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The class S of compactly generated, topologically simple
locally compact groups can be split into three parts:

SLie the simple Lie groups;
Sdisc the finitely generated simple groups (with discrete
topology);
Std the compactly generated, topologically simple groups
that are totally disconnected locally compact (t.d.l.c.), but
not discrete.

Up to isomorphism, SLie is countable and its members have
been explicitly listed.
Sdisc has 2ℵ0 isomorphism types and these are effectively
unclassifiable (there is no hope to classify even the ℵ0 finitely
presented simple groups).
What about Std?
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Some sources of examples of groups in Std:
algebraic groups over Qp and Fp((t));
completions of Kac–Moody groups over finite fields;
groups specified by local actions on trees and buildings;
commensurators of profinite branch groups.

(Smith 2017) There are 2ℵ0 pairwise nonisomorphic (as
abstract groups) groups in Std.
Open question: Are there uncountably many local (= in a
neighbourhood of the identity) isomorphism classes?

A compactly generated t.d.l.c. group G is expansive if there is
U ≤ G open with

⋂
g∈G gUg−1 = {1}. (Every G ∈ Std is

expansive.) Equivalently, G acts faithfully continuously
vertex-transitively on a connected locally finite graph. Are there
uncountably many local isomorphism types of such groups?
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Theorem (Hall, Goryushkin, Schupp, 1974–76) Every countable
group embeds in some 2-generator simple group.
Is every second-countable t.d.l.c. group G an open subgroup of
some L ∈ Std?

First “no”: consider (n ≥ 2)

G =
∏

p prime

(PSLn(Qp),PSLn(Zp)); U =
∏

p prime

PSLn(Zp).

G is expansive, but does not embed in any compactly
generated t.d.l.c. group; U is compact, but does not embed in
any compactly generated expansive t.d.l.c. group. (Proof idea:
consider how U would act on a connected locally finite graph...)
Some work has been done on embeddability into compactly
generated (expansive) groups (e.g. by Caprace–Cornulier), but
it is wide open in general.



Introduction Local actions on trees The compactified boundary The abelianization

Theorem (Hall, Goryushkin, Schupp, 1974–76) Every countable
group embeds in some 2-generator simple group.
Is every second-countable t.d.l.c. group G an open subgroup of
some L ∈ Std?

First “no”: consider (n ≥ 2)

G =
∏

p prime

(PSLn(Qp),PSLn(Zp)); U =
∏

p prime

PSLn(Zp).

G is expansive, but does not embed in any compactly
generated t.d.l.c. group; U is compact, but does not embed in
any compactly generated expansive t.d.l.c. group. (Proof idea:
consider how U would act on a connected locally finite graph...)
Some work has been done on embeddability into compactly
generated (expansive) groups (e.g. by Caprace–Cornulier), but
it is wide open in general.



Introduction Local actions on trees The compactified boundary The abelianization

Theorem (Hall, Goryushkin, Schupp, 1974–76) Every countable
group embeds in some 2-generator simple group.
Is every second-countable t.d.l.c. group G an open subgroup of
some L ∈ Std?

First “no”: consider (n ≥ 2)

G =
∏

p prime

(PSLn(Qp),PSLn(Zp)); U =
∏

p prime

PSLn(Zp).

G is expansive, but does not embed in any compactly
generated t.d.l.c. group; U is compact, but does not embed in
any compactly generated expansive t.d.l.c. group. (Proof idea:
consider how U would act on a connected locally finite graph...)
Some work has been done on embeddability into compactly
generated (expansive) groups (e.g. by Caprace–Cornulier), but
it is wide open in general.



Introduction Local actions on trees The compactified boundary The abelianization

Is every compactly generated expansive t.d.l.c. group G an
open subgroup of some L ∈ Std?

Second “no”: there are additional local restrictions on groups
L ∈ Std, e.g. L cannot have any nontrivial abelian subgroup
with open normalizer (Caprace–R.–Willis).
To give us flexibility on the local structure, let’s say we just want
an open subgroup K o G of L where K is compact.

