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Product system of Hilbert bimoduls

Let A be a C∗-algebra. A right Hilbert A–A bimodule is a right
A-module X equibed with
(a) An A-valued inner product such that 〈x , y · a〉A = 〈x , y〉Aa,

and X is complete in the norm given by ‖x‖ = ‖〈x , x〉A‖
1
2 .

(b) A homomorphism ϕ : A→ L(X ). We view ϕ as a left action
of A on X and write a · x for ϕ(a)(x).

I For x , y ∈ X , there is an adjointable operator Θx ,y on X
such that

Θx ,y (z) = x · 〈y , z〉

The algebra of (compact operators) is

K(X ) := span{Θx ,y : x , y ∈ X} ⊂ L(X )
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Let P be a semigroup with identity e. A product system over P
of right Hilbert A–A bimodule is X :=

⊔
p∈P Xp such that

(P1) For p ∈ P, Xp is a right Hilbert A–A bimodule.
(P2) The identity fibre Xe equals the standard bimodule AAA.
(P3) X is a semigroup and for each p,q ∈ P \ {e} the map

(x , y) 7→ xy : Xp × Xq → Xpq, extends to an isomorphism
σp,q : Xp ⊗A Xq → Xpq.

(P4) The multiplications Xe ×Xp → Xp and Xp ×Xe → Xp satisfy

ax = ϕp(a)z, xa = x · a for a ∈ Xe and x ∈ Xp.
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If P is a subsemigroup of a group G such that P ∩ P−1 = {e}.
Then p ≤ q ⇔ p−1q ∈ P defines a partial order on G.

We say (G,P) is a quasi-lattice ordered group if for any two
elements p,q ∈ G which have a common upper bound in P
there is a least upper bound p ∨ q ∈ P. Let p ∨ q =∞ when
p,q ∈ G have no common upper bound.

A product system over P in the quasi-lattice ordered group
(G,P) is compactly aligned, if for all p,q ∈ P with p ∨ q <∞,
S ∈ K(Xp) and T ∈ K(Xq), we have

(S ⊗A 1)(T ⊗A 1) ∈ K(Xp∨q).
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Representations

Let B be a C∗-algebra. A function ψ : X → B is a (Toeplitz)
representation of X if:

(T1) For each p ∈ P \ {e}, ψp : Xp → B is linear, and
ψe : A→ B is a homomorphism,

(T2) ψp(x)∗ψp(y) = ψe(〈x , y〉) for p ∈ P, and x , y ∈ Xp, and
(T3) ψpq(xy) = ψp(x)ψq(y) for p,q ∈ P, x ∈ Xp, and y ∈ Xq.

The conditions (T1) and (T2) induce a homomorphism
ψ(p) : K(Xp)→ B such that ψ(p)(Θx ,y ) = ψp(x)ψp(y)∗ (see [6]).
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Let (G,P) be a quasi-lattice ordered group and let X be a
compactly aligned product system over P. A Toeplitz
representation ψ of X is Nica-covariant if for every p,q ∈ P,
S ∈ K(Xp), and T ∈ K(Xq), we have

ψ(p)(S)ψ(q)(T ) =

{
ψ(p∨q)

(
(S ⊗A 1)(T ⊗A 1)

)
if p ∨ q <∞

0 otherwise.
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Nica-Toeplitz algebra

Fowler showed in [2, Theorem 6.3] that there exist a C∗-algebra
NT (X ) and a Nica-covariant Toeplitz representation ψ of X in
NT (X ) such that:
(U) For any other Nica-covariant Toeplitz representation θ of X

in a C∗-algebra B, there exists a unique homomorphism
θ∗ : NT (X )→ B such that θ∗ ◦ ψ = θ.

I In addition
NT (X ) = span{ψp(x)ψq(y)∗ : p,q,n ∈ P, x ∈ Xp, y ∈ Xq}.

The Cuntz-Pimsner algebra O(X ) is the quotient of NT (X ) by
the ideal{

ψ(a)− ψ(p)(ϕp(a)) : p ∈ P,a ∈ ϕ−1
p (K(Xp))

}
.

7



I There is a gauge action λ : Tk → Aut(NT (X )) such that
λz(ψm(x)ψn(y)∗) = zm−n(ψm(x)ψn(y)∗).

I Fix r ∈ Rk , we can define α : R→ Aut(NT (X )) by
αt = γeitr ( where eitr = (eitr1 , . . . ,eitrk )).

I For each ψm(x)ψn(y)∗ ∈ NT (X ), the function
t 7→ αt

(
ψm(x)ψn(y)∗

)
= eit(m−n)ψm(x)ψn(y)∗ on R extends

to an entire function on all of C.
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A product system associated to a family of local
homeomorphisms

Let h1, . . . ,hk be surjective local homeomorphisms on a
compact Hausdorff space Z .
I For m ∈ Nk let hm := hm1

1 ◦ · · · ◦ hmk
k , and let A := C0(Z ).

There is a right action of A on Cc(Z ) and there is a well
defined A-valued inner product on Cc(Z ) such that

(x · a)(z) = x(z)a(hm(z)), and

〈x , y〉A(z) =
∑

hm(w)=z

x(w)y(w).

Let Xm be the completion of Cc(Z ) in the arising norm. The
formula (a · x)(z) := a(z)x(z) defines a left action of A by
adjointable operators on X .

I X :=
⊔

m∈Nk Xm is a compactly align product system over
Nk with the multiplication given by

xy(z) := x(z)y(hm(z)) for x ∈ Xm, y ∈ Yn, z ∈ Z
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∗-commuting maps

Let f ,g be commuting maps on a set Z . We say f and g
∗-commute , if for every x , y ∈ Z satisfying f (x) = g(y), there
exists a unique z ∈ Z such that x = g(z) and y = f (z).

z
�

y x

g(y) = f (x)

f

fg

g

I A family of maps ∗-commute if any two of them ∗-commute.
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A characterisation of KMS states

Proposition.Let h1, . . . ,hk be ∗-commuting and surjective local
homeomorphisms on a compact Hausdorff space Z and let X
be the associated product system. Suppose r ∈ (0,∞)k and
α : R→ Aut(NT (X )) is given in terms of the gauge action by
αt = γeitr . Let β > 0 and φ be a state on NT (X ).
(a) If φ satisfies

φ
(
ψm(x)ψn(y)∗

)
= δm,ne−βr ·mφ ◦ ψ0(〈y , x〉), (1)

then φ is a KMSβ state of (NT (X ), α).
(b) If φ is a KMSβ state of (NT (X ), α) and r ∈ (0,∞)k has

rationally independent coordinates, then φ satisfies (1).
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A finite regular Borel measure ν on Z can be viewed as an
element of C(Z )∗ by

ν(a) :=

∫
a(z) dν(z) for a ∈ C(Z ).

We can then calculate a formula for Rn(ν).∫
a d
(
Rn(ν)

)
=

∫ ∑
hn(w)=z

a(w) dν(z) for a ∈ C(Z ).

We say a measure ν satisfies subinvariance relation if for every
subset K of {1, . . . , k}, we have∫

a d
(∏

i∈K

(1− e−βri Rei )ν
)
≥ 0 for all positive a ∈ C(Z ). (2)
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Soloutions of the subinvariance relation
Proposition. Let r ∈ (0,∞)k and let

βci := lim sup
j→∞

(
j−1 ln

(
max
z∈Z
|h−j

i (z)|
))
.

Suppose β ∈ (0,∞) satisfies βri > βci . Then
(a) The series

∑
n∈Nk e−βr ·n|h−n(z)| converges uniformly for

z ∈ Z to a continuous function fβ(z) ≥ 1.
(b) Suppose ε is a finite regular Borel measure on Z . Then the

series
∑

n∈Nk e−βr ·nRnε converges in norm in the dual
space C(Z )∗ with sum µ, say. Then µ satisfies the
subinvariance relation and we have
ε =

(∏k
i=1
(
1− e−βri Rei

))
µ. Then µ is a probability

measure if and only if
∫

fβ dε = 1.
(c) Suppose µ is a probability measure which satisfies the

subinvariance relation. Then ε =
(∏k

i=1
(
1− e−βri Rei

))
µ is

a finite regular Borel measure satisfying∑
n∈Nk e−βr ·nRnε = µ, and we have

∫
fβ dε = 1.
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Theorem. Suppose r ∈ (0,∞)k satisfies that βri > βci .
(a) Suppose that ε is a finite regular Borel measure on Z such

that
∫

fβ dε = 1, and take µ =
∑∞

n=0 e−βnRnε. Then there
is a KMSβ state φε on (NT (X ), α) such that

φε
(
ψm(x)ψp(y)∗

)
=

{
0 if m 6= p
e−βr ·m ∫ 〈y , x〉dµ if m = p.

(b) If in addition r has rationally independent coordinates, then
the map ε 7→ φε is an affine isomorphism of
Σβ :=

{
ε ∈ M(Z )+ :

∫
fβ dε = 1

}
onto the simplex of

KMSβ states of (NT (X ), α).
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Proof
I Let H :=

⊕
n∈Nk L2(Z ,Rnε), and define θm : Xm → B(H) by

(θm(x)ξ)n(z) =

{
0 if n � m
x(z)ξn−m(hm(z)) if n ≥ k .

I θ is a Nica-covariant Toeplitz representation of X . Then
there is a homomorphism θ∗ : NT (X )→ B(H).

I For q ∈ Nk , choose a partition {Zq,i : 1 ≤ i ≤ Iq} of Z by
Borel sets such that hq is injective on each Zq,i . Define
ξq,i ∈ H by

ξq,i
n =

{
0 if n 6= q
χZq,i if n = k .

I We aim to define our state φε : NT (X )→ C by

φε(b) =
∑

q∈Nk

Iq∑
i=1

e−βr ·q(θ∗(b)ξq,i | ξq,i) for b ∈ T (X (E)),
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k -graphs

A k -graph (Λ,d) consists of a countable small category Λ (with
range and source maps r and s respectively) together with a
functor d : Λ→ Nk satisfying the factorisation property :

for every λ ∈ Λ and m,n ∈ Nk with d(λ) = m + n, there are
unique elements µ, ν ∈ Λ such that λ = µν and
d(µ) = m,d(ν) = n.
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k -graphs

Suppose that Λ is a k -graph with vertex set Λ0 and degree map
d : Λ→ Nk .
I For any n ∈ Nk , we write Λn := {λ ∈ Λ∗ : d(λ) = n}.
I All k -graphs considered here are finite in the sense that Λn

is finite for all n ∈ Nk .
I Given v ,w ∈ Λ0, vΛnw denotes
{λ ∈ Λn : r(λ) = v and s(λ) = w}.

I We say Λ has no sinks if Λnv 6= ∅ for every v ∈ Λ0 and
n ∈ Nk .

I Λ has no sources if vΛn 6= ∅ for every v ∈ Λ0 and n ∈ Nk .
I For µ, ν ∈ Λ, we write

Λmin(µ, ν) := {(ξ, η) ∈ Λ×Λ : µξ = νη and d(µξ) = d(µ)∨d(ν)}.
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k -graphs C∗-algebras

Given a k - graph Λ, a Toeplitz-Cuntz-Krieger Λ-family in a
C∗-algebra B is a set of partial isometries {Sλ : λ ∈ Λ} such
that

(TCK1) {Sv : v ∈ Λ0} is a set of mutually orthogonal projections,
(TCK2) SλSµ = Sλµ whenever s(λ) = r(µ),
(TCK3) S∗µSν =

∑
(ξ,η)∈Λmin(µ,ν) SξS∗η for all µ, ν ∈ Λ.

We interpret empty sums as 0. We can prove that

Sv ≥
∑
λ∈vΛn

SλS∗λ for all v ∈ Λ0 and n ∈ Nk .

A Toeplitz-Cuntz-Krieger Λ-family {Sλ : λ ∈ Λ} is a
Cuntz-Krieger Λ-family if we also have

(CK) Sv =
∑

λ∈vΛn SλS∗λ for all v ∈ Λ0 and n ∈ Nk .
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k -graphs C∗-algebras

The Toeplitz algebra T C∗(Λ) is generated by a universal
Toeplitz-Cuntz-Krieger Λ-family {sλ : λ ∈ Λ}.

The Cuntz-Krieger algebra C∗(Λ) is the quotient of T C∗(Λ) by
the ideal 〈

sv −
∑
λ∈vΛn

sλs∗λ : v ∈ Λ0〉.
There is a strongly continuous gauge actionγ̃ : Tk → T C∗(Λ)
such that γ̃z(sλ) = zd(λ)sλ. Since γ̃ fixes the kernel of the
quotient map, it induces a natural gauge action of Tk on C∗(Λ).
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Infinite-path space and shifts

Let Ωk := {(m,n) ∈ Nk × Nk : m ≤ n}.
I The set Ωk is a k -graph with

r(m,n) = (m,m), s(m,n) = (n,n), (m,n)(n,p) = (m,p)
and d(m,n) = n −m.

I The set

Λ∞ :={z :Ωk →Λ : z is a functor intertwining the degree maps}

is called infinite-path space of Λ.
I For p ∈ Nk , the shift map σp : Λ∞ → Λ∞ is defined by
σp(z)(m,n) = z(m + p,n + p) for all z ∈ Λ∞ and
(m,n) ∈ Ωk .

I Clearly σp ◦ σq = σq ◦ σp for p,q ∈ Nk .
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A k -graph Λ is 1-coaligned if for all 1 ≤ i 6= j ≤ k and
(λ, µ) ∈ Λei × Λej with s(λ) = s(µ) there exists a unique pair
(η, ζ) ∈ Λej × Λei such that ηλ = ζµ.

Lemma. Let Λ be a finite 1-coaligned k -graph. Suppose that
0 ≤ i 6= j ≤ k . Then the shift maps σei and σej ∗-commute.

For Λ, shifts gives a product system X (Λ∞). We write
NT (X (Λ∞)) and O(X (Λ∞)) for the corresponding Nica-Toeplitz
algebra and Cuntz-Pimsner algebra.
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Proposition. Let Λ be a finite 1-coaligned k -graph with no sinks
or sources. For each λ ∈ Λ, let Sλ := ψd(λ)(χZ (λ)). Then
(a) The set {Sλ : λ ∈ Λ} is a Toeplitz-Cuntz-Krieger Λ-family in
NT (X (Λ∞)). The homomorphism
πS : T C∗(Λ)→ NT (X (Λ∞)) is injective and intertwines the
respective gauge actions of Tk (that is, πS ◦ γ̃ = γ ◦ πS).

(b) Let q : NT (X (Λ∞))→ O(X (Λ∞)) be the quotient map.
Then {q ◦ Sλ : λ ∈ Λ} is a Cuntz-Krieger Λ-family in
O(X (Λ∞)). The corresponding homomorphism
πq◦S : C∗(Λ)→ O(X (Λ∞)) is an isomorphism and
intertwines the respective gauge actions of Tk .
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Theorem 6.1 [aHLRS-2014]. Let Λ be a finite k -graph without
sources, and let Ai be the vertex matrices of Λ. Suppose that
r ∈ (0,∞)k satisfies βri > ln ρ(Ai) for 1 ≤ i ≤ k , and define
α̃ : R→ Aut(T C∗(Λ) byα̃t = γ̃eitr

For v ∈ Λ0, the series
∑

µ∈vΛ e−βr ḋ(µ) converges with sum
yv ≥ 1. Set y = (yv ) ∈ [1,∞)Λ0

Then there is an affine
issomorphism from

Σβ := {ε ∈ [0,∞)Λ0
: ε · y = 1}

onto the simplex of KMSβ states of (T C∗(Λ), α̃).
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Corollary. The injection πS : T C∗(Λ)→ NT (X (Λ∞)) is not a
surjection and T C∗(Λ) is substantially smaller than
NT (X (Λ∞)).
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