KMS states and fixed-point theory

Aidan Sims (University of Wollongong)

University of Newcastle, March 1, 2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Directed graphs

A directed graph is a quadruple $E = (E^0, E^1, r, s)$, where E^0 and E^1 are countable sets, and r, s are functions from E^1 to E^0 .

- We call the elements of E⁰ vertices and think of them as points.
- We call the elements of E¹ edges and think of them as arrows pointing from one vertex to another.
- The edge $e \in E^1$ points from $s(e) \in E^0$ to $r(e) \in E^0$.

$$s(e) \xrightarrow{e} r(e)$$

A path in E is a word $e_1e_2\cdots e_n$ of edges such that $s(e_i) = r(e_{i+1})$.

イロト 不得 トイヨト イヨト

An example.

One example of a directed graph is:

An example of a path in this graph is *lkfhe*.

For today,

- both E⁰ and E¹ are finite and nonempty; and
- Strongly connected: each vE*w is nonempty.

<ロト < 同ト < 国ト < ヨト

Paths in graphs

- ▶ A path of length $n \ge 1$ in a graph E is a word $\lambda = \lambda_1 \dots \lambda_n$ with each $\lambda_i \in E^1$ such that $s(\lambda_i) = r(\lambda_{i+1})$.
- An *infinite path* in *E* is a word $x = x_1x_2x_3...$ where each $x_i \in E^1$ and each $s(x_i) = r(x_{i+1})$.
- ► E[∞] is the space of all infinite paths. Give it the topology generated by the sets λE[∞] (these are then compact and open, and the topology is Hausdorff).

イロト イボト イヨト イヨト 三日

The path-space of a graph

The path-space of a graph *E* forms a forrest F_E :

Partial automorphisms

[LRRW]: A partial isomorphism of F_E is a triple (v, γ, w) where $v, w \in E^0$, and $\gamma : wE^* \to vE^*$ is a length-preserving bijection such that $\gamma(\mu e) \in \gamma(\mu)E^1$ for all paths μ and edges e.

The collection $Plso(F_E)$ of partial isomorphisms of E is a groupoid with unit space E^0 :

Write γ for (v, γ, w) and write $r(\gamma) = v$ and $s(\gamma) = w$.

Eg: $E^0 = \{v\}$, $E^1 = \{1, ..., n\}$, then $Plso(F_E) =$ automorphism group of rooted *n*-ary tree.

Self-similar groupoids

[LRRW] A self-similar groupoid Γ is a subgroupoid of $Plso(F_E)$ for some graph E, with the property that for each $\gamma \in \Gamma$ and $\mu \in wE^*$, there is a (unique) $\gamma|_{\mu} \in \Gamma$ such that $\gamma \cdot (\mu\nu) = (\gamma \cdot \mu)(\gamma|_{\mu} \cdot \nu)$ for all ν .

So if E has just one vertex, then this is just the usual notion of a self-similar group.

For example, if *E* has one vertex and two edges 0, 1, then the odometer subgroup of Aut $\{0, 1\}^*$ with generator *g* given by $g \cdot 0 = 1$, $g \cdot 1 = 0$, $g|_0 = e$ and $g|_1 = g$ is a self-similar group isomorphic to \mathbb{Z} .

イロト イボト イヨト イヨト 三日

Toeplitz algebras of graphs

 C^* -algebra: closed *-algebra of B(H). To model a directed graph in a C^* -algebra:

- Assign orthogonal subspaces H_v to vertices v;
- Write p_v for the orthogonal projection onto H_v ;
- Assign an operator s_e to each edge e so that
 - s_e is isometric from $H_{s(e)}$ to a subspace of $H_{r(e)}$,
 - s_e is zero on H_v if $v \neq s(e)$, and
 - if $e \neq f$ then $s_e H_{s(e)} \perp s_f H_{s(f)}$.

