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Abstrat. This artile provides a onise introdution to the theory of Haar

measures on loally ompat Hausdor� groups. We will in partiular disuss

unimodularity and oset spaes. A good referene is [KL06, Se. 7℄. Further

referenes inlude [Bou04, Ch. 7℄ and [Kna02, Ch. VIII℄.
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1. Preliminaries

The natural lass of groups for whih to onsider Haar measures is that of loally

ompat Hausdor� groups, due to Theorem 2.2 below.

1.1. Loally Compat Hausdor� Groups. After having reviewed the de�ni-

tions, we show that this lass is stable under taking losed subgroups and oset

spaes with respet to losed subgroups.

A topologial group is a group G with a topology suh that multipliation and in-

version are ontinuous. As a onsequene, left and right multipliation by elements

of G as well as inversion are homeomorphisms of G. Therefore, the neighbour-

hoodsystem of the identity e 2 G determines the topology on G. A topologial

spae is loally ompat if every point has a ompat neighbourhood; and it is

Hausdor� if any two distint points have disjoint neighbourhoods in whih ase

loal ompatness is equivalent to every point admitting a relatively ompat open

neighbourhood, i.e. an open neighbourhood with ompat losure.

The lass of loally ompat Hausdor� groups is stable under taking losed sub-

groups as follows from the following Proposition. Reall that if X is a topologial

spae and A is a subset of X , we may equip A with the relative topology, i.e. U � A

is open if and only if there is an open set V � X , suh that U = A \ V .

Proposition 1.1. Let X be a loally ompat Hausdor� spae and let A be a

losed subset. Then A is loally ompat Hausdor�.

Proof. Realling that ompat subsets of Hausdor� spaes are losed and that losed

subsets of ompat sets are ompat, this is immediate following the de�nitions. �

As to oset spaes, we reord the following lemma on a property of neighbour-

hoods that omes with the group struture.

Lemma 1.2. Let G be a topologial group. Then for every x 2 G and every

neighbourhood U of e 2 G, there is an open neighbourhood V of x with V

�1

V � U .

Proof. The map ' : G�G! G; (g; h) 7! g

�1

h is ontinuous. Hene there are open

sets V

1

; V

2

� G suh that V

�1

1

V

2

= '(V

1

� V

2

) � U . Then V = V

1

\ V

2

serves. �
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If G is a topologial group and H is a subgroup of G, we equip the set of osets

G=H with the quotient topology, i.e. U � G=H is open if and only if �

�1

(U) � G

is open where � : G ! G=H; g 7! gH . Then � is ontinuous and open, and left

multipliation with g 2 G is a homeomorphism of G=H .

Proposition 1.3. Let G be a topologial group and let H be a losed subgroup

of G. Then G=H is Hausdor�.

Proof. Let xH; yH 2 G=H be distint. Then yHx

�1

� G is losed and does not

ontain e 2 G. Hene, by Lemma 1.2, there is an open neighbourhood V � G of

e 2 G suh that V

�1

V � G � yHx

�1

. Then V xH and V yH are disjoint open

neighbourhoods of xH 2 G=H and yH 2 G=H respetively. �

Proposition 1.4. Let G be a loally ompat topologial group and let H be a

subgroup of G. Then G=H is loally ompat.

Proof. It su�es to show that H 2 G=H has a ompat neighbourhood. Sine G

is loally ompat, there is a ompat neighbourhood K of e 2 G. Let V be as in

Lemma 1.2. Then �(V ) is an open neighbourhood of H 2 G=H sine � is open.

We show that �(V ) is ompat. If gH 2 �(V ) then V gH \ V H 6= ; and hene

gH = v

�1

1

v

2

H for some v

1

; v

2

2 V . Thus �(V ) � �(U) whih is ompat sine � is

ontinuous and hene so is �(V ) � �(U). �

1.2. Some Topologial Group Theory. We further ollet several fats from

topologial group theory, to be used in the sequel.

First, we state a version of Urysohn's Lemma whih guarantees the existene of

ertain ompatly supported funtions on loally ompat Hausdor� spaes. Reall

that if X is a topologial spae, f 2 C



(X) suh that 0 � f(x) � 1 for all x 2 X ,

U � X open and K � X ompat, one writes f � U if supp(f) � U and K � f if

f(k) = 1 for all k 2 K.

Lemma 1.5 (Urysohn). Let X be a loally ompat Hausdor� spae. If K � X

is ompat and U � X is open suh that K � U , then there exists f 2 C



(G)

satisfying K � f � U .

Also, we shall need the notion of uniform ontinuity for funtions on topologial

groups (whih omes from giving the group the struture of a uniform spae). Let

G be a topologial group. A funtion f : G! C is uniformly ontinuous on the left

(right) if for all " > 0 there is an open neighbourhood U of e 2 G suh that for all

x 2 G and g 2 U we have jf(gx)� f(x)j < " (jf(xg)� f(x)j < ").

Proposition 1.6. Let G be a loally ompat Hausdor� group. Then any f 2C



(G)

is uniformly ontinuous on the left and right.

Proof. We prove that f is uniformly ontinuous on the left, uniform ontinuity on

the right being handled analogously. Let " > 0. By ontinuity of f , there is for eah

x 2 supp f an open neighbourhood U

x

of e 2 G suh that jf(gx) � f(x)j < "=2

for all g 2 U

x

. For every U

x

(x 2 G), pik a symmetri open neighbourhood V

x

of

e 2 G suh that V

2

x

� U

x

using Lemma 1.2. Sine supp f is ompat, �nitely many

of the sets V

x

x (x 2 supp f) over supp f , say (V

x

k

x

k

)

n

k=1

. De�ne V =

T

n

k=1

V

k

.

Then for all x 2 supp f and for all g 2 V we have

jf(gx)� f(x)j � jf(gx)� f(x

k

)j+ jf(x

k

)� f(x)j <

"

2

+

"

2

= "

where k 2 f1; : : : ; ng is hosen suh that x 2 V

x

k

x

k

. If x =2 supp f then for every

g 2 V either gx =2 supp f in whih ase the above inequality is trivial, or gx 2 supp f

in whih ase we set y = gx. Then jf(gx)�f(x)j = jf(g

�1

y)�f(y)j with y 2 supp f

and g

�1

2 V ; we may then argue as before. �
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Finally, the following elementary fats will be useful here and there.

