some (and thus
every) its atlas is locally simply connected.

Suppose thatM is locally simply connected and let (G,X ) be its atlas. Let us
choose some point t ∈ X and let Xt be the set of all homotopy classes of G-paths
starting in t.

Let γ be any element of Xt and let z ∈ X be its end. For every simply connected
neighborhood U of z let U(γ) be the set of G-paths of the form γ′ · γ, where γ′ is a
usual path in U starting in z. Since U is simply connected, the map

γ′ · γ 7→ end of γ′

is a bijection U(γ) −→ U . We introduce a topology on Xt declaring the collection
of sets of the form U(γ) to be a base of neighborhoods of the point γ.

Let Gt be the set of pairs (g, γ), where γ ∈ Xt and g ∈ G are such that s(g) is
the end of γ. We introduce on Gt a groupoid structure putting

s(g, γ) = γ, r(g, γ) = gγ

and
(g1, γ1) · (g2, γ2) = (g1g2, γ2),

where the product is defined if and only if γ1 = g2γ2.
Let U be a simply connected neighborhood of the end z of γ ∈ Xt and let

H : U −→ V be a change of charts in (G,X ) (i.e., an open G-set). The set of
elements (g′, γ′γ), where g′ is the germ (H, z′) and z′ is the end of the path γ′ ⊂ U ,
is a neighborhood of (H, z) in a natural topology on Gt.

The groupoid (Gt,Xt) is an atlas of an orbispace M̂. The map P : (g, γ) −→ g

is a covering map of groupoids defining a covering p : M̂ −→M. The orbispace M̂
and the covering p do not depend on the choice of the atlas (G,X ) and are called
universal covering ofM.

The universal covering can be also defined in the classical way as the universal
object in the category of coverings (see [22]).

If the universal covering M̂ has no singular points, then the orbispace M is
called developable. It is easy to deduce from the construction of the universal
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covering thatM is developable if and only if for any unit x ∈ X and every non-unit
element g ∈ Gx of its isotropy group the G-loop (g) at x is not contractible, i.e., iff
the isotropy groups are faithfully represented in the fundamental group.

The fundamental group π1(G, t) acts naturally on Xt by right multiplication.
This action commutes with the left multiplication by G. It implies that the natural
right action of π1(G, t) induces an action of π1(M) = π1(G, t) on M̂. It is easy
to see that ifM is developable, thenM coincides with the orbispace M̂

/
π1(M).

See more on developability of orbispaces in [22].
IfM is not developable, then M̂ has singular points, and we arrive to a special

atlas
(
Xt, G̃t

)
of M, where G̃t consists of triples (g, ζ, γ), where ζ ∈ Xt, g ∈ G and

γ ∈ π1(G, t) are such that s(g) is the end of ζ.
We introduce on G̃t the topology of a subset of the direct product G × Xt ×

π1(G, t), where the fundamental group is taken with the discrete topology.
Then G̃t is a groupoid with respect to the multiplication

(4.6) (g1, ζ1, γ1)(g2, ζ2, γ2) = (g1g2, ζ2, γ1γ2),

where the product is defined if and only if s(g1, ζ1, γ1) = r(g2, ζ2, γ2) (see below).
We identify a point γ ∈ Xt with the unit (1z, γ, 1), where 1z ∈ X is equal to

the beginning of γ, and 1 is the unit of the fundamental group.
Then the source and the range maps are given by the formulae

s(g, ζ, γ) = ζ, r(g, ζ, γ) = gζγ−1.

Proposition 4.7.2. The map E : Xt −→ X mapping a path γ ∈ Xt to its end
is an equivalence of groupoids.

Proof. It follows directly from the definition that E is a local homeomorphism
and that it induces a surjective map of the spaces of orbits. Therefore, it is sufficient
to prove that E can be extended to a functor and that the functor is full.

The functor is obviously the map E : (g, ζ, γ) 7→ g. If x1 = E(ζ1), x2 = E(ζ2)
are points of X belonging to one G-orbit, then for every g ∈ G such that s(g) =
x1, r(g) = x2 we have the element (g, ζ1, ζ−1

2 gζ1) such that s(g, ζ1, ζ−1
2 gζ1) = ζ1,

r(g, ζ1, ζ−1
2 gζ1) = gζ1 · (ζ−1g−1ζ2) = ζ2 and E(g, ζ1, ζ−1

2 gζ1) = g. Hence, E is a full
functor. �

Definition 4.7.3. The groupoid
(
Xt, G̃t

)
, defined above is called derived atlas

of (X ,G).

For example, ifM is a manifold, seen as an orbifold with the trivial atlas (i.e.,
the groupoid containing only units), then the derived atlas will be the groupoid of
the action of the fundamental group on the universal covering of M.

4.7.4. Preimages of paths under coverings. In the same way as for the
topological spaces, paths in orbispaces can be lifted to the covering orbispace
(see [22] p. 611).

Notation. Let P : (G1,X1) −→ (G,X ) be a covering map of étale groupoids and let
γ be a G-path. Then we denote by P−1(γ)[x] (the equivalence class of) the preimage
of γ under P , which starts in the point x. The point x must be a preimage of the
beginning of the path γ.
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Lemma 4.7.4. Let p :M1 −→M be a covering of orbispaces given by a covering
P : (G1,X1) −→ (G,X ) of their atlases. Let the map p−1

∗ : π1(M) 99K π1(M1) be
given by

p−1
∗ (γ) = P−1(γ)[x1]

and defined on the subgroup of the loops γ ∈ π1(G, x) for which the path P−1(γ)[x1]
is also a loop. Here x ∈ X and x1 ∈ P−1(x) are arbitrary and π1(M), π1(M1) are
identified with π1(G, x) and π1(G1, x1) respectively.

Then p−1
∗ is a virtual homomorphisms, which is uniquely determined, up to a

conjugacy of virtual homomorphisms, by the map p :M1 −→M only.

For the notion of conjugate virtual endomorphisms see Definition 2.5.4.

Proof. The fact that p−1
∗ is a virtual homomorphism, even that it is an iso-

morphism of a subgroup of index d in π1(G, x) with π1(G1, x1) is classical and
follows directly from the definition of a covering (or from the explicit formula for
the preimage of a path, which will be given below). Let us show that its conjugacy
class does not depend on the choice of atlases, functors and basepoints.

It is sufficient to prove that it does not depend on the choice of the basepoint,
since we can always pass to the union of the atlases.

Take some x, y ∈ X and x1 ∈ P−1(x), y1 ∈ P−1(y). Choose also a G1-path `1
from y1 to x1 and let ` = P (`1) be its image which is a G-path from y to x.

We can identify π1(G, x) with π1(G, y) using the isomorphism γ 7→ `−1γ`. This
isomorphism is defined uniquely, up to a conjugation. Both groups π1(G, x) and
π1(G, y) are identified with π1(M) in a unique, up to a conjugation, way. Similarly,
we identify π1(G1, x1) with π1(G1, y1) using the path `1, which is also canonical, up
to a conjugation.

Then, for γ ∈ π1(G, x):

P−1(`−1γ`)[y1] = `−1
1 P−1(γ)[x1]`1,

therefore p∗ remains to be the same whatever basepoints we take, if we assume the
described identifications of fundamental groups. Consequently, its conjugacy class
remains to be the same for any choice of basepoints and identifications. �

Let us show an explicit formula for the lift of a path in the case of a graded
covering.

Proposition 4.7.5. Let (G,X ) be an étale groupoid let σ : G −→ S (D) be a
cocycle. Denote by P : (G o σ,X × D) −→ (G,X ) the respective covering map.

Let γ = (g0, γ1, g1, . . . , γk, gk) be a G-path starting in a point x = s(g0). Then
for every preimage x′ = (x, a) of x under P we have

P−1(γ)[x′] = ((g0, a0), (γ1, a0), (g1, a1), (γ2, a1), . . . , (γk, ak−1), (gk, ak)) ,

where a0 = a and am+1 = σ(gm, am) for m = 0, . . . , k − 1, (gm, am) are elements
of G o σ and (γm(t), am−1) denotes a function from [tm−1, tm] to X × D.

Proof. It is sufficient to check that ((g0, a0), (γ1, a0), . . . , (γk, ak−1), (gk, ak))
is a G o σ-path and that its image under P is equal to γ. Both facts are checked
directly using the definitions. �
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4.7.5. Monodromy action. If x is the beginning and y is the end of the path
γ, then the end of the path P−1(γ)[(x, a)] is a preimage (y, b) of the point y. The
map σ(γ) : a 7→ b is a permutation, which can be computed explicitly in our case
(see Proposition 4.7.5) as the integral of the cocycle σ along γ:

(4.7) σ(γ) = σ(gk) · · ·σ(g1)σ(g0).

It is not hard to prove that the permutation σ(γ) depends only on the homotopy
class of the path γ and that the map γ 7→ σ(γ) is a cocycle on the fundamental
groupoid of the atlas. In particular, we get an action of the fundamental group
π1(G, x) on the set of preimages of the point x, which is called monodromy action
on the covering p :M1 −→M.

One can prove, in the same way as for the usual topological spaces, that the
monodromy action does not depend, up to a conjugacy of group actions, on the
choice of the basepoint x (and on the choice of the atlases). In particular, the kernel
of the monodromy action depends only on the covering p.



CHAPTER 5

Iterated monodromy groups

It is most natural to define iterated monodromy groups in the general context
of orbispaces and their coverings. However, one can avoid using orbispaces in
practical computations of iterated monodromy groups and in many applications.
The readers not interested in orbispace theory may read this chapter, omitting the
subsections with titles written in italic. However, most proofs are presented only
for the general case of orbispaces.

5.1. Definition of iterated monodromy groups

5.1.1. Definition. Let f :M1 −→M be a covering of a path connected and
locally path connected (orbi)spaceM by its path connected open sub-(orbi)space.
Then iterated monodromy group is the quotient

IMG(f) = π1(M)

/⋂
n≥1

Kn ,

where Kn is the kernel of the action of π1(M) by the natural monodromy action
on the nth iterate fn :Mn −→M of the covering f .

Profinite (or closed) iterated monodromy group IMG(f) is the completion of
the group π1(M) with respect to the sequence of subgroups Kn.

The kernels Kn are normal subgroups of finite index. The iterated monodromy
group is a dense subgroup of the profinite iterated monodromy group. In particular,
iterated monodromy groups are always residually finite.

We always assume, for sake of simplicity, that the domainsMn of the iterates
fn :Mn −→M of the partial self-covering are path connected.

5.1.2. Tree of preimages. The iterated monodromy group IMG (f) of a par-
tial self-covering f :M1 −→M acts naturally on a rooted tree of preimages, which
is constructed as follows.

We consider here the case of usual topological spaces. The general case of
orbispaces will be considered later.

Choose a basepoint t ∈ M. The nth level of the tree of preimages T is the
set f−n(t) of preimages of t under the nth iterate of f . A vertex z ∈ f−n(t) is
connected by an edge with f(z) ∈ f−(n−1)(t).

If the covering f : M1 −→ M is d-fold, then every vertex z ∈ f−(n−1)(t)
is connected exactly to d vertices of the level f−n(t). These vertices are the f -
preimages of z. Thus T is a d-regular rooted tree.

If γ ∈ π1(M, t) is a loop starting and ending in t, then for every n and z ∈
f−n(t) there exists precisely one fn-preimage γz = f−n(γ)[z] of γ starting at z.

125
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Figure 1. Iterated monodromy action

Let γ(z) be the end of γz. Then the map

z 7→ γ(z)

is a permutation of the level f−n(t) of the tree T (see Figure 1). It is, by definition,
the monodromy action of γ on f−n(t).

If z ∈ f−n(t) and γz is the fn-preimage of γ starting at z, then f (γz) is an
fn−1-preimage of γ starting at f(z). This proves that the permutation z 7→ γ(z) is
an automorphism of the tree T .

We get in this way an action of the fundamental group π1(M, t) on the tree
T . This action is called iterated monodromy action of π1(M). The quotient of the
fundamental group by the kernel of the iterated monodromy action is, by definition,
the iterated monodromy group IMG (f).

The closed iterated monodromy group IMG(f) is the closure of the iterated
monodromy group IMG (f) ≤ AutT in the automorphism group of the rooted tree
T .

It is not hard to prove that the iterated monodromy action is defined uniquely,
up to conjugacy of the actions (i.e., does not depend on the choice of the basepoint
t). We will prove this below in a more general setting of orbispaces.

5.1.3. Tree of preimages for orbispaces. Let p :M1 −→M be a partial
d-fold self-covering of an orbispaceM and let pn :Mn −→M be its nth iteration.
Choose some point t ∈ M. Its tree of preimages T is a rooted tree of groups (in
the sense of J.-P. Serre [109]), which is constructed in the following way.

The nth level of the tree T is the set of preimages p−n(t). Two vertices z1 ∈
p−n(t) and z2 ∈ p−(n−1)(t) are connected by an edge if and only if z2 = p(z1).
The group attached to a vertex z ∈ p−n(t) is its isotropy group Gz in Mn. The
covering p :Mn −→Mn−1 induces an injective homomorphism p∗ : Gz −→ Gp(z)
of isotropy groups for every z ∈Mn. Therefore, the group Ge attached to an edge
e = (z, p(z)), where z ∈ p−n(t), is the isotropy group Gz of z in Mn with the
identical isomorphism Ge −→ Gz and the embedding p∗ : Ge −→ Gp(z).

Lemma 4.4.2 implies that the universal covering T̃ of the tree T is a d-regular
rooted tree.

This construction is easy in the case when the basepoint t (and thus all its
preimages) are non-singular. Then the tree T is a usual d-regular tree (i.e., all the
vertex and edge groups are trivial) and the universal covering T̃ coincides with T .
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But if t is singular, then this definition of the tree T and its universal covering
was not precise enough, since the isotropy groups and the homomorphisms p∗ :
Gz −→ Gp(z) are defined only when some atlases of the orbispaces Mn are given.
Let us make our definition more explicit.

Fix some n ∈ N and find some atlases (Gk,Xk) of the orbispace Mk for 0 ≤
k ≤ n so that the coverings p :Mk −→Mk−1 are defined by functors Pk :Mk −→
Mk−1 for every k = 1, . . . , n. We can do it for every n but it is in general not clear
how to do this for n =∞, i.e., for allMk simultaneously.

Let x be a preimage of the basepoint t in X0. Denote by P k the functor
P1 ◦ · · · ◦ Pk defining the covering pk : Mk −→ M. Let Lk =

(
P k
)−1 (x) and

L0 = {x}. We get a rooted tree T̃n consisting of n+ 1 levels Lk, k = 0, 1, . . . , n in
which a vertex z ∈ Lk is connected to the vertex Pk(z) ∈ Lk−1.

The fundamental group π1(G0, x) acts on the levels of the tree T̃n by the mon-
odromy action: if γ ∈ π1(G0, x) and z ∈ Lk, then γ(z) is the end of the path(
P k
)−1 (γ)[z].
It follows from the equality

Pk

(
(P1 ◦ · · · ◦ Pk)−1 (γ)[z]

)
= (P1 ◦ · · · ◦ Pk−1)

−1 (γ) [Pk(z)]

that the monodromy action of π1(G0, x) is an action by automorphisms of the tree
T̃n.

The tree T̃n and the monodromy action of π1(M) are constructed using spe-
cific atlases. We are going to show that these objects are nevertheless canonically
defined.

Suppose that (G′k,X ′k), k = 0, 1, . . . , n and P ′k : G′k −→ G′k−1 be another choice
of atlases and functors defining p :Mk −→Mk−1. Let x′ ∈ X ′0 be a preimage of t.
Let T̃ ′n be the tree defined by these data. Let (Gk ∨ G′k,Xk t X ′k) be the respective
union of the atlases. We will denote the union of the functors Pk and P ′k by Pk
(this will not lead us to confusion).

Choose a G0 ∨ G′0-element h such that s(h) = x and r(h) = x′. It defines an
isomorphism λ : π1(G0, x) −→ π1(G′0, x′) by λ(γ) = hγh−1. It is the standard
identification of π1(G0, x) with π1(G′0, x′). Given such an identification, we define
also an identification τ of the trees T̃n with T̃ ′n.

If z ∈ Lk is a vertex of T̃n, then the corresponding vertex τ(z) is defined as the
end of the G0 ∨ G′0-path

(P1 ◦ · · · ◦ Pk)−1 (h)[z],

i.e., to r(g) where g ∈ Gk ∨ G′k is uniquely defined by the conditions P k(g) =
P1 ◦ · · · ◦ Pk(g) = h and s(g) = z.

Take any γ ∈ π1(G0, x) and let z′ be an arbitrary point of the ith level of the
tree T̃ ′n. Then

(P k)−1
(
hγh−1

)
[z′]

= (P k)−1 (h)
[
γ
(
τ−1(z′)

)]
· (P k)−1(γ)

[
τ−1(z′)

]
· (P k)−1(h−1) [z′] .

Hence the end λ (γ) (z′) of the path (P k)−1
(
hγh−1

)
[z′] is equal to the image of

the end γ
(
τ−1 (z′)

)
of the path (P k)−1(γ)

[
τ−1(z′)

]
under τ , i.e., τγτ−1 = λ(γ).

Consequently the identification λ and τ agree with each other, therefore the above
construction of the tree T̃n and action of π1(M) on it is canonical.
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The uniformizing maps qk : Xk −→ Mk induce natural projection maps from
T̃n onto the subtree consisting of the first n levels of T . These projections also
agree with the identification τ , since z and τ(z) belong to the same Gk ∨ G′k-orbit.

As a direct limit of the π1(M)-sets T̃n we get an infinite rooted d-regular tree
T̃ together with an action of π1(M) and a projection onto T . The isotropy group
Gt = Gx ≤ π1(G0, x) acts on T̃ and the orbits of this action are exactly the fibers
of the projection q : T̃ −→ T . Hence T̃ is the universal covering of the graph of
groups T = Gt\T̃ .

The action of π1(M) on the nth level of the tree T̃ is conjugate to the mon-
odromy action on the covering pn : Mn −→ M and the action of π1(M) on the
tree T̃ is the iterated monodromy action.

5.1.4. Bimodule of a partial self-covering (non-sigular case). Let p :
M1 −→ M be a partial self-covering. Choose a basepoint t ∈ M. Let M(p) be
the set of homotopy classes of paths in M starting in t and ending in a point of
p−1(t). Then the set M(p) has a natural structure of a π1(M, t)-bimodule. The
right action is the natural one:

` · γ = `γ.

The path `γ is a well defined element of M(p), since the end of γ is a beginning of `.
See the remark on page 120 after Definition 4.7.1 about the order of multiplication
of paths.

The left action is obtained by taking preimages of loops under the covering:

γ · ` = p−1(γ)[z]`,

where z is the end of ` and p−1(γ)[z] denotes the unique p-preimage of γ starting
in z.

The bimodule M(p) will be the main tool of computation of IMG (p). It is
essentially the main object encoding the “action” of the self-covering on the funda-
mental group.

Two paths `1, `2 ∈ M(p) belong to the same orbit of the right action if and
only if their ends coincide. Hence we have d orbits and a collection X = {`1, . . . , `d}
is a basis of M(p) if and only if the ends of `i are pairwise different and are all
p-preimages of t. It is also easy to see that the right action of π1(M) on M(p) is
free. Hence, M(p) is a d-fold covering bimodule.

General definition. Let us define the bimodule M(p) for self-coverings of
orbispaces. It will be, as usual, more technical than the definition for non-singular
spaces.

Let p : M1 −→ M be a partial self-covering of a path connected and locally
path connected orbispace. Let us choose atlases (G,X ) and (G′,X ′) of M and
(G1,X1) ofM1 such that the covering p is defined by a covering functor P : G1 −→
G and the embedding M1 ↪→ M is defined by a functor E : G1 −→ G′. Let
(G ∨ G′,X t X ′) be the union of the atlases.

Let us choose some basepoint t ∈ X ⊂ X t X ′ and identify π1(M) with
π1(G, t) = π1(G ∨ G′, t).

Elements of the π1(M)-bimodule M(p) are the pairs (`, z), where z ∈ P−1(t)
and ` is a homotopy class of a G ∨ G′-path starting in t and ending in E(z). The
second coordinate z is just a label used for the case when E is not injective on
P−1(t).
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If γ ∈ π1(G, t) is any G-loop based in t, then

(`, z) · γ = (`γ, z)

and
γ · (`, z) =

(
E
(
P−1(γ)[z]

)
`, z′

)
,

where z′ is the end of P−1(γ)[z]. Recall that P−1(γ)[z] is the P -preimage of γ,
starting in z.

The following is straightforward.

Proposition 5.1.1. Let p :M1 −→M be a d-fold partial self-covering. Then
the π1(M)-bimodule M(p) is a d-fold covering bimodule. It is irreducible if M1 is
path connected. A collection {(`1, z1), . . . , (`d, zd)} is a basis of M(p) if and only
if {z1, . . . , zd} = P−1(t). If X is a basis of M(p), then the associated self-similar
action of the fundamental group π1(M) on X ⊂ X∗ is conjugate to its monodromy
action on p.

We will prove later that the bimodule M(p) does not depend on the choices we
made when constructing it (Proposition 5.1.2).

5.1.5. Associated virtual endomorphism. Fix some element ` ∈ M(p),
i.e., a path ` starting in the basepoint t and ending in its preimage z. Let φ be the
virtual endomorphism of π1(M) (= π1(G, t) = π1(G ∨ G′, t)) associated with M(p)
and `. Its domain is, by definition, the set of loops γ ∈ π1(M) such that p−1(γ)[z]
is also a loop (we have to take P−1(γ)[z] in the case of an orbispace). Thus Domφ
is an index d subgroup isomorphic to the fundamental group of M1. Action of φ
on its domain is given by

φ(γ) = `−1p−1(γ)[z]`

or
φ(γ) = `−1E

(
P−1(γ)[z]

)
`

for orbispaces.
We say that φ is the virtual endomorphism associated with the partial self-

covering p :M1 −→M.

Proposition 5.1.2. The virtual endomorphism φ of π1(M) is uniquely de-
termined, up to a conjugacy, by the partial self-covering p : M1 −→ M and is
conjugate to the composition e∗ ◦ p−1

∗ , where e :M1 ↪→M is the embedding.
The π1(M)-bimodule M(p) is isomorphic to φ(π1(M))π1(M) and is deter-

mined uniquely (up to an isomorphism of bimodules) by the self-covering p.

Proof. The virtual endomorphism φ is the composition of the homomor-
phisms

(5.1) π1(M) = π1(G, t)
P−1
∗

99K π1(G1, z)
E∗−−→ π1(G ∨ G′, E(z)) L−→ π1(G, t) = π1(M),

where P−1
∗ is the isomorphism γ 7→ P−1(γ)[z] of a subgroup of finite index in

π1(M) with π1(M1), E∗ is the homomorphism induced by the functor E and L is
the isomorphism of π1(G ∨ G′, E(z)) with π1(G ∨ G′, t) = π1(G, t) given by the path
`.

The first statement follows from Lemma 4.7.4. The second one follows from
(1) and Propositions 2.5.6 and 2.5.8. �
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5.2. Standard self-similar actions of IMG (p) on X∗

5.2.1. Construction of a standard action. The tree of preimages T (its
universal cover T̃ , for orbispaces) defined by a partial self-covering p :M1 −→M
is a d-regular rooted tree. Therefore T is isomorphic to the tree of words X∗ over
an alphabet X of d letters.

We will prove later that the nth tensor power M(p)⊗n of the bimodule M(p)
is isomorphic to the bimodule M (pn) of the nth iteration of p.

The isomorphism ` : M(p)⊗n −→M (pn) is defined inductively by

(5.2) `(v1 ⊗ v2) = p−n2 (`(v1)) [z]` (v2) ,

where v1 ∈M (p)⊗n1 , v2 ∈M (p)⊗n2 , and z is the end of `(v2).
Recall that a set of paths {`1, . . . , `d} is a basis of M(p) if and only if the paths

`i start in t and end in ti, where {t1, . . . , td} = p−1(t). So, if X = {x1 = `1, . . . , xd =
`d} is a basis of the bimodule M(p), then ` (Xn) is a basis of M (pn). In particular,
the map

v 7→ end of `(v)
is a bijection Λ : Xn −→ p−n(t).

Let us prove the following more direct description of the obtained bijection
Λ : X∗ −→ T for the case of non-singular spaces. The general case will be treated
later using permutational bimodules.

Proposition 5.2.1. Let p :M1 −→M be a partial self-covering of topological
spaces and let T =

⊔
n≥0 f

−n(t) be the tree of preimages. Choose some alphabet X,
a bijection Λ : X −→ p−1(t) and paths `(x) starting in t and ending in Λ(x) for
every x ∈ X. Define the map Λ : X∗ −→ T inductively by the rule that Λ(xv) for
x ∈ X and v ∈ Xn is the end of the path

p−n (`(x)) [Λ(v)] .

Then Λ : X∗ −→ T is an isomorphism of rooted trees.

Proof. If we know that Λ(v) is adjacent to Λ(vy) in T , i.e., that p (Λ(vy)) =
Λ(v), then

p
(
p−n−1 (`(x)) [Λ(vy)]

)
= p−n (`(x)) [Λ(v)] .

Hence the end p (Λ(xvy)) of the path on the left hand side is equal to the end
Λ(xv) of the path on the right hand side of the equality. This proves that Λ(xv)
and Λ(xvy) are adjacent in the tree T and, by induction, Λ is a morphism of rooted
trees. See Figure 2 for the obtained picture of paths and action of p.

We leave to the readers to prove that Λ is injective (or that it is surjective),
which will imply that it is an isomorphism. �

The action of π1(M) on a basis X of the bimodule M(p) is conjugate to the
monodromy action of π1(M) on p : M1 −→ M, by definition of the bimodule
M(p). Since M(p)⊗n is isomorphic to M (pn), the the iterated monodromy action
of π1(M) on T is conjugate by Λ to the self-similar action (π1(M),M(p),X). This
self-similar action is called standard action of π1(M) on X∗.

Computing a standard action is an effective way to compute the iterated mon-
odromy action in terms of automata theory and self-similar groups.

