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Abstra
t. This arti
le provides a 
on
ise introdu
tion to the theory of Haar

measures on lo
ally 
ompa
t Hausdor� groups. We will in parti
ular dis
uss

unimodularity and 
oset spa
es. A good referen
e is [KL06, Se
. 7℄. Further

referen
es in
lude [Bou04, Ch. 7℄ and [Kna02, Ch. VIII℄.
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1. Preliminaries

The natural 
lass of groups for whi
h to 
onsider Haar measures is that of lo
ally


ompa
t Hausdor� groups, due to Theorem 2.2 below.

1.1. Lo
ally Compa
t Hausdor� Groups. After having reviewed the de�ni-

tions, we show that this 
lass is stable under taking 
losed subgroups and 
oset

spa
es with respe
t to 
losed subgroups.

A topologi
al group is a group G with a topology su
h that multipli
ation and in-

version are 
ontinuous. As a 
onsequen
e, left and right multipli
ation by elements

of G as well as inversion are homeomorphisms of G. Therefore, the neighbour-

hoodsystem of the identity e 2 G determines the topology on G. A topologi
al

spa
e is lo
ally 
ompa
t if every point has a 
ompa
t neighbourhood; and it is

Hausdor� if any two distin
t points have disjoint neighbourhoods in whi
h 
ase

lo
al 
ompa
tness is equivalent to every point admitting a relatively 
ompa
t open

neighbourhood, i.e. an open neighbourhood with 
ompa
t 
losure.

The 
lass of lo
ally 
ompa
t Hausdor� groups is stable under taking 
losed sub-

groups as follows from the following Proposition. Re
all that if X is a topologi
al

spa
e and A is a subset of X , we may equip A with the relative topology, i.e. U � A

is open if and only if there is an open set V � X , su
h that U = A \ V .

Proposition 1.1. Let X be a lo
ally 
ompa
t Hausdor� spa
e and let A be a


losed subset. Then A is lo
ally 
ompa
t Hausdor�.

Proof. Re
alling that 
ompa
t subsets of Hausdor� spa
es are 
losed and that 
losed

subsets of 
ompa
t sets are 
ompa
t, this is immediate following the de�nitions. �

As to 
oset spa
es, we re
ord the following lemma on a property of neighbour-

hoods that 
omes with the group stru
ture.

Lemma 1.2. Let G be a topologi
al group. Then for every x 2 G and every

neighbourhood U of e 2 G, there is an open neighbourhood V of x with V

�1

V � U .

Proof. The map ' : G�G! G; (g; h) 7! g

�1

h is 
ontinuous. Hen
e there are open

sets V

1

; V

2

� G su
h that V

�1

1

V

2

= '(V

1

� V

2

) � U . Then V = V

1

\ V

2

serves. �
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If G is a topologi
al group and H is a subgroup of G, we equip the set of 
osets

G=H with the quotient topology, i.e. U � G=H is open if and only if �

�1

(U) � G

is open where � : G ! G=H; g 7! gH . Then � is 
ontinuous and open, and left

multipli
ation with g 2 G is a homeomorphism of G=H .

Proposition 1.3. Let G be a topologi
al group and let H be a 
losed subgroup

of G. Then G=H is Hausdor�.

Proof. Let xH; yH 2 G=H be distin
t. Then yHx

�1

� G is 
losed and does not


ontain e 2 G. Hen
e, by Lemma 1.2, there is an open neighbourhood V � G of

e 2 G su
h that V

�1

V � G � yHx

�1

. Then V xH and V yH are disjoint open

neighbourhoods of xH 2 G=H and yH 2 G=H respe
tively. �

Proposition 1.4. Let G be a lo
ally 
ompa
t topologi
al group and let H be a

subgroup of G. Then G=H is lo
ally 
ompa
t.

Proof. It su�
es to show that H 2 G=H has a 
ompa
t neighbourhood. Sin
e G

is lo
ally 
ompa
t, there is a 
ompa
t neighbourhood K of e 2 G. Let V be as in

Lemma 1.2. Then �(V ) is an open neighbourhood of H 2 G=H sin
e � is open.

We show that �(V ) is 
ompa
t. If gH 2 �(V ) then V gH \ V H 6= ; and hen
e

gH = v

�1

1

v

2

H for some v

1

; v

2

2 V . Thus �(V ) � �(U) whi
h is 
ompa
t sin
e � is


ontinuous and hen
e so is �(V ) � �(U). �

1.2. Some Topologi
al Group Theory. We further 
olle
t several fa
ts from

topologi
al group theory, to be used in the sequel.

First, we state a version of Urysohn's Lemma whi
h guarantees the existen
e of


ertain 
ompa
tly supported fun
tions on lo
ally 
ompa
t Hausdor� spa
es. Re
all

that if X is a topologi
al spa
e, f 2 C




(X) su
h that 0 � f(x) � 1 for all x 2 X ,

U � X open and K � X 
ompa
t, one writes f � U if supp(f) � U and K � f if

f(k) = 1 for all k 2 K.

Lemma 1.5 (Urysohn). Let X be a lo
ally 
ompa
t Hausdor� spa
e. If K � X

is 
ompa
t and U � X is open su
h that K � U , then there exists f 2 C




(G)

satisfying K � f � U .

Also, we shall need the notion of uniform 
ontinuity for fun
tions on topologi
al

groups (whi
h 
omes from giving the group the stru
ture of a uniform spa
e). Let

G be a topologi
al group. A fun
tion f : G! C is uniformly 
ontinuous on the left

(right) if for all " > 0 there is an open neighbourhood U of e 2 G su
h that for all

x 2 G and g 2 U we have jf(gx)� f(x)j < " (jf(xg)� f(x)j < ").

Proposition 1.6. Let G be a lo
ally 
ompa
t Hausdor� group. Then any f 2C




(G)

is uniformly 
ontinuous on the left and right.

Proof. We prove that f is uniformly 
ontinuous on the left, uniform 
ontinuity on

the right being handled analogously. Let " > 0. By 
ontinuity of f , there is for ea
h

x 2 supp f an open neighbourhood U

x

of e 2 G su
h that jf(gx) � f(x)j < "=2

for all g 2 U

x

. For every U

x

(x 2 G), pi
k a symmetri
 open neighbourhood V

x

of

e 2 G su
h that V

2

x

� U

x

using Lemma 1.2. Sin
e supp f is 
ompa
t, �nitely many

of the sets V

x

x (x 2 supp f) 
over supp f , say (V

x

k

x

k

)

n

k=1

. De�ne V =

T

n

k=1

V

k

.