Proposition 1.7. Let G be a topologial group and A;B � G. If A and B are

ompat, then AB is ompat. If either A or B is open, then AB is open.

Proof. If A and B are ompat, then so is AB as the image of the ompat set (A;B)

under the ontinuous multipliation map from G�G to G. If either A or B is open,

then AB is open as a union of open sets sine

S

a2A

aB = AB =

S

b2B

Ab. �

Proposition 1.8. Let G be a loally ompat Hausdor� group and let H be a

subgroup of G. Further, let C � G=H be ompat. Then there exists a ompat set

K � G suh that �(K) � C.

Proof. We may over G by relatively ompat open sets U

i

(i 2 I). Sine � is

open and C � G=H is ompat, �nitely many of the �(U

i

) (i 2 I) over C, say

(�(U

k

))

n

k=1

. Then K =

S

n

k=1

U

k

serves. �

1.3. Some Measure Theory. We now review some basi measure theory in order

to give the de�nition of a Haar measure and some �rst properties.

Let X be a non-empty set. A �-algebra on X is a setM� P(X) of subsets of X ,

ontaining the empty set, whih is losed under taking omplements and ountable

unions. A pair (X;M) where X is a set and M a �-algebra on X is a measurable

spae; the sets E 2 M are measurable. Given two measurable spaes (X;M) and

(Y;N ), a map f : X ! Y is measurable if f

�1

(F ) 2 M for all F 2 N . As a

partiular example, let X and Y be topologial spaes equipped with their Borel

�-algebras B(X) and B(Y ) respetively, i.e. the �-algebra generated by the open

sets. Then any ontinuous map from X to Y is measurable. In the following we

shall always equip topologial spaes with their Borel �-algebra.

A measure on a measurable spae (X;M) is a map � :M! R

�0

[f1g whih is

zero on the empty set and ountably additive, i.e. whenever (E

n

)

n2N

is a sequene

of pairwise disjoint measurable sets, then �(

S

n2N

E

n

) =

P

1

n=1

�(E

n

). A triple

(X;M; �) where (X;M) is a measurable spae and � is a measure on (X;M) is a

measure spae. A set of measure zero is a null set. The omplement of a null set is

a onull set.

If (X;M; �) is a measure spae, (Y;N ) a measurable spae and ' : X ! Y a

measurable map, then '

�

� : N ! R

�0

[f1g; F 7! �('

�1

(F )) is the push-forward

measure on (Y;N ) under '.

The ategory of measure spaes is designed to allow for the following notion of

an integral of ertain measurable, omplex-valued funtions on (X;M; �).

1. If �

E

is the harateristi funtion of a measurable set E 2M, de�ne

Z

X

�

E

(x) �(x) = �(E):

2. If f =

P

n

i=1

�

i

�

E

i

is a positive real linear ombination of harateristi

funtions of measurable sets, a simple funtion, de�ne

Z

X

f(x) �(x) =

n

X

i=1

�

i

Z

X

�

E

i

(x) �(x):

3. If f : X ! R is measurable and nonnegative, de�ne

Z

X

f(x) �(x) = sup

'

Z

X

'(x) �(x)

where ' ranges over all real-valued simple funtions on X with 0 � ' � f .
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4. If f : X ! R is measurable, deompose

f = f

+

� f

�

where f

�

(x) = max(�f(x); 0):

If

R

X

jf(x)j �(x) <1, de�ne

Z

X

f(x) �(x) =

Z

X

f

+

(x) �(x) �

Z

X

f

�

(x) �(x):

5. If f : X ! C is measurable and integrable, i.e.

R

X

jf(x)j �(x) <1, de�ne

Z

X

f(x) �(x) =

Z

X

Re(f(x)) �(x) + i

Z

X

Im(f(x)) �(x):

The vetor spae of lasses of measurable, integrable omplex-valued funtions

on X modulo equality on a onull set is denoted by L

1

(X;�). The integral is a

linear map from L

1

(X;�) to C. There is the following hange of variables formula.

Proposition 1.9 (Change of variables). Let (X;M; �) be a measure spae, (Y;N )

a measurable spae and ' : X ! Y a measurable map. For every measurable

funtion f : Y ! C and every F 2 N we have

Z

F

f(y) '

�

�(y) =

Z

'

�1

(F )

f('(x)) �(x):

in ase either of the two sides is de�ned.

Next, we reall Fubini's Theorem whih redues integrating over a produt spae

to integrating over the fators. Let (X;M; �) and (Y;N ; �) be measure spaes. Then

so is (X �Y;M�N ; �� �) where (�� �) is de�ned by (�� �)(E;F ) := �(E)�(F )

for all (E;F ) 2 M�N . Also, reall that (X;M; �) is �-�nite if X is a ountable

union of sets of �nite measure.

Theorem 1.10 (Fubini). Let (X;M; �) and (Y;N ; �) be �-�nite measure spaes.

Let f : X � Y ! C be measurable and suppose

R

X

R

Y

jf(x; y)j �(y) �(x) < 1.

Then f 2 L

1

(X � Y; �� �) and

Z

X

Z

Y

f(x; y) �(y) �(x) =

Z

X�Y

f(x; y) (�� �)(x; y) =

Z

Y

Z

X

f(x; y) �(x) �(y):

Measures on topologial spaes whih appear in pratie often satisfy the follow-

ing additional regularity properties.

De�nition 1.11 (Radon measure). A Radon measure on a topologial spae X is

a measure on (X;B(X)) whih additionally satis�es the following properties:

(R1) If K � X is ompat, then �(K) <1.

(R2) If E � X is measurable, then �(E) = inff�(U) j U � E;U openg.

(R3) If U � X is open, then �(U) = supf�(K) j K � U;K ompatg.

The importane of Radon measures is also due to the following result of Riesz

whih often is employed to de�ne a measure on a given spae in the �rst plae.

Theorem 1.12 (Riesz). Let X be a loally ompat Hausdor� spae. Further, let

� : C



(X) ! C be a positive, i.e. �(f) 2 [0;1) whenever f(x) 2 [0;1) for all

x 2 X , linear funtional. Then there exists a unique Radon measure � on X with

�(f) =

Z

X

f(x) �(x) for all f 2 C



(X):

Furthermore, � satis�es

�(U) = supf�(f) j f � Ug and �(K) = inffT (f) j K � fg

for every open set U � X and every ompat set K � X .
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2. Definition

When dealing with topologial groups it is natural to look for measures whih

are invariant under translation. Suh measures always exist for loally ompat

Hausdor� groups.