Let us give a direct proof of the following proposition for the case of usual
topological spaces directly, using the definition of the isomorphism Λ : X∗ −→ T
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Figure 2. Isomorphism Λ : X∗ −→ T

Figure 3. Recurrent formula of the standard action

given in Proposition 5.2.1. It will be proved once more for the general case using
permutational bimodules (Theorem 5.2.4).

Proposition 5.2.2. Let Λ : X∗ −→ T be the isomorphism of rooted trees defined
by a bijection Λ : X −→ p−1(t) and a collection of paths `(x) as in Proposition 5.2.1.
The standard action is, by definition, the action of π1(M, t) (or of IMG (p)) on
X∗ obtained by conjugation of the iterated monodromy action on T by Λ. Then the
standard action is self-similar and is given by the recurrent formula

(5.3) γ (xv) = y
(
`(y)−1γx`(x)

)
(v),

where γx = p−1 (γ) [Λ(x)] and y is such that Λ(y) is the end of γx.

See Figure 3 where the loop `(y)−1γx`(x) is drawn.

Proof. Suppose that γ(xv) = yu, i.e., that γ (Λ(xv)) = Λ(yu) in the iter-
ated monodromy action for v, u ∈ Xn and x, y ∈ X. This implies first of all that
γ (Λ(x)) = Λ(y), i.e., that the path γx = p−1 (γ) [Λ(x)] ends in the point Λ(y).

The point Λ(xv) is, by definition of Λ, the end of the path p−n (`(x)) [Λ(v)] and
Λ(yu) is the end of p−n (`(y)) [Λ(u)]. Denote

L =
(
p−n (`(y)) [Λ(u)]

)−1 · p−(n+1) (γ) [Λ(xv)] · p−n (`(x)) [Λ(v)] .

Then L is a well defined path starting in Λ(v) and ending in Λ(u). The path pn(L)
is a loop starting and ending in t and is equal to

`(y)−1 · p−1 (γ) [Λ(x)] · `(x) = `(y)−1γx`(x).
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Figure 4. Computation of the group IMG
(
z2 − 1

)
We get that

`(y)−1γx`(x) (Λ(v)) = Λ(u)

in the iterated monodromy action, i.e., that `(y)−1γx`(x)(v) = u in the standard
action. �

5.2.2. An example of computation of IMG (p). Consider the polynomial
z2 − 1 as a covering of the space M = C \ {0,−1} by its open subset M1 =
C \ {0,−1, 1}. Here {0, 1} is the post-critical set of p, i.e., the orbit of the critical
value −1. We have to delete the post-critical set, when we want to get a partial
self-covering.

Choose t = 1−
√

5
2 as a basepoint of M. It has two preimages: itself, and −t.

Choose the path `0 = `(x0) to be trivial path at t and `1 = `(x1) to be the path
connecting t with −t above the real axis, as the dotted path shown on Figure 4. Let
a and b be the generators of π1(M, t) equal to loops going in the positive direction
around the points −1 and 0 respectively. The loops a and b are shown on the upper
part of the figure.

The preimages of the loops a and b are shown on the two lower parts of Figure 4.
It follows that

a · x0 = b · x1, a · x1 = x0 · 1, b · x0 = x0 · a, b · x1 = x1 · 1,

so that the group IMG
(
z2 − 1

)
is generated by the automaton with the Moore

diagram shown on Figure 2 on page 99.

5.2.3. Tensor products correspond to compositions.

Proposition 5.2.3. Let p1 : M1 −→ M and p2 : M2 −→ M be partial self
coverings. Then

M(p1 ◦ p2) ∼= M(p1)⊗M(p1)
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Proof. One can define the isomorphism ` : M (p1) ⊗M (p2) −→ M (p1 ◦ p2)
rewriting equality (5.2) in appropriate atlases of the orbispaces. The proof that Λ
is an isomorphism is straightforward in the case of a non-singular topological space,
though rather technical for orbispaces. Therefore, we prefer a less technical proof
which uses associated virtual endomorphisms.

The partial self-covering is defined on a sub-orbispaceM◦2 ofM2 and is equal
to the composition p1 ◦p◦2, where p◦2 :M◦2 −→M1 is the restriction of p2 ontoM1.
We have the following diagram from the definition of a pullback (where the square
is commutative).

(5.4)

M◦2 ↪→ M2 ↪→ Myp◦2 yp2
M1 ↪→ Myp1
M

Composition of the embeddings M◦2 ↪→ M2 ↪→ M is the embedding of M◦2 into
M.

It follows from the construction of a pullback of a covering (see 4.4.3) that we
can find atlases (G,X ), (G′,X ′), (G′′,X ′′) of M, atlases (G1,X1) and (G2,X2) of
M1 and M2, respectively, and an atlas (G◦2 ,X ◦2 ) of M◦2 such that the embeddings
and the coverings from diagram (5.4) are defined by functors

G◦2
E◦1−→ G2

E2−→ G′′yP◦2 yP2

G1
E1−→ G′yP1

G

Choose a basepoint t ∈ X , its preimage t1 ∈ P−1
1 (t) ⊂ X1 and denote t′ =

E1(t1) ∈ X ′. Choose some t◦2 ∈ (P ◦2 )−1 (t1) ⊂ X ◦2 and let t2 = E◦1 (t◦2). Denote
t′′ = E2(t2). Then t2 belongs to P−1

2 (t′) (see Figure 5). Let `1 be a G∨G′∨G′′-path
from t to t′ and let `2 be a G ∨ G′ ∨ G′′-path from t′ to t′′.

We identify π1(M) with π1(G, t) = `−1
1 ·π1(G′, t′) ·`1 = `−1

1 `−1
2 ·π1(G′′, t′′) ·`2`1.

Let φi be the virtual endomorphism of π1(M) associated with pi, i = 1, 2. Then
for every γ ∈ Domφ2 ◦ φ1 we have

φ2 (φ1(γ)) = φ2

(
`−1
1 · E1 ◦ P−1

1 (γ) [t1] · `1
)

= `−1
1 `−1

2 · E2 ◦ P−1
2

(
E1 ◦ P−1

1 (γ) [t1]
)
[t2] · `2`1

= `−1
1 `−1

2 · (E2 ◦ E◦1 ) ◦ (P1 ◦ P ◦2 )−1 (γ) [t◦2] · `2`1,

what implies that φ2 ◦ φ1 is associated with p1 ◦ p2. Now Proposition 2.8.4 and
uniqueness of the associated virtual endomorphism finishes the proof. �

5.2.4. Standard action. Let us summarize the obtained results on compu-
tation of the standard action on X∗ in the next theorem.

Theorem 5.2.4. Let p : M1 −→ M be a partial self-covering given by a
functor P : G1 −→ G, let E : G1 −→ G′ be a functor defining the embedding
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Figure 5.

M1 ↪→ M. Let M(p) be the corresponding π1(G, t)-bimodule. Choose some basis
X = {x1 = (`1, z1) , . . . , xd = (`d, zd)} of M(p), where zi are P -preimages of the
basepoint t and `i are G ∨ G′-paths from t to E (zi). Then the monodromy action
of the fundamental group π1(M) on the covering pn : Mn −→ M is conjugate to
the restriction of the associated self-similar action (π1(M),X) onto Xn ⊂ X∗.

For every γ ∈ π1(G, t), xi ∈ X and v ∈ X∗ the following equality holds for the
standard action of π1(M) (and of IMG (p)) on X∗:

(5.5) γ (xiv) = xj
(
`−1
j γi`i

)
(v),

where γi = E ◦ P−1 (γ) [zi] and xj = `j ∈ X ends in the same point zj as γi does.

Here and further E ◦ P−1 (γ) [zi] denotes E
(
P−1 (γ) [zi]

)
.

Proof. It follows directly from Propositions 5.1.1 and 5.2.3. The recurrent
formula for the standard action follows directly from the definition of the bimod-
ule M(p) (see 5.1.4) and from the definition of the associated self-similar action
(see 2.3.2). �

Corollary 5.2.5. The iterated monodromy group IMG (p) is isomorphic to the
quotient of π1(M) by the kernel of the self-similar action defined by the bimodule
M(p). �

5.2.5. Iterated monodromy groups of limit dynamical systems. Let us
show that contracting recurrent groups can be reconstructed from the action of the
shift of their limit orbispace JG.

Theorem 5.2.6. Let (G,X) be a faithful contracting recurrent action of a
finitely generated group G. Then (G,X) is a standard action of the iterated mon-
odromy group IMG (s) of the partial self-covering s : J ◦G −→ JG. In particular,
IMG (s) is isomorphic to G.

Proof. The orbispaces J ◦G and JG are path connected and locally path con-
nected by Theorem 3.4.1. The orbispace JG is the orbispace of the action of G on
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XG. Let (G,XG) be the corresponding atlas. Then (G o σ,XG × X) is an atlas of
J ◦G, where σ is the cocycle σ ((g, ξ), x) = g(x) (see Section 4.6).

If γ = ((g0, ξ0) , γ1, (g1, ξ1) , . . . , γk, (gk, ξk)) is a G-path, then the element ϕ(γ) =
gk · · · g1g0 ∈ G depends only on the homotopy class of γ (see Section 4.7 for
definition of G-paths and their homotopy). Restriction of the map ϕ onto the
fundamental group π1(G, ξ0) is therefore a surjective homomorphism of groups
ϕ : π1 (G, ξ0) −→ G. Note that the group π1 (G, ξ0) is usually “wild” (for example
it is often uncountable).

Let M(s) be the π1 (G, ξ0)-bimodule of the covering s. Its elements are pairs
(`, x), where x ∈ X and ` is (a homotopy class of) a G-path starting in ξ0 and ending
in the point EJ (ξ0, x) = ξ0 ⊗ x. Let us define the map F : M(s) −→M, where M
is the self-similarity bimodule X ·G by F (`, x) = x · ϕ(`).

It is easy to see that for all m = (`, x) ∈ M(s) and γ ∈ π1 (G, ξ0) we have
F (m · γ) = F (m) · ϕ(γ).

Let us prove that F (γ ·m) = ϕ(γ) · F (m). We have

γ · (`, x) =
(
EJ ◦ P−1

s (γ) [(ξ0, x)] `, σ (γ, x)
)

(here σ(γ, x) is the monodromy action of γ on X) and if

γ = ((g0, ξ0) , γ1, (g1, ξ1) , . . . , γk, (gk, ξk)) ,

then

P−1
s (γ) [(ξ0, x)] =(

(ξ0, g0, x) , (γ1, x) , (ξ1, g1, g0(x)) , (γ2, g0(x)) , (ξ2, g2, g1g0(x)) , . . . ,

(ξk, gk, gk−1 · · · g1g0(x))
)

and σ(γ, x) = gk · · · g1g0(x) = ϕ(γ)(x), by Proposition 4.7.5. Hence

EJ ◦ P−1
s (γ) [(ξ0, x)] =(

(g0|x, ξ0 ⊗ x) , (γ1 ⊗ x) ,
(
g1|g0(x), ξ1 ⊗ g0(x)

)
, (γ2 ⊗ g0(x)) ,(

g2|g1g0(x), ξ2 ⊗ g1g0(x)
)
, . . . ,

(
gk|gk−1···g1g0(x), ξk ⊗ gk−1 · · · g1g0(x)

))
.

The product ϕ
(
EJ ◦ P−1

s (γ) [(ξ0, x)]
)

of the elements of the group G appearing in
this path is

gk|gk−1···g1g0(x) · · · g2|g1g0(x)g1|g0(x)g0|x = (gk · · · g2g1g0) |x = ϕ(γ)|x.

Consequently

F (γ · (`, x)) = ϕ(γ)(x) · (ϕ(γ)|xϕ(`)) = ϕ(γ) · (x · ϕ(`)) ,

i.e., F (γ ·m) = ϕ(γ) · F (m) for all m ∈M(p) and γ ∈ π1(G, ξ0).
It follows now from the construction of the self-similar action associated with

a permutation bimodule that ϕ(γ)(w) = γ(w) for all γ ∈ π1(G, ξ0) and w ∈ X∗, i.e.,
that the standard action (IMG(s) ,X) coincides with the action (G,X), where the
isomorphism IMG(s) −→ G is induced by the homomorphism ϕ. �
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5.3. Length structures and expanding maps

5.3.1. Length structure on topological spaces. Let |x − y| be a metric
on a space X. We say that a curve γ : [a, b] −→ X is rectifiable if its length l(γ) is
finite, where

l(γ) = sup (|γ(t0)− γ(t1)|+ |γ(t1)− γ(t2)|+ · · ·+ |γ(tn−1)− γ(tn)|) ,

where supremum is taken over all partitions a = t0 < t1 < . . . < tn = b of the
interval [a, b].

We say that the metric is a length structure on X if the distance |x−y| is equal
to the infimum of length of curves connecting x and y.

A classical example of a space with a length structure is a Riemannian manifold
with the usual notions of length of a curve and distance between points.

5.3.2. Length structures on orbispaces. Quasi-metric on a set M is a
funciton |x − y| from M ×M to [0,+∞] such that |x − x| = 0 for every x ∈ M ,
|x − y| = |y − x| and |x − y| + |y − z| ≥ |x − z| for all x, y, z ∈ M . We assume
that +∞ + t = t +∞ = +∞ for all t ∈ [0,+∞]. A quasi-metric is called finite if
|x− y| 6= +∞ for all x, y ∈M . It is called positive if |x− y| 6= 0 for all x 6= y. Thus
a positive finite quasi-metric is a metric.

If we have a quasi-metric on a set M then the corresponding topological space
(M, |x− y|), is defined by the base of open sets B(x, r) = {y ∈ M : |x− y| < r}.
A Hausdorff space (M, |x− y|)H defined by the quasi-metric is the quotient of the
topological space (M, |x− y|) by the equivalence relation x ∼ y ⇐⇒ |x− y| = 0.

If (M, |x − y|) is a space with positive quasi-metric, then the length l(γ) of a
path γ : [a, b] → M is defined as sup

∑k−1
i=0 |γ(ti) − γ(ti+1)|, where supremum is

taken over all partitions t0 = a, t1, t2, . . . , tk = b of the segment [a, b]. A positive
quasi-metric is a length quasi-metric (and the space is called a length space) if
distance between two points is equal to the infimum of the lengths of all paths
connecting them.

Definition 5.3.1. A length structure on a path connected orbispace M is a
positive quasi-metric |x− y| on the unit space X of its atlas (G,X ) such that

(i) the quasi-metric defines the original topology on X ,
(ii) it is a length quasi-metric (here the usual paths in X and not G-paths are

considered),
(iii) every change of charts h : U → V is a local isometry, i.e., for every x ∈ U

there exists a neighborhood U ′ of x such that h|U ′ is an isometry,
(iv) the quasi-metric |x − y|l on the underlying space |M| (defined below) is

a metric compatible with the topology on |M|.

Two length structures on an orbispace are equivalent if their union satisfies
condition (iii) of the definition (distance between two points in different atlases is
equal to infinity).

Suppose that we have a length quasi-metric on X satisfying condition (iii).
Then the length l(γ) of a G-path γ = (g0, γ1, g1, . . . , γk, gk) is equal by definition
to the sum

∑k
i=1 l(γk) of lengths of the paths γi. It is easy to see that lengths of

equivalent paths are equal.
Then the quasi-metric |x − y|l on X is defined as the infimum of the lengths

of G-paths connecting x to y. It follows from the definitions that |x− y|l = 0, if x
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and y belong to one G-orbit, i.e., if q(x) = q(y). Therefore, the quasi-metric |x−y|l
induces a quasi-metric on |M|, mentioned in (iv).

LetM1 be an open sub-orbispace of an orbispaceM, and let E : (G1,X1) −→
(G,X ) be the embedding functor. Suppose that we have a length structure on
(G,X ). If the orbispaceM1 is path connected, then we get also a length structure
on M1. Namely, if γ is a path in X1, then its length is equal by definition to the
length of the path E(γ) in the space X . Then distance between two points x, y ∈ X1

is equal, by definition, to the infimum of lengths of paths in X1, connecting x and
y.

An orbispaceM with a length structure is said to be complete if its underlying
space |M| is complete with respect to the induced metric |x− y|l.

5.3.3. Expanding self-coverings. Let p : M1 −→ M be a partial self-
covering of a path connected (orbi)space M by its open path connected sub-
(orbi)space M1. Suppose that we have a length structure on M. Then we have
induced length structures on the domains Mn of the iterations pn.

Definition 5.3.2. A partial self-covering p :M1 −→M is expanding if there
exist a constant λ, 0 < λ < 1, such that for every path γ there exists c > 0 such
that every preimage of γ under pn has length not greater than c · λn · l(γ).

Let p : M1 −→ M be an expanding self-covering. Suppose that the metric
|x − y|l is complete on |M|. Then Julia set of p is the set of accumulation points
of
⋃
n≥1 p

−n(t0) ⊂ |M|, where t0 ∈ M is arbitrary. We consider here p as a usual
partial map of the underlying space. Hence the Julia set is just a closed subset of
the underlying space |M|. We will introduce an orbispace structure on it later.

Proposition 5.3.3. The Julia set Jp of an expanding map p :M1 −→M does
not depend on the choice of t0. The Julia set is completely invariant with respect
to p, i.e., p (Jp) = p−1 (Jp) = Jp.

Proof. Suppose that t1 ∈ M is another point and let γ be a path of finite
length connecting t0 with t1. Then for every x ∈ p−n(t0) there exists a pn-preimage
of the path γ, starting at x. Let y be the end of this preimage. Then y belongs to
p−n(t1). The length of the path γ′ is not greater than c ·λn · l(γ) for some constants
c > 0, 0 < λ < 1. Therefore |x− y|l ≤ cλn · |t0 − t1|l, what implies that the set of
accumulation points of

⋃∞
n=0 p

−n(t1) is equal to the set of accumulation points of⋃∞
n=0 p

−n(t0).
We have

p

( ∞⋃
n=0

p−n(t0)

)
=
∞⋃
n=0

p−n(p(t0)) =
∞⋃
n=0

p−n(t0) ∪ {p(t0)},

hence p (Jp) = Jp.
We also have

p−1

( ∞⋃
n=0

p−n(t0)

)
∪ {t0} =

∞⋃
n=0

p−n(t0),

hence p−1 (Jp) = Jp. �

Definition 5.3.4. A partial self-covering p :M1 −→M is uniformly expanding
on its Julia set Jp if it is expanding and for all R > 0 and ε > 0 there exists n0
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such that for every path γ of length < R starting and ending in Jp every preimage
of γ under pn for n ≥ n0 has length less than ε.

5.3.4. Julia set as an orbispace. Julia orbispace is the orbispace defined
by the restriction of an atlas (G,X ) of M onto the full preimage of the Julia set
in X (and passing to the faithful quotient of the respective groupoid, if necessary).
We will denote the Julia orbispace also by Jp.

By Proposition 5.3.3, the Julia set is a subset ofM1. We also can consider the
restriction of the atlas ofM1 onto the full preimage of Jp. We will get in this way
an atlas of an orbispace J ◦p . The orbispaces J ◦p and Jp have the same underlying
spaces, but in general J ◦p is only an open sub-orbispace of Jp.

We get a partial self-covering p : J ◦p −→ Jp, called restriction of p onto its
Julia orbispace.

5.4. Main theorem

5.4.1. Faithfully represented isotropy groups. Let p : M1 −→ M be a
partial self-covering. Let (G,X ) be an atlas of M and choose a basepoint t ∈ X .
Let x ∈ M and let Gx be the isotropy group of x. If we choose a path γ from
the basepoint t to a preimage of x in X , then we define a homomorphism Ix =
Ix,γ : Gx −→ π1(M, t) : g 7→ γ−1 · g · γ. The homomorphism Ix is unique up to a
conjugation in π1(M). We know thatM is developable if and only if Ix is injective
for every x ∈M (see Subsection 4.7.3).

Definition 5.4.1. We say that isotropy group Gx ofM is faithfully represented
in IMG (p) if the composition of Ix with the canonical epimorphism π1(M) −→
IMG (p) is injective.

In particular, if all isotropy groups ofM are faithfully represented in IMG(p),
then the orbispace M is developable.

It is relatively simple to check wether the isotropy groups are faithfully repre-
sented in IMG (p).

Lemma 5.4.2. Suppose that p : M1 −→ M is a partial self-covering of an
orbispaceM and let x ∈M be any point. Let T be the preimage tree of the point x
and let T̃ be is its universal covering. Then the following conditions are equivalent

(1) The isotropy group Gx of x is faithfully represented in IMG (p).
(2) The iterated monodromy action of Gx on T̃ is faithful.
(3) The intersection of the images of the vertex groups of T in Gx is trivial.

Proof. Equivalence of (1) and (2) is obvious. Equivalence of (2) and (3)
follows directly from the construction of the universal covering of a graph of groups
(see [109]). �

5.4.2. Julia sets as limit spaces of iterated monodromy groups.

Theorem 5.4.3. Let p :M1 −→M be a self-covering of a path connected and
locally simply connected orbispace M with a complete length structure. Suppose
that the fundamental group ofM is finitely generated, p is uniformly expanding on
its Julia set and isotropy groups of M are faithfully represented in IMG (p).

Then the permutational bimodule M(p) of the self-covering is hyperbolic and
the next partial self-coverings are conjugate:
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• restriction p : J ◦p −→ Jp of p onto the Julia orbispace,
• the shift s : J ◦π1(M) −→ Jπ1(M),
• the shift s : J ◦IMG(p) −→ JIMG(p).

In particular, the limit dynamical system
(
JIMG(p), s

)
and the dynamical system

(Jp, p) are topologically conjugate.

Proof. The isotropy groups ofM are faithfully represented in IMG(p), hence
M is developable. Let M̂ be the universal covering. Then the groupoid of germs
of the natural action of π1(M) on M̂ is an atlas of M. If Ĵ is the preimage of
the Julia set Jp in M̂, then Ĵ is π1(M)-invariant and the groupoid of germs of the
action of π1(M) on Ĵ is an atlas of the Julia orbispace Jp.

Let us prove at first that the standard action of π1(M) is contracting. Suppose
that the standard action is defined by a collection of paths ` (X) = {`(x) : x ∈ X}.
Let λ and c be the constants as in Definition 5.3.2, where c is chosen common for
all elements of ` (X).

It follows from the definition of a standard action that for γ ∈ π1(M) and
v ∈ Xn the restriction γ|v is a loop whose image in |M| is of the form

ρ = α−1
0 α−1

1 · · ·α−1
n · γn · βn · · ·β1β0,

where γn ∈ p−n(γ) and αk, βk ∈ p−k (` (X)). Let L be a number greater than the
maximal length of the paths from ` (X). There exists, by Definition 5.3.2 a constant
c1 > 0 such that the length of the loop ρ is not greater than

c1λ
nl(γ) + 2Lc

(
λn−1 + λn−2 + · · ·+ λ+ 1

)
< c1λ

nl(γ) +
2Lc

1− λ
.

Consequently, for all n big enough the restrictions γ|v, v ∈ Xn, are defined
by loops of length less than R = 1 + 2Lc/(1 − λ). The universal cover M̂ of M
is a complete locally compact Hausdorff length space. Therefore, by Hopf-Rinow
theorem (see [66] and [22] p. 35), the set of ends of lifts to M̂ of loops which have
length less than R is compact and hence finite. Consequently, the set of elements
of π1(M) defined by loops of length less than R is finite and the standard action is
contracting.

We have to prove the conjugacy of the partial self-coverings. Let us show that
the right π1(M)-space Ĵ satisfies the conditions of Theorem 3.3.10.

Julia set Jp is a bounded closed subset of a complete length space M, hence
is compact by Hopf-Rinow theorem. This implies that the action of π1(G, t) on Ĵ
is co-compact.

It remains to prove that the right π1(M)-space Ĵ is self-similar with a con-
tracting self-similarity.

Let (G,X ), (G′,X ′) and (G1,X1) be atlases ofM andM1 such that the covering
p and the embeddingM1 ↪→M are defined by functors P : G1 −→ G and E : G1 −→
G′. Choose a basepoint t ∈ X and construct the bimodule M(p) using these data.

Let (Gt,Xt) and ((G ∨ G′)t , (X t X ′)t) be the respective atlases of M̂, con-

structed in 4.7.3 on page 121. Let (GJt ,X Jt ) and
(
(G ∨ G′)Jt , (X t X ′)

J
t

)
be re-

strictions of these atlases onto the preimage of Ĵ in them. For every γ ∈ X Jt and
(`, z) ∈M(p) define

Φ (γ ⊗ (`, z)) = E ◦ P−1(γ)[z]`.
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It is easy to see that Φ (γ ⊗ (`, z)) is an element of (X t X ′)Jt and that if γ1 and
γ2 belong to one GJt -orbit, then Φ (γ1 ⊗ (`, z)) and Φ (γ2 ⊗ (`, z)) belong to one
(G ∨ G′)Jt -orbit. Hence, for every y ∈ Ĵ and (`, z) ∈M(p) a point Φ (y ⊗m) ∈ Ĵ is
well defined.

Let us show that Φ : Ĵ ⊗π1(G,t) M(p) −→ Ĵ is a self-similarity structure on the
right π1(M, t)-space Ĵ. We have to prove that Φ is well defined, agrees with the
action of π1(M) and is a homeomorphism.

We have for every γ ∈ X Jt , g ∈ π1(G, t) and (`, z) ∈M(p)

Φ(γ · g ⊗ (`, z)) = E ◦ P−1(γ · g)[z]` =

E ◦ P−1(γ)[z′]
(
E ◦ P−1(g)[z] · `

)
=

E ◦ P−1(γ)[z′] (g · (`, z)) = Φ (γ ⊗ g · (`, z)) ,

where z′ = r
(
E ◦ P−1(g)[z]

)
. Hence Φ : Ĵ ⊗π1(G,t) M(p) −→ Ĵ is well defined.

The right action of π1(M) = π1(G, t) both on M and on Ĵ is multiplication of
paths, hence Φ agrees with the right action of π1(M).

Let us prove that Φ is injective. Suppose that

Φ (γ1 ⊗ (`1, z1)) = Φ (γ2 ⊗ (`2, z2)) .

We have then

(5.6) E ◦ P−1 (γ1) [z1] · `1 = E ◦ P−1 (γ2) [z2] · `2.