Then for all x 2 supp f and for all g 2 V we have

jf(gx)� f(x)j � jf(gx)� f(x

k

)j+ jf(x

k

)� f(x)j <

"

2

+

"

2

= "

where k 2 f1; : : : ; ng is 
hosen su
h that x 2 V

x

k

x

k

. If x =2 supp f then for every

g 2 V either gx =2 supp f in whi
h 
ase the above inequality is trivial, or gx 2 supp f

in whi
h 
ase we set y = gx. Then jf(gx)�f(x)j = jf(g

�1

y)�f(y)j with y 2 supp f

and g

�1

2 V ; we may then argue as before. �
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Finally, the following elementary fa
ts will be useful here and there.

Proposition 1.7. Let G be a topologi
al group and A;B � G. If A and B are


ompa
t, then AB is 
ompa
t. If either A or B is open, then AB is open.

Proof. If A and B are 
ompa
t, then so is AB as the image of the 
ompa
t set (A;B)

under the 
ontinuous multipli
ation map from G�G to G. If either A or B is open,

then AB is open as a union of open sets sin
e

S

a2A

aB = AB =

S

b2B

Ab. �

Proposition 1.8. Let G be a lo
ally 
ompa
t Hausdor� group and let H be a

subgroup of G. Further, let C � G=H be 
ompa
t. Then there exists a 
ompa
t set

K � G su
h that �(K) � C.

Proof. We may 
over G by relatively 
ompa
t open sets U

i

(i 2 I). Sin
e � is

open and C � G=H is 
ompa
t, �nitely many of the �(U

i

) (i 2 I) 
over C, say

(�(U

k

))

n

k=1

. Then K =

S

n

k=1

U

k

serves. �

1.3. Some Measure Theory. We now review some basi
 measure theory in order

to give the de�nition of a Haar measure and some �rst properties.

Let X be a non-empty set. A �-algebra on X is a setM� P(X) of subsets of X ,


ontaining the empty set, whi
h is 
losed under taking 
omplements and 
ountable

unions. A pair (X;M) where X is a set and M a �-algebra on X is a measurable

spa
e; the sets E 2 M are measurable. Given two measurable spa
es (X;M) and

(Y;N ), a map f : X ! Y is measurable if f

�1

(F ) 2 M for all F 2 N . As a

parti
ular example, let X and Y be topologi
al spa
es equipped with their Borel

�-algebras B(X) and B(Y ) respe
tively, i.e. the �-algebra generated by the open

sets. Then any 
ontinuous map from X to Y is measurable. In the following we

shall always equip topologi
al spa
es with their Borel �-algebra.

A measure on a measurable spa
e (X;M) is a map � :M! R

�0

[f1g whi
h is

zero on the empty set and 
ountably additive, i.e. whenever (E

n

)

n2N

is a sequen
e

of pairwise disjoint measurable sets, then �(

S

n2N

E

n

) =

P

1

n=1

�(E

n

). A triple

(X;M; �) where (X;M) is a measurable spa
e and � is a measure on (X;M) is a

measure spa
e. A set of measure zero is a null set. The 
omplement of a null set is

a 
onull set.

If (X;M; �) is a measure spa
e, (Y;N ) a measurable spa
e and ' : X ! Y a

measurable map, then '

�

� : N ! R

�0

[f1g; F 7! �('

�1

(F )) is the push-forward

measure on (Y;N ) under '.

The 
ategory of measure spa
es is designed to allow for the following notion of

an integral of 
ertain measurable, 
omplex-valued fun
tions on (X;M; �).

1. If �

E

is the 
hara
teristi
 fun
tion of a measurable set E 2M, de�ne

Z

X

�

E

(x) �(x) = �(E):

2. If f =

P

n

i=1

�

i

�

E

i

is a positive real linear 
ombination of 
hara
teristi


fun
tions of measurable sets, a simple fun
tion, de�ne

Z

X

f(x) �(x) =

n

X

i=1

�

i

Z

X

�

E

i

(x) �(x):

3. If f : X ! R is measurable and nonnegative, de�ne

Z

X

f(x) �(x) = sup

'

Z

X

'(x) �(x)

where ' ranges over all real-valued simple fun
tions on X with 0 � ' � f .
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4. If f : X ! R is measurable, de
ompose

f = f

+

� f

�

where f

�

(x) = max(�f(x); 0):

If

R

X

jf(x)j �(x) <1, de�ne

Z

X

f(x) �(x) =

Z

X

f

+

(x) �(x) �

Z

X

f

�

(x) �(x):

5. If f : X ! C is measurable and integrable, i.e.

R

X

jf(x)j �(x) <1, de�ne

Z

X

f(x) �(x) =

Z

X

Re(f(x)) �(x) + i

Z

X

Im(f(x)) �(x):

The ve
tor spa
e of 
lasses of measurable, integrable 
omplex-valued fun
tions

on X modulo equality on a 
onull set is denoted by L

1

(X;�). The integral is a

linear map from L

1

(X;�) to C. There is the following 
hange of variables formula.

Proposition 1.9 (Change of variables). Let (X;M; �) be a measure spa
e, (Y;N )

a measurable spa
e and ' : X ! Y a measurable map. For every measurable

fun
tion f : Y ! C and every F 2 N we have

Z

F

f(y) '

�

�(y) =

Z

'

�1

(F )

f('(x)) �(x):

in 
ase either of the two sides is de�ned.

Next, we re
all Fubini's Theorem whi
h redu
es integrating over a produ
t spa
e

to integrating over the fa
tors. Let (X;M; �) and (Y;N ; �) be measure spa
es. Then

so is (X �Y;M�N ; �� �) where (�� �) is de�ned by (�� �)(E;F ) := �(E)�(F )

for all (E;F ) 2 M�N . Also, re
all that (X;M; �) is �-�nite if X is a 
ountable

union of sets of �nite measure.

Theorem 1.10 (Fubini). Let (X;M; �) and (Y;N ; �) be �-�nite measure spa
es.

Let f : X � Y ! C be measurable and suppose

R

X

R

Y

jf(x; y)j �(y) �(x) < 1.

Then f 2 L

1

(X � Y; �� �) and

Z

X

Z

Y

f(x; y) �(y) �(x) =

Z

X�Y

f(x; y) (�� �)(x; y) =

Z

Y

Z

X

f(x; y) �(x) �(y):

Measures on topologi
al spa
es whi
h appear in pra
ti
e often satisfy the follow-

ing additional regularity properties.

De�nition 1.11 (Radon measure). A Radon measure on a topologi
al spa
e X is

a measure on (X;B(X)) whi
h additionally satis�es the following properties:

(R1) If K � X is 
ompa
t, then �(K) <1.

(R2) If E � X is measurable, then �(E) = inff�(U) j U � E;U openg.

(R3) If U � X is open, then �(U) = supf�(K) j K � U;K 
ompa
tg.

The importan
e of Radon measures is also due to the following result of Riesz

whi
h often is employed to de�ne a measure on a given spa
e in the �rst pla
e.