De�nition 2.1 (Haar measure). Let G be a loally ompat Hausdor� group. A

left (right) Haar measure on G is a Radon measure � on (G;B(G)) whih is non-zero

on non-empty open sets and invariant under left-translation (right-translation):

(H1) If U � X is open, then �(U)  0.

(H2) For all E 2 B(G) and g 2 G: �(gE) = �(E) (�(Eg) = �(E)).

Theorem 2.2 (Haar measure). Let G be a loally ompat Hausdor� group. Then

there exists a left (right) Haar measure on G whih is unique up to stritly positive

salar multiples.

We shall not prove this theorem here. However, we make the following remark.

Remark 2.3. Whereas the uniqueness statement of Theorem 2.2 is not too hard

to establish, the existene proof is more involved and not partiularly fruitful. For

both, see e.g. [Wei65℄. However, there are three lasses of loally ompat Hausdor�

groups for whih existene may be established by lassial means, see Remark 2.8.

Example 2.4. Let G be a disrete group. Then the ounting measure on G, de�ned

by � : B(G) = P(G)! R

�0

[f1g; E 7! jEj, is a left and right Haar measure.

More examples are to follow in Example 2.7. For now, onsider the following

useful alternative desription of Haar measures: Due to Riesz' Theorem 1.12, there

is a one-to-one orrespondene between Haar measures and Haar funtionals, to be

de�ned below, on a given group whih is often used to obtain a Haar measure in

the �rst plae. Reall that a topologial group G ats on C



(G) via the left-regular

and the right-regular representation �

G

(g)f(x) = f(g

�1

x) and %

G

(g)f(x) = f(xg),

where g; x 2 G and f 2 C



(G).

De�nition 2.5. Let G be a loally ompat Hausdor� group. A left (right) Haar

funtional onG is a non-trivial positive linear funtional on C



(G) whih is invariant

under �

G

(%

G

).

Proposition 2.6. Let G be a loally ompat Hausdor� group. Then there are the

following mutually inverse maps.

� : fHaar measures on Gg

Integration

/

fHaar funtionals on Gg : 	

Riesz

o

Proof. The map � is readily heked to range in the positive linear funtionals

on C



(G). For �

G

-invariane (%

G

-invariane), use the hange of variables formula

1.9. As to non-triviality, let � be a left (right) Haar measure on G and let K be

a ompat neighbourhood of some point in G. Then �(K) 2 (0;1) by (R1) and

(H1), and by Urysohn's Lemma 1.5 there is f 2 C



(G) suh that K � f � G and

therefore ��(f) =

R

G

f(g) �(g) � �(K)  0.

Conversely, if � is a left (right) Haar funtional on G, its non-triviality translates

to (H1) for � := 	� and its invariane under �

G

(%

G

) translates to (H2) for �:

Suppose U is a non-empty open set of measure zero with respet to �. Then any

ompat set admits a �nite over by left (right) translates of U and hene has

measure zero. Thus �(f) =

R

G

f(g) �(g) =

R

supp f

f(g) �(g) = 0 for all f 2 C



(G),

ontraditing the non-triviality of �.

As for invariane, suppose that � is �

G

-invariant (%

G

-invariane being handled

analogously) and let E 2 B(G) and g 2 G. Then by (R2),

�(gE) = inff�(U) j U � gE; U openg = inff�(gU) j U � E; U openg:
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Further, by Theorem 1.12 and the �

G

-invariane of � we have

�(gU) = supf�(f) j f � gUg = supf�(�

G

(g)f) j f � Ug = �(U):

Hene � is left invariant. The assertions	Æ� = id and �Æ	 = id are immediate. �

Example 2.7. Here are further examples of Haar measures.

(i) On G = (R;+), a left- and right Haar measure is given by the Lebesgue

measure � whih an be de�ned as the Radon measure assoiated to the

lassial Riemann integral

R

R

: C



(R)! C via Proposition 2.6.

(ii) On G = (R

n

;+), n � 1, a left- and right Haar measure is given by the n-th

power of the Lebesgue measure �.

(iii) On G = (R

�

; �), the Lebesgue measure is not left-invariant. However, the

map

� : C



(G)! C; f 7!

Z

R

f(x)

�(x)

jxj

an be heked to be a left- and right Haar funtional and hene de�nes

a left- and right Haar measure on G by Proposition 2.6. Note that the

above integral is always �nite as the integrand has ompat support; use

the lassial substitution rule to hek left- and right-invariane.

(iv) On G = GL(n;R), n � 1, the left- and right Haar funtional

� : C



(G)! C; f 7!

Z

G

f(X)

�(X)

j detX j

n

de�nes a left- and right Haar funtional on G. Here, �(X) :=

Q

n

i;j=1

�(x

ij

)

where X = (x

ij

)

i;j

is the Lebesgue measure on R

n�n

of whih GL(n;R)

is an open subset; the latter fat is key: The same onstrution does not

work for e.g. SL(n;R) whih is a submanifold of R

n�n

of stritly smaller

dimension. Again, the integral is �nite by ompatness of the support of

the integrand and invariane is heked by hanging variables. Note that

the ase G = (R

�

; �) is ontained via n = 1 in this example.

A left- and right Haar measure for SL(2;R) will be onstruted in Example 4.5.

Remark 2.8. Having established the orrespondene between Haar funtionals

and Haar measures, we now outline existene proofs of Theorem 2.2 for ompat

Hausdor� groups, Lie groups and totally disonneted loally ompat separable

Hausdor� groups.

(i) Compat Hausdor� groups. Let G be a ompat Hausdor� group. Then G

ats ontinuously on C(G) = C



(G), equipped with the supremum norm,

via the left-regular representation. Therefore, G also ats on the dual spae

C(G)

�

of C(G) via the adjoint representation �

�

G

of �

G

de�ned by

h�

�

G

(g)�; fi = h�; �

G

(g

�1

)fi:

for all � 2 C(G)

�

and f 2 C(G). Sine the set P (G) of probability measures

on G is a weak

�

-ompat, onvex and �

�

G

-invariant subset of C(G)

�

, the

ompat version of the Kakutani-Markov Fixed Point Theorem (e.g. [Zim90,

Thm. 2.23℄) implies that it ontains a �

�

G

-�xed point, i.e. a left-invariant

probability measure on G, whih turns out to be a left Haar measure on G.

