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Directed graphs

A directed graph is a quadruple E = (E 0,E 1, r , s), where E 0 and
E 1 are countable sets, and r , s are functions from E 1 to E 0.

I We call the elements of E 0 vertices and think of them as
points.

I We call the elements of E 1 edges and think of them as arrows
pointing from one vertex to another.

I The edge e ∈ E 1 points from s(e) ∈ E 0 to r(e) ∈ E 0.

r(e)s(e)
e

A path in E is a word e1e2 · · · en of edges such that s(ei ) = r(ei+1).



An example.

One example of a directed graph is:
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An example of a path in this graph is lkfhe.

For today,
I both E 0 and E 1 are finite and nonempty; and

I Strongly connected: each vE ∗w is nonempty.



Paths in graphs

I A path of length n ≥ 1 in a graph E is a word λ = λ1 . . . λn
with each λi ∈ E 1 such that s(λi ) = r(λi+1).

I An infinite path in E is a word x = x1x2x3 . . . where each
xi ∈ E 1 and each s(xi ) = r(xi+1).

I E∞ is the space of all infinite paths. Give it the topology
generated by the sets λE∞ (these are then compact and
open, and the topology is Hausdorff).



The path-space of a graph

The path-space of a graph E forms a forrest FE :
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Partial automorphisms

[LRRW]: A partial isomorphism of FE is a triple (v , γ,w) where
v ,w ∈ E 0, and γ : wE ∗ → vE ∗ is a length-preserving bijection
such that γ(µe) ∈ γ(µ)E 1 for all paths µ and edges e.

The collection PIso(FE ) of partial isomorphisms of E is a groupoid
with unit space E 0:

I (v , γ,w) and (x , η, y) compose, to give (v , γ ◦ η, y) if w = x .

I r(v , γ,w) = v and s(v , γ,w) = w .

I (v , γ,w)−1 = (w , γ−1, v).

Write γ for (v , γ,w) and write r(γ) = v and s(γ) = w .

Eg: E 0 = {v}, E 1 = {1, . . . , n}, then PIso(FE ) = automorphism
group of rooted n-ary tree.



Self-similar groupoids

[LRRW] A self-similar groupoid Γ is a subgroupoid of PIso(FE ) for
some graph E , with the property that for each γ ∈ Γ and µ ∈ wE ∗,
there is a (unique) γ|µ ∈ Γ such that γ · (µν) = (γ · µ)(γ|µ · ν) for
all ν.

So if E has just one vertex, then this is just the usual notion of a
self-similar group.

For example, if E has one vertex and two edges 0, 1, then the
odometer subgroup of Aut{0, 1}∗ with generator g given by
g · 0 = 1, g · 1 = 0, g |0 = e and g |1 = g is a self-similar group
isomorphic to Z.



Toeplitz algebras of graphs

C ∗-algebra: closed ∗-algebra of B(H). To model a directed graph
in a C ∗-algebra:
I Assign orthogonal subspaces Hv to vertices v ;

I Write pv for the orthogonal projection onto Hv ;
I Assign an operator se to each edge e so that

I se is isometric from Hs(e) to a subspace of Hr(e),
I se is zero on Hv if v 6= s(e), and
I if e 6= f then seHs(e) ⊥ sfHs(f ).

T C ∗(E ) is the universal C ∗-algebra generated by elements pv , se
such that p∗vpw = δv ,wpv , each s∗e se = ps(e), and each∑

r(e)=v ses
∗
e is a projection dominated by pv .

The universal property gives an action α : R→ Aut(T C ∗(E )) such
that αt(se) = e itse and αt(pv ) = pv .



KMS states on T C ∗(E )

Reminder: If A is a C ∗-algebra, a state of a is a linear map
φ : A→ C of norm 1 such that φ(a∗a) ≥ 0 for all a.

If α : R→ Aut(A) is an action on a C ∗-algebra, and β > 0, then a
state φ : A→ C is KMSβ if φ(ab) = φ(bαiβ(a)) whenever this
makes sense.

Theorem (aHLRS). If E is a strongly-connected finite directed
graph and β > 0 then there are KMSβ states of T C ∗(E ) if and
only if β is larger than the logarithm of the spectral radius ρ of the
adjacency matrix AE . For β > log ρ, KMSβ-states ↔ probability
measures on E 0; at β = log ρ there is a unique KMS state, given
on the pv by the entries of the Perron–Frobenius eigenvector mE

of AE .



Idea of proof

Write sµ = sµ1sµ2 · · · sµn for a path µ = µ1 · · ·µn.

Relations force T C ∗(E ) = span{sµs∗ν : s(µ) = s(ν)}, and if
|µ| = |ν| then s∗µsµ = δµ,νps(µ).

If |µ| 6= |ν| and φ is KMSβ, then φ(sµs
∗
ν ) = φ(s∗ναiβ(sµ)) =

φ(αiβ(sµ)αiβ(s∗ν )) = e−β(|µ|−|ν|)φ(sµs
∗
ν ). Hence φ(sµs

∗
ν ) = 0.

If |µ| = |ν| then φ(sµs
∗
ν ) = φ(s∗ναiβ(sµ)) = δµ,νe

−β|µ|ps(µ).

Also, each φ(pv ) ≥
∑

r(e)=v φ(ses
∗
e ) = e−β

∑
r(e)=v s

∗
e se =

e−β
∑

w AE (v ,w)φ(pw ).

So KMSβ states ↔ probability measures m with AEm ≤ eβm.
Perron–Frobenius kicks in.



A critical observation

How to find measures m with AEm ≤ e−βm (called subinvariant)?

If eβ > ρ then
∑

n e
−nβAn

E converges.

Follows that
∑

n e
−nβAn

Em converges for any measure m.

AE

(∑
n≥0

e−nβAn
Em
)

=
∑
n≥0

e−nβAn+1
E m

= eβ
∑
n≥1

e−nβAn
Em ≤ eβ

∑
n≥0

e−nβAn
Em.

So, modulo scaling, get subinvariant measure via
χβ(m)(v) =

∑
µ∈E∗v e

−β|µ|m(r(µ)).



Toeplitz algebras of self-similar groupoids [LRRW]

Given: strongly-connected finite directed graph E , and self-similar
groupoid Γ ⊆ PIso(FE ).

Define T (E , Γ) to be universal C ∗-algebra generated by

I pv and se as before, and
I {uγ : γ ∈ Γ} such that

I uγ−1 = u∗γ ,
I u∗γuγ = ps(γ) (hence uγu

∗
γ = pr(γ)),

I uγsµ = sγ·µuγ|µ when s(γ) = r(µ).

So, roughly, a copy of T C ∗(E ) and a “unitary representation” of Γ
that play nicely together. Have T C ∗(E , Γ) = span{sµuγs∗ν}.

The universal property gives an action α : R→ Aut(T C ∗(E , Γ))
such that αt(se) = e itse , αt(pv ) = pv , and αt(uγ) = uγ .



KMS states on T C ∗(E , Γ)

Suppose that φ is KMSβ for (T C ∗(E , Γ), α).

Then in particular φ|C∗({se ,pv}) is KMSβ for T C ∗(E ). We know
about these. Also, τ(sµuγs

∗
ν ) = 0 if µ 6= ν as before.

But also φ(uγuη) = φ(uηα−iβ(uγ)) = φ(uηuγ) because
αt(uγ) = uγ .

So φ|C∗(Γ) is a trace. Hence supported on C ∗({γ : s(γ) = r(γ)}),
a sum of isotropy-group C ∗-algebras.

If s(γ) = r(γ) = v and γ · µ 6= µ, then
φ(uγsµs

∗
µ) = φ(sγ·µuγ|µs

∗
µ) = e−βφ(uγ|µs

∗
e sγ·µ) = 0.

So φ “sees” how much of s(γ)E ∗ is fixed by γ.



KMS states on T C ∗(E , Γ)

Theorem. [LRRW] Let E be a strongly connected directed graph
and let Γ ⊆ PIso(FE ) be a self-similar groupoid. Let τ be a trace
of C ∗(Γ). Fix β > log ρ. The series

Z (β, τ) :=
∞∑
k=0

e−kβ
∑
µ∈E k

τ(us(µ))

converges to a positive real number, and there is isomorphism
τ 7→ Ψβ,τ from Tr(C ∗(Γ)) to KMSβ(T C ∗(E , Γ)) such that

Ψβ,τ (sµuγs
∗
ν ) = δµ,νe

−β|µ|Z (β, τ)−1
∞∑
k=0

( ∑
λ∈s(µ)E k ,γ·λ=λ

τ(uγ|λ)
)
.

Under mild technical hypothesis, there is a unique KMSlog ρ-state
ψc , and

ψc(uγ) = lim
n
ρ−n

∑
v

∣∣{µ ∈ En : γ · µ = µ and γ|µ = v}
∣∣mE

v .



Preferred traces

So self-similar action yields “preferred trace” τc on C ∗(Γ)—roughly
τc(uγ) is the measure of {x ∈ E∞ : γ · x = x}.

Example [LRRW]: for the Basilica group acting self-similarly on the
binary tree by

a · 0w = 1(b · w), a · 1w = 0w ,

b · 0w = 0(a · w), b · 1w = 1w ,

we have τc(b) = τc(b−1) = 1
2 , and τ({a, a−1, ab−1, ba−1}) = 0

(other values are determined by these).



Preferred traces

Example [LRRW]: for the Grigorchuk group with

a · 0w = 1w , a · 1w = 0w ,

b · 0w = 0(a · w), b · 1w = 1(c · w),

c · 0w = 0(a · w), c · 1w = 1(d · w),

d · 0w = 0w , d · 1w = 1(b · w),

we have τc(ua) = 0, τc(ub) = 1
7 , τc(uc) = 2

7 , and τc(ud) = 4
7 .



Key observation (again)

For graphs, a KMS state of T C ∗(E ) came from a subivariant
measure on E 0, and the graph determined a map from arbitrary
measures to subinvariant measures.

For self-similar groupoids, the map τ 7→ Ψβ,τ obtains a
KMSβ-state from an arbitrary trace.

But then Ψβ,τ |C∗(Γ) is another trace.

That is, the self-similar action hands us a self-mapping χβ of
Tr(C ∗(Γ)); namely, χβ(τ) = Ψβ,τ |C∗(Γ).

So what are the fixed points for this self-mapping χβ?



A fixed-point result

Theorem. [CS] Let E be a strongly connected directed graph and
let Γ ⊆ PIso(FE ) be a self-similar groupoid. Under the same
technical assumption appearing in the [LRRW] theorem, for any
β > log ρ, the map χβ : Tr(C ∗(Γ))→ Tr(C ∗(Γ)) has a unique
fixed point τc . This τc is equal to the restriction of ψc to C ∗(Γ).



Outline of proof

Lemma 1. The map χβ is weak∗-continuous. Hence any
limit-point of the form θ = limn χ

n
β(τ) is a fixed point.

Lemma 2. Let N(β, τ) := eβ(1− Z (β, τ)−1). If τ is a fixed point
for χβ, then

N(β, τ)nτ(uγ) =
∑

µ∈En,γ·µ=µ

τ(uγ|µ).

For any τ satisfying the above, (τ(uv ))v∈E0 = mE , and
N(β, τ) = ρ.

Lemma 3. The matrix AvN = (I − e−βAE )−1 is primitive, and
χn
β(τ)|CE0 = 1

‖AvN(τ |
CE0 )‖AvN(τ |CE0 ).



Outline of proof

Corollary 4. For any τ , we have χn
β(τ)|CE0 → mE exponentially

quickly (in 1-norm).

The point here is that we can apply Perron–Frobenius theory to
the matrix AvN , and then this is a standard result.

Roughly speaking, this says that to analyse the sequence χn
β(τ) for

an arbitrary state τ , it suffices to do this for τ satisfying(
τ(uv )

)
v∈E0 = mE .



Outline of proof

Theorem 6. Suppose that θ is a trace of C ∗(Γ) that satisfies

N(β, θ)nθ(uγ) =
∑

µ∈En,γ·µ=µ

θ(uγ|µ) (*)

for all γ. Then limn χ
n
β(τ) = θ for any trace τ .

This is where some analysis and the technical hypothesis from
[LRRW] come into play. The analysis, like that of [LRRW] hinges
on showing that for any nontrivial γ there are “not too many”
paths µ such that γ · µ = µ but γ|µ 6= s(µ). We use this to find
constants 0 < λ < 1 and K ,D > 0 that we can inductively
demonstrate satisfy |χn

β(τ)(ug )− θ(ug )| < (nK + D)Kλn−1 for all
n. then an ε/3-argument establishes the result because the ug
span a dense subspace of C ∗(Γ).



To finish off the proof, we use our earlier results to see that if φc is
the unique KMSlog ρ state from [LRRW], then θ = φc |C∗(Γ) satisfies

N(β, θ)nθ(uγ) =
∑

µ∈En,γ·µ=µ

θ(uγ|µ) : (*)

We know from the graph algebra theorem that
(
θ(pv )

)
v∈E0 = mE ,

and then the definition of N(β, θ) shows that it is precisely ρ.

From [LRRW], φc(pv ) =
∑

r(e)=v φc(ses
∗
e ) for each v . So

φc(uγ) =
∑
e

φc(uγses
∗
e ) =

∑
e

φ(sγ·euγ|e s
∗
e )

=
∑
e

ρ−1θ(uγ|e s
∗
e sγ·e) = ρ−1

∑
γ·e=e

θ(uγ|e ),

which is (*) for n = 1, and induction does the rest.