Theorem 1.12 (Riesz). Let X be a lo
ally 
ompa
t Hausdor� spa
e. Further, let

� : C




(X) ! C be a positive, i.e. �(f) 2 [0;1) whenever f(x) 2 [0;1) for all

x 2 X , linear fun
tional. Then there exists a unique Radon measure � on X with

�(f) =

Z

X

f(x) �(x) for all f 2 C




(X):

Furthermore, � satis�es

�(U) = supf�(f) j f � Ug and �(K) = inffT (f) j K � fg

for every open set U � X and every 
ompa
t set K � X .
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2. Definition

When dealing with topologi
al groups it is natural to look for measures whi
h

are invariant under translation. Su
h measures always exist for lo
ally 
ompa
t

Hausdor� groups.

De�nition 2.1 (Haar measure). Let G be a lo
ally 
ompa
t Hausdor� group. A

left (right) Haar measure on G is a Radon measure � on (G;B(G)) whi
h is non-zero

on non-empty open sets and invariant under left-translation (right-translation):

(H1) If U � X is open, then �(U) 
 0.

(H2) For all E 2 B(G) and g 2 G: �(gE) = �(E) (�(Eg) = �(E)).

Theorem 2.2 (Haar measure). Let G be a lo
ally 
ompa
t Hausdor� group. Then

there exists a left (right) Haar measure on G whi
h is unique up to stri
tly positive

s
alar multiples.

We shall not prove this theorem here. However, we make the following remark.

Remark 2.3. Whereas the uniqueness statement of Theorem 2.2 is not too hard

to establish, the existen
e proof is more involved and not parti
ularly fruitful. For

both, see e.g. [Wei65℄. However, there are three 
lasses of lo
ally 
ompa
t Hausdor�

groups for whi
h existen
e may be established by 
lassi
al means, see Remark 2.8.

Example 2.4. Let G be a dis
rete group. Then the 
ounting measure on G, de�ned

by � : B(G) = P(G)! R

�0

[f1g; E 7! jEj, is a left and right Haar measure.

More examples are to follow in Example 2.7. For now, 
onsider the following

useful alternative des
ription of Haar measures: Due to Riesz' Theorem 1.12, there

is a one-to-one 
orresponden
e between Haar measures and Haar fun
tionals, to be

de�ned below, on a given group whi
h is often used to obtain a Haar measure in

the �rst pla
e. Re
all that a topologi
al group G a
ts on C




(G) via the left-regular

and the right-regular representation �

G

(g)f(x) = f(g

�1

x) and %

G

(g)f(x) = f(xg),

where g; x 2 G and f 2 C




(G).

De�nition 2.5. Let G be a lo
ally 
ompa
t Hausdor� group. A left (right) Haar

fun
tional onG is a non-trivial positive linear fun
tional on C




(G) whi
h is invariant

under �

G

(%

G

).

Proposition 2.6. Let G be a lo
ally 
ompa
t Hausdor� group. Then there are the

following mutually inverse maps.

� : fHaar measures on Gg

Integration

/

fHaar fun
tionals on Gg : 	

Riesz

o

Proof. The map � is readily 
he
ked to range in the positive linear fun
tionals

on C




(G). For �

G

-invarian
e (%

G

-invarian
e), use the 
hange of variables formula

1.9. As to non-triviality, let � be a left (right) Haar measure on G and let K be

a 
ompa
t neighbourhood of some point in G. Then �(K) 2 (0;1) by (R1) and

(H1), and by Urysohn's Lemma 1.5 there is f 2 C




(G) su
h that K � f � G and

therefore ��(f) =

R

G

f(g) �(g) � �(K) 
 0.

Conversely, if � is a left (right) Haar fun
tional on G, its non-triviality translates

to (H1) for � := 	� and its invarian
e under �

G

(%

G

) translates to (H2) for �:

Suppose U is a non-empty open set of measure zero with respe
t to �. Then any


ompa
t set admits a �nite 
over by left (right) translates of U and hen
e has

measure zero. Thus �(f) =

R

G

f(g) �(g) =

R

supp f

f(g) �(g) = 0 for all f 2 C




(G),


ontradi
ting the non-triviality of �.

As for invarian
e, suppose that � is �

G

-invariant (%

G

-invarian
e being handled

analogously) and let E 2 B(G) and g 2 G. Then by (R2),

�(gE) = inff�(U) j U � gE; U openg = inff�(gU) j U � E; U openg:
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Further, by Theorem 1.12 and the �

G

-invarian
e of � we have

�(gU) = supf�(f) j f � gUg = supf�(�

G

(g)f) j f � Ug = �(U):

Hen
e � is left invariant. The assertions	Æ� = id and �Æ	 = id are immediate. �

Example 2.7. Here are further examples of Haar measures.

(i) On G = (R;+), a left- and right Haar measure is given by the Lebesgue

measure � whi
h 
an be de�ned as the Radon measure asso
iated to the


lassi
al Riemann integral

R

R

: C




(R)! C via Proposition 2.6.

(ii) On G = (R

n

;+), n � 1, a left- and right Haar measure is given by the n-th

power of the Lebesgue measure �.

(iii) On G = (R

�

; �), the Lebesgue measure is not left-invariant. However, the

map

� : C




(G)! C; f 7!

Z

R

f(x)

�(x)

jxj


an be 
he
ked to be a left- and right Haar fun
tional and hen
e de�nes

a left- and right Haar measure on G by Proposition 2.6. Note that the

above integral is always �nite as the integrand has 
ompa
t support; use

the 
lassi
al substitution rule to 
he
k left- and right-invarian
e.

(iv) On G = GL(n;R), n � 1, the left- and right Haar fun
tional

� : C




(G)! C; f 7!

Z

G

f(X)

�(X)

j detX j

n

de�nes a left- and right Haar fun
tional on G. Here, �(X) :=

Q

n

i;j=1

�(x

ij

)

where X = (x

ij

)

i;j

is the Lebesgue measure on R

n�n

of whi
h GL(n;R)

is an open subset; the latter fa
t is key: The same 
onstru
tion does not

work for e.g. SL(n;R) whi
h is a submanifold of R

n�n

of stri
tly smaller

dimension. Again, the integral is �nite by 
ompa
tness of the support of

the integrand and invarian
e is 
he
ked by 
hanging variables. Note that

the 
ase G = (R

�

; �) is 
ontained via n = 1 in this example.

A left- and right Haar measure for SL(2;R) will be 
onstru
ted in Example 4.5.

Remark 2.8. Having established the 
orresponden
e between Haar fun
tionals

and Haar measures, we now outline existen
e proofs of Theorem 2.2 for 
ompa
t

Hausdor� groups, Lie groups and totally dis
onne
ted lo
ally 
ompa
t separable

Hausdor� groups.