(ii) Lie groups. Let G be a Lie group with Lie algebra Lie(G)

�

=

�(TG)

G

, the

spae of left-invariant vetor �elds on G whih is isomorphi to T

e

G as a

vetor spae. Further, let X

1

; : : : ; X

n

be a basis of T

e

G with assoiated left-

invariant vetor �elds X

G

1

; : : : ; X

G

n

2 �(TG)

G

. Then for eah p 2 G, the tu-

ple ((X

G

1

)

p

; : : : ; (X

G

n

)

p

) is a basis of T

p

G and we may for eah i 2 f1; : : : ; ng

de�ne a 1-form !

i

on G by (!

i

)

p

((X

j

)

p

) = Æ

ij

; that is, for eah p 2 G, the



HAAR MEASURES 7

tuple ((!

1

)

p

; : : : ; (!

n

)

p

) is the basis of T

�

p

G dual to ((X

G

1

)

p

; : : : ; (X

G

n

)

p

).

It is readily heked that the left-invariane of X

G

1

; : : : ; X

G

n

implies left-

invariane of the !

i

(i 2 f1; : : : ; ng) in the sense that L

�

g

!

i

= !

i

for all

g 2 G and if1; : : : ; ng. Then so is the n-form ! := !

1

^ � � � ^ !

n

sine ^

ommutes with pullbak. Furthermore, one heks that ! is nowhere van-

ishing. We may then orient G suh that ! is positive and hene gives rise

to the left Haar funtional

�

!

: C



(G)! C; f 7!

Z

G

f !

whih in turn via Riesz' Theorem 1.12 provides a left Haar measure on G,

see [Kna02, VIII.2℄.

(iii) Totally disonneted loally ompat separable Hausdor� groups. Let G be

a group of this type. By van Dantzig's theorem, G ontains a ompat open

subgroup K. Assuming G to be non-ompat, by separability and openness

of K there are g

n

2 G (n 2 N) suh that G =

F

n2N

g

n

K. Using part (i),

let � be a Haar measure on K and let �

n

:= g

n�

� be the orresponding

measure on g

n

K. For E 2 B(G) de�ne

�(E) :=

X

n2N

�

n

(E \ g

n

K) =

X

n2N

�(g

�1

n

E \K)

if the sum exists and in�nity otherwise. Then � is a Radon measure on G

whih is non-zero on non-empty open sets sine � is. Also, � is left-invariant:

Given g 2 G, there is � 2 S

N

suh that gg

n

K = g

�(n)

K. Then

�(g

�1

E) =

X

n2N

�(g

�1

n

g

�1

E \K) =

X

n2N

�(g

�1

�(n)

gg

n

g

�1

n

g

�1

E \K)

=

X

n2N

�(g

�

�1

n

E \K) =

X

n2N

�(g

n

E \K) = �(E):

where the seond equality uses K-invariane of �.

By Remark 2.8, ompat Hausdor� groups have �nite Haar measure. We now

show that the onverse holds as well.

Proposition 2.9. Let G be a loally ompat Hausdor� group and let � be a left

(right) Haar measure on G. Then �(G) <1 if and only if G is ompat.

Proof. If G is ompat, then �(G) <1 by De�nition R1. Conversely, suppose that

G is not ompat and let U be a relatively ompat neighbourhood of e 2 G. Then

there is an in�nite sequene (g

n

)

n2N

of elements of G suh that g

n

=2

S

k<n

g

k

U ;

otherwise G would be ompat as a �nite union of ompat sets. Let V be as in

Lemma 1.2. Then the sets g

n

V (n 2 N) are pairwise disjoint by the fat that

V V

�1

� U and the de�nition of (g

n

)

n2N

. Therefore, as V has stritly positive

measure, G has in�nite measure. �

3. Unimodularity

We now address and quantify the question whether left and right Haar measures

on a given loally ompat Hausdor� group oinide.

De�nition 3.1. A loally ompat Hausdor� group G is unimodular if every left

Haar measure on G is also a right Haar measure on G and onversely.

Remark 3.2. By Theorem 2.2, it su�es in De�nition 3.1 to ask for every left

Haar measure on G to also be a right Haar measure.
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Proposition 3.6 below will provide several lasses of unimodular groups. For now,

let G be a loally ompat Hausdor� group and let � be a left Haar measure on

G. Then for every g 2 G, the map �

g

: B(G) ! R

�0

[f1g; E 7! �(Eg) is a left

Haar measure on G as well. Hene, by uniqueness, there exists a stritly positive

real number �

G

(g) suh that �

g

= �

G

(g)�, i.e.

(M) �(Eg) = �

g

(E) = �

G

(g)�(E) for all E 2 B(G):

The funtion �

G

: G! R

>0

is independent of � and alled modular funtion of G.

Let � be the left Haar funtional assoiated to � by Proposition 2.6. Then by

the hange of variable formula 1.9 applied to ' = R

g

�1
, equation (M) immediately

translates to

(M') �(%

G

(g

�1

)f) = �

G

(g)�(f) for all f 2 C



(G):

Proposition 3.3. Let G be a loally ompat Hausdor� group. Then the modular

funtion �

G

: G! (R

>0

; �) is a ontinuous homomorphism.

Proof. Let � be a left Haar measure on G. The homomorphism property is imme-

diate from (M): For all g; h 2 G we have

�

G

(gh)� = �

gh

= (�

h

)

g

= �

G

(h)�

h

= �

G

(g)�

G

(h)�:

Evaluating on a set of non-zero �nite measure, e.g. a ompat neighbourhood of

some point, proves the assertion.