The endpoints of E ◦ P−1 (γ1) [z1] and E ◦ P−1 (γ2) [z2] coincide, hence(
E ◦ P−1 (γ2) [z2]

)−1 (
E ◦ P−1 (γ1) [z1]

)
is a well defined path from E (z1) to E (z2). The functor E is full, therefore there
exists a change of charts h ∈ G1 such that s(h) is the end of P−1(γ1)[z1], r(h) is the
end of P−1(γ2)[z2] and E(h) is the unit at the end of E ◦ P−1(γi)[zi] for i = 1, 2.
Then (

E ◦ P−1 (γ2) [z2]
)−1 (

E ◦ P−1 (γ1) [z1]
)

= E ◦ P−1
(
γ−1
2 P (h)γ1

)
[z1]

and P−1
(
γ−1
2 P (h)γ1

)
[z1] is a G1-path from z1 to z2. Consequently α = γ−1

2 P (h)γ1

is a G-loop starting and ending in t.
The paths γ2 · α = P (h)γ1 ∈ X Jt and γ1 ∈ X Jt represent the same point of Ĵ.

We also have

α · (`1, z1) =
(
E ◦ P−1

(
γ−1
2 P (h)γ1

)
[z1]`1, z2

)
=((

E ◦ P−1 (γ2) [z2]
)−1 (

E ◦ P−1 (γ1) [z1]
)
`1,
)

= (`2, z2)

by (5.6).
Consequently, γ1 ⊗ (`1, z1) and γ2 ⊗ (`2, z2) represent the same point of the

tensor product Ĵ ⊗M(p) and Φ is injective.
Let us prove that Φ is surjective. Take an arbitrary γ ∈ X Jt . The Julia set

is completely invariant under p. Therefore, there exists a point ζ ∈ X1 such that
E (ζ) and the end of γ belong to one G ∨G1-orbit. Then the point ζ belongs to the
preimage of J in X1. Let g ∈ G ∨ G1 be such that s(g) = E (ζ) and r(g) is the end
of γ. The functor E is full, therefore there exists g1 ∈ G1 such that s(g) = ζ and
E(g1) = g.
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Choose a G1-path α1 starting in some P -preimage z of t and ending in ζ. Denote
α = P (g1α1). Then α starts in t, ends in P (ζ) and P−1 (α) [z] = g1α1. Take the
element (`, z) of M(p), where

` = E (α1)
−1
g−1γ.

It is a well defined element of M(p), since E(α1) starts in E(z) and ends in E(ζ),
s(g) = E (ζ), r(g) is the end of γ and γ starts in t. But then

Φ (α⊗ (`, z)) = E
(
P−1 (α) [z]`

)
= E (g1α1)E (α1)

−1
g−1γ = E(g1)g−1γ = γ,

what proves that Φ is surjective.
Let us prove that the constructed self-similarity is contracting with respect to

the natural uniformity on the metric space Ĵ. Since π1(M) acts on Ĵ by isometries,
its action is uniformly equicontinuous. It also follows from Hopf-Rinow theorem
that a relation V on Ĵ is bounded if and only if R(V ) = sup(ξ1,ξ2)∈V d (ξ1, ξ2) <∞.
Hence, for every bounded relation V there exists R > 0 such that for every two
points γ1, γ2 ∈ X Jt such that (γ1, γ2) ∈ V , the path γ2 can be written as γγ1 for
some path γ of length less than R. Let U be an arbitrary entourage. Then there
exists ε > 0 such that (ζ1, ζ2) ∈ U whenever distance between ζ1 and ζ2 is less than
ε. By Definition 5.3.4 there exists n0 such that if γ has length less than R then
every one of its pn-preimages have length less than ε if n > n0.

Let xi = (`i, zi) be elements of M(p). Then Φ(γi ⊗ (xn−1 . . . x1x0)) is a path
of the form

γ(n,i)
˜̀
n−1 . . . ˜̀1 ˜̀0,

where γ(n,i) ∈ p−n(γi) and ˜̀k ∈ p−k(`k). It follows that distance between the points
Φ (γ1 ⊗ (xn−1 . . . x1x0)) and Φ (γ2 ⊗ (xn−1 . . . x1x0)) in X Jt is not greater than ε for
all n ≥ n0. Consequently, V ⊗ v ⊂ U for all v ∈M⊗n, n ≥ n0.

Theorem 3.3.10 together with the remark on page 118 imply now that the
partial self-covering p : J ◦p −→ Jp and s : J ◦π1(M) −→ Jπ1(M) are conjugate.

We know that the shift s : J ◦π1(M) −→ Jπ1(M) is a restriction of the shift
s : J ◦IMG(p) −→ JIMG(p) and that the embedding Jπ1(M) ↪→ JIMG(p) and J ◦π1(M) ↪→
J ◦IMG(p) induce homeomorphisms of the underlying spaces (see Proposition 4.6.5).
Hence, conjugacy of the shifts follows from Proposition 4.3.6. �

Conjugacy of the partial self-coverings p : J ◦p −→ Jp and s : J ◦π1(M) −→
Jπ1(M) holds also without the condition that the isotropy groups are faithfully
represented in IMG(p). Note that we have actually proved it for developable or-
bispaces M (this was the only implication of faithfulness of isotropy groups that
we have used).

5.4.3. Local connectivity of Julia sets of “geometrically finite” ex-
panding maps. We get “for free” the following result.

Corollary 5.4.4. Suppose that p : M1 −→ M is an expanding partial self-
covering of a complete orbispace such that π1(M) is finitely-generated and the in-
clusion e :M1 ↪→M induces a surjective homomorphism e∗ : π1(M1) −→ π1(M).
Then the Julia set of p is connected and locally connected.

Proof. A direct corollary of Theorem 5.4.3 and Theorem 3.4.1. �
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5.5. Iterated monodromy group of a pull-back

For the notion of a pull-back of a partial self-covering see Definition 4.5.1.

Proposition 5.5.1. Let p : M1 −→ M be a partial self-covering and let p◦ :
M◦1 −→ M◦ be its pull-back by an open map f : M◦ −→ M. Then there exists
an isomorphism fimg of the group IMG (p◦) with a subgroup of the group IMG (p)
such that the diagram

π1(M◦)
f∗−→ π(M)y y

IMG (p◦)
fimg−→ IMG (p)

is commutative, where f∗ is the homomorphism of fundamental groups induced by
f , and π1(M◦) −→ IMG (p◦) and π1(M) −→ IMG (p) are the canonical epimor-
phisms.

Moreover, fimg agrees with the respective standard actions of IMG (p◦) and
IMG (p).

Proof. By definition of a pull-back of a self-covering, we have embeddings
e : M1 ↪→ M, e◦ : M◦1 ↪→ M◦ and an open map f1 : M◦1 −→ M1 such that the
diagrams

M◦1
f1−→ M1yp◦ yp

M◦ f−→ M

M◦1
f1−→ M1ye◦ ye

M◦ f−→ M
are commutative. Moreover, we can choose such atlases of orbispaces that f1, f , p
and p◦ are given by a commutative diagram of functors and atlases

(5.7)
G◦1

F1−→ G1yP◦ yP
G◦ F−→ G

Let us choose the basepoints t, t1, t◦ and t◦1 in the atlases so that they agree
with the commutative diagram, i.e., that t = F (t◦), t◦ = P ◦(t◦1), t1 = F1(t◦1) and
t = P (t1). Then the virtual endomorphism associated with the self-covering p is
given by

φ(γ) = e∗
(
P−1(γ)[t1]

)
,

where the right-hand side part is defined up to a conjugation in π1(G, t) (see the
definition of an induced homomorphism in 4.7.2).

Similarly, the virtual endomorphism φ◦ associated with the self-covering p◦ is
given by

φ◦(γ) = e◦∗

(
P ◦−1(γ)[t◦1]

)
.

The domains of φ and φ◦ are the sets of loops γ such that P−1(γ)[t1] (resp.
P ◦−1(γ)[t◦1]) are again loops.

Let F∗ : π1(G◦, t◦) −→ π1(G, t) be the homomorphism of fundamental groups
induced by the functor F . It follows from (5.7) that

F∗(Domφ◦) ≤ Domφ,
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since image of a loop under F1 is a loop. We also have

F−1
∗ (Domφ) ≤ Domφ◦,

since if this inclusion is not true, then F1 maps some two preimages of t to one
point, what contradicts to the construction of pull-back.

We then get, using commutativity of the diagrams above:

F∗ (φ◦(γ)) = F∗

(
e◦∗

(
P ◦−1(γ)[t◦1]

))
= g−1 · e∗

(
F1

(
P ◦−1(γ)[t◦1]

))
· g

= g−1 · e∗
(
P−1 (F (γ)) [t1]

)
· g = g−1φ(γ)g

for some fixed g ∈ π1(M) and any γ ∈ π1(M◦). Thus, if we take the virtual
endomorphism g−1 · φ · g, which is also associated to p and has the same domain
as φ, then we can apply Proposition 2.7.6 to the virtual endomorphisms g−1 · φ · g
and φ◦ and the homomorphism f∗ : π1(M◦) −→ π1(M). �

A useful application of Proposition 5.5.1 is avoiding singular points in compu-
tation of iterated monodromy group. If M◦ and M◦1 have no singular points, i.e.,
are usual topological spaces and the homomorphism f∗ : π1 (M◦) −→ π1 (M) is
surjective, then IMG(p◦) ∼= IMG(p) and we can compute the iterated monodromy
group (and its standard action) inside M◦.

We will see some other applications of Proposition 5.5.1 in the next chapter.

5.6. Limit solenoid and inverse limits of self-coverings

5.6.1. Limit solenoid. Let (G,X) be a contracting self-similar action and let
M = X ·G be the associated hyperbolic bimodule. A natural way to define a two-
sided infinite tensor power M⊗Z is to define it as the tensor product M⊗−ω⊗M⊗ω

of the right G-module M⊗−ω = XG with the left G-module M⊗ω = Xω.
Recall that tensor product of G-modules is defined as the quotient of the direct

product M⊗−ω ×M⊗ω by the equivalence relation

ξ · g ⊗ w = ξ ⊗ g · w,

where ξ ∈ XG = M⊗−ω and w ∈ Xω = M⊗ω. If we transform the right action of G
on M⊗−ω into the left action by the usual agreement

g · ξ = ξ · g−1,

then the tensor product M⊗−ω ⊗M⊗ω becomes the quotient of the direct product
by the diagonal left action of G.

Definition 5.6.1. Limit solenoid SG = M⊗Z of a contracting action (G,X) is
the topological space equal to the tensor product M⊗−ω ⊗M⊗ω, i.e., the space of
orbits of the left action of G on the direct product XG × X−ω given by

g (ξ × w) = ξ · g−1 × g(w).

If we have a preferred basis (alphabet) X, then we may define the limit space XG
as the quotient of the direct product X−ω ·G by the asymptotic equivalence relation
(see Proposition 3.1.6). This gives us a more handy definition of the solenoid.
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Definition 5.6.2. Let XZ be the set of two-sided infinite sequences of the form
. . . x−2x−1 . x0x1 . . . over the alphabet X (here the dot marks the place between
the coordinate number −1 and the coordinate number 0). We introduce on XZ the
direct product topology of discrete sets X. Two sequences

. . . x−2x−1 . x0x1 . . . , . . . y−2y−1 . y0y1 . . . ∈ XZ

are asymptotically equivalent if there exists a bounded sequence {gk}k≥0 such that

gk (x−kx−k+1 . . .) = y−ky−k+1 . . .

with respect to the action of G on Xω for all k ≥ 0.

One can prove, in the same way as Lemma 3.1.3, that two sequences ξ1, ξ2 ∈ XZ

are asymptotically equivalent if and only if there exists a two-sided infinite path in
the Moore diagram of the nucleus such that ξ1 is read on the left halves and ξ2 is
read on the right halves of the labels of the arrows.

Proposition 5.6.3. Every point of SG can be written in the form

. . . x−2x−1 ⊗ x0x1 . . . ,

where x0x1 . . . ∈ Xω and . . . x−2x−1 ∈ X−ω (more pedantically, we should have
written ξ ∈ T ⊂ XG instead of . . . x−2x−1, but we as usually identify the points of
XG with the sequences representing them).

The sequences

. . . x−2x−1 ⊗ x0x1 . . . and . . . y−2y−1 ⊗ y0y1 . . .

represent the same point of SG if and only if the sequences

. . . x−2x−1 . x0x1 . . . and . . . y−2y−1 . y0y1 . . .

are asymptotically equivalent in XZ. The topological space SG is homeomorphic to
the quotient of the topological space XZ by the asymptotic equivalence relation.

Proof. Every point of XG can be written as a sequence . . . x−2x−1 ·g ∈ X−ω ·G
by Proposition 3.1.5. Hence, every element of SG can be represented by

. . . x−2x−1 · g ⊗ y0y1 . . . ∼ . . . x−2x−1 ⊗ g · y0y1 . . . = . . . x−2x−1 ⊗ x0x1 . . . ,

where x0x1 . . . = g (y0y1 . . .) with respect to the action of G on Xω.
Two sequences of XZ represent the same point of SG if and only if there exists

g ∈ G such that
. . . x−2x−1 = . . . y−2y−1 · g

in XG and
g (x0x1 . . .) = y0y1 . . .

in Xω.
The first equality is equivalent to existence of a left-infinite path γ1 in the Moore

diagram of the nucleus, which ends in g and is such that . . . x−2x−1 and . . . y−2y−1

are read along γ1 on the left and the right halves of the labels, respectively.
The second equality means that the Moore diagram has a right-infinite path γ1

starting in g such that x0x1 . . . and y0y1 . . . are read along γ2 on the left and the
right halves of the labels, respectively. �
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The definition of SG in terms of sequences over the alphabet X shows that the
two-sided shift

. . . x−2x−1 . x0x1x2 . . . 7→ . . . x−2x−1x0 . x1x2 . . .

preserves the asymptotic equivalence relation on XZ and induces a homeomorphism
e : SG −→ SG. Its inverse will be denoted ŝ and called natural extension of s :
JG −→ JG, for reasons which will be clear a bit later.

We will define the homeomorphism e later also invariantly, i.e., only in terms
of the G-bimodule M. Moreover, we will see that it agrees with a natural orbispace
structure on SG.

5.6.2. Orbispace structure on SG. Let (GG,XG) be the groupoid of the
action of G on XG. Recall that (g, ξ) ∈ GG denotes the germ of the map ζ 7→ ζ ·g−1

at the point ξ. For (g, ξ) ∈ GG and w ∈ Xω define

(5.8) σω (g, ξ, w) = σω ((g, ξ) , w) = g(w).

Lemma 5.6.4. The map σω : GG −→ AutX∗ is a well defined continuous cocy-
cle.

Proof. The element g is uniquely determined by its germ (g, ξ) by Proposi-
tion 4.6.2. Its functoriality and continuity is easy to check. �

Proposition 5.6.5. The skew-product (GG o σ,XG × Xω) is a locally compact
étale Hausdorff groupoid, whose space of orbits is canonnically isomorphic to SG,
i.e., the map

(ξ, w) 7→ ξ ⊗ w
induces a homeomorphism between the space of orbits and SG.

For definition of skew-product see Subsection 4.4.2, page 113.

Proof. The elements of the groupoid GG oσω are of the form (g, ξ, w), where
g ∈ G, ξ ∈ XG and w ∈ Xω. We have

s (g, ξ, w) = (ξ, w) , r (g, ξ, w) =
(
ξ · g−1, g(w)

)
and

(g1, ξ1, w1) (g2, ξ2, w2) = (g1g2, ξ2, w2) .

It is Hausdorff and locally compact as a direct product of a locally compact
Hausdorff groupoid GG (see Proposition 4.6.2) and a compact Hausdorff space Xω.
(Note that the groupoid of germs of the action of G on Xω is usually not Hausdorff.)
It is étale by Proposition 4.4.5.

The formulae for the source and range maps s, r on GG o σω show that two
points of XG × Xω belong to one GG o σω-orbit if and only if they belong to one
orbit with respect to the diagonal left action of G, i.e., if they represent one point
of SG. �

Definition 5.6.6. The groupoid (GG o σω,JG × Xω), where σω is the cocycle
given by (5.8) defines the orbispace structure on SG.

Thus the limit solenoid SG is a fiber bundle over the limit orbispace JG with
fibers homeomorphic to the boundary Xω of the tree X∗ on which G acts by the
self-similar action.
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Note that the groupoid (GG o σω,JG × Xω) coincides with the groupoid of
the (germs of the) diagonal action of G on JG × Xω. In other words, the map
((g, ξ) , w) 7→ (g, (ξ, w)) is an isomorphism of the groupoids.

Let us show now that the shift e : SG −→ SG is induced by an embedding.

Proposition 5.6.7. Let ES : GG o σω −→ GG o σω be given by

(5.9) ES (g, ξ, x0x1x2 . . .) = (g|x0 , (ξ ⊗ x0) , x1x2 . . .) .

Then ES is a well define open functor. If the action is recurrent, then ES defines
an embedding of orbispaces.

Proof. Recall that every point of M⊗ω is written in the form of a sequence
x0x1 . . . ∈ Xω in a unique way (Proposition 2.4.1), so that the letter x0 is well
defined.

Functoriality of ES is checked by direct computation. It is obviously continuous
and it is open by Lemma 3.3.2.

The shift x0x1 . . . 7→ x1x2 . . . is surjective on Xω. If the action is recurrent,
then the map g 7→ g|x0 is surjective on G and the map ξ 7→ ξ ⊗ x0 is surjective on
XG. This implies that the functor ES is surjective and a fortiori is full. �

Similar arguments as in Theorem 4.6.4 show that the embedding e : SG −→ SG
defined by the functor ES depends only on the self-similarity bimodule M, i.e., does
not depend on the choice of the basis X.

5.6.3. Solenoid as an inverse limit.

Proposition 5.6.8. The space SG is homeomorphic to the inverse limit of the
topological spaces

JG
s←− JG

s←− · · · .
The map e : SG −→ SG acts on the inverse limit by

e(ξ1, ξ2, . . .) = (ξ2, ξ3, . . .) .

Its inverse ŝ acts by

ŝ : (ξ1, ξ2, . . .) = (s(ξ1), s(ξ2), . . .) = (s(ξ1), ξ1, ξ2, . . .) ,

i.e., is the natural extension of s on SG.

Proof. We have the following infinite commutative diagram

X−ω
σ←− X−ω

σ←− · · ·yπ yπ
JG

s←− JG
s←− · · ·

where σ is the shift on the space X−ω and π is the canonical quotient map. Obvi-
ously the limit of the first row of the diagram is homeomorphic to XZ, where the
homeomorphism maps the sequence

. . . x−2x−1, . . . x−2x−1x0, . . . x−2x−1x0x1, . . .

representing a point of the limit, to the point . . . x−2x−1 . x0x1 . . . ∈ XZ.
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Consequently, the limit of the lower row is a quotient of XZ under the quotient
map, which is the limit of the quotient maps π in the inverse spectrum. This
quotient map carries two elements

. . . x−2x−1, . . . x−2x−1x0, . . . x−2x−1x0x1, . . .

. . . y−2y−1, . . . y−2y−1y0, . . . y−2y−1y0y1, . . .

to equal points if and only if for every n ≥ −1 we have

π(. . . xn−1xn) = π(. . . yn−1yn).

But it follows from the description of the asymptotic equivalence relations on
XZ and X−ω, that this is equivalent to the condition that the sequences

. . . x−2x−1 . x0x1 . . . , . . . y−2y−1 . y0y1 . . .

are asymptotically equivalent. Thus the inverse limit of the lower row of the com-
mutative diagram is homeomorphic to SG.

The statements about the maps e and ŝ are straightforward. �

5.6.4. Leafs and tiles. The proof of the following proposition is similar to
the proof of Proposition 3.2.10 (after obvious changes).

Proposition 5.6.9. If a contracting action (G,X) is level-transitive, then the
limit solenoid SG is connected. �

Definition 5.6.10. For every w ∈ Xω the tile T ⊗ w is the image of the set
T ⊗w ⊂ XG×Xω in SG and the leaf XG⊗w is the image of the set XG⊗w ⊂ XG×Xω

in SG.

Since XG =
⋃
g∈G T · g, the leaf XG ⊗ w is equal to the union

⋃
g∈G T ⊗ g(w).

Consequently, the following three conditions are equivalent.

(1) the tiles T ⊗ w1 and T ⊗ w2 belong to one leaf
(2) the leafs XG ⊗ w1 and XG ⊗ w2 coincide
(3) the leafs XG ⊗ w1 and XG ⊗ w2 intersect
(4) w1 and w2 belong to one orbit of the action of G on Xω.

Note that the leaves do not depend on the choice of the bases X (though the
tiles do).

Similar arguments as in the proof of Proposition 3.2.5 show that two tiles T ⊗w1

and T ⊗ w2 intersect if and only if there exists an element g of the nucleus such
that g(w1) = w2.

This implies that if the self-similar action (G,X) is recurrent, then the adjacency
graph of a leaf XG ⊗ w is isomorphic to the Schreier graph of the action of G on
the orbit G(w).

One of properties of the Schreier graphs are their self-similarity, which can be
interpreted in our terms as the action of the map e on the leafs of SG. We have:

T ⊗ w =
⋃
x∈X

e (T ⊗ (xw)) ,

i.e., every tile T ⊗w is a union of |X| “similar” tiles. If the action (G,X) is recurrent,
then the orbit of xw does not depend on x and the map e maps the leaf XG ⊗ xw
onto the leaf XG ⊗ w.



148 5. ITERATED MONODROMY GROUPS

5.6.5. Relation with iterated monodromy groups. Let p : M1 −→ M
be an expanding partial self-covering of a topological space M. We may consider
then the inverse sequence

M p←−M1
p←−M2

p←− · · · ,
whereMn denotes the domain of the nth iteration of p. LetMω be the projective
limit of this sequence. We have a natural projection map pω :Mω −→M and the
maps

e (ξ0, ξ1, . . .) = (ξ1, ξ2, . . .)
and

p̂ (ξ0, ξ1, . . .) = (p(ξ0), p(ξ1), . . .) = (p(ξ0), ξ0, ξ1, . . .) .
The first map is defined a map from Mω to itself, while the map p̂ is defined

on the subset equal to the preimage ofM1 inMω.
The projection pω : Mω −→ M is a fiber bundle such that the fundamental

group of M acts on the fibers by an action which is topologically conjugate with
the iterated monodromy action on Xω. Consequently, the iterated monodromy
group IMG(p) may be naturally interpreted as the holonomy group of the bundle
pω :Mω −→M.

The preimage of the Julia set in Mω is homeomorphic, by Theorem 5.4.3 and
Proposition 5.6.8, to the limit solenoid SIMG(p).

If all domainsMn are path connected, then the leafs of SIMG(p) are in a natural
bijective correspondence with the path connected components of the projective limit
Mω, since two preimages of a basepoint t in Mω belong to one arwise connected
component if and only if they belong to one orbit of the action of IMG (p) on the
fiber p−1

ω (t).
Projective limits of this sort and their leafs in the case of rational iterations

where defined and studied by M. Lyubich, and Y. Minsky in [85]. They proved,
for example, that in the case of a post-critically finite rational map the natural
conformal structure of the leaves is Euclidean.



CHAPTER 6

Examples and applications

6.1. Expanding self-coverings of orbifolds

We consider in this section the case when the self-covering p : M −→ M is
everywhere defined andM is a Riemann orbifold.

6.1.1. Theorems of M. Shub and M. Gromov. If p : M −→ M is a
self-covering, then the virtual endomorphism φp : π1(M) 99K π1(M) associated
with it is an isomorphism of a finite-index subgroup Domφp < π1(M) with π1(M)
(see Subsection 5.1.5 on page 129). Its inverse is an injective endomorphism p∗ :
π1(M) −→ π1(M), which is the homomorphism induced by p. Both φp and p∗ are
defined up to a conjugation in π1(M).

The kernel of the iterated monodromy action of the fundamental group π1(M)
is equal by Proposition 2.7.5, to the subgroup

Np =
⋂
k≥1

⋂
g∈π1(M)

g−1 · pk∗(π1(M)) · g.

The iterated monodromy group IMG(p) is isomorphic to the quotient π1(M)/Np.

Definition 6.1.1. An endomorphism p : M −→ M of a compact Riemann
orbifold is expanding if there exist constants c > 0 and λ > 1 such that ‖Dpn(~v)‖ ≥
cλn‖~v‖ for every tangent vector ~v ∈ TM and every n ≥ 1.

It is easy to see that if an endomorphism of a compact Riemann orbifold is
expanding, then it is also expanding in the sense of Definition 5.3.2.

The following properties of expanding endomorphisms of Riemannian manifolds
where proved by M. Shub and J. Franks [110, 111].

Theorem 6.1.2 (M. Shub, J. Franks). Suppose that the endomorphism p :
M−→M of a compact Riemann manifold M is expanding. Then the following is
true.

(1) The map p has a fixed point.
(2) The universal covering of the space M is diffeomorphic to Rn.
(3) The set of periodic points of p is dense in M.
(4) There is a dense orbit of p (i.e., the dynamical system (M, f) is topolog-

ically transitive).
(5) The fundamental group π1(M) is torsion free and has polynomial growth.
(6) ⋂

k≥1

pk∗ (π1(M)) = {1}.

Theorems 5.4.3 and 6.1.2 imply

149
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Theorem 6.1.3. Suppose that p : M −→ M is an expanding endomorphism
of a compact Riemannian manifold M. Then iterated monodromy group IMG (p)
is isomorphic to the fundamental group π1(M). Standard actions of the iterated
monodromy group are contracting and the limit dynamical system (JIMG(p), s) is
topologically conjugate to the system (M, p). The limit orbispaces JIMG(p),J ◦IMG(p)

have no singular points. �

We will also prove this theorem in a more general setting.
Theorems 6.1.3, 5.4.3 and 4.6.4 imply the following result (see [110] Theorems 4

and 5).