 $\mathcal{T}C^*(E)$ is the universal C^* -algebra generated by elements p_v, s_e such that $p_v^*p_w = \delta_{v,w}p_v$, each $s_e^*s_e = p_{s(e)}$, and each $\sum_{r(e)=v} s_e s_e^*$ is a projection dominated by p_v .

The universal property gives an action $\alpha : \mathbb{R} \to \operatorname{Aut}(\mathcal{T}C^*(E))$ such that $\alpha_t(s_e) = e^{it}s_e$ and $\alpha_t(p_v) = p_v$.

イロト 不得 トイヨト イヨト 二日

KMS states on $\mathcal{T}C^*(E)$

Reminder: If A is a C^{*}-algebra, a state of a is a linear map $\phi : A \to \mathbb{C}$ of norm 1 such that $\phi(a^*a) \ge 0$ for all a.

If $\alpha : \mathbb{R} \to \operatorname{Aut}(A)$ is an action on a C^* -algebra, and $\beta > 0$, then a state $\phi : A \to \mathbb{C}$ is KMS_{β} if $\phi(ab) = \phi(b\alpha_{i\beta}(a))$ whenever this makes sense.

Theorem (aHLRS). If *E* is a strongly-connected finite directed graph and $\beta > 0$ then there are KMS_{β} states of $\mathcal{T}C^*(E)$ if and only if β is larger than the logarithm of the spectral radius ρ of the adjacency matrix A_E . For $\beta > \log \rho$, KMS_{β}-states \leftrightarrow probability measures on E^0 ; at $\beta = \log \rho$ there is a unique KMS state, given on the p_v by the entries of the Perron–Frobenius eigenvector m^E of A_E .

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

Idea of proof

Write
$$s_{\mu} = s_{\mu_1}s_{\mu_2}\cdots s_{\mu_n}$$
 for a path $\mu = \mu_1\cdots \mu_n$.

Relations force $\mathcal{T}C^*(E) = \overline{\text{span}}\{s_\mu s_\nu^* : s(\mu) = s(\nu)\}$, and if $|\mu| = |\nu|$ then $s_\mu^* s_\mu = \delta_{\mu,\nu} p_{s(\mu)}$.

If
$$|\mu| \neq |\nu|$$
 and ϕ is KMS _{β} , then $\phi(s_{\mu}s_{\nu}^{*}) = \phi(s_{\nu}^{*}\alpha_{i\beta}(s_{\mu})) = \phi(\alpha_{i\beta}(s_{\mu})\alpha_{i\beta}(s_{\nu}^{*})) = e^{-\beta(|\mu| - |\nu|)}\phi(s_{\mu}s_{\nu}^{*})$. Hence $\phi(s_{\mu}s_{\nu}^{*}) = 0$.

If
$$|\mu| = |\nu|$$
 then $\phi(s_\mu s_\nu^*) = \phi(s_\nu^* \alpha_{i\beta}(s_\mu)) = \delta_{\mu,\nu} e^{-\beta|\mu|} p_{s(\mu)}$.

Also, each
$$\phi(p_v) \ge \sum_{r(e)=v} \phi(s_e s_e^*) = e^{-\beta} \sum_{r(e)=v} s_e^* s_e = e^{-\beta} \sum_w A_E(v, w) \phi(p_w).$$

So KMS_{β} states \leftrightarrow probability measures *m* with $A_E m \leq e^{\beta} m$. Perron–Frobenius kicks in.

A critical observation

How to find measures *m* with $A_E m \le e^{-\beta} m$ (called *subinvariant*)?

If $e^{\beta} > \rho$ then $\sum_{n} e^{-n\beta} A^{n}_{E}$ converges.

