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Directed graphs

A directed graph is a quadruple E = (E®, E, r, s), where E® and
E' are countable sets, and r, s are functions from E! to E°.

» We call the elements of EC vertices and think of them as
points.

» We call the elements of E! edges and think of them as arrows
pointing from one vertex to another.

» The edge e € E' points from s(e) € E° to r(e) € E°.

s(e) ——r(e)

A pathin E is a word eje; - - - e, of edges such that s(e;) = r(eit+1).
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An example.

One example of a directed graph is:

An example of a path in this graph is lkfhe.

For today,
» both E% and E! are finite and nonempty; and

» Strongly connected: each vE*w is nonempty.
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Paths in graphs

> A path of length n > 1 in a graph E isaword A = \1... )\,
with each \; € E! such that s(\;) = r(Aj1).

» An infinite path in E is a word x = xyx>x3 ... where each
x; € E' and each s(x;) = r(xi11).

> E°° is the space of all infinite paths. Give it the topology
generated by the sets AE® (these are then compact and
open, and the topology is Hausdorff).




The path-space of a graph

The path-space of a graph E forms a forrest Fg:




Partial automorphisms

[LRRW]: A partial isomorphism of Fg is a triple (v,~, w) where
v,w € E® and v : wE* — vE* is a length-preserving bijection
such that y(ue) € y(u)E? for all paths 1 and edges e.

The collection Plso(Fg) of partial isomorphisms of E is a groupoid
with unit space EY:

» (v,7v,w) and (x,n,y) compose, to give (v,yon,y) if w = x.
» r(v,y,w)=v and s(v,v,w) = w.

> v,y W)= (w,y T ).
Write ~y for (v, 7, w) and write r(y) = v and s(v) = w.

Eg: E° = {v}, E} = {1,...,n}, then Plso(Fg) = automorphism
group of rooted n-ary tree.
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Self-similar groupoids

[LRRW] A self-similar groupoid I is a subgroupoid of Plso(Fg) for
some graph E, with the property that for each v € I and u € wE”,

there is a (unique) |, € T such that v - (uv) = (v - pu)(7|u - v) for
all v.

So if E has just one vertex, then this is just the usual notion of a
self-similar group.

For example, if E has one vertex and two edges 0, 1, then the
odometer subgroup of Aut{0, 1}* with generator g given by
g-0=1g-1=0, glo=e and g|1 = g is a self-similar group
isomorphic to Z.




Toeplitz algebras of graphs

C*-algebra: closed *-algebra of B(H). To model a directed graph
in a C*-algebra:
P Assign orthogonal subspaces H, to vertices v;
» Write p, for the orthogonal projection onto H,;
P Assign an operator se to each edge e so that
> s is isometric from Hg(e) to a subspace of H, (),
> s, is zero on H, if v # s(e), and
> ife 75 f then SeHs(e) 1L Sst(f).
T C*(E) is the universal C*-algebra generated by elements p,, s,
such that pJpn = 0, wpy, each sis. = Ps(e) and each
Zr(e):v Sesa is a projection dominated by p,.

The universal property gives an action o : R — Aut(7 C*(E)) such
that a(se) = e'tse and a:(p,) = pv.
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KMS states on 7 C*(E)

Reminder: If A is a C*-algebra, a state of a is a linear map
¢ A— C of norm 1 such that ¢(a*a) > 0 for all a.

If & : R — Aut(A) is an action on a C*-algebra, and 3 > 0, then a
state ¢ : A — C is KMSg if ¢p(ab) = ¢(bcjs(a)) whenever this
makes sense.

Theorem (aHLRS). If E is a strongly-connected finite directed
graph and 3 > 0 then there are KMSg states of 7 C*(E) if and
only if 5 is larger than the logarithm of the spectral radius p of the
adjacency matrix Ag. For 8 > log p, KMSg-states «+ probability
measures on E; at 3 = log p there is a unique KMS state, given
on the p, by the entries of the Perron—Frobenius eigenvector mt
of AE.




|dea of proof
Write s, = 5,5, - - - S, for a path p = g -+ pup.

Relations force 7 C*(E) = span{s,s, : s(1#) = s(v)}, and if
|| = |v| then S = Opu,vPs(u)-

If || # |v| and ¢ is KMSg, then ¢(s,s;) = é(spaig(su)) =
d(aig(sy)aig(sy)) = e‘ﬁ(|“|_|”‘)qb(susl’j). Hence ¢(s,s;) = 0.

If 1] = |v] then 6(s,53) = d(siatia(s,)) = Sume 1 pygy.

Also, each ¢(py) > 37, (¢)=, P(sesi) = e Bzr(e _, SaSe =
e 7 32, Ae(v, w)o(pw).

So KMSg states <+ probability measures m with Agm < ePm.
Perron—Frobenius kicks in.




A critical observation

How to find measures m with Aem < e ®m (called subinvariant)?
If # > p then Y, e " AL converges.

Follows that ), e_”BA’ZEm converges for any measure m.

AE ( Z e_”BA',;—m) = Z e AL m

n>0 n>0
=éf Z e "ALm < € Z e " ALm.
n>1 n>0

So, modulo scaling, get subinvariant measure via
X/B(m)(v) = E}LEE*V e*ﬁl#lm(r(u))_




Toeplitz algebras of self-similar groupoids [LRRW]

Given: strongly-connected finite directed graph E, and self-similar
groupoid I' C Plso(Fg).

Define T(E,T) to be universal C*-algebra generated by

» p, and s, as before, and

» {u,:vy €T} such that
> uy =,
> ulu, = ps(y) (hence uyul = py(y)),
> uys, = Sy.uly), When s(y) = r(p).

So, roughly, a copy of 7 C*(E) and a "unitary representation” of I'
that play nicely together. Have 7 C*(E,TI') =span{s,u,s,}.

The universal property gives an action o : R — Aut(7 C*(E,T))
such that a¢(se) = e'tse, ar(pv) = pv, and ar(uy) = u,. G




KMS states on 7 C*(E,T)
Suppose that ¢ is KMSg for (T C*(E,T), ).

Then in particular @|c«((s,,p,}) is KMSg for T C*(E). We know
about these. Also, 7(s,uys;) = 0 if u # v as before.

But also ¢(uyuy,) = ¢(uyo—ig(uy)) = ¢(uyuy) because
ar(uy) = uy.

So ¢|c+(ry is a trace. Hence supported on C*({7 : s(7) = r(7)}),
a sum of isotropy-group C*-algebras.

If s(y) =r(y) =vand v - u # u, then

S(UySusy) = D(Syully,S5) = € 6(uy), SE5yu) = 0.

So ¢ “sees” how much of s()E* is fixed by ~.




KMS states on 7 C*(E,T)

Theorem. [LRRW] Let E be a strongly connected directed graph
and let ' C Plso(Fg) be a self-similar groupoid. Let 7 be a trace
of C*(T). Fix B > logp. The series

Z(B,7) _Ze K Z T(Us

HEEK

converges to a positive real number, and there is isomorphism
T Wg - from Tr(C*(T")) to KMSg(7 C*(E,T)) such that

IUB,T(SMUWS;“) = 6“1116_6“”2(677_)_1 Z ( Z T(u'y\)\))'
k=0 Xes(u)Eky-A=X

Under mild technical hypothesis, there is a unique KMS,o, ,-state
e, and

Ye(uy) =limp™" [{u€ E":y - p=pand |, = vi|my. @




Preferred traces

So self-similar action yields “preferred trace” 7. on C*(I')—roughly
Tc(uy) is the measure of {x € E® : v - x = x}.

Example [LRRW]: for the Basilica group acting self-similarly on the
binary tree by

a-0w=1(b-w), a-1lw = 0w,
b-0w =0(a-w), b-1lw = 1w,

we have 7c(b) = 7c(b71) = %, and 7({a,a1,ab" 1, ba"1}) = 0
(other values are determined by these).




Preferred traces

Example [LRRW]: for the Grigorchuk group with

a-0w = 1w, a-1lw = 0w,

b-0w =0(a-w), b-1w =1(c-w),
c-0w=0(a-w), c-1lw=1(d - w),
d-0w = 0w, d-lw=1(b-w),

we have TC(Ua) =0, Tc(ub) = %, TC(UC) = %' and Tc(ud) — %




Key observation (again)

For graphs, a KMS state of 7 C*(E) came from a subivariant
measure on E9, and the graph determined a map from arbitrary
measures to subinvariant measures.

For self-similar groupoids, the map 7+ Wg ; obtains a
KMSg-state from an arbitrary trace.

But then Wg -[c«(r) is another trace.

That is, the self-similar action hands us a self-mapping x 3 of
Tr(C*()); namely, x5(7) = Wﬁ,T’C*(r)-

So what are the fixed points for this self-mapping x3?




A fixed-point result

Theorem. [CS] Let E be a strongly connected directed graph and
let I C Plso(Fg) be a self-similar groupoid. Under the same
technical assumption appearing in the [LRRW)] theorem, for any
B > log p, the map xg : Tr(C*(I')) — Tr(C*(T)) has a unique
fixed point 7¢. This 7¢ is equal to the restriction of ¢ to C*(I').




Outline of proof
Lemma 1. The map x3 is weak*-continuous. Hence any

limit-point of the form 0 = lim, x}(7) is a fixed point.

Lemma 2. Let N(3,7) := (1 — Z(B,7)71). If 7 is a fixed point
for x, then

NB, ) T(un) = D T(uy,):
HEE™ y-p=p
For any 7 satisfying the above, (7(uy)),cg0 = mE, and

N(B,T) = p.

Lemma 3. The matrix A,y = (/ — e PAg)~1 is primitive, and
X5(Mlcer = Tantrgon A (Tleeo).




Outline of proof

Corollary 4. For any 7, we have Xg(7)|ch — mF exponentially
quickly (in 1-norm).

The point here is that we can apply Perron—Frobenius theory to
the matrix Ay, and then this is a standard result.

Roughly speaking, this says that to analyse the sequence Xg(T) for

an arbitrary state 7, it suffices to do this for 7 satisfying

(T(UV)) VEEO = mE.




Outline of proof

Theorem 6. Suppose that 0 is a trace of C*(I') that satisfies

N(B.6)"6(uy) = Y O(uy,) (*

HEE y-p=p

~—

for all . Then lim, xj(7) = 6 for any trace .

This is where some analysis and the technical hypothesis from
[LRRW] come into play. The analysis, like that of [LRRW] hinges
on showing that for any nontrivial v there are “not too many”
paths p such that v - u = p but |, # s(i). We use this to find
constants 0 < A < 1 and K, D > 0 that we can inductively
demonstrate satisfy |x3(7)(ug) — 0(ug)| < (nK + D)KA"* for all
n. then an £/3-argument establishes the result because the ug
span a dense subspace of C*(I).
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To finish off the proof, we use our earlier results to see that if ¢, is
the unique KMSyog , state from [LRRW], then 6 = ¢|c-(r) satisfies

N(B.O)O(u) = Y O(uy,): (*)

HEE vy p=p
We know from the graph algebra theorem that ((9(p\,))v6,:_0 = mF,
and then the definition of N(3,6) shows that it is precisely p.

From [LRRW], ¢c(pv) = 3 (e)=y Pc(Sesz) for each v. So

Z(ﬁc Uvse Z¢ Sy-ely|, 5
:Zp* 0(uy|,52Sye) =P~ Z 0(uy.);

v-e=e

which is (*) for n = 1, and induction does the rest.