Theorem 6.1.4 (M. Shub). An expanding endomorphism p :M−→M is de-
termined uniquely up to a topological conjugacy by the action of the homomorphism
p∗ on the fundamental group π1(M). �

M. Gromov proved a conjecture of M. Shub in [59] (see. [111] and [65]) using
his theorem on groups of polynomial growth. M. Shub’s conjecture describes all
possible expanding endomorphisms of Riemannian manifolds.

Let L be a connected and simply connected nilpotent Lie group and let Aff(L)
be the group of diffeomorphisms of L generated by the translations x 7→ x · g and
automorphisms of L. Take some subgroup G < Aff(L) acting freely and properly on
L. Suppose that the quotient M = L/G is compact. Then M is a manifold. If an
expanding endomorphism P of L conjugates G with its subgroup, then P induces
an expanding map p :M−→M. Such maps p are called expanding endomorphisms
of the infra-nil-manifold M.

Note that an endomorphism of a Lie group is expanding if and only if its
derivative at the unit is an expanding linear map.

Theorem 6.1.5 (M. Gromov). Every expanding map of a compact manifold is
topologically conjugate to an expanding endomorphism of an infra-nil-manifold.

6.1.2. Singular case. Let now p : M −→ M be an expanding self-covering
of a compact Riemannian orbifold. The associated virtual endomorphism φ will be
an isomorphism between Domφ and π1(M).

Theorem 6.1.6. Let φ : G 99K G be a surjective and injective contracting
virtual endomorphism and let (G,X) be the associated self-similar action. Then
there exist a nilpotent connected and simply connected Lie group L, a co-compact
proper action of G on L by right affine transformations and a G-equivariant home-
omorphism Φ : XG −→ L. Moreover, the virtual endomorphism φ is induced by a
contracting automorphism of the Lie group L (which will be also denoted by φ) and
Φ(ζ ⊗ φ(g1)g2) = φ (Φ(ζ)g1) g2.

Corollary 6.1.7. Let p : M −→ M be an expanding self-covering of a de-
velopable Riemann orbifold. Then M is isomorphic to the orbifold of an affine
action of π1(M) on a nilpotent connected and simply connected Lie group L. The
self-covering p is induced by an expanding automorphism of L, whose inverse is a
virtual endomorphism of π1(M) such that if Xπ1(M) is the limit space of associated
self-similar action, then the dynamical systems

(
π1(M),Xπ1(M)

)
and (π1(M), L)

are topologically conjugate.

Let us prove a sequence of auxiliary lemmata.
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Lemma 6.1.8. Let φ be an injective contracting virtual endomorphism of a
finitely generated group G. Suppose that the associated self-similar action of G is
faithful. Then the parabolic subgroup P =

⋂
n≥0 Domφn is finite.

Proof. We have φ(P ) ≤ P . Let P0 be the intersection of P with the nucleus
of the associated self-similar action. Then φ(P0) ≤ P0, and since φ is injective and
P0 is finite, φ is a permutation of P0.

If g ∈ P then there exists n ∈ N such that φn(g) belongs to the nucleus, i.e., it
belongs to P0. But φ−n(P0) = P0, thus g ∈ P0. Consequently, P = P0 is finite. �

Lemma 6.1.9. If conditions of Lemma 6.1.8 are satisfied, then G is a group of
polynomial growth and therefore is virtually nilponent.

Proof. By Proposition 2.13.6, growth of the action of G on the orbit of every
point w ∈ Xω is polynomial. Take w = x0x0x0 . . ., where x0 = φ(1)1 ∈ φ(G)G.
Then the parabolic subgroup P is the stabilizer of w in G. Therefore the stabilizer
of w is finite, hence the growth degree of G is the same as the growth degree of
the action of G on G(w). Theorem of M. Gromov (see [59]) now implies that G is
virtually nilpotent. �

Let G be an arbitrary finitely generated group and let φ be a contracting
injective and surjective virtual endomorphism of G such that the kernel K(φ) of
the associated self-similar action is trivial.

We know that G is virtually nilpotent, thus it has a finite-index torsion free
subgroup (see [72]).

Lemma 6.1.10. There is a normal nilpotent torsion free subgroup H EG and a
number n ∈ N such that H is bi-invariant with respect to the virtual endomorphism
φn and

[H : H ∩Domφn] = indφn.

For definition of a bi-invariant subgroup see Section 3.6, page 84.

Proof. Let H be the set of nilpotent torsion free normal subgroups of G of
the least possible index k.

For any H ∈ H the group H∩Domφ is a nilpotent torsion free normal subgroup
of Domφ of index k1 ≤ k. But then φ(H∩Domφ) is a nilpotent torsion free normal
subgroup of index k1 in G. Hence, k = k1.

We see that the virtual endomorphism φ induces a mapping H 7→ φ(H∩Domφ)
on the set H.

The group G is finitely generated, therefore the set H is finite, so that the
mapping has a cycle, i.e., there exists a subgroup H ∈ H an a number n such that
φn(H ∩Domφn) = H. Then H is bi-invariant with respect to φn.

As above, we get [Domφn : H ∩Domφn] = [G : H] = k, what is equivalent to
[H : H ∩Domφn] = [G : Domφn] = indφn, since

[G : H] · [H : H ∩Domφn] = [G : H ∩Domφn]

= [G : Domφn] · [Domφn : H ∩Domφn] .

�
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Proof of Theorem 6.1.6. The groupG is virtually nilpotent by Lemma 6.1.9.
Passing, if necessary to the virtual endomorphism φn, we can find a normal nilpo-
tent torsion free finite-index subgroup H which is bi-invariant and such that

[H : H ∩Domφ] = indφ

(see Lemma 6.1.10).
Let φH : H ∩ Domφ −→ H be the restriction of φ onto H. Choosing a coset

transversal {ri} of H by DomφH we get a basis X = {x1 = φ(r1) · 1, . . . , xd =
φ(rd) · 1} of the bimodules φH(H)H and φ(G)G. We assume that r1 = 1.

Then by Theorem 3.6.1, the natural embedding X−ω ×H ↪→ X−ω ×G induces
an H-covariant homeomorphism XH −→ XG.

By Malcev’s theorem [87] H is a uniform lattice of a simply connected nilpotent
Lie group L. Moreover, the isomorphism φ of the latticesH∩Domφ andH uniquely
extends to an automorphism of the Lie group L. We will denote this automorphism
also by φ. The automorphism φ : L −→ L is contracting with respect to a right-
invariant Riemannian metric on L, since φ is contracting on H (see [44]).

Let us denote by M(H) the H-bimodule φH(H)H. We will define the H-
equivariant homeomorphism Φ : XH −→ L using Theorem 3.3.10. We define to
this end a self-similarity structure on the H-space L by

ζ ⊗ φ(g1)g2 = φ(ζg1)g2,

where φ(g1)g2 in the left-hand side of equality is an element of M(H) and φ in the
right-hand side is the automorphism of L. It is easy to see that it is a well defined
self-similarity structure of the right H-space L.

The automorphism φ of L is contracting, what easily implies that this self-
similarity structure is contracting.

Thus, all conditions of Theorem 3.3.10 are fulfilled, so that the map

Φ(. . . xi2xi1) = lim
n→∞

ζ ⊗ xin ⊗ · · · ⊗ xi1

is an H-equivariant homeomorphism between XH and L.
It follows from the definition of the self-similarity structure on L that

Φ(. . . xi2xi1 · g) = lim
n→∞

φn(ζrin)φn−1(rin−1) · · ·φ(ri1)g = · · ·φn(rin) · · ·φ(ri1)g.

The groups G acts on its normal subgroup H by conjugation. Every automor-
phism g : x 7→ g−1xg of H can be extended in a unique way to an automorphism
of L. Let us denote this extension also by x 7→ g−1xg.

Let us define the action Ag of g ∈ G on L just conjugating by the homeomor-
phism Φ : XH −→ L the action of g on XG = XH (then equivariance of Φ will be
automatically satisfied):

(ζ)Ag = Φ
((

Φ−1(ζ)
)
g
)
.

Let us show that this action is an action by affine transformations. Consider
restriction of this action onto the lattice φn(H) < L. Let φn(h) ∈ φn(H) be an
arbitrary element, then

(φn(h))Ag = Φ
(
. . . φn+1(1)φn(h)φn−1(1) . . . φ(1)g

)
=

= φn
(
Φ
(
. . . φ2(1)φ(1)g′

))
· φn

(
(g′)−1hg′

)
=

= φn
(
Φ
(
. . . φ2(1)φ(1)g′

))
· g−1φn(h)g,

where g′ = φ−n(g).
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If a sequence gn ∈ H is such that . . . φ2(g2)φ(g1)g0 = . . . φ2(1)φ(1)g (it exists,
since XH = XG), then there exists a bounded sequence sm ∈ G such that

φm(smgm)φm−1(gm−1) . . . φ(g1)g0 = g

for every m. Then

φ−n(g) = g′ = φ−n
(
φm(smgm)φm−1(gm−1) . . . φ(g1)g0

)
=

= φm−n(smgm) . . . φ(gn+1)
(
gnφ

−1(gn−1) . . . φ−n(g0)
)
,

thus
. . . φ2(1)φ(1)g′ = . . . φ2(gn+2)φ(gn+1)

(
gnφ

−1(gn−1) . . . φ−n(g0)
)

in XG, hence
Φ
(
. . . φ2(1)φ(1)g′

)
= φ−n

(
Φ
(
. . . φ2(1)φ(1)g

))
.

So, if we denote S(g) = Φ(. . . φ2(1)φ(1)g), then for every x ∈ φn(H)

(6.1) (x)Ag = S(g) · g−1xg.

The action of G on L is an action by homeomorphisms, since such is the action of
G on XG. The transformation Ag is given by (6.1) on a dense subset

⋃
n≥0 φ

n(H),
therefore it is given by the same formula on L. �

6.2. Limit spaces of free Abelian groups

6.2.1. Self-coverings of tori and digit tiles. If p : Rn/Zn −→ Rn/Zn is
a d-fold self-covering of a torus, then it induces an injective endomorphism B :
Zn −→ Zn of its fundamental group. We have [Zn : B(Zn)] = d, i.e., detB = ±d.
The associated virtual endomorphism A = B−1 defines the iterated monodromy
action of Zn.

In the other direction, every surjective and injective virtual endomorphism of
Zn is is given by inverse of an integral matrix B, hence every recurrent self-similar
action of Zn is a standard iterated monodromy action of a covering p : Rn/Zn −→
Rn/Zn.

The group Zn is a uniform lattice in the Lie group Rn and we can apply
Theorem 6.1.6. The extension of the virtual endomorphism φ : Zn 99K Zn onto Rn
is the linear map given by the matrix A = B−1.

The covering p is expanding if and only if the matrix B is expanding (i.e.,
has all eigenvalues greater than one in absolute value), what is equivalent to the
condition that the standard action is finite-state (see Theorem 2.12.1).

By Theorem 6.1.6, if the covering is expanding, then the limit space XZn is Rn
with the natural action of Zn and thus the limit space JZn is the torus Rn/Zn, in
accordance with Theorem 5.4.3.

Homeomorphism between XZn and Rn, by (the proof of) Theorem 6.1.6 is the
map

(6.2) Φ(. . . xi2xi1 · g) =
∞∑
k=1

φk(rik) + g,

where {x1 = φ(r1) + 0, . . . , xd = φ(rd) + 0} = X is the basis of the bimodule
φ(Zn)+Zn. Recall that this is equivalent to the condition that the digit set R = {ri}
is a coset transversal of Zn by Domφ = B(Zn).

The respective tile or the set of fractions T (φ,R) is the set of all possible sums∑∞
k=1 φ

k(rik).
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The tile T (φ,R) is the unique fixed point of the transformation

P (C) =
d−1⋃
i=0

φ(C + ri),

of the space of all non-empty compact subsets of Rn. Moreover, for any non-empty
compact set C ⊂ Rn, the sequence Pn(C) converges in this space to T (φ,R) with
respect to the Hausdorff metric. This can be used to draw T (φ,R).

6.2.2. Examples. In the classical case of the binary numeration system, which
corresponds to the virtual endomorphism φ(n) = n/2 of Z and the digit system
R = {0, 1}, the set of fractions T (φ,R) is the segment [0, 1]. Expressions (6.2) are
diadic expansions of reals.

Recall that, up to a conjugacy, there exists 6 finite-state self-similar actions of
Z2 on the binary tree (see Section 2.12 on page 60). Three of them are defined by a
virtual endomorphism A with detA = 1/2 and the other three have detA = −1/2.

If detA = 1/2 and A is the matrix of the associated virtual endomorphism,
then A is conjugate in GL(2,R) with one of the matrices(

0 −
√

2/2√
2/2 0

)
,

(
1/4 −

√
7/4√

7/4 1/4

)
,

(
−1/2 −1/2
−1/2 1/2

)
.

If we identify R2 with the complex plane C with the base {1, i}, then these
matrices are the matrices of multiplication by α = i

√
2

2 , 1+i
√

7
4 and 1+i

2 , respectively.
We can identify Z2 in each of these cases with the lattice Γ = Z

[
α−1

]
. Then

multiplication of Γ by α is a virtual endomorphism of index 2 with the matrix
conjugate to the respective 2× 2-matrix.

The set {0, 1} is a coset transversal of the domain of the virtual endomorphism,
hence may be chosen as a digit set. Then the respective encodings of C = XΓ by
elements of {0, 1}−ω + Z2 correspond to the binary numeration systems with the
base α−1, i.e., to expansions of numbers z ∈ C into series

z = a+
∞∑
k=1

xkα
k,

where a ∈ Γ and xk ∈ {0, 1}.
See for example a discussion of the numeration system with the base α−1 =

(−1 + i) in [75].

Proposition 6.2.1. Let A be a a contracting virtual endomorphism of Zn of
index 2. Then the digit tile T (A,R) depends, up to an affine transformation, only
on the conjugacy class of A in GL(n,R).

Proof. It is sufficient to prove that the tiles do not depend on the digit set.
Let R = {r0, r1} and S = {s0, s1} be two coset transversals of DomA on Zn. If we
replace R by R′ = {0, r1 − r0}, then we replace the tile T (A,R) by the tile

T (A,R′) = T (A,R)−
∞∑
k=1

Ak(r0).

We may assume therefore that r0 = s0 = 0.
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Figure 1. Twin dragon and tame twin dragon

A point belongs to T (A,R) if and only if it can be represented in the form
∞∑
k=1

Ak (rxk
) =

∞∑
k=1

xkA
k(r1)

for some x1x2 . . . ∈ {0, 1}ω.
The tile T (A,S) can not belong to a proper subspace of Rn, since its Zn-shifts

cover Rn. Hence, there exists a basis {e1, . . . , en} ⊂ T (A,S) of Rn. Consequently,
we can represent r1 in the form of a series

∑∞
k=0 akA

k(s1), where the sequence
ak ∈ R is bounded.

The linear operator T =
∑∞
k=0 akA

k commutes with A and T (s1) = r1. Then
∞∑
k=1

xkA
k(r1) =

∞∑
k=1

xkA
k (T (s1)) = T

( ∞∑
k=1

xkA
k(s1)

)
for all x1x2 . . . ∈ {0, 1}ω, hence T (A,R) = T (T (A,S)). �

Note that the statement is wrong for actions on trees of higher degree. See for
example Figure 2, where two different tiles for the matrix

(
1/2 0
0 1/2

)
are drawn.

The tile of the actions defined by the virtual endomorphism
(

0 −
√

2/2√
2/2 0

)
is

the “A4-paper” rectangle. For the conjugate matrix
(

0 1
1/2 0

)
and R = {(0, 0), (1, 0)}

the set of fractions is the square [0, 1]× [0, 1].
The tile corresponding to the matrix

(
−1/2 −1/2
1/2 −1/2

)
is the “twin dragon” shown

on the left-hand side part of Figure 1.
The tile corresponding to the matrix

(
1/4 −

√
7/4√

7/4 1/4

)
is the “tame twin dragon”

shown on the right-hand side of Figure 1.
Some examples are shown on Figure 2. They correspond to the following virtual

endomorphisms and digit sets:

φ =
(

1/2 0
0 1/2

)
φ =

(
1/3 1/3
−1 0

)
R = {(0, 0), (−1, 0), (1, 1), (0,−1)} R = {(0, 0), (1, 0), (1, 1)}

φ =
(

1/5 −2/5
2/5 1/5

)
φ =

(
1/2 0
0 1/2

)
R = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)} R = {(0, 0), (1, 0), (3, 3), (0, 1)}
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Figure 2. Sets of fractions

6.2.3. Relation with numeration systems on Zn. Let A be a contracting
virtual endomorphism of Zn of index d and let R = {r0, . . . , rd−1} be a digit set.
Proposition 2.9.6 establishes a homeomorphism of the space Xω with the profinite
group of “A-adic” vectors Ẑn = lim← Zn/A−n(Zn):

Ψ(xi0xi1xi2 . . .) = ri0 +A−1 (ri1) +A−2 (ri2) + · · · ,

where X = {xi = A (ri) + 0}i=0,...,d−1. The homeomorphism Ψ agrees with the
action of Zn on Xω and Ẑn:

Ψ (g(w)) = g + Ψ(w).

If the digit set R = {r0, . . . , rd−1} contains the zero r0 = 0 ∈ Zn, then the
sequence x0x0 . . . is mapped by Ψ onto 0+A−1(0)+A−2(0)+· · · , which is naturally
identified with 0 ∈ Zn. Hence, the orbit of x0x0 . . . is identified with Zn and the
elements of Zn are written as sums of series

∑∞
k=0A

−k(rik). We obtain in this way
the “A-adic” numeration system on Zn.

It may happen that elements of Zn are represented by “infinite” expressions,
i.e., that infinitely many digits rik in a representation

v =
∞∑
k=0

A−k(rik)

are non-zero.
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Figure 3. Plane tiling by twin dragons

It is not an exotic situation. This is the case even for the usual diadic numer-
ation system (n = 1, A = 1/2 and R = {0, 1}):

−1 = 1 + 2 + 22 + 23 + · · ·

in the group of diadic numbers Z2. Examples of numeration systems such that every
element of Zn is expanded into a finite series are the “balanced ternary system”
on Z with the base A−1 = 3 and digit system R = {0, 1,−1} and the numeration
system on Z[i] with the base A−1 = −1 + i with digit system R = {0, 1}.

6.2.4. Associated tilings of Rn. If the self-similar action of Zn satisfies the
open set condition (see Definition 3.2.6), then the digit tile T = T (φ,R) is closure
of its interior and it shifts T + r for r ∈ Zn form a tiling of the space Rn, i.e.,
they cover Rn and have disjoint interiors (see Proposition 3.2.7). These tilings are
self-affine. Namely, the linear map A−1 = R⊗ φ−1 maps every tile to a union of d
tiles.

A part of the tiling by the “dragons” is shown on Figure 3. The union of two
tiles in the center is similar to the original tiles.

See the works [2, 124, 125] and their bibliography for the properties of such
tilings. They are used in the wavelet theory, computer image processing, toral
dynamical systems and other fields. See, for example, the book [21] for relations
with the C∗-algebras.

6.3. Examples of self-coverings of orbifolds

6.3.1. Dihedral group as IMG(z2 − 2). The infinite dihedral group D∞
acts on the Lie group R by affine transformations of the form ±x+n, where n ∈ Z.
The orbispace of this action is the segment [0, 1/2], whose endpoints are singular
points with isotropy groups of order 2.
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The mapping x 7→ dx is an expanding automorphism of the group R, conjugat-
ing the dihedral group with its index d subgroup. It also induces a self-covering of
the orbispace.

For example, if d = 2, then this self-covering acts on the underlying space by
the “tent map”, mapping x to 2x if x ∈ [0, 1/4] and to 1 − 2x, otherwise. This
self-covering can be also described as the self-covering of the Julia orbispace of the
rational function z2 − 2.

The critical orbit of z2 − 2 is 0 7→ −2 7→ 2 7→ 2. Take t = 0 as a basepoint and
connect it to its preimages ±

√
2 by straight segments. The fundamental group of

the space M = C \ {−2, 2} is generated by small loops a and b around −2 and 2.
We connect these loops to t by straight segments. Computation of the associated
self-similar action shows that the respective generators of the iterated monodromy
group IMG

(
z2 − 2

)
are defined by the recursion

a = σ, b = (a, b).

It follows that a2 = 1 and b2 = (a2, b2) = (1, b2) = 1. Therefore the iterated
monodromy groups is isomorphic to the infinite dihedral group D∞ (see also [54]
and [8]).

We have proved that the limit space of this action of D∞ is a real segment and
that the shift s : JD∞ −→ JD∞ is the “tent map”.

In general, the self-covering induced by z 7→ dz on the orbispace R/D∞ is
conjugate with the action of the Chebyshev polynomial of degree d on its Julia set.

6.3.2. Self-coverings of Euclidean spherical orbifolds. Suppose thatM
is a 2-dimensional oriented Euclidean orbifold, i.e., that it is an orbispace of a
proper action of an orientation-preserving group G of moves of the Euclidean plane
R2. ThenM is developable, G = π1(M) and M̂ = R2.

It is known thatM is either the torus without singular points and then π1(M)
is a lattice in R2, or |M| is a punctured sphere. In the latter case M has only a
finite number of singular points and punctures. Then Euler characteristic of the
orbifoldM is the number

(6.3) χ (M) = 2−
∑
x∈P

(
1− 1

ν(x)

)
,

where P is the set of singular points and punctures and ν(x) is the order of the
isotropy group of x or ∞, if x is a puncture. Since the orbifold is Euclidean, its
Euler characteristic is equal to 0.

The following is a well known fact.

Proposition 6.3.1. IfM is a spherical Euclidean orbifold then it has at most
4 singular points and punctures and the values of ν(x) on these points are

(∞,∞), (∞, 2, 2), (3, 3, 3), (6, 3, 2), (4, 4, 2), or (2, 2, 2, 2)

We are interested here in spherical orbifolds with analytic structure on them.
Every analytic spherical orbifold is a quotient C/G, where G is its fundamental
group acting on C properly by affine transformations.

The respective actions, up to an affine conjugation, are the following (see [36]
page 289):

(1) for (∞,∞): the group of affine transformations z 7→ z + n, where n ∈ Z.
(2) for (∞, 2, 2): transformations z 7→ ±z + n, where n ∈ Z.
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(3) for (3, 3, 3): transformations z 7→ e2kπi/3z + a, where k ∈ Z and a ∈
Z
[
eπi/3

]
.

(4) for (6, 3, 2): transformations z 7→ ekπi/3z + a, where k ∈ Z and a ∈
Z
[
eπi/3

]
.

(5) for (4, 4, 2): transformations z 7→ ikz + a, where k ∈ Z and a ∈ Z[i].
(6) for (2, 2, 2, 2): transformations z 7→ ±z + a, where a ∈ Γ for a lattice

Γ ⊂ C.

If f : M −→ M is an analytic d-fold self-covering, then it is induced by an
affine transformation z 7→ αz+ β of C, which conjugates the respective group G to
its subgroup of index d. They are of the form (see [36])

(1) for (∞,∞): z 7→ nz;
(2) for (∞, 2, 2): z 7→ nz or z 7→ nz + 1

2 ;
(3) for (3, 3, 3): z 7→ αz, z 7→ αz + 1

3

(
eπi/3 + 1

)
, or z 7→ αz + 1

3 i
√

3, where
α ∈ Z

[
eπi/3

]
;

(4) for (6, 3, 2): z 7→ αz, where α ∈ Z
[
eπi/3

]
;

(5) for (4, 4, 2): z 7→ αz or z 7→ αz + 1
2 (1 + i), where α ∈ Z[i];

(6) for (2, 2, 2, 2): z 7→ αz + β, where 2β ∈ Γ and α is an integer in an
imaginary quadratic field k such that if α /∈ R then Γ is a module over
the subring of k generated by 1 and α.

The degree is equal to n in the first two examples and to |α|2 for the rest of them.
The self-covering of the orbifold is defined, in conditions of Corollary 6.1.7, by

an automorphism of the Lie group. This can be achieved in our cases by conjugation
of the group G and affine map z 7→ αz + β by a translation z 7→ z + β

1−α so that
the affine map becomes equal to z 7→ αz. The group G will become, however, a
less “natural” affine group.

Each of the respective analytic self-covering is conjugate to an action of a
rational function on the (punctured) Riemann sphere.

The covering of (∞,∞) given by z 7→ nz is conjugate to the polynomial zn. The
coverings of (∞, 2, 2) given by z 7→ nz or z 7→ nz + 1

2 are (up to signs) Chebyshev
polynomials of degree n.

Let us consider some other examples.
6.3.2.1. Lattès Examples. The most well known are the examples of the rational

functions considered by S. Lattès [78]. They correspond to the case when G is the
group of affine transformations of the form z 7→ ±z+a, where a ∈ Γ for some lattice
Γ ⊂ C. We get in this case the orbispace (2, 2, 2, 2). If α is a multiplicator of the
lattice Γ, i.e., if α · Γ ⊂ Γ, then the branched covering induced on the sphere C/G
by multiplication by α is conjugate to the rational function f(z), which is uniquely
defined by the equality

℘(αz) = f(℘(z)),

where ℘ is the Weierstrass elliptic function for the lattice Γ given by

℘(z) =
1
z2

+
∑

ω∈Γ\{0}

[
1

(z + ω)2
− 1
ω2

]
.

It is an even function and induces a two-fold branched covering of the sphere Ĉ by
the torus C/Γ, identifying points z and −z of C/Γ. Hence, the Weierstrass function
realizes the quotient map C 7→ C/G.
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Corollary 6.1.7 implies that the iterated monodromy group of the rational func-
tion f is isomorphic to the group G = {±z + a : a ∈ Γ}. The associated virtual
endomorphism is the map ±z + a 7→ ±z + a/α.

For example, for α = 2 the function f is

f(z) =
z4 + g2

2 z
2 + 2g3z + g22

16

4z3 − g2z − g3
,

(see [16] p. 74), where g2 = 60s4 and g3 = 140s6 for sm =
∑
ω∈Γ,ω 6=0 ω

−m.
A pair (g2, g3) is realized by a lattice Γ if and only if g3

2 − 27g2
3 6= 0 (see [77],

p. 39). In particular, there exists a lattice Γ such that g3 = 0 and g2 = 4, so that

(6.4) f(z) =
(z2 + 1)2

4z(z2 − 1)
.