(i) Compa
t Hausdor� groups. Let G be a 
ompa
t Hausdor� group. Then G

a
ts 
ontinuously on C(G) = C




(G), equipped with the supremum norm,

via the left-regular representation. Therefore, G also a
ts on the dual spa
e

C(G)

�

of C(G) via the adjoint representation �

�

G

of �

G

de�ned by

h�

�

G

(g)�; fi = h�; �

G

(g

�1

)fi:

for all � 2 C(G)

�

and f 2 C(G). Sin
e the set P (G) of probability measures

on G is a weak

�

-
ompa
t, 
onvex and �

�

G

-invariant subset of C(G)

�

, the


ompa
t version of the Kakutani-Markov Fixed Point Theorem (e.g. [Zim90,

Thm. 2.23℄) implies that it 
ontains a �

�

G

-�xed point, i.e. a left-invariant

probability measure on G, whi
h turns out to be a left Haar measure on G.

(ii) Lie groups. Let G be a Lie group with Lie algebra Lie(G)

�

=

�(TG)

G

, the

spa
e of left-invariant ve
tor �elds on G whi
h is isomorphi
 to T

e

G as a

ve
tor spa
e. Further, let X

1

; : : : ; X

n

be a basis of T

e

G with asso
iated left-

invariant ve
tor �elds X

G

1

; : : : ; X

G

n

2 �(TG)

G

. Then for ea
h p 2 G, the tu-

ple ((X

G

1

)

p

; : : : ; (X

G

n

)

p

) is a basis of T

p

G and we may for ea
h i 2 f1; : : : ; ng

de�ne a 1-form !

i

on G by (!

i

)

p

((X

j

)

p

) = Æ

ij

; that is, for ea
h p 2 G, the
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tuple ((!

1

)

p

; : : : ; (!

n

)

p

) is the basis of T

�

p

G dual to ((X

G

1

)

p

; : : : ; (X

G

n

)

p

).

It is readily 
he
ked that the left-invarian
e of X

G

1

; : : : ; X

G

n

implies left-

invarian
e of the !

i

(i 2 f1; : : : ; ng) in the sense that L

�

g

!

i

= !

i

for all

g 2 G and if1; : : : ; ng. Then so is the n-form ! := !

1

^ � � � ^ !

n

sin
e ^


ommutes with pullba
k. Furthermore, one 
he
ks that ! is nowhere van-

ishing. We may then orient G su
h that ! is positive and hen
e gives rise

to the left Haar fun
tional

�

!

: C




(G)! C; f 7!

Z

G

f !

whi
h in turn via Riesz' Theorem 1.12 provides a left Haar measure on G,

see [Kna02, VIII.2℄.

(iii) Totally dis
onne
ted lo
ally 
ompa
t separable Hausdor� groups. Let G be

a group of this type. By van Dantzig's theorem, G 
ontains a 
ompa
t open

subgroup K. Assuming G to be non-
ompa
t, by separability and openness

of K there are g

n

2 G (n 2 N) su
h that G =

F

n2N

g

n

K. Using part (i),

let � be a Haar measure on K and let �

n

:= g

n�

� be the 
orresponding

measure on g

n

K. For E 2 B(G) de�ne

�(E) :=

X

n2N

�

n

(E \ g

n

K) =

X

n2N

�(g

�1

n

E \K)

if the sum exists and in�nity otherwise. Then � is a Radon measure on G

whi
h is non-zero on non-empty open sets sin
e � is. Also, � is left-invariant:

Given g 2 G, there is � 2 S

N

su
h that gg

n

K = g

�(n)

K. Then

�(g

�1

E) =

X

n2N

�(g

�1

n

g

�1

E \K) =

X

n2N

�(g

�1

�(n)

gg

n

g

�1

n

g

�1

E \K)

=

X

n2N

�(g

�

�1

n

E \K) =

X

n2N

�(g

n

E \K) = �(E):

where the se
ond equality uses K-invarian
e of �.

By Remark 2.8, 
ompa
t Hausdor� groups have �nite Haar measure. We now

show that the 
onverse holds as well.

Proposition 2.9. Let G be a lo
ally 
ompa
t Hausdor� group and let � be a left

(right) Haar measure on G. Then �(G) <1 if and only if G is 
ompa
t.

Proof. If G is 
ompa
t, then �(G) <1 by De�nition R1. Conversely, suppose that

G is not 
ompa
t and let U be a relatively 
ompa
t neighbourhood of e 2 G. Then

there is an in�nite sequen
e (g

n

)

n2N

of elements of G su
h that g

n

=2

S

k<n

g

k

U ;

otherwise G would be 
ompa
t as a �nite union of 
ompa
t sets. Let V be as in

Lemma 1.2. Then the sets g

n

V (n 2 N) are pairwise disjoint by the fa
t that

V V

�1

� U and the de�nition of (g

n

)

n2N

. Therefore, as V has stri
tly positive

measure, G has in�nite measure. �

3. Unimodularity

We now address and quantify the question whether left and right Haar measures

on a given lo
ally 
ompa
t Hausdor� group 
oin
ide.

De�nition 3.1. A lo
ally 
ompa
t Hausdor� group G is unimodular if every left

Haar measure on G is also a right Haar measure on G and 
onversely.

Remark 3.2. By Theorem 2.2, it su�
es in De�nition 3.1 to ask for every left

Haar measure on G to also be a right Haar measure.
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Proposition 3.6 below will provide several 
lasses of unimodular groups. For now,

let G be a lo
ally 
ompa
t Hausdor� group and let � be a left Haar measure on

G. Then for every g 2 G, the map �

g

: B(G) ! R

�0

[f1g; E 7! �(Eg) is a left

Haar measure on G as well. Hen
e, by uniqueness, there exists a stri
tly positive

real number �

G

(g) su
h that �

g

= �

G

(g)�, i.e.

(M) �(Eg) = �

g

(E) = �

G

(g)�(E) for all E 2 B(G):

The fun
tion �

G

: G! R

>0

is independent of � and 
alled modular fun
tion of G.

Let � be the left Haar fun
tional asso
iated to � by Proposition 2.6. Then by

the 
hange of variable formula 1.9 applied to ' = R

g

�1
, equation (M) immediately

translates to

(M') �(%

G

(g

�1

)f) = �

G

(g)�(f) for all f 2 C




(G):

Proposition 3.3. Let G be a lo
ally 
ompa
t Hausdor� group. Then the modular

fun
tion �

G

: G! (R

>0

; �) is a 
ontinuous homomorphism.

Proof. Let � be a left Haar measure on G. The homomorphism property is imme-

diate from (M): For all g; h 2 G we have

�

G

(gh)� = �

gh

= (�

h

)

g

= �

G

(h)�

h

= �

G

(g)�

G

(h)�:

Evaluating on a set of non-zero �nite measure, e.g. a 
ompa
t neighbourhood of

some point, proves the assertion.