As to ontinuity, let � be the left Haar funtional assoiated to � by Proposition

2.6. It su�es to hek ontinuity at e 2 G, sine �

G

is a homomorphism. Let K

be a ompat neighbourhood of e 2 G. Using Urysohn's Lemma 1.5, we hoose

' 2 C



(G) suh that K � ' � G and  2 C



(G) suh that K supp' �  � G (see

Proposition 1.7). In partiular, ' is uniformly ontinuous on the right by Proposition

1.6: Given " > 0, let U � K be a symmetri open neighbourhood of e 2 G suh

that j'(xg)� '(x)j < " for all x 2 G and g 2 U . Then by (M'),

j�

G

(g)� 1j =

1

�(')

j�

G

(g)�(') � �(')j �

1

�(')

�(j%

G

(g

�1

)'� 'j ) � "

�( )

�(')

for all g 2 U . Hene �

G

is ontinuous at the identity. �

Remark 3.4. We have notied that for a loally ompat Hausdor� group G with

left Haar measure � and given g 2 G, the map �

g

: B(G)! R

�0

[f1g; E 7! �(Eg)

is a left Haar measure on G as well. This is an instane of the following more

general observation: For every ontinuous automorphism � 2 Aut(G), the map

�

�

: B(G)! R

�0

[f1g; E 7! �(�(E)) is a left Haar measure on G. In this setting,

�

g

= �

int(g

�1

)

where int(g) : G ! G; x 7! gxg

�1

denotes onjugation in G by g.

One may then introdue the general modular funtion mod

G

: Aut(G) ! (R

>0

; �)

whih remains to be a homomorphism and with the Braonnier topology on Aut(G),

a re�nement of the ompat-open topology, beomes ontinuous, see e.g. [Pal01℄.

We obtain the following useful riterion for unimodularity.

Corollary 3.5. Let G be a loally ompat Hausdor� group. Then G is unimodular

if and only if �

G

� 1.

Proof. If �

G

� 1, then G is unimodular by (M) and Remark 3.2. Conversely, if G is

unimodular, let � be a Haar measure on G and let E be a ompat neighbourhood

of some point in G. Then �(E) 2 (0;1) and hene �

G

� 1 by (M). �

Corollary 3.5 provides us with the following list of lasses of unimodular groups.

Yet another lass will be given in Proposition 4.12.
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Proposition 3.6. Let G be a loally ompat Hausdor� group. Then G is uni-

modular if, in addition, it satis�es one of the following properties: being abelian,

ompat, topologially simple, topologially perfet, disrete, onneted semisimple

Lie or onneted nilpotent Lie.

Proof. Let G be a loally ompat Hausdor� abelian group with left Haar mea-

sure �. Sine Eg = gE for every subset E � G and all g 2 G, the left-invariane of

� implies right-invariane.

If G is ompat Hausdor� and � is a left Haar measure on G, then �(G) 2 (0;1)

and hene �

G

� 1 by (M).

If G is topologially simple, then [G;G℄, whih is a losed normal subgroup of

G, either equals feg or G. In the former ase, G is abelian and hene unimodular;

in the latter ase, ontinuity of �

G

implies:

�

G

(G) = �

G

([G;G℄) � �

G

([G;G℄) = f1g

whene G is unimodular. When G is topologially perfet, i.e. G = [G;G℄, the same

argument applies.

For a disrete group, the left Haar measures are the stritly positive salar mul-

tiples of the ounting measure whih ertainly is right-invariant.

Suppose now, that G is a onneted semisimple Lie group. Note that in this

ase the modular funtion �

G

: G! (R nf0g; �) is a ontinuous and hene smooth

([War83, Thm. 3.39℄) homomorphism of Lie groups. Thus D

e

�

G

: Lie(G)! R is a

morphism of Lie algebras. Sine Lie(G) is semisimple and R is abelian we have

D

e

�

G

(Lie(G)) = D

e

�

G

([Lie(G);Lie(G)℄) = [D

e

�

G

(Lie(G)); D

e

�

G

(Lie(G))℄ = f0g

and hene �

G

� 1 by the Lie orrespondene, passing to the universal over of G.

For the ase of a onneted nilpotent Lie group, we appeal to the fat that for

any Lie group G we have �

G

(g) = j detAd(g)j, where Ad : G! Aut(Lie(G)) is the

adjoint representation of G, see e.g. [Kna02, Prop. 8.27℄ (this follows in the setting

of Remark 2.8). If, in addition, G is onneted and nilpotent, then the exponential

map exp : Lie(G) ! G is surjetive ([Kna02, Thm. 1.127℄) and hene for every

g 2 G there is some X 2 Lie(G) suh that g = exp(X) and

�

G

(g) = j detAd(g)j = j det e

adX

j = e

tr adX

= 1

where the last equality follows from Lie(G) and hene adX being nilpotent. �

The following proposition provides a lass of totally disonneted loally ompat

Hausdor� groups that are unimodular. Reall that if T is a loally �nite tree then

Aut(T ) is a totally disonneted loally ompat separable Hausdor� group with

the permutation topology. We adopt Serre's graph theory onventions, see [Ser80℄.

Proposition 3.7. Let T = (V;E) be a loally �nite onneted graph. If G �

Aut(T ) is losed and loally transitive then G is unimodular.

Proof. Let � be a left Haar measure on G, see Remark 2.8. Sine G is loally

transitive there is for every triple (x; e

0

; e) of a vertex x 2 V and edges e

0

; e 2 E(x)

an element g

e

2 G

x

suh that g

e

e

0

= e. Then G

x

=

F

e2E(x)

g

e

G

e

0

). In partiular,

�(G

x

) = jE(x)j�(G

e

0

) for every e

0

2 E(x). Sine G

e

= G

e

for all e 2 E we further

onlude that �(G

e

) = �(G

e

0

) for all e; e

0

2 E. Given g 2 G we therefore have

�(G

e

) = �(G

ge

) = �(gG

e

g

�1

) = �(G

e

g

�1

) = �

G

(g

�1

)�(G

e

)

and hene G is unimodular. �

Example 3.8. We now provide two related examples of non-unimodular groups.
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(i) Consider the group

P :=

��

x y

x

�1

�

�

�

�

�

x 2 R nf0g; y 2 R

�

� SL(2;R):

Then the funtionals �; � : C



(P )! C, given by

� : f 7!

Z

R

2

f(X)

�(x)�(y)

x

2

and � : f 7!

Z

R

2

f(X) �(x)�(y)

are left- and right Haar funtionals respetively as an be heked by hang-

ing variables. However, P is a losed subgroup of SL(2;R) whih is unimod-

ular as a onneted simple Lie group by Proposition 3.6. We shall shed some

light on the origin of this example in Remark 4.6.