For the case of the lattice Γ = Z[i] we have g3 = 0, thus f(z) = (z2+g2/4)
2

4z(z2−g2/4) ,
which is also conjugate to (6.4) (the conjugating map is t(z) = 2z√

g2
).

6.3.2.2. Heighway dragon. Consider group G of affine transformations of the
form ik · z + a for k ∈ Z and a ∈ Z[i]. The corresponding orbifold M = G\C is
(4, 4, 2).

Consider the virtual endomorphism

φ : ikz + a 7→ ikz +
1 + i

2
a,

i.e., the virtual endomorphism induced by the map z 7→ (1− i)z. Its domain is the
set of transformations ikz + a such that <(a) + =(a) is even.

If we take the coset transversal D = {z, z + 1} (or any other coset transversal
belonging to Z[i]), then we get the twin dragon as the tile.

But if we take the coset transversal D = {z, iz + i}, then the tile will be the
dragon curve (or Heighway dragon) shown on Figure 4.

If we denote by a the transformation z 7→ iz + i and by b the transformation
z 7→ iz, then the self-similar action defined by the digit set D = {1, b} is given by
the recursion

a = σ (1, ba) , b =
(
b, bab−1

)
.

6.3.3. Heisenberg group. This example of a self-covering is from [110]. Let
L be the group of lower triangular matrices 1 0 0

a 1 0
c b 1

 ,

with a, b, c ∈ R and let G be the subgroup of matrices with a, b, c ∈ Z. Then for all
p, q ∈ Z, the map

f∗ :

 1 0 0
a 1 0
c b 1

 7→
 1 0 0

p · a 1 0
pq · c q · b 1


is an automorphism of the group L, such that [G : f∗(G)] = p2q2. The quotient
L/G is a three-dimensional nil-manifold, and the map f∗ induces its expanding
p2q2-fold self-covering.

A modification of this example, due to S. Sidki, gives a self-similar action of
the group G over a 4-element alphabet, and defines an expanding 4-fold covering
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Figure 4. Dragon curve

of the manifold L/G. (Note that the smallest degree of the covering defined above
is 16 = 22 · 22.)

We have to take the map

p∗ :

 1 0 0
a 1 0
c b 1

 7→
 1 0 0

2 · b 1 0
2 · c a 1


It is clearly an injective endomorphism of the group G and is expanding, since

its second iteration is the map f∗ for p = q = 2.

6.4. Rational functions

6.4.1. Post-critically finite rational functions. Suppose that f(z) ∈ C(z)
is a non-constant rational function. If p, q ∈ C[z] are coprime and f(z) = p(z)/q(z),
then degree of f is max(deg p,deg q) and is denoted deg f .

The function f defines a branched deg f -fold self-covering of the Riemann
sphere Ĉ = C ∪ {∞}. A point z ∈ Ĉ is critical if f is not a local homeomor-
phism on a neighborhood of z, i.e., if f ′(z) = 0.

Let Cf be the set of critical points of f . By Pf we denote the set of post-critical
points of f , i.e., the set

Pf =
⋃
n≥1

fn (Cf ) .

Here and in the sequel, fn denotes the nth iteration of f and not nth degree.
If closure P f of the post-critical set is such thatM = Ĉ\P f is path connected,

then f defines a d-fold partial self-covering f : M1 −→ M, where M1 = Ĉ \
f−1

(
P f
)
, since thenM1 ⊂M.

An important case is when Pf is finite. Such rational functions f are called post-
critically finite. In this case M and M1 are punctured spheres. The fundamental
group π1(M) is the free group of rank |Pf | − 1.

Definition 6.4.1. Let f ∈ C(z) be a post-critically finite rational function.
Then its iterated monodromy group is the iterated monodromy group of the partial
self-covering f :M1 −→M, where M = Ĉ \ Pf andM1 = f−1(M).
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6.4.2. Profinite iterated monodromy groups as Galois groups. The
following construction belongs to R. Pink (private communication).

Let f(z) = p(z)/q(z) ∈ C(z) be a rational function, where p(z), q(z) ∈ C[z]
are coprime polynomials. Let pn(z), qn(z) ∈ C[z] be the polynomials such that
pn(z)/qn(z) is the nth iteration f◦n of f .

Let Ωn be the field obtained by adjoining all solutions of the equation f◦n(z) = t
to the field of rational functions C(t) in some algebraic closure of C(t). In other
words, Ωn is the splitting field of the polynomial Fn(z) = pn(z)− qn(z)t ∈ C(t)[z]
over the function field C(t). It is easy to see that Ωn ⊂ Ωn+1. It is well known
that the Galois group Aut(Ωn/C(t)) is isomorphic to the monodromy group of the
branched covering fn : Ĉ −→ Ĉ (see, for example [41] Theorem 8.12), i.e., to the
permutation group of the set f−n(z0) induced by the action of the fundamental
group π1(C\Pn, z0), where Pn is the set of branching points of the function fn and
z0 /∈ Pn is arbitrary.

As a corollary, we get the following interpretation of the profinite iterated
monodromy group of a rational function.

Proposition 6.4.2. Let f ∈ C(z) be a post-critically finite rational function.
Then the profinite iterated monodromy group IMG(f) is isomorphic to the Galois
group Aut(Ω/C(t)), where Ω =

⋃
n≥1 Ωn.

6.4.3. Branched coverings and Thurston orbifold. Rational functions
are particular cases of a more general notion of a branched covering of the sphere.

Let S2 be the real 2-sphere as a topological manifold. A branched d-fold cover-
ing f : S2 −→ S2 is a continuous orientation-preserving map such that there exists
a finite set B ⊂ S2 such that f : S2 \ B −→ S2 \ f(B) is a d-fold covering. For
every x ∈ S2 local degree degx(f) of f at x is the degree of the map f : γ −→ f(γ),
where γ is a small simple loop around x. A point x is called critical if local degree
degx(f) of f at x is greater than 1. If C is the set of critical points of f , then
f : S2 \ C −→ S2 \ f(C) is a d-fold covering.

The number degx(f) − 1 is called the multiplicity of the critical point. There
exist local charts qx : U1 −→ Ux and qf(x) : U2 −→ Uf(x), where U1, U2 are
neighborhoods of 0 in C and Ux, Uf(x) are neighborhoods of x and f(x), such that
f is equal to z 7→ zdegx(f) in these charts, i.e., qfx

(
zdegx(f)

)
= f (qx(z)) for all

z ∈ U1.
The Riemann-Hurwitz formula implies that there exist precisely 2d− 2 critical

points of a d-fold branched covering counting them with multiplicities.
A branched covering f : S2 −→ S2 is called post-critically finite if the post-

critical set
⋃
n≥1 f

n (C) is finite. Post-critically finite branched coverings are also
called Thurston maps.

The iterated monodromy group IMG (f) of the Thurston map f : S2 −→ S2 is
the iterated monodromy group of the partial self-covering f : S2\f−1(P ) −→ S2\P ,
where P is the post-critical set.

Note that if A ⊂ S2 is any finite set such that f(A) ⊆ A and C ⊆ A, then A ⊇ P
and the iterated monodromy group of the partial self-covering f : S2 \ f−1(A) −→
S2\A coincides, by Proposition 5.5.1, with the iterated monodromy group IMG (f).

It is not convenient in many cases to delete the post-critical set P completely.
It is more reasonable to define an orbifold with singular points in the post-critical
set such that the Thurston map f becomes a partial self-covering of an orbifold.
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The construction of such an orbifold is due to W. Thurston (see [36]) and is
called the Thurston orbifold of the post-critically finite branched covering.

Let f : S2 −→ S2 be a Thurston map with set of critical points C and the
post-critical set P . Let P ′ be the union of all cycles of f which contain a critical
point. We obviously have P ′ ⊆ P .

Let us find for every x ∈ S2 \ P ′ the least common multiple ν(x) of the local
degrees degz(fm), where z ∈ S2 and m ≥ 1 are such that fm(z) = x. It is easy to
see that ν(x) exists (i.e., is finite) for all x ∈ S2 \ P ′. It is greater than 1 if and
only if x ∈ P .

It follows directly from the definition that for any x ∈ S the number ν(f(x))
is divisible by degx(f) · ν(x). Denote ν0(x) = ν(f(x))

degx(f) . Then ν(x)|ν0(x).
Let Mν be the orbispace with the underlying space M = S2 \ P ′ for which

the isotropy group of a point x ∈ M is the cyclic group of order ν(x) acting by
rotations of a disc.

LetMν0 be the orbispace with the underlying space |Mν0 | = S2 \ f−1 (P ′) de-
fined by the weights ν0(x) instead of ν(x). It follows from the condition ν(z)|ν0(z)
that the orbispace Mν0 is an open sub-orbispace of the orbispace Mν . The em-
bedding acts on the underlying spaces as the identical map.

On the other side, the condition degx(f) = ν0(x)
ν(f(x)) implies that the map f :

Mν0 −→Mν is a covering of orbispaces.
Note that the isotropy groups of the Thurston orbifold M are represented

faithfully in the iterated monodromy group (since we take ν(x) to be the least
common multiple of the local degrees degz(fn) for fn(z) = x).

6.4.4. Sub-hyperbolic rational functions. Proof of the following result can
be found, for example in [89].

Theorem 6.4.3. If f ∈ C(z) is a post-critically rational function, then there
exists a Riemannian metric on the Thurston orbifold M of f such that the partial
self-covering f :M1 −→M is uniformly expanding on its Julia set.

A rational function which is expanding with respect to some orbifold metric on
a neighborhood of its Julia set is called sub-hyperbolic. So, the last theorem says
that any post-critically finite rational function is sub-hyperbolic. In fact a rational
function is sub-hyperbolic if and only if orbit of every critical point is either finite
or converges to an attracting cycle (see [89]).

As a corollary of Theorems 6.4.3 and 5.4.3 we get

Theorem 6.4.4. Let f ∈ C(z) be a post-critically finite rational function. Then
every standard action of the iterated monodromy group IMG (f) is contracting and
the limit dynamical system s : JIMG(f) −→ JIMG(f) is topologically conjugate with
the action of f on the Julia set. Moreover, the partial self-covering of limit orbis-
paces s : J ◦IMG(f) −→ JIMG(f) is conjugate with the partial self-covering of the Julia
orbispaces defined with respect to the Thurston orbifold of f . �

6.5. Combinatorial equivalence and Thurston’s Theorem

6.5.1. Thurston equivalence. Two Thurston maps f1 : S2 −→ S2 and
f2 : S2 −→ S2 with post-critical sets Pf1 and Pf2 are said to be combinato-
rially equivalent (see [36]) if there exist orientation preserving homeomorphisms
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h0, h1 : S2 −→ S2 such that hi (Pf1) = Pf2 for i = 1, 2, the diagram

(6.5)
S2 f1−→ S2yh0

yh1

S2 f2−→ S2

is commutative, and h0 is isotopic to h1 through an isotopy constant on Pf1 .

Definition 6.5.1. Let M1,M2 be permutational bimodules over groups G1

and G2, respectively. We say that an isomorphism ψ : G1 −→ G2 conjugates the
bimodules M1 and M2 if there exists a bijection F : M1 −→M2 such that

F (g ·m · h) = ψ(g) · F (m) · ψ(h)

for all g, h ∈ G1 and m ∈M1.

In other words, the isomorphism ψ conjugates the bimodules if they become
isomorphic after identification of G1 with G2 by ψ.

Theorem 6.5.2. Let f1, f2 be Thurston maps with post-critical sets Pf1 , Pf2
and let M(fi), i = 1, 2, be the respective π1

(
S2 \ Pfi

)
-bimodules.

Then the maps f1 and f2 are combinatorially equivalent if and only if there
exists an isomorphism h∗ : π1

(
S2 \ Pf1

)
−→ π1

(
S2 \ Pf2

)
conjugating the bimod-

ules M(f1) and M(f2) and induced by an orientation preserving homeomorphism
h : S2 −→ S2 such that h (Pf1) = Pf2 .

Proof. This theorem easily follows from one of algebraic formulations of the
Thurston equivalence relation, found by K. Pilgrim in [99] and A. Kameyama
in [71]. We give therefore here only a sketch of the proof.

Suppose that the Thurston maps f1, f2 are combinatorially equivalent. Let us
show that the respective bimodules are isomorphic.

The virtual endomorphism φi of π1

(
S2 \ Pfi

)
associated with the partial self-

covering fi is equal to ei ◦ fi−1
∗ , where ei : π1

(
S2 \ f−1

i (Pfi)
)
−→ π1

(
S2 \ Pfi

)
is the homomorphism induced by the embedding S2 \ f−1

i (Pfi
) ↪→ S2 \ Pfi

and
fi
−1
∗ : π1

(
S2 \ Pfi

)
99K π1

(
S2 \ f−1

i (Pfi)
)

is the virtual isomorphism induced by
the covering fi : S2 \ f−1

i (Pfi
) −→ S2 \ Pfi

(see Lemma 4.7.4). Both are defined
uniquely up to conjugations in the fundamental groups.

Let h0, h1 be the homeomorphisms as in the definition of combinatorial equiva-
lence. The isomorphism h∗ : π1

(
S2 \ Pf1

)
−→ π1

(
S2 \ Pf2

)
induced by hi does not

depend, up to conjugation in the fundamental groups, on i = 0, 1, since they are iso-
topic. Commutativity of the diagram in the definition of combinatorial equivalence
implies now that the virtual endomorphisms φ1 and h−1

∗ ◦ φ2 ◦ h∗ are conjugate,
i.e., that the permutational bimodules M(f1) and M(f2) become isomorphic, if we
identify the fundamental groups π1

(
S2 \ Pfi

)
by the isomorphism h∗ (see Corol-

lary 2.5.9).
In the other direction, suppose that there exists a homeomorphism h1 : S2 −→

S2 such that h1 (Pf1) = Pf2 and the bimodules M(fi), i = 1, 2 become isomorphic
after identification of the fundamental groups π1

(
S2 \ Pfi

)
by the induced isomor-

phism h∗. The isomorphism of the bimodules implies that the monodromy action
of π1

(
S2 \ Pfi

)
on the coverings fi are the same and hence there exists a homeo-

morphism h0 : S2 −→ S2 making the diagram (6.5) commutative. We also get that
the induced isomorphisms (h0)∗ and (h1)∗ of the fundamental groups π1

(
S2 \ Pfi

)
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are conjugate. But this implies that the homeomorphisms h0 and h1 are isotopic,
since a surface homeomorphism is uniquely determined, up to an isotopy, by its
action on the fundamental groups. �

6.5.2. Theorem of Thurston. Let M be an orbifold which has only finite
number of singular points and whose underlying space is a punctured sphere S2.
Let P be the set of points x ∈ S2 which are either singular, or are deleted from S2 in
M. If x ∈ P then we denote by ν(x) the order of the isotropy group of x if x ∈M
and ∞ otherwise (i.e., if x is deleted from S2). Recall that Euler characteristic of
the orbifold M is the number

χ (M) = 2−
∑
x∈P

(
1− 1

ν(x)

)
.

If χ (M) > 0, then the fundamental group π1(M) is finite. If χ (M) = 0, then
π (M) is abelian-by-finite and the orbifold M is called Euclidean. Otherwise the
fundamental group is Gromov-hyperbolic and the orbifold is called hyperbolic.

Let f : S2 −→ S2 be a Thurston map with post-critical set Pf . A simple closed
curve in S2 \ Pf is peripheral, if one of the regions that it bounds on the sphere
contains less than two points of Pf .

An f-stable multi-curve is a finite set Γ of simple, closed, disjoint, non-peri-
pheral, pairwise non-homotopic curves in S2 \ Pf such that for every γ ∈ Γ each
component of f−1 (γ) is either peripheral or homotopic in S2\Pf to an element of Γ.
If Γ is an f -stable multi-curve, then we denote by AΓ the linear map AΓ : RΓ −→ RΓ

given by

AΓ (γ) =
∑

α∈f−1(γ)

[α]
deg (f : α −→ γ)

,

where [α] is the element of Γ homotopic to α, if α is not peripheral and 0, otherwise.
The following theorem by Thurston (see its proof in [36]) gives a criterion when

a Thurston map is combinatorially equivalent to a rational function.

Theorem 6.5.3. A Thurston map f : S2 −→ S2 with hyperbolic orbifold is
combinatorially equivalent to a rational function if and only if for any f-stable
multi-curve Γ the spectral radius of the operator AΓ is less than one. In that case
the rational function is unique, up to a conjugation by a linear fraction.

Every self-covering of a Euclidean orbifold is equivalent to a unique rational
function, except for the orbifold (2, 2, 2, 2). In this case the answer depends on the
associated virtual endomorphism φ. The self-covering is not equivalent to a rational
function if and only if the eigenvalues of φ are real and different. If the eigenvalues
are real, then there is no uniqueness of the rational function. (Recall that φ is an
endomorphism of the free abelian subgroup of π1(M) and hence induces a linear
transformation of R2.)

The case of self-coverings of Euclidean orbifolds is discussed in Subsection 6.1.7.

6.6. Abstract kneading automata

We will describe here the set of iterated monodromy groups of post-critically
finite polynomials abstractly as groups generated by a special class of automata.

6.6.1. Kneading automata.
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Figure 5. Tree-like sets of permutations

6.6.1.1. Tree-like sets of permutations. Let T be any multi-set of permutations
of X. Here a multi-set is a map i 7→ πi from a set of indices I into S (X). We write
T = {πi}i∈I . Then cycle diagram of T is an oriented 2-dimensional CW-complex
whose set of 0-cells is X and where for every cycle (x1, x2, . . . , xk) of every permu-
tation πi ∈ T we have a 2-cell equal to a polygon with the vertices x1, x2, . . . , xn
so that their order in the cycle and their order on the boundary of the oriented cell
coincide. Two different cells intersect only along 0-cells.

Definition 6.6.1. A multi-set T is said to be tree-like if its cycle diagram is
contractible.

If a multi-set {π1, . . . , πk} is tree-like and πi = πj for i 6= j then πi and πj are
trivial.

See Figure 5 where all possible cycle diagrams of tree-like sets of permutations
of X are shown for |X| = d equal to 2, 3, 4 and 5. Cycles of length 2 are shown as
segments rather than bigons and cycles of length 1 are not shown.

We can consider cycle graphs instead of cycle diagrams, replacing each cell
of the cycle diagram by one vertex, which is connected to the vertices of the cell
by edges. The cells corresponding to trivial cycles of permutations are deleted
from the cycle graph. Cycle graph and cycle diagrams are obviously homotopically
equivalent, hence a set of permutations is tree-like if and only if its cycle graph is
a tree.

Proposition 6.6.2. Suppose that T = {π1, π2, . . . , πk} is a tree-like set of
permutations of X. Then the product π = π1 · π2 · · ·πk is a transitive cycle on X.

Proof. We prove it by induction on |X|. The claim is trivial for |X| = 1.
Suppose that we have proved it for sets of cardinality d− 1. Let |X| = d. Consider
the cycle graph of T . It is a tree, hence there exists a vertex v of degree 1 in it
(a leaf of the tree). This vertex is an element of X (i.e., does not correspond to a
cycle), since all vertices corresponding to cycles have degrees greater than one by
definition.

Then the point v is fixed under the action of all but one permutation πi. It is
sufficient to prove that some permutation conjugate to π is transitive, therefore we
may assume that π1 is the only permutation moving v. (Otherwise we do a cyclic
permutation of the factors π1 · · ·πk.)
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Consider a new set X′ = X \ {x} and define permutations π′i of X′ putting
π′i(x) = πi(x) for all x ∈ X′ if i 6= 1 (using the fact that πi(v) = v) and

π′1(x) =
{
π1(x) if π1(x) 6= v
π1(v) if π1(x) = v.

in other words, we delete v from the cycle of π1 to which it belongs: if we had a
cycle (x1, x2, . . . , xm, v) of π1 then we get the cycle (x1, x2, . . . , xm) of π′1.

We get a set of permutations T ′ = {π′1, π′2, . . . , π′n} of the set X′. The cycle
graph of this set is obtained from the cycle graph of T by deleting the vertex v
together with the unique edge to which it belongs (if v belongs to a cycle (v, y) of
length 2 of π1 then we also have to delete the vertex corresponding to the cycle and
the unique edge connecting this vertex with y). Hence, T ′ is also a tree and by the
inductive hypothesis, the product π′ = π′1π

′
2 · · ·π′k is transitive on X′.

We obviously have π′i · · ·π′n(x) = πi · · ·πn(x) 6= v for all x ∈ X′ and i = 2, . . . , n.
Hence:

π′(x) =
{
π(x) if π1(x) 6= v
π(v) if π1(x) = v.

Consequently, if π′ = (a1, a2, . . . , ad−1) with ad−1 = π−1
1 (v), then

π = (a1, a2, . . . , ad−1, v),

and π is transitive on X. �

Corollary 6.6.3. Let T ⊂ S (X) be a tree-like set. Then for any partition⊔k
i=1 Ti = T the set of permutations {

∏
T1,
∏
T2, . . . ,

∏
Tk} is tree-like, where

∏
Ti

is a product of the elements of Ti taken in any order.

Proof. The cycles of the permutation
∏
Ti are by Proposition 6.6.2 equal to

the connected components of the part of the cycle diagram of T corresponding to
the permutations from Ti. This easily implies that the cycle diagram of the set
{
∏
Ti}ki=1 is also contractible. �

6.6.1.2. Kneading automata.

Definition 6.6.4. A finite invertible automaton (A,X) is a kneading automaton
if

(1) every non-trivial state g of A has a unique incoming arrow, i.e., there exist
a unique pair h ∈ A, x ∈ X such that g = h|x;

(2) for every cycle (x1, x2, . . . , xm) of the action of a state g ∈ A on X, the
state g|xi is nontrivial for at most one letter xi;

(3) the multi-set of permutations defined by the states of A on X is tree-like.

The first condition implies that if we delete the trivial state from the Moore
diagram of a kneading automaton together with all incoming arrows, then the
obtained graph will be a disjoint union of cycles with trees attached to them. In
particular, every kneading automaton is bounded (see Section 3.8).

Recall that the dual Moore diagram of an automaton (A,X) (see 1.3.6 on page 6)
is the labeled directed graph with set of vertices identified with X and set of arrows
A × X, where an arrow (g, x) starts in x, ends in g(x) and is labeled by the pair
(g, g|x) ∈ A× A.

The dual Moore diagram Γ(A,X) of a kneading automaton is the 1-skeleton of
the cycle diagram of the action of A on X, and we can draw Γ(A,X) as
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Figure 6. Moore diagram and dual Moore diagram of a kneading automaton

(1) the cycle diagram of the action of A on X
(2) labeling of every 2-cell by the state, whose cycle corresponds to the cell;
(3) labeling of an arrow from x to g(x) by h, if g|x = h 6= 1.

At most one edge on the boundary of a 2-cell is labeled, due to condition (3)
of Definition 6.6.4, and every state g ∈ A is a label of exactly one edge, due to
condition (1).

Figure 6 shows an example of a Moore diagram of a kneading automaton (on
the top) and the corresponding dual Moore diagram (on the bottom). The arrows
of the Moore diagram, which do not end in the states a, b or c end in the trivial
state. We do not show the arrows ending in the trivial state which are labeled by
pairs of equal letters. We label cells of the dual Moore diagram by letters inside
the cells and edges are labeled by letters outside.

Proposition 6.6.5. If (A,X) is a kneading automaton, then (A,Xn) is a knead-
ing automaton for every n.

The proof will be also a description of an inductive procedure to construct
the dual Moore diagram of the automaton (A,Xn). Recall that dual Moore dia-
grams approximate the limit space of the group generated by the automaton (see
Subsection 3.5.3).
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Figure 7. Dual Moore diagram of
(
A,X2

)

Proof. Suppose that we have constructed the dual Moore diagram Γ
(
A,Xn−1

)
.

Let x1 . . . xn−1xn ∈ Xn be an arbitrary vertex of the dual Moore diagram Γ (A,Xn)
and let g ∈ A be a state of the kneading automaton. If the edge (g, x1 . . . xn−1) of
Γ
(
A,Xn−1

)
is not labeled, then g|x1...xn−1 = 1 and therefore g(x1 . . . xn−1xn) =

g(x1 . . . xn−1)xn. In this case the edge (g, x1 . . . xn−1xn) of Γ (A,Xn) starts in
x1 . . . xn ends in g(x1 . . . xn−1)xn and is also not labeled. If the edge (g, x1 . . . xn−1)
is labeled by a state h in Γ

(
A,Xn−1

)
, then g(x1 . . . xn−1xn) = g(x1 . . . xn−1)h(xn).

In this case the edge (g, x1 . . . xn−1xn) starts in x1 . . . xn, ends in g(x1 . . . xn−1)h(xn)
and is labeled by h|xn , if h|xn 6= 1.

These arguments show that the dual Moore diagram Γ (A,Xn) can be con-
structed using the following procedure.

Take |X| copies of Γ
(
A,Xn−1

)
and label them by elements of X. We will denote

by Γ
(
A,Xn−1

)
x the copy labeled by x. If v ∈ Xn−1 is a vertex of Γ

(
A,Xn−1

)
then

the corresponding vertex of the copy Γ
(
A,Xn−1

)
x will become the vertex vx of the

diagram Γ (A,Xn).
If we have an arrow labeled by h in the copy Γ

(
A,Xn−1

)
x, then we de-

tach it from its end vx ∈ Γ
(
A,Xn−1

)
x and attach it to the vertex vh(x) ∈

Γ
(
A,Xn−1

)
h(x). If h|x 6= 1, then we label the obtained arrow by h|x. Note

that h|x is the label of the edge (h, x) of Γ (A,X). See, for example, on Figure 7 the
dual Moore diagram Γ

(
A,X2

)
, where A is the automaton from Figure 6.