As to 
ontinuity, let � be the left Haar fun
tional asso
iated to � by Proposition

2.6. It su�
es to 
he
k 
ontinuity at e 2 G, sin
e �

G

is a homomorphism. Let K

be a 
ompa
t neighbourhood of e 2 G. Using Urysohn's Lemma 1.5, we 
hoose

' 2 C




(G) su
h that K � ' � G and  2 C




(G) su
h that K supp' �  � G (see

Proposition 1.7). In parti
ular, ' is uniformly 
ontinuous on the right by Proposition

1.6: Given " > 0, let U � K be a symmetri
 open neighbourhood of e 2 G su
h

that j'(xg)� '(x)j < " for all x 2 G and g 2 U . Then by (M'),

j�

G

(g)� 1j =

1

�(')

j�

G

(g)�(') � �(')j �

1

�(')

�(j%

G

(g

�1

)'� 'j ) � "

�( )

�(')

for all g 2 U . Hen
e �

G

is 
ontinuous at the identity. �

Remark 3.4. We have noti
ed that for a lo
ally 
ompa
t Hausdor� group G with

left Haar measure � and given g 2 G, the map �

g

: B(G)! R

�0

[f1g; E 7! �(Eg)

is a left Haar measure on G as well. This is an instan
e of the following more

general observation: For every 
ontinuous automorphism � 2 Aut(G), the map

�

�

: B(G)! R

�0

[f1g; E 7! �(�(E)) is a left Haar measure on G. In this setting,

�

g

= �

int(g

�1

)

where int(g) : G ! G; x 7! gxg

�1

denotes 
onjugation in G by g.

One may then introdu
e the general modular fun
tion mod

G

: Aut(G) ! (R

>0

; �)

whi
h remains to be a homomorphism and with the Bra
onnier topology on Aut(G),

a re�nement of the 
ompa
t-open topology, be
omes 
ontinuous, see e.g. [Pal01℄.

We obtain the following useful 
riterion for unimodularity.

Corollary 3.5. Let G be a lo
ally 
ompa
t Hausdor� group. Then G is unimodular

if and only if �

G

� 1.

Proof. If �

G

� 1, then G is unimodular by (M) and Remark 3.2. Conversely, if G is

unimodular, let � be a Haar measure on G and let E be a 
ompa
t neighbourhood

of some point in G. Then �(E) 2 (0;1) and hen
e �

G

� 1 by (M). �

Corollary 3.5 provides us with the following list of 
lasses of unimodular groups.

Yet another 
lass will be given in Proposition 4.12.
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Proposition 3.6. Let G be a lo
ally 
ompa
t Hausdor� group. Then G is uni-

modular if, in addition, it satis�es one of the following properties: being abelian,


ompa
t, topologi
ally simple, topologi
ally perfe
t, dis
rete, 
onne
ted semisimple

Lie or 
onne
ted nilpotent Lie.

Proof. Let G be a lo
ally 
ompa
t Hausdor� abelian group with left Haar mea-

sure �. Sin
e Eg = gE for every subset E � G and all g 2 G, the left-invarian
e of

� implies right-invarian
e.

If G is 
ompa
t Hausdor� and � is a left Haar measure on G, then �(G) 2 (0;1)

and hen
e �

G

� 1 by (M).

If G is topologi
ally simple, then [G;G℄, whi
h is a 
losed normal subgroup of

G, either equals feg or G. In the former 
ase, G is abelian and hen
e unimodular;

in the latter 
ase, 
ontinuity of �

G

implies:

�

G

(G) = �

G

([G;G℄) � �

G

([G;G℄) = f1g

when
e G is unimodular. When G is topologi
ally perfe
t, i.e. G = [G;G℄, the same

argument applies.

For a dis
rete group, the left Haar measures are the stri
tly positive s
alar mul-

tiples of the 
ounting measure whi
h 
ertainly is right-invariant.

Suppose now, that G is a 
onne
ted semisimple Lie group. Note that in this


ase the modular fun
tion �

G

: G! (R nf0g; �) is a 
ontinuous and hen
e smooth

([War83, Thm. 3.39℄) homomorphism of Lie groups. Thus D

e

�

G

: Lie(G)! R is a

morphism of Lie algebras. Sin
e Lie(G) is semisimple and R is abelian we have

D

e

�

G

(Lie(G)) = D

e

�

G

([Lie(G);Lie(G)℄) = [D

e

�

G

(Lie(G)); D

e

�

G

(Lie(G))℄ = f0g

and hen
e �

G

� 1 by the Lie 
orresponden
e, passing to the universal 
over of G.

For the 
ase of a 
onne
ted nilpotent Lie group, we appeal to the fa
t that for

any Lie group G we have �

G

(g) = j detAd(g)j, where Ad : G! Aut(Lie(G)) is the

adjoint representation of G, see e.g. [Kna02, Prop. 8.27℄ (this follows in the setting

of Remark 2.8). If, in addition, G is 
onne
ted and nilpotent, then the exponential

map exp : Lie(G) ! G is surje
tive ([Kna02, Thm. 1.127℄) and hen
e for every

g 2 G there is some X 2 Lie(G) su
h that g = exp(X) and

�

G

(g) = j detAd(g)j = j det e

adX

j = e

tr adX

= 1

where the last equality follows from Lie(G) and hen
e adX being nilpotent. �

The following proposition provides a 
lass of totally dis
onne
ted lo
ally 
ompa
t

Hausdor� groups that are unimodular. Re
all that if T is a lo
ally �nite tree then

Aut(T ) is a totally dis
onne
ted lo
ally 
ompa
t separable Hausdor� group with

the permutation topology. We adopt Serre's graph theory 
onventions, see [Ser80℄.

Proposition 3.7. Let T = (V;E) be a lo
ally �nite 
onne
ted graph. If G �

Aut(T ) is 
losed and lo
ally transitive then G is unimodular.

Proof. Let � be a left Haar measure on G, see Remark 2.8. Sin
e G is lo
ally

transitive there is for every triple (x; e

0

; e) of a vertex x 2 V and edges e

0

; e 2 E(x)

an element g

e

2 G

x

su
h that g

e

e

0

= e. Then G

x

=

F

e2E(x)

g

e

G

e

0

). In parti
ular,

�(G

x

) = jE(x)j�(G

e

0

) for every e

0

2 E(x). Sin
e G

e

= G

e

for all e 2 E we further


on
lude that �(G

e

) = �(G

e

0

) for all e; e

0

2 E. Given g 2 G we therefore have

�(G

e

) = �(G

ge

) = �(gG

e

g

�1

) = �(G

e

g

�1

) = �

G

(g

�1

)�(G

e

)

and hen
e G is unimodular. �

Example 3.8. We now provide two related examples of non-unimodular groups.
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(i) Consider the group

P :=

��

x y

x

�1

�

�

�

�

�

x 2 R nf0g; y 2 R

�

� SL(2;R):

Then the fun
tionals �; � : C




(P )! C, given by

� : f 7!

Z

R

2

f(X)

�(x)�(y)

x

2

and � : f 7!

Z

R

2

f(X) �(x)�(y)

are left- and right Haar fun
tionals respe
tively as 
an be 
he
ked by 
hang-

ing variables. However, P is a 
losed subgroup of SL(2;R) whi
h is unimod-

ular as a 
onne
ted simple Lie group by Proposition 3.6. We shall shed some

light on the origin of this example in Remark 4.6.