(ii) Let T

d

= (V;E) be the d-regular tree and let ! 2 �T

d

be a boundary point

of T

d

. Set G := Aut(T

d

)

!

, the stabilizer of ! in Aut(T

d

). Then G is not

unimodular: Indeed, let t 2 G be a translation of length 1 towards ! and

let x 2 V be on the translation axis of t. Then

�(t) =

�(G

x

)

�(G

tx

)

=

�(G

x

)

�(G

x;tx

)

�(G

x;tx

)

�(G

tx

)

=

[G

x

: G

x;tx

℄

[G

tx

: G

x;tx

℄

=

jG

x

(tx)j

jG

tx

xj

=

1

d� 1

:

See Remark 4.6 for how this relates to part (i).

Uilizing the modular funtion, we an turn left Haar measures into right Haar

measures as in the following Proposition. Let i : G! G denote the inversion on G.

Proposition 3.9. Let G be a loally ompat Hausdor� group with left Haar mea-

sure �. Then � = i

�

� : B(G)! R

�0

[f1g; E 7! �(E

�1

) is a right Haar measure on

G with assoiated right Haar funtional % : C



(G)! C; f 7!

R

G

f(x)�

G

(x

�1

) �(x).

If G is unimodular, then � = �.

Proof. The map � is readily heked to be a right Haar measure on G. The map %

is learly positive and linear. Its non-triviality follows as in the proof of Proposition

2.6 using �

G

(g)  0 for all g 2 G. As to %

G

-invariane, hanging variables via

Proposition 1.9 using R

g�

� = �

g

�1
yields

%(%

G

(g)f) =

Z

G

f(xg)�

G

(x

�1

) �(x) =

Z

G

f(x)�

G

(gx

�1

) �

g

�1
(x) =

=

Z

G

f(x)�

G

(g)�

G

(x

�1

)�

G

(g

�1

) �(x) =

Z

G

f(x)�

G

(x

�1

) �(x) = %(f):

for every f 2 C



(G) and g 2 G. Overall, % is a right Haar funtional on G.

Now, let �� denote the right Haar funtional assoiated to � as in Proposition

2.6. Then there is a stritly positive real number  suh that �� = %. Applying

the hange of variables formula 1.9, we obtain for all f 2 C



(G):

Z

G

f(x) �(x) = 

Z

G

f(x)�

G

(x

�1

) �(x) = 

Z

G

f(x

�1

)�

G

(x) �(x)

= 

2

Z

G

f(x

�1

)�

G

(x)�

G

(x

�1

) �(x) = 

2

Z

G

f(x) �(x):

Let K be a ompat symmetri neighbourhood of some point in G and f 2 C



(G)

suh thatK � f � G. Then

R

G

f(x

�1

) �(x) 2 (0;1) and hene  = 1. In partiular,

unimodularity of G implies � = �. �
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4. Coset spaes

Let G be a loally ompat Hausdor� group and let H be a losed subgroup

of G. If H is normal in G, there exists a left (right) Haar measure on G=H by

Theorem 2.2. We now address the question under whih irumstanes there exists

a G-invariant Radon measure on G=H whih is non-zero on non-empty open sets if

H is not normal in G, and we shall refer to suh a measure as a Haar measure on

G=H by abuse of notation. The following example shows that a Haar measure on

G=H may or may not exist.

Example 4.1. Let G = SL(2;R).

(i) Consider the natural ation of G on X = R

2

nf0g. Then

H := stab

G

((1; 0)

T

) =

��

1 x

1

�

�

�

�

�

x 2 R

�

and hene G=H

�

=

X has a Haar measure, namely the restrited two-

dimensional Lebesgue measure.

(ii) On the other hand, G ats on X = P

1

R = fV � R

2

j dimV = 1g. Here,

H := stab

G

(he

1

i) =

��

x y

x

�1

�

�

�

�

�

x 2 R nf0g; y 2 R

�

whih is the non-unimodular group of Example 3.8. The spae G=H

�

=

X

does not admit a Haar measure: For instane, onsider the ompat subsets

E

1

:= fh(1; t)

T

i j t 2 [0; 1℄g and E

2

:= fh(t; 1)

T

i j t 2 [0; 1℄g of P

1

R. Then

�

1 �1

1

�

E

1

= E

1

[ E

2

and

�

1 �1

1

�

E

1

= E

2

:

A Haar measure on G=H would assign �nite non-zero measure to the om-

pat sets E

1

and E

2

whih ombined with G-invariane ontradits the

above two equalities.

Theorem 4.2. Let G be a loally ompat Hausdor� group with left Haar measure

� and let H be a losed subgroup of G with left Haar measure �. Then there exists

a Haar measure � on G=H if and only if �

G

j

H

� �

H

. In this ase, � is unique up to

stritly positive salar multiples and suitably normalized satis�es for all f 2 C



(G):

(W)

Z

G

f(g) �(g) =

Z

G=H

Z

H

f(gh) �(h) �(gH):

In the ontext of Theorem 4.2, formula (W) an be extended to hold for f 2 L

1

(G),

see [KL06, Theorem 7.12℄ and the surrounding explanations.

Proof. (Theorem 4.2, �)�). If � exists as above, then the map

� : C



(G)! C; f 7!

Z

G=H

Z

H

f(gh) �(h) �(gH)

is a left Haar funtional on G and thus de�nes a left Haar measure � on G. In

partiular, �(%

G

(t

�1

)f) = �

G

(t)�(f) for all t 2 G and f 2 C



(G) by (M'). On the

other hand, we have for all t 2 H and f 2 C



(G):

�(%

G

(t

�1

)f) =

Z

G=H

Z

H

(%

G

(t

�1

)f)(gh) �(h) �(gH) =

=

Z

G=H

Z

H

�

H

(t)f(gh) �(h) �(gH) = �

H

(t)�(f):

If, by Urysohn's Lemma 1.5, we hoose f 2 C



(G) to satisfy K � f � G where K

is a ompat neighbourhood of some point in G, then

R

G

f(g) �(g) = �(f) 2 (0;1)

and hene �

G

j

H

� �

H

. �
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The proof of the onverse assertion of Theorem 4.2 relies on the following de-

sription of ompatly supported funtions on G=H . One more, Riesz' Theorem

1.12 will be used to produe a measure.

Lemma 4.3. Let G be a loally ompat Hausdor� group and H a losed subgroup

of G with left Haar measure �. Then the following map is surjetive:

C



(G)! C



(G=H); f 7!