Hence, the copies of Γ
(
A,Xn−1

)
are connected in Γ (A,Xn) in the same way as

the vertices of Γ (A,X) are.
It follows immediately that every state g ∈ A is a label of exactly one arrow of

Γ (A,Xn) (since they come from labels of Γ (A,X)).
The described inductive procedure of constructing the dual Moore diagram can

be formulated in the following more geometric way. The diagram Γ (A,Xn) is ob-
tained by gluing discs, corresponding to cells of Γ (A,X) to the copies of Γ

(
A,Xn−1

)
along their labeled edges. More explicitely, if the edge (g, v) is labeled in Γ

(
A,Xn−1

)
by h = g|v and x ∈ X belongs to a cycle

(
x, h(x), . . . , hk−1(x)

)
of length k under

the action of h, then we have to take a 2k-sided polygon and glue its every other
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Figure 8. A cell of Γ (A,Xn)

side to the copies of the edge (g, v) in the diagrams Γ
(
A,Xn−1

)
x, Γ

(
A,Xn−1

)
h(x),

. . . , Γ
(
A,Xn−1

)
hk−1(x) in the given cyclic order. We will glue in this way the k

copies of a cell of Γ
(
A,Xn−1

)
together and get a cell of Γ (A,Xn). See, for example

Figure 8, where the case k = 4 is shown.
Consequently, we can contract the |X| copies of Γ(A,Xn−1) in Γ(A,Xn) to points,

and get a cellular complex homeomorphic to Γ (A,X), which is contractible. This
proves that Γ (A,Xn) is also contractible.

We also see that every cell of Γ (A,Xn) has at most 1 labeled side, since the
labels come only from the attached 2k-sided polygons, whose sides are labeled in
the same way as the corresponding cell of Γ (A,X). �

Corollary 6.6.6. If a kneading automaton A has only one trivial state, then
A is reduced.

Proof. Suppose that two non-trivial states g1, g2 ∈ A define the same permu-
tations on X∗. There exists n ∈ N such that g1 and g2 define non-trivial permuta-
tions of Xn. But then we get that the set of permutations defined by A on Xn is
not tree-like, what contradicts to Proposition 6.6.5. �

Corollary 6.6.7. The product of all states of a kneading automaton (taken
in any order) is a level-transitive automorphism of X∗.

Proof. A direct corollary of Propositions 6.6.2 and 6.6.5. �

6.7. Topological polynomials and critical portraits

6.7.1. Spiders and critical portraits. A topological polynomial is a Thurs-
ton map f : S2 −→ S2 such that f−1(∞) =∞. Then after deleting ∞ from S2 we
get a post-critically finite branched covering f : R2 −→ R2. We denote by C ⊂ R2

and P the sets of critical and post-critical points of f , respectively.
A spider (see [67]) is a collection S = {γz}z∈P of disjoint curves connecting

the post-critical points to infinity. The curve connecting z ∈ P to infinity will be
denoted γz. We identify two spiders if they are isotopic relatively to P .

A spider S is said to be f-invariant if f (S) is isotopic (rel. P ) to a subset of
S.

Let z ∈ C be a critical point of local degree dz. Then Xz = f−1
(
γf(z)

)
consists

of dz curves connecting z to infinity. The collection {Xz : z ∈ C} is called critical
portrait associated with the spider S of the topological polynomial.
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Figure 9. Critical portraits

The curves of the critical portrait cut the plane into components, called sectors.
The polynomial f has no critical points in the interiors of the sectors, therefore it
is a homeomorphism of the sector onto an open subset of the plane. This open
subset is a complement of a finite collection of disjoint paths belonging to the
spider. Consequently, there are d = deg f sectors and f maps closure of every
sector surjectively onto R2. In other words, partition into sectors gives a choice of
d branches of the inverse map f−1. See Figure 9 for all (up to an isotopy in C)
possible critical portraits of topological polynomials of degree d = 2, . . . , 5.

6.7.2. Kneading automaton of a critical portrait. Let C be a critical
portrait of a topological polynomial f associated to an invariant spider S, and let
{Sx : x ∈ X} be the set of the corresponding sectors.

We are going to construct an automaton KC,f which encodes the critical portrait
C and the action of f .

Take a point z ∈ P and a small simple loop αz going around z in positive
direction. Suppose that y ∈ f−1(z) is a preimage of z. One of f -preimages of αz is
a small loop αz,y around y. The degree of the map f : αz,y −→ αz is by definition
the local degree of f at y.

We will use f -preimages of the loops αz to define the action of gz on X.

Definition 6.7.1. Let C be a critical portrait of a topological polynomial
f . The correspodning kneading automaton KC,f is the automaton with the set
of states {gz}z∈P ∪ {1} over the alphabet X, |X| = deg f , where letters of X label
the sectors Sx of C and the output and transition functions are defined by the
following conditions.

Take an arbitrary post-critical point z ∈ P . If y ∈ f−1(z) is not critical, i.e., if
local degree is equal to one, then y is an internal point of a sector Sx. The loop αz,y
also completely belongs to the sector Sx. We encode this by output and transition
functions of KC,f

gz · x = x · gy,
where gy = 1, if y /∈ P .

Suppose now that y is critical of local degree d′. Then y is the end of d′ paths
belonging to C and thus belongs to boundaries of d′ sectors. Let Sx1 , Sx2 , . . . , Sxd′

be these sectors listed according to the circular order in which the curve αz,y meets
them (i.e., in the counterclockwise order around y).
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Figure 10. Cases in Definition 6.7.1

If y is not post-critical, then we encode the action of the loop αz,y on the sectors
Sx1 , . . . , Sxd′ setting

gz · xi = xi+1 · 1
for i = 1, . . . , d′, where Sd′+1 = S1.

If y is post-critical, then there is a path γy ∈ S connecting y to infinity. We
may assume that the sectors Sx1 , . . . , Sxd′ are labelled in such a way that the curve
γy is adjacent to Sx1 and Sxd′ . Then we set

gz · xi = xi+1 · 1

for i = 1, . . . , d′ − 1 and
gz · xd′ = x1 · gy.

Thus, in every case the action of gz on the alphabet is the monodromy action
of the small loop αz around z and the state transitions in KC,f show the action of
f on the points of P . See Figure 10, where different cases of the definition of KC,f
are shown.

Proposition 6.7.2. The automaton KC,f is a kneading automaton.

Proof. The conditions (1) and (2) of Definition 6.6.4 follow directly from
the construction of the automaton. It is therefore sufficient to prove that the set
{gz}z∈P defines a tree-like set of permutations of X.

Consider small loops αz going around every post-critical point z ∈ P and
connect them to a basepoint t by curves which do not intersect the spider S. Let
Γ be the obtained 2-complex. Then its preimage f−1 (Γ) is precisely the cycle
complex of the set of permutations defined by {gz}z∈P on X.

The complement of Γ in R2 is homeomorphic to an angulus and does not contain
post-critical points of f . Therefore, f : R2 \ f−1 (Γ) −→ R2 \Γ is a d-fold covering.
Consequently, R2 \ f−1 (Γ) is also homeomorphic to an angulus, hence f−1 (Γ) is
connected and contractible. �

Theorem 6.7.3. Let f : R2 −→ R2 be a post-critically finite topological poly-
nomial with critical set C and post-critical set P . Suppose that there exists an
invariant spider S and let C be the associated critical portrait. Then a standard
action of IMG (f) on X∗ is generated by the automaton KC,f .

Proof. We will only define the generators gz of IMG (f) corresponding to the
states gz, z ∈ P of the automaton KC,f and the paths `(x) connecting the basepoint
to its preimages. The rest, i.e., showing that the formula for the standard action
(see Proposition 5.2.2) agrees with the definition of KC,f , will easily follow from the
construction.



6.8. ITERATED MONODROMY GROUPS OF COMPLEX POLYNOMIALS 173

Let us denote byMS the plane R2 without the curves belonging to the spider
S. The set MS is simply connected and f−1 (MS) is a subset of MS (up to an
isotopy rel. P ), since S is f -invariant.

Choose some basepoint t ∈ MS . Every sector of the critical portrait contains
exactly one point of f−1(t). For every x ∈ X let `(x) be the path connecting the
preimage tx ∈ Sx of t and going inside MS (i.e., not intersecting the spider S).
The path `(x) is determined by these conditions uniquely up to a homotopy in
M = C \ P , since MS is simply connected. We compute the standard action of
IMG (p) associated with the obtained set of connecting paths {`(x)}x∈X.

For every z ∈ P we take a small simple loop αz going in positive direction
around z and connect it to t by a path pz in MS . Let gz be the obtained loop
gz = p−1

z αzpz. The homotopy class of gz is uniquely determined by the condition
that gz intersects only the path γz of the spider S and by the direction of the
intersection. �

6.8. Iterated monodromy groups of complex polynomials

6.8.1. Critical portrait and invariant spiders. Let us describe how to
construct an invariant spider and a critical portrait of a post-critically finite com-
plex polynomial. We will follow the work of A. Poirier [101], which extends the
paper [18] for the general (not only strictly pre-periodic) case. Our outline will not
contain proofs. The proofs (and references to proofs) can be found in [101]. See
also [33, 34, 89, 67].

6.8.1.1. External and internal rays. Let f ∈ C[z] be a post-critically finite
polynomial with the set of (finite) critical points C and post-critical set P . We
assume that f is monic and centered, i.e., is of the form f(z) = zd + ad−2z

d−2 +
ad−3z

d−3 + · · ·+ a0.
Let us denote by Jf and Kf the Julia set and the filled Julia set of f . The

filled Julia set is the set of points z ∈ C such that fn(z) → ∞. Here, as usual fn

denotes the nth iteration of f .
The Julia set of f is connected, locally connected and coincides with the bound-

ary of the basin of attraction of infinity Ĉ \ Kf .
The set of finite critical points C belongs to the filled Julia set Kf . If z0 ∈ C

belongs to the Julia set, then it is strictly pre-periodic, i.e., there is no n ∈ N such
that fn(z0) = z0 but there exist n < m such that fn(z0) = fm(z0). The period
of the sequence z0, f(z0), . . . , fn(z0), . . . is a repelling cycle and does not contain
critical points.

If z0 ∈ C does not belong to the Julia set (i.e., belongs to the Fatou set), then
it is either periodic, or is pre-periodic, but then its orbit contains a periodic critical
point. In both cases the period of the orbit is a super-attracting cycle.

Let us denote D = {z ∈ C : |z| < 1}. There exists a unique bi-holomorphic
isomorphism

Φ∞ : Ĉ \ D −→ Ĉ \ Kf
tangent to identity at ∞ and conjugating f with zd, i.e., such that

f (Φ∞(z)) = Φ∞
(
zd
)

for all z ∈ Ĉ \ D.
Suppose now that z0, z1 = f(z0), . . . , zn−1 = fn−1(z0), f(zn−1) = z0 is a

cycle containing critical points. Let Ui be the Fatou component (i.e., a connected
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component of the Fatou set), containing zi. Then fn : Ui −→ Ui is a degree d′

branched covering, where d′ is the product of local degrees of f at zi and thus
does not depend on zi. There exists a uniformizing map ΦUi : D −→ Ui such that
ΦUi

(0) = zi and

(6.6) fn (ΦUi(z)) = ΦUi

(
zd

′
)
.

The functions ΦUi
are determined uniquely up to multiplication of its arguments

by roots of unity of degree d′ − 1.
In general, if U is a Fatou component of f , then its center is the point z0 ∈ U

such that fn(z0) belongs to a cycle for some n. The center exists and is unique.
Let us choose the uniformizing map ΦU : D −→ U such that ΦU (0) is the center of
U .

For θ ∈ R/Z, we denote by Rθ,∞ the curve

Rθ,∞(t) = Φ∞
(
t · eθ2πi

)
, t ∈ (1,+∞)

and by Rθ,U the curve

Rθ,U = ΦU
(
t · eθ2πi

)
, t ∈ [0, 1).

The rays Rθ,∞ and Rθ,U are called external and internal rays at angle θ. The set
of internal rays of a Fatou component do not depend on the choice of the map ΦU .

Since Φ∞ conjugates f with zd, the polynomial f acts on the external rays by
multiplication of the angles by d:

f (Rθ,∞) = Rdθ,∞.

The Julia set of a post-critically finite polynomial is locally connected, therefore,
the maps Φ∞ and ΦU can be extended to continuous maps of the boundaries. This
implies that the rays Rθ,∞ and Rθ,U land, i.e., that the limits

Rθ,∞(1) = lim
t↘1

Rθ,∞(t), Rθ,U (1) = lim
t↗1

Rθ,U (t)

exist. They belong obviously to Jf . We say that the ray Rθ,∗ lands at the point
Rθ,∗(1). Every point z ∈ Jf is a landing point of at least one external ray. For
any given Fatou component U and any point z ∈ ∂U there exists precisely one ray
Rθ,U landing at z.

6.8.1.2. Supporting rays. Let U be a Fatou component and let p ∈ ∂U be a
point on its boundary. There is only a finite number of external rays

Rθ1,∞, Rθ2,∞, . . . , Rθk,∞

landing at p. Let us order the angles θ1, . . . , θk in the counterclocwise cyclic order
(i.e., the natural cyclic order on R/Z) so that the Fatou component is between θ1
and θ2 (see Figure 11).

Then the external ray Rθ1,∞ is called (left) supporting ray of the Fatou com-
ponent U . Extended ray RU,p is the supporting ray Rθ1,∞ extended by the internal
ray Rθ,U of U landing at p.

The extended ray RU,p is determined uniquely by the Fatou component U and
the point p ∈ ∂U . Another important property of the extended rays is that

f (RU,p) = Rf(U),f(p).
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Figure 11. Supporting ray

6.8.1.3. Construction of spiders and critical portraits.

Theorem 6.8.1. If for every periodic point z ∈ P ∩Jf the period of z is equal
to the period of an external ray landing on z, then the polynomial has an invariant
spider. In particular, an invariant spider exists if the polynomial is hyperbolic.

There exists for every post-critically finite polynomial f a number n ∈ N such
that the iteration fn has an invariant spider.

Proof. We will only sketch the proof showing how critical portraits and in-
variant spiders are constructed. More details and proofs can be found in [101]
and [67].

Suppose that a critical point z0 ∈ C is periodic. Let n be its period, let
z0, z1 = f(z0), . . . , zn−1 = fn−1(z0) be the points of the cycle and let Ui 3 zi be
the corresponding Fatou components. The mapping fn : U0 −→ U0 is conjugate to
raising to power d′ on D, where d′ is the product of the local degrees of f at the
points of the cycle. Hence, there exists a point p ∈ ∂U0 such that fn(p) = p (we
use local connectivity of Jf ). One can take p = ΦU0(ζ), where ΦU0 : D −→ U0 is
the uniformizing map satisfying (6.6) and ζ is a root of unity of degree d′ − 1. The
point p is not critical, since it is periodic and belongs to the Julia set.

We get in this way a sequence of extended rays γzk
= RUk,fk(p) such that

f (Rk) = Rk+1. It is possible that the curves γzk
are not disjoint (since p may

have period less than n), but they become disjoint after a small homotopy: we may
slightly move the external rays in the counterclockwise direction (see Figure 12).
We have to make such moves also when the point p is post-critical.

Suppose that z0, z1 = f(z0), . . . , zn−1 = f(zn−2) and f(zn−1) = z0 is a cycle
of post-critical points which does not contain critical points. Then the points zi
belong to the Julia set and by condition of our theorem there exists a ray Rθ,∞
landing on z0 such that fn (R0) = R0. Then the rays γzk

= fk (Rθ,∞) = Rkθ,∞
land on the points zk.

The curves γz are defined now for all cycles of post-critical points. We have
f(γz) = γf(z) for all defined curves γz.

We can define γz for the rest of post-critical points inductively. We choose
z ∈ P with minimal n such that γz is not defined but γfn(z) is. Then we set γz to



176 6. EXAMPLES AND APPLICATIONS

Figure 12. Construction of invariant spider

be equal to one of preimages γz ∈ f−n
(
γfn(z)

)
. It is easy to see that the obtained

set of curves γz is an invariant spider.
If there is no invariant spider, them some of post-critical cycles is shorter than

the length of the rays landing on them. But then we can pass to an iterate fn

such that all external rays landing on periodic post-critical points are fixed under
fn. �

6.9. Polynomials from kneading automata

6.9.1. Constructing a topological polynomial.
6.9.1.1. Adding machines. Consider the alphabet X = {0, 1, . . . , d − 1}. The

d-adic adding machine is the automorphism a of the tree X∗ given by

a · i =
{

(i+ 1) · id for i = 0, 1, . . . , d− 2
0 · a for i = d− 1.

We denote by id the trivial automorphism of X∗ in order to distinguish it from the
symbol 1 ∈ X.

The wreath recursion defining the d-adic adding machine is

a = σ(id , . . . , id , a),

where σ is the cyclic permutation 0 7→ 1 7→ · · · 7→ (d− 1) 7→ 0.
The d-adic adding machine corresponds to adding 1 to a d-adic integer. We

have considered the case d = 2 (binary adding machine) in Subsection 1.7.1. The
action of the d-adic adding machine is a partial case of self-similar actions of Zn,
studied in 1.7.2 and in Section 2.9 (it is the case of n = 1, the base A = d and the
digit system {0, 1, . . . , d− 1}).

An automorphism g of X∗ is conjugate in AutX∗ with a if and only if it is
level-transitive (see [14, 43]).

6.9.1.2. Planar kneading automata. If g is level-transitive and d = |X|, then for
every x ∈ X

gd|x = gd−1|g(x)g|x = gd−2|g2(x)g|g(x)g|x = . . . = g|gd−1(x)g|gd−2(x) · · · g|g(x)g|x,

i.e., gd|x is the product of all states g|xi
, xi ∈ X, written in the order opposite to

the order of the action of g on X. In particular, if we change x to another letter of
X then the order will be shifted cyclically.
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If (A,X) is a kneading automaton, then the product g = g1g2 · · · gn of all its
states is conjugate to the |X|-ary adding machine by Corollary 6.6.7. Thus gd|x for
any x ∈ X is the product

∏
xi∈X (g1g2 · · · gn) |xi written in the order opposite to

that of the action of g on X.
Condition (1) of Definition 6.6.4 implies that

∏
xi∈X (g1g2 · · · gn) |xi

coincides
as a word (if we do not write trivial states) with the product gi1gi2 · · · gin for some
permutation i1, i2, . . . , in of the indices 1, 2, . . . , n.

Definition 6.9.1. A kneading automaton (A,X) is said to be planar if there
exists a circular order g1, g2, . . . , gn of the set of its non-trivial states such that
(g1g2 · · · gn)d |x is a cyclic shift of the word g1g2 · · · gn for every letter x ∈ X, where
d = |X|.

It is sufficient to check the condition of the definition for one letter x.

Proposition 6.9.2. Let (A,X) be a kneading automaton. Then there exists
n ∈ N such that the automaton (A,Xn) is planar.

Proof. Every ordering g1, . . . , gm of the non-trivial states of A uniquely de-
termines the ordering gi1 , . . . , gim such that (g1 · · · gm)d |x = gi1 · · · gim , and the
circular ordering gi1 , . . . , gim depends only on the circular ordering g1, . . . , gm and
does not depend on x ∈ X. Let R : (g1, . . . , gm) 7→ (gi1 , . . . , gim) be the obtained
map on the set of circular orderings. Since the number of possible circular orderings
is finite, there exists n and a circular ordering g1, . . . , gm fixed under the action of
Rn. But this means that (g1 · · · gm)d

n |xn is equal to a cyclic permutation of the
word g1 · · · gm, i.e., that the automaton (A,Xn) is planar. �

Proposition 6.9.3. If C is the critical portrait of a topological polynomial f ,
which is associated to an invariant spider S, then the kneading automaton KC,f is
planar.

Proof. We interpret the states of the kneading automaton KC,f as elements
of IMG (f), accordingly to the proof of Theorem 6.7.3. Let a ∈ π1(M, t) be the
loop going around the post-critical set P in positive direction. It follows from the
definition of the loops gz that a = gz1gz2 · · · gzn for some ordering z1, . . . , zn of the
set P . The loop a is homotopic in M = C \ P to a simple loop around infinity,
therefore ad|x is conjugate to a in π1(M, t) for every x, i.e., the automaton Kf,S is
planar. �

Example. Not every kneading automaton is planar. The following example is
described in [23]. It is an automaton over the alphabet X = {0, 1} with the set of
states {id = 1, a1, a2, . . . , a6} given by the following wreath recursions

a1 = σ(a6, 1) a2 = (1, a1)
a3 = (a2, 1) a4 = (1, a3)
a5 = (1, a4) a6 = (a5, 1).

Let us show that this automaton can not be made planar. Suppose that on the
contrary, we have some ordering a1, ai2 , . . . , ai6 satisfying the conditions of Defini-
tion 6.9.1. Looking at the recurrent definitions, we see that

a1ai2 · · · ai6 = σ
(
a6

∏
{a2, a5},

∏
{a1, a3, a4}

)
,
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where
∏
S denotes product of the elements of the set S in some order. Hence, in

the cyclic ordering a1, ai2 , . . . , ai6 we have the elements {a1, a3, a4} separated from
the elements {a2, a5, a6}. Then a1ai2 · · · ai6 is equal either to

a1

∏
{a3, a4} ·

∏
{a2, a5, a6} =

σ(a6, 1) · (a2, a3) ·
(
a5,
∏
{a1, a4}

)
=

σ
(
a6a2a5, a3

∏
{a1, a4}

)
,

or to

a1

∏
{a2, a5, a6}

∏
{a3, a4}

= σ(a6, 1) ·
(
a5,
∏
{a1, a4}

)
· (a2, a3)

σ
(
a6a5a2,

∏
{a1, a4}a3

)
or to

a1a3

∏
{a2, a5, a6} a4

= σ (a6, 1) (a2, 1) ·
(
a5,
∏
{a1, a4}

)
(1, a3)

= σ
(
a6a2a5,

∏
{a1, a4}a3

)
,

or to

a1a4

∏
{a2, a5, a6} a3

= σ (a6, 1) (1, a3) ·
(
a5,
∏
{a1, a4}

)
(a2, 1)

= σ
(
a6a5a2, a3

∏
{a1, a4}

)
,

The first and the second cases do not give us an invariant cyclic order on
the generators (the left-hand side and the right-hand side of the equalities give
contradictory conditions on the ordering of the set a1, a3, a4).

In the third case the ordering has to be (a1, a3, a6, a2, a5, a4), but

a1a3a6a2a5a4 = σ(a6, 1)(a2, 1)(a5, 1)(1, a1)(1, a4)(1, a3) = σ(a6a2a5, a1a4a3).

In the fourth case the ordering has to be (a1, a4, a6, a5, a2, a3), but

a1a4a6a5a2a3 = σ(a6, 1)(1, a3)(a5, 1)(1, a4)(1, a1)(a2, 1) = σ(a6a5a2, a3a4a1).

An efficient criterion for a kneading automaton over X = {0, 1} to be planar is
described in [23] in terms of Hubbard trees.

Theorem 6.9.4. If (A,X) is a planar kneading automaton, then there exists a
topological polynomial f : R2 −→ R2 and an f-invariant spider S such that (A,X)
is isomorphic to the kneading automaton of the corresponding critical portrait.

Proof. Let A1 be the set of non-trivial states of A and let g1, g2, . . . , gn be a
cyclic order on A1 satisfying conditions of Definition 6.9.1.

Let Γ (A,X) be the dual Moore diagram of the kneading automaton A. Recall
that we draw it as a 2-dimensional CW-complex with labeled 2-cells and (some)
labeled edges.
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Let us choose an initial vertex x0 ∈ X of Γ (A,X). There exists a unique
arrow en of Γ (A,X) starting in x0 and belonging to the cell labeled by gn. Let
x0,n = gn(x0) be its end. Then there exists a unique arrow en−1 starting in x0,n

and belonging to the cell labeled by gn−1. Let x0,n−1 = gn−1gn(x0) be its end.
We proceed further and get an oriented path px0 = (en, en−1, . . . e1) such that
em is adjacent to the cell labeled by gm and the path goes through the vertices
x0, gn(x0), gn−1gn(x0), . . . , g1 · · · gn(x0). Now we start from x1 = g1 · · · gn(x0) and
find the path px1 from x1 to x2 = g1 · · · gn(x0). We continue, and finally we will
get a closed oriented path p = pxd−1 . . . px1px0 , where xi = g1 · · · gn(xi−1).

The word read on the labels of edges along the path p is equal to gn · · · g1, up
to a cyclic shift, since (gn · · · g1)d is the word of the labels of cells along p and the
automaton is planar.

Let us prove that the path p will go through each arrow exactly once. The
first arrow of the path pxi

starts at xi and is adjacent to the cell labeled by g1.
By Proposition 6.6.2, {x0, . . . , xd−1} = X, hence every edge of cells labeled by g1
appears exactly once in the path p (since we have exactly one such edge starting
at each xi). If we pass to the cyclic shift gi, . . . , gn, g1, . . . , gi−1, then we will not
change the closed path p. The same argument will then show that every edge of
cells labeled by gi appears exactly once in p.

Consequently, there exists an orientation preserving embedding of the complex
Γ (A,X) into the plane R2 such that p is the path going around Γ (A,X) in the
positive direction. See for example, the lower part of Figure 6 where the dual
Moore diagram is embedded in this way into the plane for the ordering a, b, c.

Let us fix the embedding, choose one point in the interior of every 2-cell and
one point in the interior of every 1-cell (arrow) of Γ (A,X). We will call the chosen
points midpoints of the 2-cells and arrows, respectively.

Connect every midpoint of an arrow with infinity outside Γ(A,X) by disjoint
curves (rays) and connect the midpoint of every cell by disjoint curves (rays) inside
cells with the midpoints of its sides. If z is a midpoint of a cell, then we get, for
every midpoint θ of a side of the cell, a ray Rz,θ starting in z, intersecting the
boundary of Γ (A,X) only in θ and connecting z with infinity. The rays Rz,θ will
intersect only in their endpoints z. We will say that the ray Rz,θ lands on z or that
z is the landing point of the ray.

Denote by C the set of midpoints of cells with more than one side (i.e., the set
of starting points of more than one ray Rz,θ).

See Figure 13, where the rays Rz,θ for the automaton from Figure 6 are drawn.
Dotted rays land on points of C and thick rays γg belong to the spider S, which
will be defined later.

Euler’s characteristic of the complex Γ (A,X) is equal to 1, since it is homo-
topically equivalent to a point. Hence, the number of edges minus the number of
2-cells is equal to d− 1.