(ii) Let T

d

= (V;E) be the d-regular tree and let ! 2 �T

d

be a boundary point

of T

d

. Set G := Aut(T

d

)

!

, the stabilizer of ! in Aut(T

d

). Then G is not

unimodular: Indeed, let t 2 G be a translation of length 1 towards ! and

let x 2 V be on the translation axis of t. Then

�(t) =

�(G

x

)

�(G

tx

)

=

�(G

x

)

�(G

x;tx

)

�(G

x;tx

)

�(G

tx

)

=

[G

x

: G

x;tx

℄

[G

tx

: G

x;tx

℄

=

jG

x

(tx)j

jG

tx

xj

=

1

d� 1

:

See Remark 4.6 for how this relates to part (i).

Uilizing the modular fun
tion, we 
an turn left Haar measures into right Haar

measures as in the following Proposition. Let i : G! G denote the inversion on G.

Proposition 3.9. Let G be a lo
ally 
ompa
t Hausdor� group with left Haar mea-

sure �. Then � = i

�

� : B(G)! R

�0

[f1g; E 7! �(E

�1

) is a right Haar measure on

G with asso
iated right Haar fun
tional % : C




(G)! C; f 7!

R

G

f(x)�

G

(x

�1

) �(x).

If G is unimodular, then � = �.

Proof. The map � is readily 
he
ked to be a right Haar measure on G. The map %

is 
learly positive and linear. Its non-triviality follows as in the proof of Proposition

2.6 using �

G

(g) 
 0 for all g 2 G. As to %

G

-invarian
e, 
hanging variables via

Proposition 1.9 using R

g�

� = �

g

�1
yields

%(%

G

(g)f) =

Z

G

f(xg)�

G

(x

�1

) �(x) =

Z

G

f(x)�

G

(gx

�1

) �

g

�1
(x) =

=

Z

G

f(x)�

G

(g)�

G

(x

�1

)�

G

(g

�1

) �(x) =

Z

G

f(x)�

G

(x

�1

) �(x) = %(f):

for every f 2 C




(G) and g 2 G. Overall, % is a right Haar fun
tional on G.

Now, let �� denote the right Haar fun
tional asso
iated to � as in Proposition

2.6. Then there is a stri
tly positive real number 
 su
h that �� = 
%. Applying

the 
hange of variables formula 1.9, we obtain for all f 2 C




(G):

Z

G

f(x) �(x) = 


Z

G

f(x)�

G

(x

�1

) �(x) = 


Z

G

f(x

�1

)�

G

(x) �(x)

= 


2

Z

G

f(x

�1

)�

G

(x)�

G

(x

�1

) �(x) = 


2

Z

G

f(x) �(x):

Let K be a 
ompa
t symmetri
 neighbourhood of some point in G and f 2 C




(G)

su
h thatK � f � G. Then

R

G

f(x

�1

) �(x) 2 (0;1) and hen
e 
 = 1. In parti
ular,

unimodularity of G implies � = �. �
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4. Coset spa
es

Let G be a lo
ally 
ompa
t Hausdor� group and let H be a 
losed subgroup

of G. If H is normal in G, there exists a left (right) Haar measure on G=H by

Theorem 2.2. We now address the question under whi
h 
ir
umstan
es there exists

a G-invariant Radon measure on G=H whi
h is non-zero on non-empty open sets if

H is not normal in G, and we shall refer to su
h a measure as a Haar measure on

G=H by abuse of notation. The following example shows that a Haar measure on

G=H may or may not exist.

Example 4.1. Let G = SL(2;R).

(i) Consider the natural a
tion of G on X = R

2

nf0g. Then

H := stab

G

((1; 0)

T

) =

��

1 x

1

�

�

�

�

�

x 2 R

�

and hen
e G=H

�

=

X has a Haar measure, namely the restri
ted two-

dimensional Lebesgue measure.

(ii) On the other hand, G a
ts on X = P

1

R = fV � R

2

j dimV = 1g. Here,

H := stab

G

(he

1

i) =

��

x y

x

�1

�

�

�

�

�

x 2 R nf0g; y 2 R

�

whi
h is the non-unimodular group of Example 3.8. The spa
e G=H

�

=

X

does not admit a Haar measure: For instan
e, 
onsider the 
ompa
t subsets

E

1

:= fh(1; t)

T

i j t 2 [0; 1℄g and E

2

:= fh(t; 1)

T

i j t 2 [0; 1℄g of P

1

R. Then

�

1 �1

1

�

E

1

= E

1

[ E

2

and

�

1 �1

1

�

E

1

= E

2

:

A Haar measure on G=H would assign �nite non-zero measure to the 
om-

pa
t sets E

1

and E

2

whi
h 
ombined with G-invarian
e 
ontradi
ts the

above two equalities.

Theorem 4.2. Let G be a lo
ally 
ompa
t Hausdor� group with left Haar measure

� and let H be a 
losed subgroup of G with left Haar measure �. Then there exists

a Haar measure � on G=H if and only if �

G

j

H

� �

H

. In this 
ase, � is unique up to

stri
tly positive s
alar multiples and suitably normalized satis�es for all f 2 C




(G):

(W)

Z

G

f(g) �(g) =

Z

G=H

Z

H

f(gh) �(h) �(gH):

In the 
ontext of Theorem 4.2, formula (W) 
an be extended to hold for f 2 L

1

(G),

see [KL06, Theorem 7.12℄ and the surrounding explanations.

Proof. (Theorem 4.2, �)�). If � exists as above, then the map

� : C




(G)! C; f 7!

Z

G=H

Z

H

f(gh) �(h) �(gH)

is a left Haar fun
tional on G and thus de�nes a left Haar measure � on G. In

parti
ular, �(%

G

(t

�1

)f) = �

G

(t)�(f) for all t 2 G and f 2 C




(G) by (M'). On the

other hand, we have for all t 2 H and f 2 C




(G):

�(%

G

(t

�1

)f) =

Z

G=H

Z

H

(%

G

(t

�1

)f)(gh) �(h) �(gH) =

=

Z

G=H

Z

H

�

H

(t)f(gh) �(h) �(gH) = �

H

(t)�(f):

If, by Urysohn's Lemma 1.5, we 
hoose f 2 C




(G) to satisfy K � f � G where K

is a 
ompa
t neighbourhood of some point in G, then

R

G

f(g) �(g) = �(f) 2 (0;1)

and hen
e �

G

j

H

� �

H

. �



12 STEPHAN TORNIER

The proof of the 
onverse assertion of Theorem 4.2 relies on the following de-

s
ription of 
ompa
tly supported fun
tions on G=H . On
e more, Riesz' Theorem

1.12 will be used to produ
e a measure.