�

f

H

: gH 7!

Z

H

f(gh) �(h)

�

:

Proof. Several things need to be heked. First of all, for all f 2 C



(G) and for

all gH 2 G=H , the integral

R

H

f(gh) �(h) is independent of the representative

of gH and �nite. Next, for all f 2 C



(G), the funtion f

H

f is ontinuous as a

parametrized integral as in the proof of the ontinuity of the modular funtion.

Clearly, supp f

H

� p(supp(f)) and hene f

H

2 C



(G=H). It remains to prove

surjetivity. To this end, let F 2 C



(G=H). Pik K � G suh that �(K) � suppF

(Proposition 1.8) and let � 2 C



(G) satisfying K � � (Urysohn's Lemma). Now

de�ne f 2 C



(G) by

f : G! C; g 7!

(

F (gH)�(g)

�

H

(gH)

�

H

(gH) 6= 0

0 �

H

(gH) = 0

Again, we need to show that this funtion is ontinuous and has ompat support.

As for ompat support, learly supp f � supp �. In fat, if G was ompat, we

ould hoose � � 1. To show that f is ontinuous, we show that it is ontinuous at

every point of two open sets U

1

� G and U

2

� G satisfying U

1

[U

2

= G. On the set

U

1

:= fg 2 G j �

H

(gH) 6= 0g it is ontinuous as a quotient of ontinuous funtions;

and on the set U

2

:= GnKH it is ontinuous as it vanishes there. Further, if g 62 U

1

,

then 0 = �

H

(gH) =

R

H

�(gh) �(h). Sine � is a non-negative ontinuous funtion,

this implies �(gh) = 0 for all h 2 H , hene g 62 KH , i.e. g 2 U

2

. Continuity and

ompat support being established, it remains to show that f

H

� F . Compute

f

H

(gH) =

Z

H

F (ghH)�(gh)

�

H

(ghH

�(h) = F (gH)

R

H

�(gh) �(h)

�

H

(gH)

= F (gH):

Hene the map (�)

H

: C



(G)! C



(G=H) is surjetive. �

Proof. (Theorem 4.2, �(�). Let � : C



(G=H) ! C



(G) be a right-inverse for the

map C



(G)! C



(G=H); f 7! f

H

of Lemma 4.3 and onsider the map

� : C



(G=H)! C; f 7!

Z

G

(�f)(g) �(g):

One � is independent of �, it is a positive linear funtional. To prove that it is

independent of �, it su�es to show that

R

G

f(g) �(g) = 0 whenever f

H

� 0. By

Lemma 4.3 and Urysohn's Lemma 1.5 there exists a funtion � 2 C



(G) suh that

(supp f)H � �

H

� G=H . Then by Proposition 3.9 we have

Z

G

f(g) �(g) =

Z

G

�

H

(gH)f(g) �(g) =

Z

G

Z

H

�(gh)f(g) �(h) �(g)

=

Z

G

Z

H

�(gh

�1

)f(g)�

H

(h

�1

) �(h) �(g):

We may as well integrate over the ompat and hene �-�nite spaes supp f � G

and (supp �)

�1

supp f \H � H (see Proposition 1.7). Therefore, Fubini's Theorem
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1.10 allows us to ontinue the above omputation by

=

Z

H

Z

G

�(gh

�1

)f(g)�

H

(h

�1

) �(g) �(h)

=

Z

H

Z

G

�(g)f(gh)�

H

(h

�1

)�

G

(h) �(g) �(h):

Applying Fubini's Theorem 1.10 again, we dedue using �

G

j

H

� �

H

and f

H

� 0:

=

Z

G

�(g)

Z

H

f(gh) �(h) �(g) =

Z

G

�(g)f

H

(gH) = 0

whih ompletes the proof that � is a positive linear funtional. Hene, by Riesz'

Theorem 1.12, there exists a unique Radon measure � on G=H suh that

Z

G

(�f)(g) �(g) = �(f) =

Z

G=H

f(gH) �(gH) =

=

Z

G=H

(�f)

H

(gH) �(gH) =

Z

G=H

Z

H

(�f)(gh) �(h) �(gH):

for all f 2 C



(G=H). The measure � is heked to be non-zero on non-empty open

sets and G-invariant, i.e. � is a Haar measure on G=H . Sine the above equation

is independent of �, we may as well start with a funtion f 2 C



(G); we have

thus proven the existene of a unique Haar measure � on G=H satisfying (W). To

omplete the proof, we need to show that any Haar measure onG=H (not neessarily

satisfying (W)) is a stritly positive salar multiple of �: Let �

1

; �

2

be Haar measures

on G=H . Then there are left Haar measures �

1

; �

2

on G satisfying (W) for �

1

and

�

2

respetively (see the onverse diretion of the proof). By uniqueness, �

2

= �

1

for some stritly positive real number . Then �

2

and �

1

both satisfy (W) for �

2

.

From the uniqueness proven above we onlude �

2

= �

1

. �

Remark 4.4. Retain the notation of Theorem 4.2. If G is ompat, then the

funtion � in the proof of Lemma 4.3 an be hosen to identially equal one. The

onstruted left Haar funtional on G=H is then given by

� : C



(G=H)! C; f 7!

Z

G

f(gH)

1

H

(gH)

�(g) =

1

�(H)

Z

G

f(gH) �(g):

Notie that �(H) is �nite by Proposition 2.9 sine H is ompat as a losed subset

of a ompat spae. Now, it is a fat (see [KL06, Thm. 7.12℄) that the Haar mea-

sure � on G=H assoiated to � an be omputed by evaluating � on harateristi

funtions. Thus, if E � G=H is measurable, we have

�(E) =

�(�

�1

(E))

�(H)

; in partiular �(G=H) =

�(G)

�(H)

:

The reader is enouraged to think about how the auxiliary funtion � mends the

issues that arise in the ase where G is not ompat.

Example 4.5. To illustrate the usefulness of Theorem 4.2, we now provide a Haar

funtional for G := SL(2;R). Reall that G ats transitively on the upper half plane

H := fz 2 C j Im(z) > 0g via frational linear transformations:

�

a b

 d

�

z :=

az + b

z + d

and

�

p

y x

p

y

�1

p

y

�1

�

i = x+ iy

for x 2 R and y 2 R

>0

. Also, one readily veri�es that H := stab

G

(i) = SO(2;R);

therefore the maps

G=H ! H; gH 7! gi and H! G=H; x+ iy 7!