Follows that $\sum_{n} e^{-n\beta} A_{E}^{n} m$ converges for any measure m.

$$\begin{aligned} A_E \Big(\sum_{n \ge 0} e^{-n\beta} A_E^n m \Big) &= \sum_{n \ge 0} e^{-n\beta} A_E^{n+1} m \\ &= e^{\beta} \sum_{n \ge 1} e^{-n\beta} A_E^n m \le e^{\beta} \sum_{n \ge 0} e^{-n\beta} A_E^n m. \end{aligned}$$

So, modulo scaling, get subinvariant measure via $\chi_{\beta}(m)(v) = \sum_{\mu \in E^*v} e^{-\beta |\mu|} m(r(\mu)).$ Toeplitz algebras of self-similar groupoids [LRRW]

Given: strongly-connected finite directed graph E, and self-similar groupoid $\Gamma \subseteq \mathsf{Plso}(F_E)$.

Define $\mathcal{T}(E,\Gamma)$ to be universal C^* -algebra generated by

▶
$$p_v$$
 and s_e as before, and
▶ $\{u_\gamma : \gamma \in \Gamma\}$ such that
▶ $u_{\gamma^{-1}} = u_\gamma^*$,
▶ $u_\gamma^* u_\gamma = p_{s(\gamma)}$ (hence $u_\gamma u_\gamma^* = p_{r(\gamma)}$),
▶ $u_\gamma s_\mu = s_{\gamma \cdot \mu} u_{\gamma|\mu}$ when $s(\gamma) = r(\mu)$.

So, roughly, a copy of $\mathcal{T}C^*(E)$ and a "unitary representation" of Γ that play nicely together. Have $\mathcal{T}C^*(E,\Gamma) = \overline{\text{span}}\{s_\mu u_\gamma s_\nu^*\}$.

The universal property gives an action $\alpha : \mathbb{R} \to \operatorname{Aut}(\mathcal{T}C^*(E,\Gamma))$ such that $\alpha_t(s_e) = e^{it}s_e$, $\alpha_t(p_v) = p_v$, and $\alpha_t(u_\gamma) = u_\gamma$.

イロト イボト イヨト イヨト 三日

KMS states on $\mathcal{T}C^*(E,\Gamma)$

Suppose that ϕ is KMS_{β} for $(\mathcal{T}C^*(E,\Gamma), \alpha)$.

Then in particular $\phi|_{C^*(\{s_e, p_\nu\})}$ is KMS_{β} for $\mathcal{T}C^*(E)$. We know about these. Also, $\tau(s_\mu u_\gamma s_\nu^*) = 0$ if $\mu \neq \nu$ as before.

But also $\phi(u_{\gamma}u_{\eta}) = \phi(u_{\eta}\alpha_{-i\beta}(u_{\gamma})) = \phi(u_{\eta}u_{\gamma})$ because $\alpha_t(u_{\gamma}) = u_{\gamma}$.

So $\phi|_{C^*(\Gamma)}$ is a trace. Hence supported on $C^*(\{\gamma : s(\gamma) = r(\gamma)\})$, a sum of isotropy-group C^* -algebras.

If
$$s(\gamma) = r(\gamma) = v$$
 and $\gamma \cdot \mu \neq \mu$, then
 $\phi(u_{\gamma}s_{\mu}s_{\mu}^{*}) = \phi(s_{\gamma \cdot \mu}u_{\gamma|\mu}s_{\mu}^{*}) = e^{-\beta}\phi(u_{\gamma|\mu}s_{e}^{*}s_{\gamma \cdot \mu}) = 0.$

So ϕ "sees" how much of $s(\gamma)E^*$ is fixed by γ .

KMS states on $\mathcal{T}C^*(E,\Gamma)$

Theorem. [LRRW] Let *E* be a strongly connected directed graph and let $\Gamma \subseteq \text{Plso}(F_E)$ be a self-similar groupoid. Let τ be a trace of $C^*(\Gamma)$. Fix $\beta > \log \rho$. The series

$$Z(\beta,\tau) := \sum_{k=0}^{\infty} e^{-k\beta} \sum_{\mu \in E^k} \tau(u_{s(\mu)})$$

converges to a positive real number, and there is isomorphism $\tau \mapsto \Psi_{\beta,\tau}$ from $Tr(C^*(\Gamma))$ to $KMS_{\beta}(\mathcal{T}C^*(E,\Gamma))$ such that

$$\Psi_{\beta,\tau}(s_{\mu}u_{\gamma}s_{\nu}^{*})=\delta_{\mu,\nu}e^{-\beta|\mu|}Z(\beta,\tau)^{-1}\sum_{k=0}^{\infty}\Big(\sum_{\lambda\in s(\mu)E^{k},\gamma\cdot\lambda=\lambda}\tau(u_{\gamma|\lambda})\Big).$$