Lemma 4.3. Let G be a lo
ally 
ompa
t Hausdor� group and H a 
losed subgroup

of G with left Haar measure �. Then the following map is surje
tive:

C




(G)! C




(G=H); f 7!

�

f

H

: gH 7!

Z

H

f(gh) �(h)

�

:

Proof. Several things need to be 
he
ked. First of all, for all f 2 C




(G) and for

all gH 2 G=H , the integral

R

H

f(gh) �(h) is independent of the representative

of gH and �nite. Next, for all f 2 C




(G), the fun
tion f

H

f is 
ontinuous as a

parametrized integral as in the proof of the 
ontinuity of the modular fun
tion.

Clearly, supp f

H

� p(supp(f)) and hen
e f

H

2 C




(G=H). It remains to prove

surje
tivity. To this end, let F 2 C




(G=H). Pi
k K � G su
h that �(K) � suppF

(Proposition 1.8) and let � 2 C




(G) satisfying K � � (Urysohn's Lemma). Now

de�ne f 2 C




(G) by

f : G! C; g 7!

(

F (gH)�(g)

�

H

(gH)

�

H

(gH) 6= 0

0 �

H

(gH) = 0

Again, we need to show that this fun
tion is 
ontinuous and has 
ompa
t support.

As for 
ompa
t support, 
learly supp f � supp �. In fa
t, if G was 
ompa
t, we


ould 
hoose � � 1. To show that f is 
ontinuous, we show that it is 
ontinuous at

every point of two open sets U

1

� G and U

2

� G satisfying U

1

[U

2

= G. On the set

U

1

:= fg 2 G j �

H

(gH) 6= 0g it is 
ontinuous as a quotient of 
ontinuous fun
tions;

and on the set U

2

:= GnKH it is 
ontinuous as it vanishes there. Further, if g 62 U

1

,

then 0 = �

H

(gH) =

R

H

�(gh) �(h). Sin
e � is a non-negative 
ontinuous fun
tion,

this implies �(gh) = 0 for all h 2 H , hen
e g 62 KH , i.e. g 2 U

2

. Continuity and


ompa
t support being established, it remains to show that f

H

� F . Compute

f

H

(gH) =

Z

H

F (ghH)�(gh)

�

H

(ghH

�(h) = F (gH)

R

H

�(gh) �(h)

�

H

(gH)

= F (gH):

Hen
e the map (�)

H

: C




(G)! C




(G=H) is surje
tive. �

Proof. (Theorem 4.2, �(�). Let � : C




(G=H) ! C




(G) be a right-inverse for the

map C




(G)! C




(G=H); f 7! f

H

of Lemma 4.3 and 
onsider the map

� : C




(G=H)! C; f 7!

Z

G

(�f)(g) �(g):

On
e � is independent of �, it is a positive linear fun
tional. To prove that it is

independent of �, it su�
es to show that

R

G

f(g) �(g) = 0 whenever f

H

� 0. By

Lemma 4.3 and Urysohn's Lemma 1.5 there exists a fun
tion � 2 C




(G) su
h that

(supp f)H � �

H

� G=H . Then by Proposition 3.9 we have

Z

G

f(g) �(g) =

Z

G

�

H

(gH)f(g) �(g) =

Z

G

Z

H

�(gh)f(g) �(h) �(g)

=

Z

G

Z

H

�(gh

�1

)f(g)�

H

(h

�1

) �(h) �(g):

We may as well integrate over the 
ompa
t and hen
e �-�nite spa
es supp f � G

and (supp �)

�1

supp f \H � H (see Proposition 1.7). Therefore, Fubini's Theorem
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1.10 allows us to 
ontinue the above 
omputation by

=

Z

H

Z

G

�(gh

�1

)f(g)�

H

(h

�1

) �(g) �(h)

=

Z

H

Z

G

�(g)f(gh)�

H

(h

�1

)�

G

(h) �(g) �(h):

Applying Fubini's Theorem 1.10 again, we dedu
e using �

G

j

H

� �

H

and f

H

� 0:

=

Z

G

�(g)

Z

H

f(gh) �(h) �(g) =

Z

G

�(g)f

H

(gH) = 0

whi
h 
ompletes the proof that � is a positive linear fun
tional. Hen
e, by Riesz'

Theorem 1.12, there exists a unique Radon measure � on G=H su
h that

Z

G

(�f)(g) �(g) = �(f) =

Z

G=H

f(gH) �(gH) =

=

Z

G=H

(�f)

H

(gH) �(gH) =

Z

G=H

Z

H

(�f)(gh) �(h) �(gH):

for all f 2 C




(G=H). The measure � is 
he
ked to be non-zero on non-empty open

sets and G-invariant, i.e. � is a Haar measure on G=H . Sin
e the above equation

is independent of �, we may as well start with a fun
tion f 2 C




(G); we have

thus proven the existen
e of a unique Haar measure � on G=H satisfying (W). To


omplete the proof, we need to show that any Haar measure onG=H (not ne
essarily

satisfying (W)) is a stri
tly positive s
alar multiple of �: Let �

1

; �

2

be Haar measures

on G=H . Then there are left Haar measures �

1

; �

2

on G satisfying (W) for �

1

and

�

2

respe
tively (see the 
onverse dire
tion of the proof). By uniqueness, �

2

= 
�

1

for some stri
tly positive real number 
. Then �

2

and 
�

1

both satisfy (W) for �

2

.

From the uniqueness proven above we 
on
lude �

2

= 
�

1

. �

Remark 4.4. Retain the notation of Theorem 4.2. If G is 
ompa
t, then the

fun
tion � in the proof of Lemma 4.3 
an be 
hosen to identi
ally equal one. The


onstru
ted left Haar fun
tional on G=H is then given by

� : C




(G=H)! C; f 7!

Z

G

f(gH)

1

H

(gH)

�(g) =

1

�(H)

Z

G

f(gH) �(g):

Noti
e that �(H) is �nite by Proposition 2.9 sin
e H is 
ompa
t as a 
losed subset

of a 
ompa
t spa
e. Now, it is a fa
t (see [KL06, Thm. 7.12℄) that the Haar mea-

sure � on G=H asso
iated to � 
an be 
omputed by evaluating � on 
hara
teristi


fun
tions. Thus, if E � G=H is measurable, we have

�(E) =

�(�

�1

(E))

�(H)

; in parti
ular �(G=H) =

�(G)

�(H)

:

The reader is en
ouraged to think about how the auxiliary fun
tion � mends the

issues that arise in the 
ase where G is not 
ompa
t.

Example 4.5. To illustrate the usefulness of Theorem 4.2, we now provide a Haar

fun
tional for G := SL(2;R). Re
all that G a
ts transitively on the upper half plane

H := fz 2 C j Im(z) > 0g via fra
tional linear transformations:

�

a b


 d

�

z :=

az + b


z + d

and

�

p

y x

p

y

�1

p

y

�1

�

i = x+ iy

for x 2 R and y 2 R

>0

. Also, one readily veri�es that H := stab

G

(i) = SO(2;R);

therefore the maps

G=H ! H; gH 7! gi and H! G=H; x+ iy 7!