If z ∈ C is a midpoint of a cell with d′ sides, then we add d′− 1 to the number
of connected components of the plane, when we delete the rays Rz,θ from the plane.
Consequently, the number of connected components of the plane with the rays Rz,θ
deleted is equal to 1 plus the number of edges minus the number of 2-cells, i.e., to
d.

Thus the rays Rz,θ divide the plane into d sectors. If Rz,θ separates two sectors,
then the beginning of the arrow of θ belongs to one sector and its end belongs to
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Figure 13. Rays Rz,θ

the other sector. Hence, each sector contains a point of X, thus each sector contains
exactly one point of X. Let us denote the sector to which x ∈ X belongs by Sx.

Note that here sectors are the connected components of the plane without rays
Rz,θ and not only the rays landing on points of C. This does not change the number
of sectors, since if Rz,θ lands on a point z /∈ C, then it is the only ray landing on
z, and it does not cut neither the plane nor the respective sector into disconnected
pieces.

Let Sx be a sector. The labels of the cells to which x belongs are pairwise
different and the set of such labels coincides with A1 = {g1, . . . , gd}. Let us denote
by Ui the cell labeled by gi. Exactly one side of Ui is an arrow ending in x and
exactly one side of Ui is an arrow starting in x.

Let ei be the side of Ui ending in x. The path p goes through ei exactly once, the
next edge of p is adjacent to a cell labeled by gi−1 and obviously starts in x. Hence,
the edge next to ei in p belongs to Ui−1. The path p is the path going around the
diagram Γ(A,X) embedded into the plane. We conclude that the counterclockwise
cyclic order of the labels of the cells to which x belongs is gn, gn−1, . . . , g1.

Let y1, y2, . . . , yn be the midpoints of the cells U1, U2, . . . , Un, respectively. Each
of the points yi belongs to the boundary of the sector Sx. If yi ∈ C then there are
exactly two rays landing on yi and belonging to the boundary of Sx. Otherwise
there is only one ray landing on yi.

For every gi ∈ A1 let γi = Rzi,αi , where αi is the midpoint of the unique arrow
labeled by gi. Then the spider S will be the set of obtained rays γi. Denote by
P the set {z1, . . . , zn} of their landing points. The counterclockwise cyclic order of
the rays γi is γn, γn−1, . . . , γ1, since gn, gn−1, . . . , g1 is the order of the labels of the
edges along the path p.

Now we are ready to construct the topological polynomial f : R2 −→ R2. Let
us choose a collection of homeomorphisms

ϕ(y1,θ1),(y2,θ2) : Ry1,θ1 −→ Ry2,θ2

such that ϕ(y2,θ2),(y3,θ3) ◦ϕ(y1,θ1),(y2,θ2) = ϕ(y1,θ1),(y3,θ3). For example, we may take
rectifiable rays and choose ϕ(y1,θ1),(y2,θ2) to be the isometries between the rays.
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Figure 14. Construction of a topological polynomial

We define then f on the closure of Sx so that it is an orientation preserving
homeomorphism between the interior of Sx and R2 \S, f(yi) = zi and restriction of
f onto a ray Ryi,θi

belonging to the boundary of Sx coincides with the homeomor-
phism ϕ(yi,θi),(zi,αi). It is possible, since the cyclic order of the points yi around x
is the same as the cyclic order of the rays Rzi,αi (see Figure 14).

We leave to the reader to check that f is a well defined topological polynomial
with the set of critical points C, post-critical set P and invariant spider S.

The isomorphism KC,f ∼= (A,X) follows then directly from the construction. �

6.9.2. Constructing a polynomial.

Definition 6.9.5. Let (A,X) be an abstract kneading automaton and let G =
〈A〉 be the group it generates. We say that A has bad isotropy groups if one of the
following equivalent conditions holds:

(1) There exist non-trivial states g1 6= g2 of A, an element h ∈ 〈A〉 and non-
empty words v1, v2 ∈ X∗ such that gi · vi = vi · gi and h · v1 = v2 · h.

(2) There exist sequences ξ1, ξ2 ∈ X−ω and non-trivial states g1 6= g2 of A
such that ξi · gi = ξi in XG and ξ1 = ξ2 in JG.

Note that h · v1 = v2 · h implies that h belongs to the nucleus of the group
generated by (A,X), so that there is only a finite number of possibilities for h
in (1).

Let us show that conditions (1) and (2) of Definition 6.9.5 are equivalent. It is
easy to prove that (1) implies (2).

If ξi = . . . x2x1 ∈ X−ω and gi ∈ A are such that ξi · gi = ξi in XG, then there
exists a path . . . e2e1 in the Moore diagram of the nucleus of G = 〈A〉 labeled
by . . . (x2, x2)(x1, x1) and ending in gi. It follows then from Theorem 3.8.8 that
the path . . . (x2, x2)(x1, x1) is of the form w−ωu for some closed path w and finite
path u and belongs to A. We can therefore assume (after applying the shift to
the sequences ξ1, ξ2 and the corresponding paths several times) that the sequences
ξ1, ξ2 are periodic. It follows now from Theorem 3.5.3 that they are of the form
ξi = v−ωi and there exists an element h of the nucleus of G such that h · v1 = v2 ·h.
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We may assume that gi · vi = vi · gi, passing to some power of the words vi, if
necessary.

Theorem 6.9.6. Let (A,X) be an abstract kneading automaton. Then the fol-
lowing conditions are equivalent.

(1) There exists a post-critically finite complex polynomial f and an invariant
spider S such that (A,X) is isomorphic to the kneading automaton KC,f ,
where C is the critical portrait defined by S.

(2) (A,X) is planar and does not have bad isotropy groups.

Proof. Let us prove that (1) implies (2). If (A,X) is isomorphic to a kneading
automaton of a polynomial then it is planar by Proposition 6.9.3. Let g1 6= g2 be its
states. Then g1 are g2 are defined by small loops around two different post-critical
points z1 and z2. Condition ξi · gi = ξi implies that zi is the image of ξi. But then
condition ξ1 = ξ2 will imply that z1 = z2, what is a contradiction.

Let us prove now that (2) implies (1). There exists, by Theorem 6.9.4, a
topological polynomial f and its invariant spider S such that (A,X) = KC,f for the
critical portrait C defined by the spider. It is sufficient to prove that f is Thurston
equivalent to a complex polynomial, i.e., that there is no obstruction.

Suppose that, on the contrary, an obstruction exists. It is known (see [18]) that
the only possible Thurston obstruction in the case of a topological polynomial is a
Levy cycle. A Levy cycle is a sequence γ0, γ1 . . . , γk = γ0 of non-peripheral closed
simple curves in C \ P such that γi is homotopic rel P to exactly one component
γ′ of f−1 (γi+1) and f : γ′ −→ γi+1 has degree 1.

It follows from the definition of a Levy cycle that the curve γ0 is homotopic rel
P to a component γ′ of f−k(γ0) such that f : γ′ −→ γ0 has degree 1. Then fk is
a permutation of the post-critical points, which are inside γ0 and these points are
not critical points of fk. We can find n = n1k and two points z1, z2 ∈ P inside γ0

such that fn(zi) = zi and zi are not critical points of fn.
Consider the standard action of IMG (f) defined during the proof of Theo-

rem 6.7.3. We may assume that the basepoint t is inside γ0. Then there exist
words vi ∈ Xn such that the points Λ(vi) ∈ f−n(t), corresponding to vi ∈ X∗

are also inside γ0. It follows from the construction of the standard action that
gzi
·vi = vi ·gzi

. Let h̃ be a path inside γ0, connecting Λ(v1) to Λ(v2). Then fn
(
h̃
)

is a loop defining an element h ∈ IMG (f) such that h(v1) = v2.
For every k ∈ N there is a component of f−nk

(
h̃
)

which is a path inside

γ0, connecting Λ
(
vk1
)

with Λ
(
vk2
)
. Consequently, h

(
vk1
)

= vk2 , i.e., v−ω1 and v−ω2

represent the same point of JG. �

Theorem 6.9.6 and Proposition 6.9.2 imply the following description of the
iterated monodromy groups of post-critically finite complex polynomials.

Corollary 6.9.7. A group is isomorphic to an iterated monodromy group of a
post-critically finite polynomial if and only if it is isomorphic to a group generated
by a kneading automaton without bad isotropy groups. �

6.10. Quadratic polynomials

6.10.1. Kneading sequences of automata. Let (A,X) be a kneading au-
tomaton over the binary alphabet X = {0, 1}. A tree-like set of permutations of the
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Figure 15. Automaton with periodic kneading sequence

alphabet X = {0, 1} may contain only one transposition. Therefore A contains only
one active state b1. Every non-trivial state of A has exactly one incoming arrow
(by definition of a kneading automaton), and it is possible to come to b1 along the
arrows of the automaton from every non-trivial state, because b1 is the only active
state of A.

This implies that all states of A can be ordered into a periodic or pre-periodic
sequence b1, b2, . . . such that for every k > 1 one of the states bk|0, bk|1 is equal to
bk−1 and the other one is trivial.

The kneading sequence of the automaton A is the sequence of the labels of
the arrows along the path (bk)

∞
k=1 in the Moore diagram of A. There are four

possible labels: (0, 0), (1, 1), (0, 1) and (1, 0) and we will denote them for notational
simplicity by 0, 1, ∗0 and ∗1, respectively.

If the sequence (bk)
∞
k=1 is periodic with the period

a1 = b1+nk, a2 = b2+nk, . . . , an = bnk,

then the kneading sequence is also periodic with the period of the form x1 . . . xn−1∗,
where xk ∈ {0, 1} and ∗ ∈ {∗0, ∗1}. The automaton A is defined then by the
following wreath recursions:

a1 =
{
σ(an, 1) if xn = ∗0
σ(1, an) if xn = ∗1

ai+1 =
{

(ai, 1) if xi = 0
(1, ai) if xi = 1 , i = 1, . . . , n− 1

The corresponding Moore diagram is shown on Figure 15. We will denote the
automaton A with the set of states {ai}ni=1 by Kx1x2...xn−1 .

If we replace A by A−1, then the labels (0, 0) and (1, 1) will not change, while
the labels ∗0 and ∗1 will be interchanged. Passing to the inverse of an automaton
does not change the group it generates, therefore, we may always assume in the case
of a periodic kneading sequence that the label ∗ is equal to ∗1, so that a1 = (1, an)σ.
Therefore we will write just ∗ instead of ∗1 and ∗0.

Let us denote by K(x1 . . . xn−1) the group generated by the automaton Kx1...xn−1 .
Note that changing the letters of the word x1x2 . . . xn−1 to opposite does not change
(the conjugacy class of) the group K(x1x2 . . . xn−1), since this corresponds just to
renaming the letters of the alphabet.
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Figure 16. Automaton with pre-periodic kneading sequence

If the sequence (bk)
∞
k=1 is pre-periodic, i.e., is of the form b1 . . . bk(a1 . . . an)ω

then the state b1 appears only once and the kneading sequence is a pre-periodic
sequence of the form y1y2 . . . yk(x1x2 . . . xn)ω, where yi, xi ∈ {0, 1} and yk 6= xn
(because yk and xn are labels of different arrows starting in a1). See the Moore
diagram of the automaton A in this case on Figure 16.

The wreath recursion defining the automaton A is then as follows

b1 = σ,

and

bi+1 =
{

(bi, 1) if yi = 0,
(1, bi) if yi = 1,

for i = 1, . . . , k − 1,

a1 =
{

(bk, an) if yk = 0 and xn = 1
(an, bk) if yk = 1 and xn = 0

and

ai+1 =
{

(ai, 1) if xi = 0,
(1, ai) if xi = 1,

for i = 1, . . . , n− 1.
Let us denote by Ky1y2...yk,x1x2...xn the automaton with the set of states {ai}ni=1∪

{bi}ki=1 and by K(y1y2 . . . yk, x1x2 . . . xn) the group generated by them. Note that
here also we may change the letters of the words y1y2 . . . yk, x1x2 . . . xn to the oppo-
site without changing the group. Remember that the group K(y1y2 . . . yk, x1x2 . . . xn)
is defined only if yk 6= xn.

A binary kneading automaton has bad isotropy groups (see Definition 6.9.5)
if and only if it is of the form Ky1y2...yk,x1x2...xn where the word x1x2 . . . xn is a
proper power, i.e., if the period of the kneading sequence is less than the period of
the respective sequence of the states.

6.10.2. Basic properties of the groups K(v) and K(u, v). The results of
this section is a joint work with L. Bartholdi. See the paper [3] for more details
and proofs.
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Theorem 6.10.1. 1) The group K(v) is a weakly branch torsion free group of
exponential growth for every non-empty word v. The group K(∅) is the infinite
cyclic group generated by the binary adding machine.

2) The group K(u, v) is weakly branch if |u| > 1 or |v| > 1. The group K(1, 0) ∼=
K(0, 1) is the infinite dihedral group D∞.

One can prove now using Theorem 3.10.3 the following

Corollary 6.10.2. If two groups K(v1) and K(v2) or K(u1, v1) and K(u2, v2)
are isomorphic, then their limit spaces are homeomorphic.

The defining relations of the group K(v) are described by the following L-
presentation.

Theorem 6.10.3. The group K(v) = K(x1x2 . . . xn−1) has the following presen-
tation:

K(v) =
〈
a1, . . . an | ϕk (R) , k = 0, 1, . . .

〉
,

where

R = {[ai, aj ] : 2 ≤ i, j ≤ n, xi−1 6= xj−1} ∪
{[
ai, a

a1
j

]
: 2 ≤ i, j ≤ n, xi−1 = xj−1

}
and ϕ is the injective endomorphism of K(v) defined on the generators by

ϕ(an) = a2
1, ϕ(ai) =

{
ai+1 if xi = 0,
a−1
1 ai+1a1 if xi = 1, for i = 1, . . . n− 1.

Since the endomorphism ϕ is injective, we can embed the group Kv into its
ascending HNN-extension identifying ϕ with conjugation by an element, denoted t.
Let us denote a = a1. Then we get a new generating system {a, at, . . . , atn−1} of
the group K(v) and the last theorem transforms into

Theorem 6.10.4. The group K(v) is isomorphic to the subgroup, generated by
{a, at, at2 , . . . , atn−1} of the finitely presented group〈

a, t | at
n

= a2axn−1t+xn−2t2+···+x1tn−1

,
[
at

i

, at
ja
]

= 1, 1 ≤ i, j ≤ n− 1
〉
,

where gk1h1+k2h2 =
(
gk1
)h1
(
gk2
)h2 for k1, k2 ∈ Z and group elements g, h1, h2.

6.10.3. Quadratic polynomials.
6.10.3.1. Review of results in holomorphic dynamics. Symbolic dynamics of

quadratic polynomials is a well studied subject. See, for example, the preprint [23]
for different approaches to it (Hubbard trees, kneading sequences, external rays,
etc.) and connections between them.

We will show here only how application of Theorem 6.7.3 to the degree 2 case
gives the classical notion of a kneading sequence of a quadratic polynomial.

Let f(z) = z2 + c be a post-critically finite quadratic polynomial. The critical
portrait of f consists of two f -preimages of an external ray Rθ = Rθ,∞ (if 0 is
pre-periodic) or of an extended ray Rθ = RU,p (if 0 is periodic) consisting of an
external ray Rθ,∞ landing on the root p of the Fatou component U of c and an
internal ray from the root p to the center c of U (see Section 6.8).

In both cases the curves of the critical portrait are the (external or extended)
rays Rθ/2 and R(θ+1)/2, since f acts on the external angles by doubling. Both rays
land on 0 and they divide the plane into two sectors.
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The angle θ shows where the point c is in the Mandelbrot set. Suppose that 0
belongs to a cycle of length n for iteration of z2 + c. Then c belongs to a hyperbolic
component Mc of the interior of the Mandelbrot set. For any other point c1 of that
component, the quadratic polynomial z2 + c1 also has a unique attracting cycle
of length n. If Φ(c1) denotes the multiplier of this cycle, then Φ is a conformal
isomorphism of Mc with the open unit disc D = {z ∈ C : |z| < 1}. We obviously
have Φ(c) = 0. The isomorphism Φ : Mc → D extends to a homeomorphism of the
boundary of Mc with the unit circle. The preimage of 1 under this homeomorphism
is called root of the component Mc. There exist exactly two angles θ such that the
parameter ray Rθ (i.e., external ray to the Mandelbrot set) lands on the root of
Mc.

In the dynamical plane, the point c belongs to a Fatou component Uc, which
is periodic with period n under f . There is a unique point r on the boundary of
Uc, fixed under the map fn : Uc → Uc (since fn|Uc is topologically conjugate via
Boetcher map with the restriction of z2 onto D). This point is called root of the
Fatou component Uc.

A parameter ray Rθ lands on the root of the hyperbolic component Mc if and
only if the dynamical ray Rθ (external ray to the Julia set) lands on the root of
the Fatou component Uc. Moreover, the number θ ∈ R/Z belongs to a cycle of
length n under the doubling map α 7→ 2α : R/Z → R/Z In particular the angle θ
is equal to p/(2n − 1) for some integer and the ray R2kθ lands at the root of the
Fatou component, to which fk(c) belongs.

Other way around, for every rational number θ ∈ R/Z with odd denominator,
the parameter ray Rθ lands on a root of hyperbolic component Mc and if c is the
center of the component (i.e., the preimage of 0 under the multiplicator map), then
0 has the same period under z2 + c as has θ under the doubling map, and the
dynamical ray Rθ lands on the root of the Fatou component of z2 + c, containing c.

Suppose now that 0 is pre-periodic. Then c belongs to the boundary of the
Mandelbrot set (and is called Misiurewicz point) and there exists a finite set of
angles θ such that the parameter rays Rθ land on c. For each of such θ the external
ray Rθ in the dynamical plane of z2 + c lands on c. The pre-period of θ under the
doubling map is the same as the pre-period of c under z2 + c, but the period of θ
may be a multiple of the period of c. Here pre-period and period of a point x under
a map f are the minimal positive integers k and n such that fk+n(x) = fk(x).

For proofs and more about the external rays to Julia and Mandelbrot sets
see [33].

6.10.3.2. Kneading sequences. Let f(z) = z2 + c be a post-critically finite qua-
dratic polynomial and let C =

{
Rθ/2, R(θ+1)/2

}
be its critical portrait. The rays of

C denote the plane into two sectors. We denote the sector containing c by S1 and
the other sector by S0. The sector S0 contains the landing points of the external
rays having angles in the interval

(
θ−1
2 , θ2

)
3 0 and S1 contains the rays with the

angles in the interval
(
θ
2 ,

θ+1
2

)
3 1/2. We will denote these intervals also by S0 and

S1. They are the two semicircles into which the circle R/Z is divided by the points
θ
2 and θ+1

2 .
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For every α ∈ R/Z denote by Iθ(α) its θ-itinerary, defined as the sequence
a0a1 . . ., where

ak =

 0 if 2kα ∈ S0

1 if 2kα ∈ S1

∗ if 2kα ∈ {θ/2, (θ + 1)/2}
The itinerary Iθ(θ) is called kneading sequence of the point θ ∈ R/Z and is

denoted θ̂.
Comparing now the definition of the automaton KC,f (Definition 6.7.1) with the

definitions of the kneading sequence θ̂ and a kneading sequence of an automaton
(Subsection 6.10.1), we see that the kneading sequence of the automaton KC,f
coincides with the kneading sequence θ̂ of the polynomial f .

If ξ is a periodic sequence of the form (v∗)ω for v ∈ X∗, then we denote K(ξ) =
K(u). If ξ ∈ Xω is pre-periodic, then we denote K(ξ) = K(u, v), where v is the
shortest period and u is the shortest pre-period of the sequence ξ = uvω.

Therefore, we get as a partial case of Theorem 6.7.3 the following description
of the iterated monodromy groups of quadratic polynomials.

Theorem 6.10.5. Let f(z) = z2 + c be a post-critically finite quadratic polyno-
mial. Suppose that θ ∈ R/Z is the angle such that the parameter ray Rθ (i.e., the
external ray to the Mandelbrot set) lands either on c (if c is a Misiurewicz point)
or on the root of the hyperbolic component of c (if f is hyperbolic). If the period of
θ under angle doubling is equal to the period of c under f , then a standard action
of IMG (f) on X∗ coincides with K

(
θ̂
)
. This is always the case for angles θ having

odd denominator (i.e., angles periodic under angle doubling), or equivalently, for
hyperbolic polynomials f . �

6.11. Examples of iterated monodromy groups of polynomials

6.11.1. Iterated monodromy group of z2− 1. The parameter rays Rθ for
θ = 1/3 and θ = 2/3 land on the root of the hyperbolic component with the center
c = −1. The orbit of θ = 1/3 under doubling is 1/3 7→ 2/3 7→ 1/3. We have{
θ
2 ,

θ+1
2

}
= {1/6, 2/3}. The kneading sequence of θ is θ̂ = 1∗1∗ . . .. Consequently,

by Theorem 6.10.5, a standard action of the iterated monodromy IMG
(
z2 − 1

)
coincides with K(1), which is the group generated by the transformations a1 =
σ(1, a2), a2 = (1, a1). Note that this action coincides with the action computed in
Subsection 5.2.2.

The group K(1) was defined for the first time by R. Grigorchuk and A. Żuk
in [57, 58] just as an interesting group generated by a three-state automaton. Later
R. Pink discovered that K(1) is the iterated monodromy group of z2 − 1. More
precisely, he defined the profinite iterated monodromy groups as Galois groups (see
Proposition 6.4.2) and computed IMG(z2 − 1) using only information about the
conjugacy classes of a1, a2 and a1a2 in Aut X∗.

Theorem 5.4.3 implies that the limit space JIMG(z2−1) is homeomorphic to the
Julia set of the polynomial z2−1. The Julia set is shown on Figure 17. See also its
approximation (Figure 4, page 100) which is constructed using subdivision rules. It
is called sometimes “basilica” (it presumably resembles the Basilica San Marco in
Venice together with its reflection in the water). This is the reason why the group
IMG

(
z2 − 1

)
is also called often “basilica group”.
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Figure 17. Julia set of z2 − 1

R. Grigorchuk and A. Żuk proved the following properties of IMG
(
z2 − 1

)
.

Theorem 6.11.1. The group IMG
(
z2 − 1

)
(1) is torsion free;
(2) has exponential growth (actually, the semigroup generated by a and b is

free);
(3) is just non-solvable, i.e., every its proper quotient is solvable;
(4) has solvable word and conjugacy problems;
(5) has no free non-abelian subgroups;
(6) is not in the class SG of subexponentially amenable groups.

The class SG, defined in [28], is a natural generalization of the class EG of
elementary amenable groups, which was introduced in [32]. The class EG of ele-
mentary amenable groups is the smallest class containing finite and abelian groups
and closed under taking extensions, quotients, subgroups and direct limits. The
first example of an amenable but not elementary amenable group is the Grigorchuk
group. Grigorchuk group is amenable since it has sub-exponential growth. So, a
natural generalization of EG is the class SG, which is the smallest class containing
groups of sub-exponential growth and closed under taking extensions and direct
limits (the other operations are superfluous).

It was proved in [12], using self-similarity of random walks, that the group
IMG

(
z2 − 1

)
is amenable. Thus, IMG

(
z2 − 1

)
is the first example of an amenable

group not belonging to the class SG. Amenability of the group IMG
(
z2 − 1

)
is

a partial case of the following joint result with L. Bartholdi, V. Kaimanovich and
B. Virag. The proof of the theorem also uses self-similar random walks on groups.

Theorem 6.11.2. The group of bounded automata B0(X) is amenable for every
finite alphabet X.

See Section 3.8 for the definition of the group of bounded automata.

Corollary 6.11.3. Iterated monodromy groups of post-critically finite polyno-
mials are amenable.

Proof. Iterated monodromy groups of post-critically finite polynomials are
generated by bounded automata due to Corollary 6.9.7. �

It is an open question if any contracting group is amenable.
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6.11.2. Belyi polynomials. Probably the first case of computation of an
iterated monodromy action is Theorem 4.2 in the paper of K. M. Pilgrim [98].

The author considers there action of the absolute Galois group Aut
(
Q/Q

)
on

the set of Belyi polynomials.
An extra-clean dynamical Belyi polynomial (XDBP) is a complex polynomial

f such that its post-critical set P is equal to {0, 1} and f(1) = f(0) = 0. (The
definition of [98] is a bit more restrictive.)

K. M. Pilgrim proves that the actions of Aut
(
Q/Q

)
on the set of extra-clean

dynamical Belyi polynomials is faithful.
Let us show how Theorem 4.2 of [98] follows from Theorem 6.7.3.

Theorem 6.11.4. Iterated monodromy group of an XDBP is generated by two
automorphisms g0, g1 of the tree X∗, where g1 = σ1 ∈ S (X) is rooted and

g0 = σ0 (g0, g1, 1, 1, . . . , 1) ,

where σ1, σ0 ∈ S (X) are permutations such that the set {σ0, σ1} is tree-like and
σ0 fixes the letters of X, corresponding to the first two coordinates of the wreath
recursion.

Proof. All critical points of an XDBP are strictly pre-periodic, and hence the
post-critical set P = {0, 1} belongs to the Julia set. There exists, up to isotopy,
only one spider S = {γ0, γ1} for a two-point post-critical set. Consequently, every
XDBP has an invariant spider.

Let C be the critical portrait associated to S and let KC,f be the corresponding
kneading automaton generating IMG(f).

The kneading automaton consists of three states g0, g1 and 1. The set f−1(1)
does not intersect the post-critical set. Therefore, g1 is a rooted automorphism of X,
i.e., it acts on words by the rule g1 (x1x2x3 . . .) = σ1(x1)x2x3 . . ., where σ1 ∈ S (X)
is a permutation.

We have P ∩ f−1 (0) = {0, 1} and post-critical points are not critical. Conse-
quently, if 0 and 1 belong to the sectors Sx0 and Sx1 , then g0 · x0 = x0 · g0 and
g0 · x1 = x1 · g1. If xi /∈ {x0, x1}, then g0|xi

= 1. Hence

g0 = σ0 (g0, g1, 1, 1, . . . , 1) ,

where σ0 is a permutation fixing x0 and x1.
The set of permutations {σ0, σ1} is tree-like, thus σ0 · σ1 acts transitively on

X. �

Theorem 6.11.5. Let g1 and g0 be automorphisms of X∗ given by a recursion
satisfying the conditions of Theorem 6.11.4. Then there exists an XDBP f such that
the group G generated by g1 and g0 coincides with a standard action of IMG (f).