Third “no”: L ∈ Std is unimodular, so every open subgroup of L
is unimodular; but G need not be, and if G is not unimodular
then neither is K o G for G compact.
So let us go slightly beyond Std to a class that allows
non-unimodular groups L (but still with a “large” normal
subgroup in Std).
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Theorem 1 (Garrido–R.)
Let G be a compactly generated expansive t.d.l.c. group. Then
there is a t.d.l.c. group L and an open subgroup O of L with the
following properties:

(i) O ∼= K o G, where K is compact;
(ii) the derived group D(L) of L is open and belongs to Std;
(iii) L = Aut(D(L)) = D(L)G〈s〉 where s2 = 1.

Corollary
Given a finitely generated subgroup F of Q∗>0, there is S ∈ Std
such that F is the image of the modular function of Aut(S).

The construction is to form a suitable group acting on a
countable tree, and then take the piecewise full group of its
action on a compactification of the boundary of the tree.
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A group H acting vertex-transitively on a tree T has a local
action given by Hv acting on the edges incident with v . For a
transitive permutation group P, there is a group U(P) acting
vertex-transitively on a tree with local action P, such that every
other such group is conjugate to a subgroup of U(P)
(Burger–Mozes 2000, Smith 2017). This falls into the general
framework of local actions on trees developed by R.–Smith.

First step towards Theorem 1: let G act on G/U for a compact
open subgroup U such that

⋂
g∈G gUg−1 = {1}, and form

H = U(G). This has some of the properties we want:
H has vertex stabilizer Hv ∼= K o G, where K is the fixator
of the 1-ball around v . K is compact and Hv is open.
H is compactly generated (in fact it is generated by Hv plus
an edge inversion).
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By a result of Tits, H also has an open simple (or trivial)
subgroup H+ generated by the arc stabilizers. But it is not quite
the simple group we want: H+ has local action G+, where G+

is generated by the point stabilizers of G, and
H/H+ ∼= G/G+ ∗ C2. If G is not generated by point stabilizers,
then H/H+ is nonabelian and H+ is not compactly generated.

To get the right group in Std, we appeal to some general results
about piecewise full groups obtained by Garrido–R.–Robertson.
Let G be a group acting by homeomorphisms on the Cantor set
X . The piecewise full group F(G) is the group of
homeomorphisms h ∈ Homeo(X ) such that for all x ∈ X , there
is gx ∈ G and a neighbourhood Ox of x such that h|Ox = gx |Ox .
To obtain the group L in Theorem 1, we appeal to general
results about such groups.
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Definition
Let X be the Cantor set and let G be a topological group acting
faithfully by homeomorphisms on X . The action of G is:

minimal if every orbit is dense;
expansive if the topology of X is generated by the
G-translates of a finite set of clopen sets;
locally decomposable if for every clopen partition P of X ,
the subgroup 〈ristG(Y ) | Y ∈ P〉 is open.

Theorem 2 (Garrido–R.–Robertson)
Let H be a t.d.l.c. group with a faithful minimal expansive locally
decomposable action by homeomorphisms on the Cantor set,
such that the rigid stabilizers are not discrete. Then the
topology of H extends to the piecewise full group F(H), with H
as an open subgroup. Moreover, D(F(H)) is open in F(H) and
belongs to Std, and we have Aut(D(F(H))) = F(H).
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Next steps: find an action of H = U(G) on the Cantor set, and
check it has the right dynamical properties.
H acts on a tree T . There is a natural topology on the space of
ends ∂T induced by the following metric: start at a base point
v0, and say the rays (v0, v1, . . . ) and (v0,w1, . . . ) have distance
2−i if they first differ in the i-th entry. However, if v0 (or any other
vertex) has∞ neighbours, clearly this space is not compact.

Let AT be the set of arcs. Given a ∈ AT then T − a divides into
two half-trees, where Ta has the vertices closer to t(a) and Ta
has the vertices closer to o(a). We then call the set ∂Ta of ends
of Ta a half-space Ya of ∂T .