�

p

y x

p

y

�1

p

y

�1

�
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are mutually inverse G-isomorphisms. In fa
t they are homeomorphisms. Sin
e G

is unimodular as a 
onne
ted semisimple Lie group and H is unimodular as a


ompa
t group by Proposition 3.6, we by Theorem 4.2 
on
lude the existen
e of a

Haar measure � on G=H

�

=

H. Let � be the left Haar measure on H . Then the map

C




(G)! C; f 7!

Z

G=H

Z

H

f(gH) �(h) �(gH)

is a left Haar fun
tional on G. To make this 
omputable, we use the homeomor-

phismsH

�

=

S

1

andG=H

�

=

H to 
hange variables with Proposition 1.9, and the fa
t

that the hyperboli
 geometry on H provides an SL(2;R)-invariant Radon measure

on H. All together, the Haar fun
tional on G = SL(2;R) then reads

f 7!

Z

1

�1

Z

1

0

Z

2�

0

f

��

p

y x

p

y

�1

p

y

�1

��


os � sin �

� sin � 
os �

��

d�

d�(y) d�(x)

y

2

:

Remark 4.6. In the setting of Example 4.5 (i), the group P of Example 3.8 is

the stabilizer in SL(2;R) of the boundary point of H asso
iated to the (unit-speed)

geodesi
 
 : [0;1) ! H; t 7! i + ie

it

. Basi
ally, P translates 
 to asymptoti


geodesi
s. More generally, if M is a symmetri
 spa
e of non-
ompa
t type, su
h as

SL(n;R)= SO(n), let G := Iso(M)

Æ

, p 2M and x 2 �M be a boundary point. Then

there is the following di
hotomy of stabilizers, see e.g. [Ebe96, Se
. 2.17℄.

stab

G

(p) stab

G

(x)


ompa
t non-
ompa
t


onne
ted not in general 
onne
ted

not transitive on M transitive on M

one 
onjuga
y 
lass in general several 
onjuga
y 
lasses

unimodular not in general unimodular

4.1. Dis
rete Subgroups. If, in the above dis
ussion, H = � is a dis
rete sub-

group of G and G is se
ond-
ountable, then integration over G=� 
an be realized

by integrating over a fundamental domain for G=� in G, to be explained below. We

shall always pi
k the 
ounting measure � as Haar measure on �.

De�nition 4.7. Let G be a lo
ally 
ompa
t Hausdor� group and let � be a dis
rete

subgroup of G. A stri
t fundamental domain for G=� in G is a set F 2 B(G) su
h

that � : F ! G=� is a bije
tion. A fundamental domain for G=� in G is a set

F 2 B(G) whi
h di�ers from a stri
t fundamental domain by a set of measure zero

with respe
t to any left Haar measure on G.

Proposition 4.8. Let G be a lo
ally 
ompa
t Hausdor�, se
ond-
ountable group

with a dis
rete subgroup �. Then there exists a fundamental domain for G=� in G.

Remark 4.9. Retain the notation of Proposition 4.8. Note that se
ond-
ountability

of G in parti
ular implies that � is 
ountable.

Proof. (Proposition 4.8). The 
anoni
al proje
tion � : G ! G=� is a lo
al home-

omorphism. Combined with se
ond-
ountability, this implies the existen
e of an

open 
over (U

n

)

n2N

of G su
h that � : U

n

! �(U

n

) is a homeomorphism for every

n 2 N. Let F

1

= U

1

and de�ne indu
tively F

n

= U

n

n(n \ �

�1

�(

S

k<n

U

k

)). Then

F :=

S

n2N

F

n

is a fundamental domain for G=� in G. �

Integration over G=� now redu
es to integration over G as follows.

Proposition 4.10. Let G be a lo
ally 
ompa
t Hausdor�, se
ond-
ountable group

with left Haar measure � and let � be a dis
rete subgroup of G. Assume that

�

G

j

�

� �

�

. Further, let F be a fundamental domain for G=� in G. Then a Haar
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measure � onG=� satisfying (W) exists and is asso
iated to the following fun
tional:

� : C




(G=�)! C; f 7!

R

F

f(g�) �(g), i.e.

Z

G=�

f(g�) �(g�) =

Z

F

f(g�) �(g) for all f 2 C




(G=�):

Proof. The fun
tional � is positive and linear; the asso
iated Radon measure � on

G=� is 
he
ked to be non-zero on non-empty open sets and G-invariant. Hen
e � is

a Haar measure on G=�. To prove that it satis�es (W), note that 
hanging F by a

set of measure zero, we may assume that F is a stri
t fundamental domain. Then

G is a 
ountable disjoint union G =

F


2�

F
 and hen
e we have for all f 2 C




(G):

Z

G

f(g) �(g) =

X


2�

Z

F


f(g) �(g) =

X


2�

Z

F

f(g
) �(g) =

Z

�

Z

F

f(g
) �(g) �(
)

=

Z

F

Z

�

f(g
) �(
) �(g) =

Z

F

f

�

(g�) �(g) =

Z

G=�

f

�

(g�) �(g�)

=

Z

G=�

Z

�

f(g
) �(
) �(g�):

where the se
ond equality follows from the assumption �

G

j

�

� �

�

� 1, and the

the appli
ation of Fubini's Theorem 1.10 is valid sin
e G is �-�nite as a lo
ally


ompa
t, se
ond-
ountable spa
e and � is �-�nite as it is 
ountable. �

Remark 4.11. Retain the notation of Proposition 4.10. The assumption �

G

j

�

�

�

�

is not automati
. For instan
e, the subgroup

� :=

��

e

t

e

�t

�

�

�

�

�

t 2 Z

�

of the group P of Example 3.8 is isomorphi
 to Z and dis
rete in P . However, for


 = diag(e

t

; e

�t

) 2 �nfIdg we have �

P

(
) = e

�2t

6= 1 � �

�

by Example 3.8.

We end this se
tion with the following result about groups 
ontaining latti
es:

Re
all that if G is a lo
ally 
ompa
t Hausdor� group and � is a dis
rete subgroup

of G then � is a latti
e in G if G=� supports a �nite Haar measure.

Proposition 4.12. Let G be a lo
ally 
ompa
t Hausdor� group. If G 
ontains a

latti
e, then G is unimodular.

Proof. Let � be a latti
e in G. Sin
e G=� supports a �nite Haar measure �, Theorem

4.2 implies that �

G

j

�

� �

�

� 1 and hen
e ker�

G

� �. Therefore, �

G

fa
tors

through G ! G=� via

e

�

G

: G=�! (R

�

�0

; �). Then (

e

�

G

)

�

� is a non-zero, �nite

measure on R

�

�0

whi
h is invariant under the image of �

G

. This for
es �

G

� 1. �
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