Proof. Every kneading automaton containing only two non-trivial states is
planar, since there is only one circular order on a two-element set. Consequently,
B = {g0, g1, 1} is a planar kneading automaton.

If v ∈ X∗ is such that gi · v = v · gi, then gi = g0 and v is a power of the letter
x0. This implies that B does not have bad isotropy groups.

Thus Theorem 6.11.5 implies that there exists a post-critically finite polynomial
f and its critical portrait C such that KC,f = B. The post-critical set of the
polynomial f has two points z0, z1 such that g0 = gz0 and g1 = gz1 . Definitions of
B and KC,f imply that z0, z1 are not critical and that f(z0) = f(z1) = z0. �
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6.11.3. Chebyshev polynomials. Let Td(z) = cos (d arccos z) be the Cheby-
shev polynomials. They satisfy the recursion

T0(z) = 1, T1(z) = z, and Td = 2zTd−1 − Td−2,

since

cos (d arccos z) + cos ((d− 2) arccos z) = 2 cos ((d− 1) arccos z) cos (arccos z) .

We have Td(cos t) = cos(dt), hence T ′d(cos t) = d sin(dt)/ sin t. This implies
that critical points of Td are of the form cos

(
πk
d

)
, where k ∈ Z are not divisible by

d. For example, if d = 2, then the only critical point of T2 is cos π2 = 0, if d = 3
then critical points of T3 are cos π3 = 1/2 and cos 2π

3 = −1/2. We get therefore
d− 1 critical points and every critical point of Td is of local degree 2.

Critical values of Td are the points of the form cos (kπ), where k ∈ Z is not
divisible by d, i.e., only 1 for d = 2 and 1 or −1 for d ≥ 3. We have also Td(−1) = 1
and Td(1) = 1 for all d 6= 1.

We see that Td becomes an XDBP after conjugation by (1 − z)/2, which will
map 1 to 0 and −1 to 1.

Theorem 6.11.4 implies that IMG (Td) is generated by transformations

g−1 = σ−1, and g1 = (g1, g−1, 1, 1, . . . , 1)σ1,

where σ−1 and σ1 are monodromy actions of the loops around the critical values
−1 and 1, respectively.

We know that Σ = {σ−1, σ1} is a tree-like set of permutations and that σ2
−1 =

σ2
1 = 1, since all critical points are of local degree 2. Consequently, the cyclic

diagram of Σ is just a chain of edges. This means that for some indexing {1, 2, . . . , d}
of the alphabet we have

σ1 = (2, 3)(4, 5)(5, 7) . . .
and

σ−1 = (1, 2)(3, 4)(5, 6) . . . .
The group IMG(Td) is level-transitive and thus infinite. Consequently, IMG (Td)

is isomorphic to the infinite dihedral group D∞.
The same result can be proved using Corollary 6.1.7. We have the following

commutative diagram

C dz−−−→ Cycos z

ycos z

C Td(z)−−−→ C

.

Its restriction on the Julia set [−1, 1] of Td is

R dz−−−→ Rycos z

ycos z

[−1, 1]
Td(z)−−−→ [−1, 1]

.

The vertical arrows in the last diagram are conjugate to the natural quotient
map R 7→ R/D∞, where D∞ acts as the group of affine transformations x 7→ ±x+a,
a ∈ Z. The map x 7→ d · x is an expanding automorphism of the Lie group R. A
direct application of Corollary 6.1.7 shows now that iterated monodromy group of
Td(z) is isomorphic to D∞.
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Figure 18. Julia set of z3(−3/2 + i
√

3/2) + 1

6.11.4. Fabrikowski-Gupta group as an iterated monodromy group.
Consider the polynomial f(z) = z3(ω − 1) + 1, where ω = − 1

2 +
√

3
2 i is a root of

unity of degree 3. Its unique critical point is z = 0. Its orbit is 0 7→ 1 7→ ω 7→ ω.
Hence, it is affine conjugate to an XDBP.

The iterated monodromy group of f is generated by the transformations g1
and gζ as it is described in Theorem 6.11.4. The rooted automorphism g1 acts as
a cyclic permutation of the first level of X∗ = {0, 1, 2}∗, since f has local degree 3
at 0. The point ω is not a critical value, therefore gω is not active, and thus it is
defined by the recurrent relation

gω = (gω, g1, 1) .

The group, generated by g1 and gω coincides with the group considered by
J. Fabrykowski and N. D. Gupta in [40] as an example of a group of intermediate
growth. The Julia set of z3(ω − 1) + 1 is shown on Figure 18.

The Schreier graphs of the action of the Fabrykowski-Gupta group on the levels
of the tree X∗ where studied by L. Bartholdi and R. Grigorchuk in [9]. In particular,
they computed their spectra and noticed that the Schreier graphs converge to some
fractal set. Their observation was one of the starting points of definition of a limit
space of a contracting self-similar group.

6.11.5. Groups of intermediate growth and IMG
(
z2 + i

)
. A finitely gen-

erated group G has intermediate growth if the sequence |BS(n)| grows faster than
any polynomial p(n) and slower than any exponential function an, a > 1. Here
BS(n) =

{
s1 · · · sn : gi ∈ S ∪ S−1

}
for some finite generating set S 3 1.

The first example of a group of intermediate growth is the Grigorchuk group
(Section 1.6). The Grigorchuk group grows faster than exp

(
n0.5157

)
and slower

than exp
(
n0.7675

)
(see [48, 80, 4, 5]).

It was also already mentioned that J. Fabrykowski and N. D. Gupta in [40]
considered an example of a group of intermediate growth, which can be defined as
IMG

(
z3(−3/2 + i

√
3/2) + 1

)
.
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Figure 19. Schreier graph of IMG
(
z2 + i

)
and Julia set of z2 + i

Another example of a group of intermediate growth is IMG
(
z2 + i

)
(see [27]).

The point i is a landing point of the parameter ray R1/6. The orbit of the angle
1/6 under angle doubling is 1/6 7→ 1/3 7→ 2/3 7→ 1/3. The orbit of the critical
value i under iterations of f(z) = z2 + i is i 7→ i− 1 7→ −i 7→ i− 1. We see that the
period of the dynamical ray landing on i is equal to the period of the critical value
and the respective kneading sequence is 1(10)ω. Hence IMG

(
z2 + i

)
is generated

by the transformations

b1 = σ, a1 = (a2, b1), a2 = (1, a1).

An interesting question is to classify all post-critically finite (topological) poly-
nomials whose iterated monodromy groups have intermediate growth.

See Figure 19 where the Schreier graph of action of IMG
(
z2 + i

)
on the 6th

level of the tree X∗ and the Julia set of z2 + i are shown. The Schreier graph is
constructed using the inflation algorithm described in Section 3.9.

6.12. Matings

We have proved two results, which are converse to each other in some sense.
One is Proposition 5.5.1, which says that if a partial self-covering p◦ :M◦1 −→M◦
is a pull-back of a partial self-covering p :M1 −→M, then IMG(p◦) is a self-similar
subgroup of IMG(p).

There are many classical cases of a pull-back of a partial self-covering. One
of the most important ones are polynomial-like maps, used in renormalization
(see [35]). Proposition 5.5.1 shows therefore, that renormalization induces an em-
bedding of iterated monodromy groups.

The other result is Theorem 3.6.1, which says that on the other hand, ev-
ery inclusion H ≤ G of contracting self-similar groups induces a continuous map
JH −→ JG of their limit spaces.

Let us show how Theorem 3.6.1 can be used to construct and visualize exotic
continuous maps. We are going to construct a continuous surjective map from a
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dendrite Julia set to the Riemann sphere. See a detailed discussion of such maps
by J. Milnor in [68].

Let f, g be two complex polynomials of equal degree d. Take two copies Cf and
Cg of the complex plane and let the polynomials f and g act on the corresponding
copies. Compactify the planes by circles at infinity (by points of the form +∞·e2πiθ,
θ ∈ R/Z). The action of each of the polynomials is continuously extended to the
action +∞ · e2πiθ 7→ +∞ · e2πidθ on the circle at infinity. Therefore, if we glue the
compactified planes Cf and Cg along the circle at infinity using the identification

Cf 3 +∞ · e2πiθ � +∞ · e−2πiθ ∈ Cg,

we get a branched covering of a sphere, whose restrictions on the hemispheres Cf
and Cg are equal to f and g, respectively.

The obtained branched covering is called (formal) mating of the polynomials
f and g (see [122, 100]).

If f and g are post-critically finite polynomials of equal degree, then their formal
mating is a post-critically finite Thurston map. The iterated monodromy group of
the formal mating is obviously generated by the iterated monodromy groups of f
and g. More precisely, if we choose the common basepoint +∞ and connect it to its
preimages +∞·e2πik/d, k = 0, 1, . . . , d−1 by paths along the circle at infinity, then
we can compute the standard actions of IMG (f) and IMG (g) using these paths.
The standard action of the iterated monodromy group of the mating will be the
group generated by these standard actions of IMG (f) and IMG (g).

As an example, consider the polynomial z2 + i and mate it with itself. The
corresponding branched covering f of the sphere will have a Thurston obstruction.
To see this consider the external ray R1/3 landing on i−1 and the ray R2/3 landing
on −i. Let C(1) and C(2) be two hemispheres on which the polynomial z2 + i acts.
Then the ray R(1)

1/3 in C(1) has a common point C(1) 3 +∞ · e 1
3 2πi � +∞ · e 2

3 2πi ∈
C(2) with the ray R

(2)
2/3 and similarly, the ray R

(1)
2/3 in C(1) will have a common

point on with the ray R
(2)
1/3 in C(2). Consider the closed simple curves γ1 and γ2

going around the obtained curves R(1)
1/3 ∪R

(2)
2/3 and R(1)

2/3 ∪R
(2)
1/3, respectively. Then

f (γ1) = γ2, f (γ2) = γ1 and the degrees of the respective mappings of closed curves
are equal to one. Consequently, {γ1, γ2} is a Levy cycle. Levy cycles are the only
obstructions, which a mating of two polynomials may have (see [122]).

It is possible, however, to remove this obstruction. We have just to contract
the curves R(1)

1/3 ∪ R
(2)
2/3 and R

(1)
2/3 ∪ R

(2)
1/3 to points z1 and z2. We obtain then a

Thurston map f̂ with two critical points (copies 0(1) and 0(2) of 0 in each of the
hemispheres) and four post-critical points: images i(1), i(2) of i in both hemispheres
and the points z1 and z2. We have f̂

(
0(1)
)

= i(1), f̂
(
0(2)
)

= i(2), f̂
(
i(1)
)

= z1,
f̂
(
i(2)
)

= z2, f̂ (z1) = z2 and f̂ (z2) = z1.
Let us compute the iterated monodromy groups of the Thurston maps f and

f̂ . We take 0(1) as the basepoint and connect it to its preimages
(
i−1
2

)(1)
and(−i+1

2

)(1)
by lines not intersecting the external rays R(1)

1/6, R
(1)
1/3 and R

(1)
2/3. Let

a1, b1, c1 be small loops around the points i(1), (−1 + i)(1) and (−i)(1) respectively,
connected to the basepoint by lines not intersecting the external rays. By a2, b2,
c2 we denote the small loops around the points i2, (−1+ i)2 and (−i)2 respectively,
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Figure 20. Mating two copies of z2 + i

connected to the basepoint as shown on Figure 20. Here the connecting paths go
near the punctures of the plane C(1) leaving them on their right-hand side, then
go along the respective external rays R(1)

5/6, R
(1)
2/3, R

(1)
1/3 to the circle at infinity and

after that go along the external rays R(2)
1/6, R

(2)
1/3 and R

(2)
2/3 in the plane C(2) to the

small loops around the respective punctures.
The standard action of the loops a1, b1, c1 is given (see Subsection 6.11.5) by

a1 = σ, b1 = (c1, a1), c1 = (1, b1),

where σ ∈ S (X) is the transposition.
The preimages of the loops a2, b2, c2 under the map f are shown on Figure 21

(paths connecting the basepoint to its preimages are shown by dotted lines). It
shows that the standard action of these loops is given by

a2 = σ(c2b1a1, a1b1c2), b2 = (a2, c2), c2 = (b2, 1).

Iterated monodromy group IMG(f) is the group generated by the set of trans-
formations {a1, b1, c1, a2, b2, c2}. Note that each of these generators is of order 2.

Iterated monodromy group IMG
(
f̂
)

is a subgroup of IMG(f) generated by

loops, which do not intersect the lines R(1)
1/3 ∪ R

(2)
2/3 and R

(1)
2/3 ∪ R

(2)
1/3. Therefore,

IMG
(
f̂
)

= 〈a1, a2, c1b2, b1c2〉. Let us denote c = c1b2 = (a2, b1c2) and b =
b1c2 = (c1b2, a1). Then we get the recursions

a1 = σ, a2 = σ(b−1a1, a1b) = σ(ba1, a1b)
c = (a2, b), b = (c, a1).

Lemma 6.12.1. If b1(v) 6= v for v ∈ X∗ then b1(v) = b(v). If c1(v) 6= v then
c1(v) = c(v). If b2(v) 6= v then b2(v) = c(v). If c2(v) 6= v then c2(v) = b(v).

The simplicial Schreier graph of the action of the group 〈a1, b1, c1〉 on Xn is a
subgraph of the simplicial Schreier graph of the action of IMG

(
f̂
)

= 〈a1, a2, b, c〉
on Xn.
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Figure 21. Preimages of the loops a2, b2, c2

The simplicial Schreier graphs of the actions on Xn of the groups IMG (f) =
〈a1, b1, c1, a2, b2, c2〉 and IMG

(
f̂
)

= 〈a1, a2, b, c〉 coincide.

Proof. It follows from the recursion for a1, b1, c1 that if b1(v) 6= v, then v is of
the form (01)n1u for some n ≥ 0. Then b1 ((01)n1u) = (01)n1a1(u) = b ((01)n1u).
Similar arguments work for the other cases. �

Corollary 3.5.7 and Lemma 6.12.1 (see also Theorem 3.6.1) imply that the
identical map X−ω −→ X−ω induces a homeomorphism JIMG(f̂) −→ JIMG(f) and
a surjective continuous map Jz2+i = JIMG(z2+i) −→ JIMG(f̂).

We see from the dynamics of the Thurston map f̂ on its post-critical set that
the corresponding Thurston orbifold has four singular points i(1), i(2), z1 and z2,
all of them having isotropy groups of order two. Hence it is the Euclidean orbifold
(2, 2, 2, 2). Consequently, its fundamental group is isomorphic to the group of affine
transformations z 7→ ±z + r of Z2 (see Subsection 6.3.2, page 158).

The generators a1, a2, b, c correspond to simple loops around singular points,
therefore they correspond to elements of order two in the fundamental group, i.e.,
to affine transformations of the form z 7→ −z + r.

More detailed information is contained in the following description of the partial
self-covering f̂ .

Proposition 6.12.2. Let G be the group of affine transformations of C gener-
ated by A1 : z 7→ −z − λ/2, B : z 7→ −z − λ/2 − 1 and C : −z + λ/2 − 1, where
λ = 1

2 + i
√

7
2 . Let φ be the virtual endomorphism of G mapping an affine transfor-

mation z 7→ (−1)kz + β to the transformation z 7→ (−1)kz + λ−1β. Then the map
a1 7→ A1, b 7→ B, c 7→ C extends to an isomorphism ψ : IMG

(
f̂
)
−→ G. The iso-

morphism ψ agrees with the standard action of IMG
(
f̂
)

on X∗ and the self-similar
action of G defined by the virtual endomorphism φ and the digit set {id, A1}. The
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self-covering f̂ is Thurston equivalent to the self-covering of G\C induced by the
expanding automorphism z 7→ λz of C.

Proof. We have λ2 − λ+ 2 = 0 and λ−1 = 1−λ
2 .

Note that the affine transformations A1, B and C are of order 2 and hence the
subgroup G1 of G generated by X = A1C and Y = A1B has index 2 in G. The
transformation X is equal to

z 7→ −(−z + λ/2− 1)− λ/2 = z − λ+ 1

and Y is equal to
z 7→ −(−z − λ/2− 1)− λ/2 = z + 1.

Consequently, G1 is the group of translations z 7→ z + r, where r ∈ Γ = Z[λ]. Note
that λZ[λ] is a subgroup of index 2 in Z[λ], since λ2 − λ+ 2 = 0. The complement
of G1 in G is equal to G1A1, therefore it is equal to the set of affine transformations
of the form z 7→ −z − λ/2 + r, where r ∈ Z[λ] is arbitrary.

We have cba1a2 = 1 (since the loop cba1a2 is contractible on the sphere minus
the post-critical set). The corresponding equality can be also seen from the wreath
recursion for the iterated monodromy group, since

ba1a2c = (a2, b)(c, a1)σσ(ba1, a1b) = (a2cba1, 1).

It follows that IMG
(
f̂
)

is generated by a1, b and c.
It is sufficient to check that the recursions defining the transformations a1, b

and c agree with their interpretation as affine transformations.
Let φ′ be the virtual endomorphism associated with the self-similar action

of IMG
(
f̂
)

and the first coordinate of the wreath recursion (i.e., φ′(g) = g0, if
g = (g0, g1)). We have a1 = σ, therefore g = (φ′(g), φ′(a1ga1)), if g is inactive and
g = σ(φ′(a1g), φ′(ga1)) otherwise.

If now φ is the virtual endomorphism of G induced by the automorphism
z 7→ λ−1z of C. If g ∈ G is a transformation z 7→ (−1)kz + r, then φ(g) is the
transformation z 7→ (−1)kz + λ−1r. This implies that A1 /∈ Domφ, since φ (A1) is
the transformation z 7→ −z − 1/2, which does not belong to G. Let us take then
{id, A1} as a digit set.

Let us compute the recursions defining the self-similar action of G on X∗, as-
sociated with φ and the chosen digit set. Recall that this recursion is given by
g = (φ(g), φ (A1gA1)) if g ∈ Domφ and g = σ (φ (A1g) , φ (gA1)) (see Proposi-
tion 2.5.10).

We get immediately A1 = σ(1, 1) = σ. The transformations B and C belong
to Domφ. The affine transformation φ (B) is equal to

z 7→ −z + λ−1

(
−λ

2
− 1
)

= −z − 1
2
− λ−1 = −z +

λ

2
− 1,

i.e., to C, while φ (A1BA1) is equal to

z 7→ −z + λ−1

(
−λ+

λ

2
+ 1
)

= −z − λ

2
,

i.e., to A1. Consequently,
B = (C, A1) ,

what agrees with the recursion for b in IMG
(
f̂
)
.



6.12. MATINGS 197

The element φ (C) is equal to the affine transformation

z 7→ −z + λ−1

(
λ

2
− 1
)

= −z +
λ

2
.

Let us denote this transformation by A2. We have that the transformation CBA1A2

is equal to

z 7→ −
(
−
(
−
(
−z +

λ

2

)
− λ

2

)
− λ

2
− 1
)

+
λ

2
− 1

= z − λ

2
− λ

2
+
λ

2
+ 1 +

λ

2
− 1 = z,

therefore A2 = A1BC.
The element φ (A1CA1) is equal to the affine transformation

z 7→ −z + λ−1

(
−λ− λ

2
+ 1
)

= −z − λ

2
− 1,

i.e., to B. We have therefore

C = (A1BC, B) ,

what also agrees with the recursion for c in IMG
(
f̂
)
. �

Proposition 6.12.2 makes it possible to describe the Schreier graphs of the action
of the group G = IMG

(
f̂
)

on the levels of the tree X∗, i.e., the adjacency graphs
of the tiles of nth level of JG. These graphs converge as n goes to infinity to the
limit space of G, i.e., to the Julia set of the rational function equivalent to f̂ , which
is homeomorphic to the sphere.

Let us denote now (in view of Proposition 6.12.2) by f̂ also the self-covering
of the orbifold G\C induced by the map z 7→ λz on C. The limit space G\C of G
is homeomorphic to the quotient of the space X−ω by the asymptotic equivalence
relation. The quotient map X−ω −→ G\C maps a sequence . . . x2x1 to the image of
the point limn→∞ ζ⊗xn . . . x1 ∈ XG in JG. Let X = {0 , 1}, where 0 corresponds to
the coset representative id and 1 corresponds to A1 (i.e., 0 = φ(1)1 and 1 = φ(A1)1
in φ(G)G).

The space XG is homeomorphic, by Theorem 6.1.6, to the complex plane C with
the original action of G on it. We have ζ⊗0 = λ−1ζ and ζ⊗1 = λ−1 (−ζ − λ/2) =
−λ−1ζ − 1/2.

The self-similar action of (G,X) is recurrent (i.e., the associated virtual en-
domorphism is surjective), so (by Corollary 2.8.5) every element of the bimodule
M⊗n can be written in the form φn(g1)g2. Here, as usual, M = X · G is the
self-similarity bimodule. We know that ζ ⊗ φn(g1)g2 = φn (ζ · g1) g2, therefore the
images in JG = G\C of the points ζ ⊗ v, v ∈ M⊗n, are of the form λ−n(ζ + r1)
and λ−n(−ζ − λ/2 + r1), where r ∈ Z[λ].

Let us choose the point ζ which belongs to the digit tile T ⊂ XG = C (for
example, ζ = 0). Then the point ζ ⊗ v, where v ∈M⊗n, belongs to the tile T ⊗ v
and the image of ζ ⊗ v belongs to the tile Tv of the nth level. Let us draw the
Schreier graphs Γ (G,Xn) of the action of G on the nth level of the tree X∗ on the
sphere G\C. The vertex v ∈ Xn will be put on the place of the image of ζ ⊗ v.
This will make our graphs agree with the adjacency of the tiles of JG. (Actually,
the adjacency graph is the Schreier graph defined by the generating set equal to
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Figure 22. Approximation of the map Jz2+i −→ Ĉ

the nucleus, but the graphs are not changed “too much” when we use a different
generating set.)

A vertex v ∈ Xn of the Schreier graph Γ (G,Xn) is connected to the vertices of
the form g(v), where g belongs to the generating set of G. The images in JG of
the points ζ ⊗ g(v) and ζ · g ⊗ v = ζ ⊗ g · v are equal. Consequently, we have the
following edges of the Schreier graph Γ (G,Xn).

The vertex λ−n (ζ + r) is connected to

λ−n (−ζ − λ/2 + r) , λ−n (−ζ − λ/2− 1 + r) , and to λ−n (−ζ + λ/2− 1 + r) .

The vertex λ−n (−ζ − λ/2 + r) is connected to

λ−n (ζ + r) , λ−n (ζ + 1 + r) , and to λ−n (ζ − λ+ 1 + r) .

If we take ζ = 0, then the Schreier graph Γ (G,Xn) is the image of the graph
on C with the set of vertices Z[λ] ∪ (Z[λ]− λ/2) and set of edges

{r, r − λ/2} , {r, r − λ/2− 1} , {r, r + λ/2− 1}
under the composition of the map z 7→ λ−nz and the quotient map C −→ G\C.

The Schreier graphs Γ (〈a1, b1, c1〉,Xn) are by Lemma 6.12.1 subgraphs of the
Schreier graphs Γ (G,Xn). The graphs Γ (〈a1, b1, c1〉,Xn) describe the adjacency of
the tiles of nth level of the limit space JIMG(z2+i). Therefore they show how the
Julia set Jz2+i = JIMG(z2+i) is mapped onto the sphere G\C in the same way as,
for example, the classical approximations of the Peano curve show how the segment
is mapped onto the square. See Figure 22 for the graph Γ

(
〈a1, b1, c1〉,X9

)
drawn

as a subgraph of the graph Γ
(
G,X9

)
on the plane C.
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Douady rabbit, 103

dragon curve, 160
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Grigorchuk group, 12
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group
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finite-state, 11

generated by an automaton, 12
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iterated monodromy, 125
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recurrent, 42

regular branch, 62

self-similar, 10

weakly branch, 3

groupoid, 105

étale, 105

free, 108

of action, 106

of changes of charts, 108, 109

of germs, 106

proper, 107

groups

of intermediate growth, 191

Gupta-Sidki group, 18
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Heisengerg group, 160
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space, 88
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kneading automaton, 167, 171
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Lattès examples, 159
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group, 2
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limit G-space, 65

limit dynamical system, 82
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linear recursion, 39
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mating, 193

monodromy action, 124
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orbifold, 110

orbispace, 109

orbit of a groupoid, 106

output function, 4

partial self-covering, 115
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portrait

critical, 170

of an automorphism, 4

post-critical point, 161

post-critically finite, 161, 162

pseudogroup, 105

proper, 107

pseudogroup of changes of charts, 109

pull-back, 114
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rabbit, 103

ray

external, 174

restriction, 3, 32

of a groupoid, 108

of a partial self-covering, 115

restriction of a groupoid, 109

rigid orbispace, 110

rigid stabilizer, 2

rooted automorphism, 9

saturated isomorphism, 51

Schreier graph, 82

sectors (of a critical portrait), 170

self-covering, 115

self-similarity graph, 86

shift, 82

Sierpinski gasket, 99

skew product, 113

spider, 170

stabilizer

of a level, 2

of a vertex, 2

standard action (to write a range), 130

sub-hyperbolic rational function, 163

subgroup

φ-invariant, 39

φ-semi-invariant, 39

bi-invariant, 84

self-similar, 40, 84

tame twin dragon, 155

tensor power of an action, 33

tensor product of bimodules, 31

Thurston map, 162

Thurston orbifold, 162

tile, 70

tile diagram, 98

topological polynomial, 170

transition function, 4

tree-like set of permutations, 166

twin dragon, 155

underlying space, 109
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universal covering, 121

virtual endomorphism, 35

associated with a bimodule, 36
associated with a self-covering, 129

associated with an action, 36

virtual homomorphism, 35

wreath product, 8

wreath recursion, 9, 31

XDBP, 188
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