�

p

y x

p

y

�1

p

y

�1

�
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are mutually inverse G-isomorphisms. In fat they are homeomorphisms. Sine G

is unimodular as a onneted semisimple Lie group and H is unimodular as a

ompat group by Proposition 3.6, we by Theorem 4.2 onlude the existene of a

Haar measure � on G=H

�

=

H. Let � be the left Haar measure on H . Then the map

C



(G)! C; f 7!

Z

G=H

Z

H

f(gH) �(h) �(gH)

is a left Haar funtional on G. To make this omputable, we use the homeomor-

phismsH

�

=

S

1

andG=H

�

=

H to hange variables with Proposition 1.9, and the fat

that the hyperboli geometry on H provides an SL(2;R)-invariant Radon measure

on H. All together, the Haar funtional on G = SL(2;R) then reads

f 7!

Z

1

�1

Z

1

0

Z

2�

0

f

��

p

y x

p

y

�1

p

y

�1

��

os � sin �

� sin � os �

��

d�

d�(y) d�(x)

y

2

:

Remark 4.6. In the setting of Example 4.5 (i), the group P of Example 3.8 is

the stabilizer in SL(2;R) of the boundary point of H assoiated to the (unit-speed)

geodesi  : [0;1) ! H; t 7! i + ie

it

. Basially, P translates  to asymptoti

geodesis. More generally, if M is a symmetri spae of non-ompat type, suh as

SL(n;R)= SO(n), let G := Iso(M)

Æ

, p 2M and x 2 �M be a boundary point. Then

there is the following dihotomy of stabilizers, see e.g. [Ebe96, Se. 2.17℄.

stab

G

(p) stab

G

(x)

ompat non-ompat

onneted not in general onneted

not transitive on M transitive on M

one onjugay lass in general several onjugay lasses

unimodular not in general unimodular

4.1. Disrete Subgroups. If, in the above disussion, H = � is a disrete sub-

group of G and G is seond-ountable, then integration over G=� an be realized

by integrating over a fundamental domain for G=� in G, to be explained below. We

shall always pik the ounting measure � as Haar measure on �.

De�nition 4.7. Let G be a loally ompat Hausdor� group and let � be a disrete

subgroup of G. A strit fundamental domain for G=� in G is a set F 2 B(G) suh

that � : F ! G=� is a bijetion. A fundamental domain for G=� in G is a set

F 2 B(G) whih di�ers from a strit fundamental domain by a set of measure zero

with respet to any left Haar measure on G.

Proposition 4.8. Let G be a loally ompat Hausdor�, seond-ountable group

with a disrete subgroup �. Then there exists a fundamental domain for G=� in G.

Remark 4.9. Retain the notation of Proposition 4.8. Note that seond-ountability

of G in partiular implies that � is ountable.

Proof. (Proposition 4.8). The anonial projetion � : G ! G=� is a loal home-

omorphism. Combined with seond-ountability, this implies the existene of an

open over (U

n

)

n2N

of G suh that � : U

n

! �(U

n

) is a homeomorphism for every

n 2 N. Let F

1

= U

1

and de�ne indutively F

n

= U

n

n(n \ �

�1

�(

S

k<n

U

k

)). Then

F :=

S

n2N

F

n

is a fundamental domain for G=� in G. �

Integration over G=� now redues to integration over G as follows.

Proposition 4.10. Let G be a loally ompat Hausdor�, seond-ountable group

with left Haar measure � and let � be a disrete subgroup of G. Assume that

�

G

j

�

� �

�

. Further, let F be a fundamental domain for G=� in G. Then a Haar
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measure � onG=� satisfying (W) exists and is assoiated to the following funtional:

� : C



(G=�)! C; f 7!

R

F

f(g�) �(g), i.e.

Z

G=�

f(g�) �(g�) =

Z

F

f(g�) �(g) for all f 2 C



(G=�):

Proof. The funtional � is positive and linear; the assoiated Radon measure � on

G=� is heked to be non-zero on non-empty open sets and G-invariant. Hene � is

a Haar measure on G=�. To prove that it satis�es (W), note that hanging F by a

set of measure zero, we may assume that F is a strit fundamental domain. Then

G is a ountable disjoint union G =

F

2�

F and hene we have for all f 2 C



(G):

Z

G

f(g) �(g) =

X

2�

Z

F

f(g) �(g) =

X

2�

Z

F

f(g) �(g) =

Z

�

Z

F

f(g) �(g) �()

=

Z

F

Z

�

f(g) �() �(g) =

Z

F

f

�

(g�) �(g) =

Z

G=�

f

�

(g�) �(g�)

=

Z

G=�

Z

�

f(g) �() �(g�):

where the seond equality follows from the assumption �

G

j

�

� �

�

� 1, and the

the appliation of Fubini's Theorem 1.10 is valid sine G is �-�nite as a loally

ompat, seond-ountable spae and � is �-�nite as it is ountable. �

Remark 4.11. Retain the notation of Proposition 4.10. The assumption �

G

j

�

�

�

�

is not automati. For instane, the subgroup

� :=

��

e

t

e

�t

�

�

�

�

�

t 2 Z

�

of the group P of Example 3.8 is isomorphi to Z and disrete in P . However, for

 = diag(e

t

; e

�t

) 2 �nfIdg we have �

P

() = e

�2t

6= 1 � �

�

by Example 3.8.

We end this setion with the following result about groups ontaining latties:

Reall that if G is a loally ompat Hausdor� group and � is a disrete subgroup

of G then � is a lattie in G if G=� supports a �nite Haar measure.

Proposition 4.12. Let G be a loally ompat Hausdor� group. If G ontains a

lattie, then G is unimodular.

Proof. Let � be a lattie in G. Sine G=� supports a �nite Haar measure �, Theorem

4.2 implies that �

G

j

�

� �

�

� 1 and hene ker�

G

� �. Therefore, �

G

fators

through G ! G=� via

e

�

G

: G=�! (R

�

�0

; �). Then (

e

�

G

)

�

� is a non-zero, �nite

measure on R

�

�0

whih is invariant under the image of �

G

. This fores �

G

� 1. �
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