Under mild technical hypothesis, there is a unique ${\rm KMS}_{\log\rho}\text{-state}$ $\psi_{\rm C},$ and

$$\psi_c(u_{\gamma}) = \lim_n \rho^{-n} \sum_{v} \left| \{ \mu \in E^n : \gamma \cdot \mu = \mu \text{ and } \gamma |_{\mu} = v \} \right| m_v^{\mathcal{E}}.$$

Preferred traces

So self-similar action yields "preferred trace" τ_c on $C^*(\Gamma)$ —roughly $\tau_c(u_{\gamma})$ is the measure of $\{x \in E^{\infty} : \gamma \cdot x = x\}$.

Example [LRRW]: for the Basilica group acting self-similarly on the binary tree by

$$\begin{aligned} a \cdot 0w &= 1(b \cdot w), & a \cdot 1w &= 0w, \\ b \cdot 0w &= 0(a \cdot w), & b \cdot 1w &= 1w, \end{aligned}$$

we have $\tau_c(b) = \tau_c(b^{-1}) = \frac{1}{2}$, and $\tau(\{a, a^{-1}, ab^{-1}, ba^{-1}\}) = 0$ (other values are determined by these).

Preferred traces

Example [LRRW]: for the Grigorchuk group with

$$\begin{array}{ll} a \cdot 0w = 1w, & a \cdot 1w = 0w, \\ b \cdot 0w = 0(a \cdot w), & b \cdot 1w = 1(c \cdot w), \\ c \cdot 0w = 0(a \cdot w), & c \cdot 1w = 1(d \cdot w), \\ d \cdot 0w = 0w, & d \cdot 1w = 1(b \cdot w), \end{array}$$

we have
$$\tau_c(u_a) = 0$$
, $\tau_c(u_b) = \frac{1}{7}$, $\tau_c(u_c) = \frac{2}{7}$, and $\tau_c(u_d) = \frac{4}{7}$.

Key observation (again)

For graphs, a KMS state of $\mathcal{T}C^*(E)$ came from a subivariant measure on E^0 , and the graph determined a map from arbitrary measures to subinvariant measures.

For self-similar groupoids, the map $\tau \mapsto \Psi_{\beta,\tau}$ obtains a KMS_{β} -state from an arbitrary trace.

But then $\Psi_{\beta,\tau}|_{C^*(\Gamma)}$ is another trace.

That is, the self-similar action hands us a self-mapping χ_{β} of Tr($C^*(\Gamma)$); namely, $\chi_{\beta}(\tau) = \Psi_{\beta,\tau}|_{C^*(\Gamma)}$.

So what are the fixed points for this self-mapping χ_{β} ?

A fixed-point result

Theorem. [CS] Let *E* be a strongly connected directed graph and let $\Gamma \subseteq \text{Plso}(F_E)$ be a self-similar groupoid. Under the same technical assumption appearing in the [LRRW] theorem, for any $\beta > \log \rho$, the map $\chi_{\beta} : \text{Tr}(C^*(\Gamma)) \to \text{Tr}(C^*(\Gamma))$ has a unique fixed point τ_c . This τ_c is equal to the restriction of ψ_c to $C^*(\Gamma)$.

イロト イボト イヨト イヨト 三日

Outline of proof

Lemma 1. The map χ_{β} is weak*-continuous. Hence any limit-point of the form $\theta = \lim_{n} \chi_{\beta}^{n}(\tau)$ is a fixed point.