Ya Ya
a
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Let H be the set of half-spaces and define ι : ∂T → {0,1}H by
setting ι(ω)(Ya) = 1 if ω ∈ Ya and 0 otherwise; we then define
∂T = ι(∂T ). In other words: a point in ∂T is an “ultrafilter of
half-spaces of ∂T ”. This is in fact a topological embedding of
∂T into ∂T and the action of H extends to ∂T by continuity;
moreover, ∂T is a Cantor set.

Half-spaces Y a := ι(Ya) of ∂T do not form a base of topology
in general, only a subbase. However, every clopen partition of
∂T can be refined to a partition PT ′ for a finite subtree T ′,
where the parts of PT ′ correspond to the preimages of the
closest point projections of VT onto T ′. Each part is then a
finite intersection of half-spaces.
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Faithful action: the tree has enough ends that Aut(T ) acts
faithfully on ∂T .
Expansive action: the topology of ∂T is generated by
half-spaces, and H acts transitively on these.
Minimal action: every nonempty open subspace O
contains a half-space, so the H-translates of O cover the
space.
Locally decomposable, no discrete rigid stabilizer: It is
enough to consider clopen partitions PT ′ . Here one sees
that the pointwise stabilizer of T ′ in H (which is open) is the
product of the rigid stabilizers, due to how H is defined by
local actions. Moreover, each rigid stabilizer contains a
rigid stabilizer of a half-space; the latter are nondiscrete as
long as G has nontrivial point stabilizers.
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We now take L = F(H), and this has the right properties for
Theorem 1 (subject to a minor adjustment to get nontrivial point
stabilizers when G is discrete). The last part of Theorem 1 was
that the abelianization Lab := L/D(L) is accounted for by G plus
an element of order 2.

Here we use the normal subgroups S(H) and A(H) of F(H)
introduced by Nekrashevych, which are generated respectively
by “transpositions” and “3-cycles” s on disjoint clopen parts of
the Cantor set, where on each part s acts as some element of
H. Nekrashevych showed under quite general circumstances
that A(H) is simple (so in our case, A(H) = D(L) ≥ H+).

Using arguments specific to the present situation, we show
S(H) = A(H)〈s〉 for any edge inversion s and then L = S(H)Hv ;
writing Hv = K o G, we have L = S(H)G.
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When the tree is locally finite, actually L = S(H); this is a
special case of results of Lederle.
On a locally infinite tree, we can get a lower bound on L/S(H).
Given h ∈ H write [h] for its image in the abelianization Hab.
(Hab = G/D(G)G+ × C2.) Given g ∈ L, there is a finite subtree
T ′ such that on each part Zv of PT ′ (v ∈ VT ′), g acts as an
element gZv of H. There is then a homomorphism θ from L to
Hab given by

θ(g) =
∏

v∈VT ′

[gZv ](2−degT ′ (v)).

Given g ∈ H, then θ(g) = [g]2. So we have a short exact
sequence

1→ E → Hab → Lab → 1

where E has exponent ≤ 2.
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The following example shows how to deduce the corollary.
Define the modular function as

∆G(g) :=
µ(gUg−1)

µ(U)
,

where µ is a right-invariant Haar measure on G.

Example

Let F = 〈g1, . . . ,gm〉 ≤ Q∗>0 and let p1, . . . ,pn be the primes
involved in g1, . . . ,gm. Set G =

∏n
i=1 Qpi o F , where gi acts on

Qpj as multiplication by g−1
i ; then ∆G(G) = F . Note that

U =
∏n

i=1 Zpi has trivial core in G and G = 〈U,F 〉.
Let G act on G/U and form L = F(U(G)) and S = D(L). Then
L = Aut(S) with S ∈ Std, and L = SG〈s〉 where s2 = 1, so
∆L(L) = ∆L(G). Moreover, ∆L(G) = ∆G(G) = F , since G is
contained in an open subgroup of the form K o G where K is
compact.
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