HAAR MEASURES

STEPHAN TORNIER

ABsTrAacT. This article provides a concise introduction to the theory of Haar
measures on locally compact Hausdorff groups. We will in particular discuss
unimodularity and coset spaces. A good reference is [KL06, Sec. 7]. Further

references include [Bou04) Ch. 7] and [Kna02} Ch. VIII].

CONTENTS

1. PRELIMINARIES

The natural class of groups for which to consider Haar measures is that of locally
compact Hausdorff groups, due to Theorem below.

1.1. Locally Compact Hausdorff Groups. After having reviewed the defini-
tions, we show that this class is stable under taking closed subgroups and coset
spaces with respect to closed subgroups.

A topological group is a group G with a topology such that multiplication and in-
version are continuous. As a consequence, left and right multiplication by elements
of G as well as inversion are homeomorphisms of G. Therefore, the neighbour-
hoodsystem of the identity e € G determines the topology on G. A topological
space is locally compact if every point has a compact neighbourhood; and it is
Hausdorff if any two distinct points have disjoint neighbourhoods in which case
local compactness is equivalent to every point admitting a relatively compact open
neighbourhood, i.e. an open neighbourhood with compact closure.

The class of locally compact Hausdorff groups is stable under taking closed sub-
groups as follows from the following Proposition. Recall that if X is a topological
space and A is a subset of X, we may equip A with the relative topology, i.e. U C A
is open if and only if there is an open set V' C X, such that U = ANV.

Proposition 1.1. Let X be a locally compact Hausdorff space and let A be a
closed subset. Then A is locally compact Hausdorff.

Proof. Recalling that compact subsets of Hausdorff spaces are closed and that closed
subsets of compact sets are compact, this is immediate following the definitions. [

As to coset spaces, we record the following lemma on a property of neighbour-
hoods that comes with the group structure.

Lemma 1.2. Let G be a topological group. Then for every z € G and every
neighbourhood U of e € G, there is an open neighbourhood V of z with V="'V C U.

Proof. The map ¢ : GxG — G, (g,h) — g~ 'h is continuous. Hence there are open
sets V1, V5 C @G such that VflVg = (Vi x V2) CU. Then V =V; NV, serves. [
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If G is a topological group and H is a subgroup of G, we equip the set of cosets
G/H with the quotient topology, i.e. U C G/H is open if and only if 7= (U) C G
is open where 7 : G — G/H, g — gH. Then  is continuous and open, and left
multiplication with g € G is a homeomorphism of G/H.

Proposition 1.3. Let G be a topological group and let H be a closed subgroup
of G. Then G/H is Hausdorff.

Proof. Let zH,yH € G/H be distinct. Then yHz~! C G is closed and does not
contain e € G. Hence, by Lemma [[.2] there is an open neighbourhood V' C G of
e € G such that V7'V C G — yHz'. Then VzH and VyH are disjoint open
neighbourhoods of tH € G/H and yH € G/H respectively. O

Proposition 1.4. Let G be a locally compact topological group and let H be a
subgroup of G. Then G/H is locally compact.

Proof. Tt suffices to show that H € G/H has a compact neighbourhood. Since G
is locally compact, there is a compact neighbourhood K of e € G. Let V be as in
Lemma Then 7(V') is an open neighbourhood of H € G/H since 7 is open.
We show that 7(V) is compact. If gH € 7(V) then VgH N VH # () and hence

gH = vy vy H for some vy, vs € V. Thus 7(V) C 7(U) which is compact since 7 is
continuous and hence so is 7(V) C n(U). O

1.2. Some Topological Group Theory. We further collect several facts from
topological group theory, to be used in the sequel.

First, we state a version of Urysohn’s Lemma which guarantees the existence of
certain compactly supported functions on locally compact Hausdorff spaces. Recall
that if X is a topological space, f € C.(X) such that 0 < f(z) <1forall z € X,
U C X open and K C X compact, one writes f < U if supp(f) CU and K < f if
flky=1forall k € K.

Lemma 1.5 (Urysohn). Let X be a locally compact Hausdorff space. If K C X
is compact and U C X is open such that K C U, then there exists f € C.(Q)
satisfying K < f < U.

Also, we shall need the notion of uniform continuity for functions on topological
groups (which comes from giving the group the structure of a uniform space). Let
G be a topological group. A function f : G — C is uniformly continuous on the left
(right) if for all € > 0 there is an open neighbourhood U of e € G such that for all
z € G and g € U we have |f(gz) — f(z)| <e (|f(zg) — f(z)| < &).

Proposition 1.6. Let G be a locally compact Hausdorff group. Then any f € C.(G)
is uniformly continuous on the left and right.

Proof. We prove that f is uniformly continuous on the left, uniform continuity on
the right being handled analogously. Let € > 0. By continuity of f, there is for each
x € supp f an open neighbourhood U, of e € G such that |f(gz) — f(x)| < £/2
for all g € U,. For every U, (z € G), pick a symmetric open neighbourhood V,. of
e € G such that V,? C U, using Lemma [[2 Since supp f is compact, finitely many
of the sets V,z (z € supp f) cover supp f, say (V,,zx)7_,. Define V. = (,_, Vi.
Then for all € supp f and for all g € V' we have
€

[£(g2) = ()] < |f(gm) = Flaw)l + |f(@e) = F@)| < 5 +5

where k € {1,...,n} is chosen such that z € V,, x. If © ¢ supp f then for every
g € V either gz ¢ supp f in which case the above inequality is trivial, or gz € supp f
in which case we set y = gz. Then |f(g9z)— f(2)| = |f(g 'y) — f(y)| with y € supp f
and g~ € V; we may then argue as before. O

=&
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Finally, the following elementary facts will be useful here and there.

Proposition 1.7. Let G be a topological group and A,B C G. If A and B are
compact, then AB is compact. If either A or B is open, then AB is open.

Proof. If A and B are compact, then so is AB as the image of the compact set (A, B)
under the continuous multiplication map from G x G to G. If either A or B is open,
then AB is open as a union of open sets since | J,. 4 aB = AB = |J,cp Ab. O

Proposition 1.8. Let G be a locally compact Hausdorff group and let H be a
subgroup of G. Further, let C' C G/H be compact. Then there exists a compact set
K C G such that 7(K) D C.

Proof. We may cover G by relatively compact open sets U; (i € I). Since 7 is
open and C C G/H is compact, finitely many of the w(U;) (1 € I) cover C, say
(m(Ur))p—i. Then K = {J,_, Uy, serves. a

1.3. Some Measure Theory. We now review some basic measure theory in order
to give the definition of a Haar measure and some first properties.

Let X be a non-empty set. A o-algebra on X is a set M C P(X) of subsets of X,
containing the empty set, which is closed under taking complements and countable
unions. A pair (X, M) where X is a set and M a o-algebra on X is a measurable
space; the sets E € M are measurable. Given two measurable spaces (X, M) and
(Y,N), amap f : X — Y is measurable if f1(F) € M for all F € N. As a
particular example, let X and Y be topological spaces equipped with their Borel
o-algebras B(X) and B(Y) respectively, i.e. the o-algebra generated by the open
sets. Then any continuous map from X to Y is measurable. In the following we
shall always equip topological spaces with their Borel o-algebra.

A measure on a measurable space (X, M) is amap p: M — Rx>qU{oo} which is
zero on the empty set and countably additive, i.e. whenever (E,)nen is a sequence
of pairwise disjoint measurable sets, then (U, ey En) = > opeq #(En). A triple
(X, M, ) where (X, M) is a measurable space and p is a measure on (X, M) is a
measure space. A set of measure zero is a null set. The complement of a null set is
a conull set.

If (X, M, ) is a measure space, (Y, N') a measurable space and p : X - Y a
measurable map, then @,u: N = RsqU{oo}, F = p(p 1 (F)) is the push-forward
measure on (Y, N') under .

The category of measure spaces is designed to allow for the following notion of
an integral of certain measurable, complex-valued functions on (X, M, u).

1. If xg is the characteristic function of a measurable set E € M, define
| xp(@) uta) = uE).

2. If f =31, Xixe is a positive real linear combination of characteristic
functions of measurable sets, a simple function, define

/X f(x) u(x):fjxi /X xi: (@) p(e).

i=1
3. If f: X — R is measurable and nonnegative, define
| 1@ @) =sup [ (@) i)
X e Jx

where ¢ ranges over all real-valued simple functions on X with 0 < ¢ < f.
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4. If f: X — R is measurable, decompose
f=fi—f- where fi(z) = max(£f(x),0).
If [ |f(x)| p(x) < oo, define

[ s@u@ = [ 1@ @) = [ 1@ nio).

5. If f: X — C is measurable and integrable, i.e. [y |f(z)| p(x) < oo, define

/X f(2) ulz) = /X Re(f(z)) p(x) +i / Tm( () ().

X

The vector space of classes of measurable, integrable complex-valued functions
on X modulo equality on a conull set is denoted by L'(X,u). The integral is a
linear map from L'(X, 1) to C. There is the following change of variables formula.

Proposition 1.9 (Change of variables). Let (X, M, 1) be a measure space, (Y, )
a measurable space and ¢ : X — Y a measurable map. For every measurable
function f : Y — C and every F € N we have

/ @) wenly) = / F(o(@) ple).
F o~ H(F)

in case either of the two sides is defined.

Next, we recall Fubini’s Theorem which reduces integrating over a product space
to integrating over the factors. Let (X, M, u) and (Y, N, v) be measure spaces. Then
s0is (X XY, M x N, u x v) where (u x v) is defined by (u x v)(E, F) := pu(E)v(F)
for all (E,F) € M x N. Also, recall that (X, M, p) is o-finite if X is a countable
union of sets of finite measure.

Theorem 1.10 (Fubini). Let (X, M, u) and (Y, N, v) be o-finite measure spaces.
Let f: X xY — C be measurable and suppose [ [, |f(z,y)| v(y) p(z) < oo.
Then f € LY(X x Y, x v) and

[ [ i@ v we = [ s wxnen = [ [ few e v

Measures on topological spaces which appear in practice often satisfy the follow-
ing additional regularity properties.

Definition 1.11 (Radon measure). A Radon measure on a topological space X is
a measure on (X, B(X)) which additionally satisfies the following properties:

(R1) If K C X is compact, then p(K) < oco.
(R2) If E C X is measurable, then pu(E) = inf{u(U) |U D E,U open}.
(R3) If U C X is open, then p(U) = sup{u(K) | K C U, K compact}.

The importance of Radon measures is also due to the following result of Riesz
which often is employed to define a measure on a given space in the first place.

Theorem 1.12 (Riesz). Let X be a locally compact Hausdorff space. Further, let
A : Cc(X) = C be a positive, i.e. A(f) € [0,00) whenever f(z) € [0,00) for all
x € X, linear functional. Then there exists a unique Radon measure g on X with

NP = [ f@) no) forall feCoX).
X
Furthermore, p satisfies

u(U) =sup{A(f) | f < U} and p(K)=inf{T(f)| K < f}
for every open set U C X and every compact set K C X.
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2. DEFINITION

When dealing with topological groups it is natural to look for measures which
are invariant under translation. Such measures always exist for locally compact
Hausdorff groups.

Definition 2.1 (Haar measure). Let G be a locally compact Hausdorff group. A
left (right) Haar measure on G is a Radon measure p on (G, B(G)) which is non-zero
on non-empty open sets and invariant under left-translation (right-translation):
(H1) If U C X is open, then pu(U) > 0.
(H2) For all E € B(G) and g € G: pu(gF) = p(E) (u(Eg) = p(E)).

Theorem 2.2 (Haar measure). Let G be a locally compact Hausdorff group. Then
there exists a left (right) Haar measure on G which is unique up to strictly positive
scalar multiples.

We shall not prove this theorem here. However, we make the following remark.

Remark 2.3. Whereas the uniqueness statement of Theorem is not too hard
to establish, the existence proof is more involved and not particularly fruitful. For
both, see e.g. [Wei65]|. However, there are three classes of locally compact Hausdorff
groups for which existence may be established by classical means, see Remark 2.8

Example 2.4. Let G be a discrete group. Then the counting measure on G, defined
by p: B(G) = P(G) = R>qU{0}, E — |E|, is a left and right Haar measure.

More examples are to follow in Example 27 For now, consider the following
useful alternative description of Haar measures: Due to Riesz’ Theorem [[12] there
is a one-to-one correspondence between Haar measures and Haar functionals, to be
defined below, on a given group which is often used to obtain a Haar measure in
the first place. Recall that a topological group G acts on C.(G) via the left-regular
and the right-regular representation A\ (g)f(z) = f(g 'z) and og(9)f(z) = f(zg),
where g,z € G and f € C.(G).

Definition 2.5. Let G be a locally compact Hausdorff group. A left (right) Haar
functional on G is a non-trivial positive linear functional on C(G) which is invariant
under Ag (0a).

Proposition 2.6. Let GG be a locally compact Hausdorff group. Then there are the
following mutually inverse maps.

Integration

® : {Haar measures on G'} — {Haar functionals on G} : ¥
1€S7

Proof. The map ® is readily checked to range in the positive linear functionals
on C.(G). For Ag-invariance (pg-invariance), use the change of variables formula
As to non-triviality, let u be a left (right) Haar measure on G and let K be
a compact neighbourhood of some point in G. Then u(K) € (0,00) by (RI) and
(H1), and by Urysohn’s Lemma [[5l there is f € C.(G) such that K < f < G and
therefore ®u(f) = [, f(g) n(g) > p(K) > 0.

Conversely, if A is a left (right) Haar functional on G, its non-triviality translates
to (HI) for p := ¥X and its invariance under A\g (og) translates to (H2) for u:
Suppose U is a non-empty open set of measure zero with respect to pu. Then any
compact set admits a finite cover by left (right) translates of U and hence has
measure zero. Thus A(f) = [ f(g) u(g) = fsuppf f(g) nlg) =0 for all f e C.(G),
contradicting the non-triviality of .

As for invariance, suppose that A is Ag-invariant (gpg-invariance being handled
analogously) and let E € B(G) and g € G. Then by (R2),

w(gE) =inf{u(U) | U D gE, U open} = inf{u(gU) | U D E, U open}.
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Further, by Theorem [I.12] and the Ag-invariance of A we have

w(gU) = sup{A(f) | f < gU} = sup{A(Aa(9)f) | f < U} = u(U).

Hence p is left invariant. The assertions $Wo® = id and ®oW¥ = id are immediate. [

Example 2.7. Here are further examples of Haar measures.

(i)

On G = (R, +), a left- and right Haar measure is given by the Lebesgue
measure A which can be defined as the Radon measure associated to the
classical Riemann integral [ : C.(R) — C via Proposition

On G = (R",4), n > 1, a left- and right Haar measure is given by the n-th
power of the Lebesgue measure A.

On G = (R", "), the Lebesgue measure is not left-invariant. However, the
map

1:Cu(@) = C, fH/Rf(m%

can be checked to be a left- and right Haar functional and hence defines
a left- and right Haar measure on G by Proposition Note that the
above integral is always finite as the integrand has compact support; use
the classical substitution rule to check left- and right-invariance.

On G = GL(n,R), n > 1, the left- and right Haar functional

piC@ € o [ g0 20

defines a left- and right Haar functional on G. Here, A\(X) := H?,j:1 A(ij)
where X = (z;5);; is the Lebesgue measure on R"™ of which GL(n,R)
is an open subset; the latter fact is key: The same construction does not
work for e.g. SL(n,R) which is a submanifold of R™™ of strictly smaller
dimension. Again, the integral is finite by compactness of the support of
the integrand and invariance is checked by changing variables. Note that

the case G = (R*,-) is contained via n =1 in this example.

A left- and right Haar measure for SL(2,R) will be constructed in Example

Remark 2.8. Having established the correspondence between Haar functionals
and Haar measures, we now outline existence proofs of Theorem for compact
Hausdorff groups, Lie groups and totally disconnected locally compact separable
Hausdorff groups.

(i)

Compact Hausdorff groups. Let G be a compact Hausdorff group. Then G
acts continuously on C(G) = C.(G), equipped with the supremum norm,
via the left-regular representation. Therefore, G also acts on the dual space
C(G)* of C(G) via the adjoint representation A%, of Ag defined by

a9, f) = (s, Aa (g™ f)-

for all p € C(G)* and f € C(G). Since the set P(G) of probability measures
on G is a weak™-compact, convex and A} -invariant subset of C'(G)*, the
compact version of the Kakutani-Markov Fixed Point Theorem (e.g.
Thm. 2.23]) implies that it contains a A§-fixed point, i.e. a left-invariant
probability measure on GG, which turns out to be a left Haar measure on G.
Lie groups. Let G be a Lie group with Lie algebra Lie(G) = T'(TG)%, the
space of left-invariant vector fields on G which is isomorphic to T.G as a
vector space. Further, let X1,..., X}, be a basis of T.G with associated left-
invariant vector fields X, ..., X¢ € T(TG)“. Then for each p € G, the tu-
ple (X&),,...,(X5),) is a basis of T,G and we may for each i € {1,...,n}
define a 1-form w; on G by (w;)p((X;)p) = di;; that is, for each p € G, the
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tuple ((w1)p, ..., (wn)p) is the basis of T3G dual to ((X{')p,...,(X5)p)-
It is readily checked that the left-invariance of X, ..., X& implies left-
invariance of the w; (i € {1,...,n}) in the sense that Ljw; = w; for all
g € G and i{1,...,n}. Then so is the n-form w := w; A --- A w, since A
commutes with pullback. Furthermore, one checks that w is nowhere van-
ishing. We may then orient G such that w is positive and hence gives rise
to the left Haar functional

Ao 1 C.(G) = C, fl—)/fw
G

which in turn via Riesz’ Theorem provides a left Haar measure on G,
see [Kna02, VIIL.2].

(iii) Totally disconnected locally compact separable Hausdorff groups. Let G be
a group of this type. By van Dantzig’s theorem, G contains a compact open
subgroup K. Assuming G to be non-compact, by separability and openness
of K there are g, € G (n € N) such that G' = | |, . 9o K. Using part (i),
let v be a Haar measure on K and let v, := g,«v be the corresponding
measure on g, K. For E € B(G) define

p(E) = vn(ENg,K)=> v(g,' ENK)
neN neN

if the sum exists and infinity otherwise. Then y is a Radon measure on G
which is non-zero on non-empty open sets since v is. Also, p is left-invariant:
Given g € G, there is o € Sy such that gg, K = g,(») K. Then

o™ E) = vig,'gT'ENK) = w(g, 999, ¢ ' ENK)

neN neN
=Y v(g,- ENK)=> v(g.ENK) = p(E).
neN neN

where the second equality uses K-invariance of v.

By Remark Z8 compact Hausdorff groups have finite Haar measure. We now
show that the converse holds as well.

Proposition 2.9. Let G be a locally compact Hausdorff group and let u be a left
(right) Haar measure on G. Then p(G) < oo if and only if G is compact.

Proof. Tf G is compact, then p(G) < oo by Definition [RIl Conversely, suppose that
G is not compact and let U be a relatively compact neighbourhood of e € G. Then
there is an infinite sequence (g,)nen of elements of G such that g, ¢ U, 9:U;
otherwise G would be compact as a finite union of compact sets. Let V be as in
Lemma Then the sets g,V (n € N) are pairwise disjoint by the fact that
VV~l C U and the definition of (g,)nen. Therefore, as V has strictly positive
measure, G has infinite measure. |

3. UNIMODULARITY

We now address and quantify the question whether left and right Haar measures
on a given locally compact Hausdorff group coincide.

Definition 3.1. A locally compact Hausdorff group G is unimodular if every left
Haar measure on G is also a right Haar measure on G and conversely.

Remark 3.2. By Theorem [2.2] it suffices in Definition B.1] to ask for every left
Haar measure on G to also be a right Haar measure.
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Proposition 3.6 below will provide several classes of unimodular groups. For now,
let G be a locally compact Hausdorff group and let u be a left Haar measure on
G. Then for every g € G, the map p, : B(G) = R>oU{oo}, E — u(Eg) is a left
Haar measure on G as well. Hence, by uniqueness, there exists a strictly positive
real number Ag(g) such that p, = Ag(g)u, ie.

(M) W(Eg) = uy(B) = Aa(g)u(E) forall E € B(G).

The function Ag : G = Ry is independent of p and called modular function of G.

Let A be the left Haar functional associated to p by Proposition Then by
the change of variable formula L9 applied to ¢ = R,-1, equation (M) immediately
translates to

(M) Mea(g™)f) = Aa(g)A(f) forall fe C(G).

Proposition 3.3. Let G be a locally compact Hausdorff group. Then the modular
function Ag : G = (Rso, ) is a continuous homomorphism.

Proof. Let u be a left Haar measure on G. The homomorphism property is imme-
diate from (M): For all g,h € G we have

Ac(gh)p = pgh = (tn)g = Ac(h)pn = Ac(9)Ac(h)p.

Evaluating on a set of non-zero finite measure, e.g. a compact neighbourhood of
some point, proves the assertion.

As to continuity, let A be the left Haar functional associated to u by Proposition
It suffices to check continuity at e € G, since Ay is a homomorphism. Let K
be a compact neighbourhood of e € G. Using Urysohn’s Lemma [[5, we choose
¢ € C.(G) such that K < ¢ < G and ¢ € C.(G) such that K suppy <1 < G (see
Proposition[I.7). In particular, ¢ is uniformly continuous on the right by Proposition
Given € > 0, let U C K be a symmetric open neighbourhood of e € G such
that |p(zg) — ¢(z)] < e for all x € G and g € U. Then by (M),

1 1 _ A(¥)
Aq(g) =1 = = [Ac(g)A(®) = A@)| < = AMea(g e —lv) <e
for all g € U. Hence Ag is continuous at the identity. O

Remark 3.4. We have noticed that for a locally compact Hausdorff group G with
left Haar measure p and given g € G, the map p, : B(G) = R>oU{o0}, E — u(Eg)
is a left Haar measure on G as well. This is an instance of the following more
general observation: For every continuous automorphism « € Aut(G), the map
ta @ B(G) = R>qU{0}, E + pu(a(E)) is a left Haar measure on G. In this setting,
Itg = Hing(g-1) Where int(g) : G = G, x + gxg™' denotes conjugation in G by g.
One may then introduce the general modular function modg : Aut(G) — (Rso,-)
which remains to be a homomorphism and with the Braconnier topology on Aut(G),
a refinement of the compact-open topology, becomes continuous, see e.g. [Pal01].

We obtain the following useful criterion for unimodularity.

Corollary 3.5. Let G be a locally compact Hausdorff group. Then G is unimodular
if and only if Ag = 1.

Proof. If Ag = 1, then G is unimodular by (M) and Remark [3.21 Conversely, if G is
unimodular, let u be a Haar measure on G and let E be a compact neighbourhood
of some point in G. Then p(E) € (0,00) and hence Ag = 1 by (M). O

Corollary [33] provides us with the following list of classes of unimodular groups.
Yet another class will be given in Proposition [4.12)
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Proposition 3.6. Let G be a locally compact Hausdorff group. Then G is uni-
modular if, in addition, it satisfies one of the following properties: being abelian,
compact, topologically simple, topologically perfect, discrete, connected semisimple
Lie or connected nilpotent Lie.

Proof. Let G be a locally compact Hausdorff abelian group with left Haar mea-
sure p. Since Eg = gE for every subset E C G and all g € G, the left-invariance of
w1 implies right-invariance.

If G is compact Hausdorff and p is a left Haar measure on G, then u(G) € (0, 00)
and hence Ag = 1 by (M).

If G is topologically simple, then [G, G], which is a closed normal subgroup of
G, either equals {e} or G. In the former case, G is abelian and hence unimodular;
in the latter case, continuity of Ag implies:

Ag(G) = AG([G:G]) - AG([GaG]) = {1}

whence G is unimodular. When G is topologically perfect, i.e. G = [G, G], the same
argument applies.

For a discrete group, the left Haar measures are the strictly positive scalar mul-
tiples of the counting measure which certainly is right-invariant.

Suppose now, that G is a connected semisimple Lie group. Note that in this
case the modular function Ag : G — (R\{0},-) is a continuous and hence smooth
([War83, Thm. 3.39]) homomorphism of Lie groups. Thus D.Ag : Lie(G) — Ris a
morphism of Lie algebras. Since Lie(G) is semisimple and R is abelian we have

DeAG’(Lie(G)) = DeAG([Lle(G)aLle(G)]) = [DeAG(Lle(G))a DeAG(Lle(G))] = {0}

and hence Ag =1 by the Lie correspondence, passing to the universal cover of G.

For the case of a connected nilpotent Lie group, we appeal to the fact that for
any Lie group G we have Ag(g) = | det Ad(g)|, where Ad : G — Aut(Lie(G)) is the
adjoint representation of G, see e.g. [Kna02, Prop. 8.27] (this follows in the setting
of Remark [Z.8)). If, in addition, G is connected and nilpotent, then the exponential
map exp : Lie(G) — G is surjective ([Kna02, Thm. 1.127]) and hence for every
g € G there is some X € Lie(G) such that g = exp(X) and

Ac(g) = |det Ad(g)| = | det e2dX| = etradX — 1

where the last equality follows from Lie(G) and hence adX being nilpotent. O

The following proposition provides a class of totally disconnected locally compact
Hausdorff groups that are unimodular. Recall that if T" is a locally finite tree then
Aut(T) is a totally disconnected locally compact separable Hausdorff group with
the permutation topology. We adopt Serre’s graph theory conventions, see [Ser80].

Proposition 3.7. Let T = (V,E) be a locally finite connected graph. If G <
Aut(T) is closed and locally transitive then G is unimodular.