Lemma 2. Let $N(\beta, \tau) := e^{\beta}(1 - Z(\beta, \tau)^{-1})$. If τ is a fixed point for χ_{β} , then

$$N(\beta, \tau)^n \tau(u_{\gamma}) = \sum_{\mu \in E^n, \gamma \cdot \mu = \mu} \tau(u_{\gamma|\mu}).$$

For any τ satisfying the above, $(\tau(u_v))_{v \in E^0} = m^E$, and $N(\beta, \tau) = \rho$.

Lemma 3. The matrix $A_{\nu N} = (I - e^{-\beta}A_E)^{-1}$ is primitive, and $\chi^n_{\beta}(\tau)|_{\mathbb{C}^{E^0}} = \frac{1}{\|A_{\nu N}(\tau|_{\mathbb{C}^{E^0}})\|} A_{\nu N}(\tau|_{\mathbb{C}^{E^0}}).$

Outline of proof

Corollary 4. For any τ , we have $\chi^n_\beta(\tau)|_{\mathbb{C}^{E^0}} \to m^E$ exponentially quickly (in 1-norm).

The point here is that we can apply Perron–Frobenius theory to the matrix A_{vN} , and then this is a standard result.

Roughly speaking, this says that to analyse the sequence $\chi_{\beta}^{n}(\tau)$ for an arbitrary state τ , it suffices to do this for τ satisfying $(\tau(u_{v}))_{v \in E^{0}} = m^{E}$.

Outline of proof

Theorem 6. Suppose that θ is a trace of $C^*(\Gamma)$ that satisfies

$$N(\beta, \theta)^n \theta(u_\gamma) = \sum_{\mu \in E^n, \gamma \cdot \mu = \mu} \theta(u_{\gamma|\mu})$$
 (*)

for all γ . Then $\lim_n \chi^n_\beta(\tau) = \theta$ for any trace τ .

This is where some analysis and the technical hypothesis from [LRRW] come into play. The analysis, like that of [LRRW] hinges on showing that for any nontrivial γ there are "not too many" paths μ such that $\gamma \cdot \mu = \mu$ but $\gamma|_{\mu} \neq s(\mu)$. We use this to find constants $0 < \lambda < 1$ and K, D > 0 that we can inductively demonstrate satisfy $|\chi_{\beta}^{n}(\tau)(u_{g}) - \theta(u_{g})| < (nK + D)K\lambda^{n-1}$ for all n. then an $\varepsilon/3$ -argument establishes the result because the u_{g} span a dense subspace of $C^{*}(\Gamma)$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

To finish off the proof, we use our earlier results to see that if ϕ_c is the unique KMS_{log ρ} state from [LRRW], then $\theta = \phi_c|_{C^*(\Gamma)}$ satisfies

$$N(\beta,\theta)^{n}\theta(u_{\gamma}) = \sum_{\mu \in E^{n}, \gamma \cdot \mu = \mu} \theta(u_{\gamma|\mu}) : \qquad (*)$$

We know from the graph algebra theorem that $(\theta(p_v))_{v \in E^0} = m^E$, and then the definition of $N(\beta, \theta)$ shows that it is precisely ρ .

From [LRRW], $\phi_c(p_v) = \sum_{r(e)=v} \phi_c(s_e s_e^*)$ for each v. So

$$\begin{split} \phi_{c}(u_{\gamma}) &= \sum_{e} \phi_{c}(u_{\gamma}s_{e}s_{e}^{*}) = \sum_{e} \phi(s_{\gamma \cdot e}u_{\gamma|_{e}}s_{e}^{*}) \\ &= \sum_{e} \rho^{-1}\theta(u_{\gamma|_{e}}s_{e}^{*}s_{\gamma \cdot e}) = \rho^{-1}\sum_{\gamma \cdot e = e} \theta(u_{\gamma|_{e}}), \end{split}$$

which is (*) for n = 1, and induction does the rest.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト