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Geodesic metric spaces

Let (X , d) be a metric space.
A geodesic segment is an isometric embedding

γ : [a, b]→ X

i.e. for all a ≤ s, t ≤ b,

d(γ(s), γ(t)) = |s − t|

Similarly define geodesic rays γ : [a,∞)→ X and
geodesic lines γ : (−∞,∞)→ X .

(X , d) is a geodesic metric space if for all x , y ∈ X , there is a
geodesic segment connecting x and y .

Examples

Spheres, the Euclidean plane and the hyperbolic plane are geodesic
metric spaces.



Curvature conditions

Definition (Gromov)

A geodesic metric space (X , d) is

1. CAT(1) if geodesic triangles in X are “no fatter” than
triangles on the sphere.

2. CAT(0) or nonpositively curved if geodesic triangles in X are
“no fatter” than triangles in Euclidean space.

3. CAT(-1) or negatively curved if geodesic triangles in X are
“no fatter” than triangles in hyperbolic space.

Source: Tim Riley.

If (X , d) is CAT(0) then X is contractible, uniquely geodesic, has
nice boundary, finite group actions on X have fixed points, . . .



One-ended spaces

A geodesic metric space is one-ended if it stays non-empty and
connected when you remove arbitrarily large metric balls.

Examples

The sphere and R are not one-ended. For n ≥ 2, n-dimensional
Euclidean and hyperbolic space are one-ended.



Divergence of geodesics

Let (X , d) be a one-ended geodesic metric space.
Let γ1, γ2 : [0,∞)→ X be geodesic rays with the same basepoint.

Question
How fast do γ1 and γ2 move away from each other?

Definition (Gromov)

The divergence of γ1 and γ2 at time r is

div(γ1, γ2, r) := inf
p

length(p)

where the infimum is taken over all rectifiable paths p in
X\Ball(x0, r) connecting γ1(r) and γ2(r).

Can also define divergence of a single geodesic γ by taking
γ1(r) := γ(r), γ2(r) := γ(−r) for r ≥ 0.



Divergence of geodesics in Euclidean space

In Euclidean space, all pairs of geodesics diverge linearly.
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Divergence of geodesics in hyperbolic space

In hyperbolic space, all pairs of geodesics diverge exponentially.
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Divergence of geodesics in symmetric spaces

Examples

1. In Euclidean space, all pairs of geodesics diverge linearly.

2. In hyperbolic space, all pairs of geodesics diverge
exponentially.

Theorem (Gromov)

Let X be a symmetric space of noncompact type e.g.
SLn(R)/ SOn(R). Then for all pairs of geodesics γ1, γ2 with
common basepoint, the function r 7→ div(γ1, γ2, r) is either linear
or exponential.

Gromov asked whether the same dichotomy holds in CAT(0)
spaces. It doesn’t.



Divergence for finitely generated groups
Let G be a finitely generated group with finite generating set S .
Let X = Cay(G ,S). Assume X is one-ended.

Definition (Gersten 1994)

The divergence of G is the function

divG (r) := sup
x ,y

(
inf
p

length(p)

)
where

I the sup is over all pairs of points x , y ∈ X at distance r from e

I the inf is over all paths p from x to y in X \ Ball(e, r).

G has linear divergence if divG (r) ' r , quadratic divergence if
divG (r) ' r2, etc, where

f � g ⇐⇒ ∃C > 0 s.t. f (r) ≤ Cg(Cr + C ) + Cr + C

These rates of divergence are quasi-isometry invariants (Gersten).



Previous results on divergence
Many groups have divergence other than linear or exponential:

I quadratic divergence for certain free-by-cyclic groups [Gersten
1994]

I (geometric) 3-manifold groups have divergence either linear,
quadratic or exponential; quadratic ⇐⇒ graph manifold,
exponential ⇐⇒ hyperbolic piece [Gersten 1994,
Kapovich–Leeb 1998]

I mapping class groups and Teichmüller space have quadratic
divergence [Duchin–Rafi 2009]

I lattices in higher rank semisimple Lie groups conjectured to
have linear divergence; proved in some cases e.g. SL(n,Z)
[Drutu–Mozes–Sapir 2010]

I right-angled Artin groups have divergence linear, quadratic or
exponential [Abrams–Brady–Dani–Duchin–Young 2010,
Behrstock–Charney 2012]

I CAT(0) groups constructed with divergence rd for all d ≥ 1
[Macura 2011, Behrstock–Drutu 2011]



RAAGs and RACGs

Let Γ be a finite simplicial graph with vertex set S .

The right-angled Artin group (RAAG) associated to Γ is

AΓ = 〈S | st = ts ⇐⇒ s and t are adjacent in Γ〉

The right-angled Coxeter group (RACG) associated to Γ is

WΓ = 〈S | st = ts ⇐⇒ s and t are adjacent in Γ, and s2 = 1∀s ∈ S〉

AΓ and WΓ are reducible if S = S1 t S2 with Si 6= ∅ and 〈S1〉
commuting with 〈S2〉.



Relationship between RAAGs and RACGs

Theorem (Davis–Januszkiewicz)

Every RAAG is finite index in a RACG.

Corollary

Every RAAG is quasi-isometric to a RACG.

The converse is not true. For example AΓ is word hyperbolic ⇐⇒
Γ has no edges ⇐⇒ AΓ is free, but there are many word
hyperbolic WΓ which are not quasi-isometric to free groups.

Theorem (Moussong)

WΓ is word hyperbolic if and only if Γ has no empty squares.

If WΓ is word hyperbolic then WΓ has exponential divergence.



Right-angled Coxeter groups

We study these groups because they

I have tractable combinatorics

I include important geometric examples

I act on nice spaces

I appear as Weyl groups for Kac–Moody Lie algebras



Examples of RACGs

1. If Γ has 2 vertices s1, s2 and no edges, then
WΓ = 〈s1, s2 | s2

1 = s2
2 = 1〉 ∼= D∞ the infinite dihedral group.

2. If Γ has 2 vertices s1, s2 connected by an edge, then
WΓ = 〈s1, s2 | s2

1 = s2
2 = 1 and s1s2 = s2s1〉 ∼= C2 × C2 the

Klein 4-group.

3. If Γ has n vertices s1, . . . , sn and no edges, then WΓ is the free
product of n copies of C2, so WΓ has a finite index free
subgroup.

4. If Γ is the complete graph on n vertices, then WΓ is the direct
product of n copies of C2 ⇐⇒ WΓ is finite.



Examples of RACGs
Group generated by reflections in sides of square:

Here Γ is a 4-cycle and

WΓ = 〈s1, s2, s3, s4〉 = 〈s1, s3〉 × 〈s2, s4〉 ∼= D∞ × D∞

The group WΓ has linear divergence.



Examples of RACGs

Group generated by reflections in sides of right-angled hyperbolic
pentagon:

The group WΓ has exponential divergence.



Divergence in right-angled Coxeter groups
We consider WΓ such that

I Γ is triangle-free
I Γ has no separating vertices or edges ⇐⇒ WΓ is one-ended

Note Γ a join ⇐⇒ WΓ is reducible.

Theorem (Dani–T)

1. WΓ has linear divergence if and only if Γ is a join.

2. WΓ has quadratic divergence if and only if Γ is CFS and is
not a join.

Theorem (Dani–T)

For all d ≥ 1, the group WΓd
has divergence rd .
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The Davis complex for WΓ

The Davis complex for a general RACG W = WΓ is the cube
complex Σ = ΣΓ with

I 1-skeleton the Cayley graph of W w.r.t. S

I the cubes filled in

Theorem (Gromov)

Σ is CAT(0).

W is quasi-isometric to Σ.



The Davis complex for WΓ

Source: Jon McCammond.

The Davis complex for a general RACG W = WΓ is the cube
complex Σ = ΣΓ with
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Theorem (Gromov)

Σ is CAT(0).

W is quasi-isometric to Σ.



Walls in the Davis complex
A reflection in W is a conjugate of a generator s ∈ S .

A wall in Σ is the fixed set of a reflection in W . We use the
following properties of walls:

I walls separate Σ into two components
I length of path in Cay(W , S) = number of wall-crossings
I γ is geodesic ⇐⇒ γ crosses each wall at most once
I walls have types s ∈ S , and walls of types s and t intersect

only if st = ts
I walls meet at right angles in the centres of squares



4-cycles and distinguished flats

An embedded 4-cycle in Γ with vertex set {s, t, u, v} yields the
subgroup of W

〈s, t, u, v〉 = 〈s, u〉 × 〈t, v〉 ∼= D∞ × D∞

The corresponding subcomplex of Σ is a flat.

The support of a 4-cycle in Γ is the set of vertices in that 4-cycle.

If {s, t, u, v} and {s, t, u, v ′} are both supports of 4-cycles, v 6= v ′,
then the corresponding D∞ × D∞ subgroups intersect along
〈s, u〉 × 〈t〉 ∼= D∞ × C2. So the corresponding flats in Σ intersect
along a fattened line.
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The CFS condition

Given triangle-free Γ, form the 4-cycle graph Γ4 with:

I vertex set the embedded 4-cycles in Γ

I two vertices adjacent if the corresponding 4-cycles have
supports differing by a single vertex

That is, Γ4 records intersections of distinguished flats along
fattened lines.

The support of a component of Γ4 is the set of vertices of Γ, i.e.
elements of S , which are in the supports of the 4-cycles in that
component of Γ4.

Definition
The graph Γ is CFS if a Component of Γ4 has Full Support.



Examples

The following graphs are CFS:

The following graphs are not CFS:



Characterisation of linear and quadratic divergence

We show:

1. if Γ is a join then WΓ has linear divergence.

2. if Γ is not a join then WΓ has divergence � r2.

3. if Γ is CFS then WΓ has divergence � r2.

4. if Γ is not CFS and not a join then WΓ has divergence � r3.



Characterisation of linear and quadratic divergence

1. Join =⇒ linear. Direct products have linear divergence
[Abrams–Brady–Dani–Duchin–Young].

2. Not join =⇒ divΓ � r2. Similar to the proof for RAAGs in
[ABBDY]. Since not a join, ∃ w = s1 · · · sk so that si run
through all vertices, and si does not commute with si+1.
Consider geodesic γ = w∞.

3. CFS =⇒ divΓ � r2. Break geodesics into pieces contained
in flats coming from 4-cycles in the component of Γ4 which
has full support. Induction on number of pieces.

4. Not CFS =⇒ divG � r3. Consider geodesic γ = w∞. Show
avoidant path between γ(−r) and γ(r) has length at least r3

by considering filling.



Mixture of Euclidean and hyperbolic behaviour

w∞e

Figure: WΓ3 has divergence at least cubic



Subsequent work for general WΓ

Theorem (Behrstock–Hagen–Sisto)

1. The divergence of WΓ is either exponential (if the group is
relatively hyperbolic) or bounded above by a polynomial (if
the group is thick).

2. WΓ has linear divergence ⇐⇒ Γ is a join.

Behrstock, Falgas-Ravry, Hagen and Susse generalised the CFS
condition to all Γ.

Theorem (Levcovitz)

1. WΓ has quadratic divergence ⇐⇒ Γ is CFS.

2. If Γ contains a “rank d pair” and has “hypergraph index d”,
then WΓ has divergence rd+1.