Proof. Let p be a left Haar measure on G, see Remark 2.8 Since G is locally
transitive there is for every triple (z, eq, e) of a vertex € V and edges eg, e € E(x)
an element g, € G, such that g.eg = e. Then G, = |_|e€E(z) geGe,). In particular,
w(Gy) = |E(2)|pu(Ge, ) for every eq € E(z). Since G, = Gz for all e € E we further
conclude that u(G.) = u(Ge ) for all e,e' € E. Given g € G we therefore have

1(Ge) = W(Gye) = p(gGeg ™) = p(Geg™) = Aa(g " )(Ge)

and hence G is unimodular. O

Example 3.8. We now provide two related examples of non-unimodular groups.
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(i) Consider the group

()

Then the functionals u,v : C.(P) — C, given by

pifo [100 2B g vipe [0 A@Aw)

x € R\{0}, y € R} < SL(2,R).

are left- and right Haar functionals respectively as can be checked by chang-
ing variables. However, P is a closed subgroup of SL(2, R) which is unimod-
ular as a connected simple Lie group by Proposition 3.6l We shall shed some
light on the origin of this example in Remark

(ii) Let Ty = (V, E) be the d-regular tree and let w € 9Ty be a boundary point
of Ty. Set G := Aut(Ty),, the stabilizer of w in Aut(Ty). Then G is not
unimodular: Indeed, let ¢ € G be a translation of length 1 towards w and
let © € V be on the translation axis of ¢. Then

_ M(Gd/‘) _ M(Gx) N(Gz7tx)
A0 = Cr) ~ 1Car) 1(Cra)
[Ga:Gew] _ |Galte) 1
a [Gtm :Gz,tm] a |Gtzx| a d— ]..

See Remark [4.6] for how this relates to part (i).

Uilizing the modular function, we can turn left Haar measures into right Haar
measures as in the following Proposition. Let i : G — G denote the inversion on G.

Proposition 3.9. Let G be a locally compact Hausdorff group with left Haar mea-
sure . Then @ = i,y : B(G) = RsqU{oo}, E — p(E~") is a right Haar measure on
G with associated right Haar functional ¢ : Co(G) — C, f — [, f(x)Aq(z™") p(z).
If G is unimodular, then @ = p.

Proof. The map [ is readily checked to be a right Haar measure on G. The map p
is clearly positive and linear. Its non-triviality follows as in the proof of Proposition
using Ag(g) > 0 for all g € G. As to pg-invariance, changing variables via
Proposition using Rg.pt = pig—1 yields

o(eaa)f) = /G f@g)Aa(e™) plx) = /O f@)Ac(gr ) e (2) =
- / F@)Ac(@) A Y Aa(g ) plx) = / f@)Aa@ ) ) = olf):
G G

for every f € C.(G) and g € G. Overall, g is a right Haar functional on G.

Now, let ®7i denote the right Haar functional associated to fr as in Proposition
Then there is a strictly positive real number ¢ such that ® = cp. Applying
the change of variables formula [[.9, we obtain for all f € C.(G):

[ 1@ a@ =c [ 1@ac ) u) = [ fa () al)
_ 2 —1 A A —1 _ 2 - .
¢ [ Ha)ac@ace™) ue) = ¢ | 1) 7o)
Let K be a compact symmetric neighbourhood of some point in G and f € C.(G)

such that K < f < G. Then [, f(z™') u(x) € (0,00) and hence ¢ = 1. In particular,
unimodularity of G implies pu = . 0
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4. COSET SPACES

Let G be a locally compact Hausdorff group and let H be a closed subgroup
of G. If H is normal in G, there exists a left (right) Haar measure on G/H by
Theorem We now address the question under which circumstances there exists
a G-invariant Radon measure on G/H which is non-zero on non-empty open sets if
H is not normal in G, and we shall refer to such a measure as a Haar measure on
G/H by abuse of notation. The following example shows that a Haar measure on
G/H may or may not exist.

Example 4.1. Let G = SL(2,R).
(i) Consider the natural action of G on X = R*\{0}. Then

H := stabg((1,0)7) = { <1 ”{”) ze R}

and hence G/H = X has a Haar measure, namely the restricted two-
dimensional Lebesgue measure.
(ii) On the other hand, G acts on X = P' R = {V < R? | dimV = 1}. Here,

H := stabg((e1)) = { <‘” mﬂ) z € R\{0},y € R}

which is the non-unimodular group of Example B8 The space G/H = X
does not admit a Haar measure: For instance, consider the compact subsets
Ey = {((1,5)T) | t € [0,1]} and Es := {((t,1)T) | t € [0,1]} of P' R. Then

(1 _11>E1:E1UE2 and G _1>E1:E2.

A Haar measure on G/H would assign finite non-zero measure to the com-
pact sets Fy and FE5 which combined with G-invariance contradicts the
above two equalities.

Theorem 4.2. Let G be a locally compact Hausdorff group with left Haar measure
1 and let H be a closed subgroup of G with left Haar measure v. Then there exists
a Haar measure £ on G/H if and only if Ag|g = Apg. In this case, £ is unique up to
strictly positive scalar multiples and suitably normalized satisfies for all f € C.(G):

(W) /G £(9) ulg) = /G y /H Flgh) (k) E(gH).

In the context of Theorem 2] formula (W]) can be extended to hold for f € LY(G),
see [KL0O6, Theorem 7.12] and the surrounding explanations.

Proof. (Theorem (2] “="). If £ exists as above, then the map
NCo@) > € o [ [ (b w(hy €o)
G/H JH

is a left Haar functional on G and thus defines a left Haar measure y on G. In
particular, A(og(t~1)f) = Ag(t)A(f) for all t € G and f € C.(G) by (AM). On the
other hand, we have for all t € H and f € C.(G):

Moot 1) f) = /G y /H (0a(t™)f)(gh) v(h) E(gH) =

- / / Au(®)f(gh) v(h) E@H) = Ag(OA(S).
G/HJH

If, by Urysohn’s Lemma [[5] we choose f € C.(G) to satisfy K < f < G where K
is a compact neighbourhood of some point in G, then [, f(g) u(g) = A(f) € (0,00)
and hence Ag|lg = Ap. O
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The proof of the converse assertion of Theorem relies on the following de-
scription of compactly supported functions on G/H. Once more, Riesz’ Theorem
[L.12] will be used to produce a measure.

Lemma 4.3. Let G be a locally compact Hausdorff group and H a closed subgroup
of G with left Haar measure v. Then the following map is surjective:

C.(G) —» C(G/H), f s (fH it o [ 1) u(h)) |

Proof. Several things need to be checked. First of all, for all f € C.(G) and for
all gH € G/H, the integral [}, f(gh) v(h) is independent of the representative
of gH and finite. Next, for all f € C.(G), the function fyf is continuous as a
parametrized integral as in the proof of the continuity of the modular function.
Clearly, supp frr C p(supp(f)) and hence fg € C.(G/H). It remains to prove
surjectivity. To this end, let F' € C.(G/H). Pick K C G such that 7(K) D supp F
(Proposition [I.8) and let n € C.(G) satisfying K < n (Urysohn’s Lemma). Now
define f € C.(G) by

F(gH)n(g)
fCG—>C, g nu (gH) UH(QH);&O
0 n(gH) =0

Again, we need to show that this function is continuous and has compact support.
As for compact support, clearly supp f C suppn. In fact, if G was compact, we
could choose n = 1. To show that f is continuous, we show that it is continuous at
every point of two open sets U; C G and Uz C G satisfying Uy UUs = G. On the set
Uy :={g € G| nu(gH) # 0} it is continuous as a quotient of continuous functions;
and on the set U, := G\K H it is continuous as it vanishes there. Further, if g & Uy,
then 0 = ng(9H) = [;;n(gh) v(h). Since 1 is a non-negative continuous function,
this implies n(gh) = 0 for all h € H, hence g ¢ KH, i.e. g € U,. Continuity and
compact support being established, it remains to show that fg = F. Compute

oo = [ FRE v = ron B = pn)

Hence the map (=) g : C.(G) = C.(G/H) is surjective. O

Proof. (Theorem 2] “<”). Let 0 : C.(G/H) — C.(G) be a right-inverse for the
map C.(G) = C.(G/H), f+ fu of Lemma [£3 and consider the map

N:C(GJH) = C, fos /G (01)(g) 1l9)-

Once A is independent of o, it is a positive linear functional. To prove that it is
independent of o, it suffices to show that fc f(g) p(g) = 0 whenever fg = 0. By
Lemma 3 and Urysohn’s Lemma [[3] there exists a function n € C.(G) such that
(supp f)H < ng < G/H. Then by Proposition [3.9 we have

/G £(9) 1io) / ni(gH) / / (gh)1(9) v(h) p(g)
/ / (gh ) F(@)Ar(h ) v(h) ulg).

We may as well integrate over the compact and hence o-finite spaces supp f C G
and (suppn) !supp fNH C H (see Proposition [[.7). Therefore, Fubini’s Theorem
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[L.10] allows us to continue the above computation by

- / / n(gh (@) Am(h ) ulg) v(h)
/ / Flah)A (=) Ag(h) ulg) v(h).

Applying Fubini’s Theorem [I.T0] again, we deduce using Ag|pr = Ap and fg = 0:

- /G n(g) /H F(gh) v(h) nlg) = /G n(g) frr (gH) = 0

which completes the proof that A is a positive linear functional. Hence, by Riesz’
Theorem [IL12] there exists a unique Radon measure £ on G/H such that

/O @@ ulg) = AP = [ flgH) €(gH) =

G/H

- / (0 1) (gH) E(gH) = / / (o f)(gh) v(h) E(gH).
G/H G/HJH

for all f € C.(G/H). The measure £ is checked to be non-zero on non-empty open
sets and G-invariant, i.e. £ is a Haar measure on G/H. Since the above equation
is independent of o, we may as well start with a function f € C.(G); we have
thus proven the existence of a unique Haar measure & on G/H satisfying (W). To
complete the proof, we need to show that any Haar measure on G/H (not necessarily
satisfying (W))) is a strictly positive scalar multiple of &: Let £, & be Haar measures
on G/H. Then there are left Haar measures p;, u2 on G satisfying (W) for & and
& respectively (see the converse direction of the proof). By uniqueness, pus = cuq
for some strictly positive real number c. Then & and c&; both satisfy (W) for ps.
From the uniqueness proven above we conclude & = ¢&;. O

Remark 4.4. Retain the notation of Theorem If G is compact, then the
function 7 in the proof of Lemma [£3] can be chosen to identically equal one. The
constructed left Haar functional on G/H is then given by

f(gH) 1 /
AN C(G/H) - C, f— = — H
(G/H) f T (gH) 1(g) () Gf(g ) 1(9)
Notice that v(H) is finite by Proposition 29 since H is compact as a closed subset
of a compact space. Now, it is a fact (see [KL0O6, Thm. 7.12]) that the Haar mea-
sure £ on G/H associated to A can be computed by evaluating A on characteristic
functions. Thus, if E C G/H is measurable, we have
G

in particular ¢(G/H) = %

The reader is encouraged to think about how the auxiliary function 1 mends the
issues that arise in the case where G is not compact.

Example 4.5. To illustrate the usefulness of Theorem [4.2] we now provide a Haar
functional for G := SL(2, R). Recall that G acts transitively on the upper half plane
H := {z € C | Im(z) > 0} via fractional linear transformations:

a b\ _ az+b NG a:\/_ _
<c d>2'_cz+d and ( \/_ i =x+1y

for x € R and y € Rsg. Also, one readily verifies that H := stabg (i) = SO(2,R);
therefore the maps

—1
G/H — H, gH + gi and H%G/H,xﬁ-iy._)(\/?j x\/\/y§_1>
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are mutually inverse G-isomorphisms. In fact they are homeomorphisms. Since G
is unimodular as a connected semisimple Lie group and H is unimodular as a
compact group by Proposition B.6] we by Theorem conclude the existence of a
Haar measure £ on G/H = H. Let v be the left Haar measure on H. Then the map

C(G) = C, frs /0 y /H f(gH) v(h) €(gH)

is a left Haar functional on G. To make this computable, we use the homeomor-
phisms H & S' and G/H = H to change variables with Proposition[L.9} and the fact
that the hyperbolic geometry on H provides an SL(2,R)-invariant Radon measure
on H. All together, the Haar functional on G = SL(2,R) then reads

o [ (O ) (S ) w e

Remark 4.6. In the setting of Example (i), the group P of Example B.8 is
the stabilizer in SL(2,R) of the boundary point of H associated to the (unit-speed)
geodesic v : [0,00) — H, t ~ i + ie. Basically, P translates v to asymptotic
geodesics. More generally, if M is a symmetric space of non-compact type, such as
SL(n,R)/SO(n), let G :=Iso(M)°, p € M and & € M be a boundary point. Then
there is the following dichotomy of stabilizers, see e.g. [Ebe96, Sec. 2.17].

stabg (p) stabg ()
compact non-compact
connected not in general connected
not transitive on M transitive on M
one conjugacy class | in general several conjugacy classes
unimodular not in general unimodular

4.1. Discrete Subgroups. If, in the above discussion, H = T is a discrete sub-
group of G and G is second-countable, then integration over G/I" can be realized
by integrating over a fundamental domain for G /T in G, to be explained below. We
shall always pick the counting measure v as Haar measure on I'.

Definition 4.7. Let G be a locally compact Hausdorff group and let T" be a discrete
subgroup of G. A strict fundamental domain for G/T" in G is a set F' € B(G) such
that 7 : F — G/T is a bijection. A fundamental domain for G/T in G is a set
F € B(G) which differs from a strict fundamental domain by a set of measure zero
with respect to any left Haar measure on G.

Proposition 4.8. Let G be a locally compact Hausdorff, second-countable group
with a discrete subgroup I'. Then there exists a fundamental domain for G/I" in G.

Remark 4.9. Retain the notation of Proposition[4.8 Note that second-countability
of GG in particular implies that I" is countable.

Proof. (Proposition L.8)). The canonical projection m : G — G/T is a local home-
omorphism. Combined with second-countability, this implies the existence of an
open cover (U, )nen of G such that 7 : U,, — «(U,,) is a homeomorphism for every
n € N. Let F; = U; and define inductively F,, = U,\(n N7 *n(UJ,., Ux)). Then
F := U, en Fn is a fundamental domain for G/T" in G. O

Integration over G/T' now reduces to integration over G as follows.

Proposition 4.10. Let G be a locally compact Hausdorff, second-countable group
with left Haar measure p and let I' be a discrete subgroup of G. Assume that
Ag|r = Ar. Further, let F' be a fundamental domain for G/I" in G. Then a Haar
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measure £ on G/T" satisfying (MU) exists and is associated to the following functional:

A:Ce(GT) = C, [ [ f(gD) ul(g), ie.
/ f(gD) &(gT) = / f(gl) u(g) forall fe C.(G/T).

Proof. The functional A is positive and linear; the associated Radon measure ¢ on
G/T is checked to be non-zero on non-empty open sets and G-invariant. Hence £ is
a Haar measure on G/T. To prove that it satisfies (W), note that changing F by a
set of measure zero, we may assume that F' is a strict fundamental domain. Then
G is a countable disjoint union G = | |, . F'y and hence we have for all f € C.(G):

Kﬁ@ Z Z/fm //fm v(y)

ver

- / / Fg) v(y) nlg) = / fo(aD) ulg) = [ fogD) €(T)
F G/T
Lﬁ/fm &(gl).

where the second equality follows from the assumption Ag|r = Ar = 1, and the
the application of Fubini’s Theorem [[.I0) is valid since G is o-finite as a locally
compact, second-countable space and I is o-finite as it is countable. O

Remark 4.11. Retain the notation of Proposition .10l The assumption Ag|r =
Ar is not automatic. For instance, the subgroup

)

of the group P of Example [B.8is isomorphic to Z and discrete in P. However, for
v = diag(ef,e"t) € T'\{Id} we have Ap(y) = e 2 #1 = Ar by Example B8

We end this section with the following result about groups containing lattices:
Recall that if G is a locally compact Hausdorff group and T is a discrete subgroup
of G then T is a lattice in G if G/T supports a finite Haar measure.

Proposition 4.12. Let G be a locally compact Hausdorff group. If G' contains a
lattice, then G is unimodular.

Proof. Let T be alattice in G. Since G/T" supports a finite Haar measure £, Theorem
A2 implies that Aglr = Ar = 1 and hence ker Ag D T'. Therefore, Ag factors
through G — G/T via Ag: G/T — (R%,,-). Then (Ag).¢ is a non-zero, finite
measure on R, which is invariant under the image of Ag. This forces Ag = 1. [
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