KMS states on *C**-algebras of *-commuting local homeomorphisms and applications in *k*-graph algebras

> Zahra Afsar University of Sydney

This talk is about a joint work with Astrid an Huef and Iain Raeburn

March 2019

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Product system of Hilbert bimoduls

Let A be a C^* -algebra. A right Hilbert A–A bimodule is a right A-module X equibed with

- (a) An A-valued inner product such that ⟨x, y ⋅ a⟩_A = ⟨x, y⟩_Aa, and X is complete in the norm given by ||x|| = ||⟨x, x⟩_A||^{1/2}.
- (b) A homomorphism φ : A → L(X). We view φ as a left action of A on X and write a ⋅ x for φ(a)(x).
 - For x, y ∈ X, there is an adjointable operator Θ_{x,y} on X such that

$$\Theta_{X,Y}(z) = X \cdot \langle y, z \rangle$$

The algebra of (compact operators) is

$$\mathcal{K}(X):=\overline{\mathsf{span}}\{\Theta_{x,y}:x,y\in X\}\subset\mathcal{L}(X)$$

Product system of Hilbert bimoduls

Let A be a C^* -algebra. A right Hilbert A–A bimodule is a right A-module X equibed with

- (a) An A-valued inner product such that ⟨x, y ⋅ a⟩_A = ⟨x, y⟩_Aa, and X is complete in the norm given by ||x|| = ||⟨x, x⟩_A||^{1/2}.
- (b) A homomorphism φ : A → L(X). We view φ as a left action of A on X and write a ⋅ x for φ(a)(x).
 - For x, y ∈ X, there is an adjointable operator Θ_{x,y} on X such that

$$\Theta_{x,y}(z) = x \cdot \langle y, z \rangle$$

The algebra of (compact operators) is

$$\mathcal{K}(X):=\overline{\mathsf{span}}\{\Theta_{x,y}:x,y\in X\}\subset\mathcal{L}(X)$$

Let *P* be a semigroup with identity *e*. A product system over *P* of right Hilbert *A*–*A* bimodule is $X := \bigsqcup_{p \in P} X_p$ such that

- (P1) For $p \in P$, X_p is a right Hilbert A-A bimodule.
- (P2) The identity fibre X_e equals the standard bimodule ${}_AA_A$.
- (P3) X is a semigroup and for each $p, q \in P \setminus \{e\}$ the map $(x, y) \mapsto xy : X_p \times X_q \to X_{pq}$, extends to an isomorphism $\sigma_{p,q} : X_p \otimes_A X_q \to X_{pq}$.

(P4) The multiplications $X_e \times X_\rho \to X_\rho$ and $X_\rho \times X_e \to X_\rho$ satisfy

$$ax = \varphi_p(a)z, \quad xa = x \cdot a \text{ for } a \in X_e \text{ and } x \in X_p$$

If *P* is a subsemigroup of a group *G* such that $P \cap P^{-1} = \{e\}$. Then $p \le q \Leftrightarrow p^{-1}q \in P$ defines a partial order on *G*.

We say (G, P) is a quasi-lattice ordered group if for any two elements $p, q \in G$ which have a common upper bound in Pthere is a least upper bound $p \lor q \in P$. Let $p \lor q = \infty$ when $p, q \in G$ have no common upper bound.

A product system over *P* in the quasi-lattice ordered group (G, P) is compactly aligned, if for all $p, q \in P$ with $p \lor q < \infty$, $S \in \mathcal{K}(X_p)$ and $T \in \mathcal{K}(X_q)$, we have

 $(S \otimes_A 1)(T \otimes_A 1) \in \mathcal{K}(X_{\rho \lor q}).$

Representations

Let *B* be a C^* -algebra. A function $\psi : X \to B$ is a (Toeplitz) representation of *X* if:

(T1) For each $p \in P \setminus \{e\}$, $\psi_p : X_p \to B$ is linear, and $\psi_e : A \to B$ is a homomorphism,

(T2) $\psi_p(x)^*\psi_p(y) = \psi_e(\langle x, y \rangle)$ for $p \in P$, and $x, y \in X_p$, and (T3) $\psi_{pq}(xy) = \psi_p(x)\psi_q(y)$ for $p, q \in P$, $x \in X_p$, and $y \in X_q$.

The conditions (T1) and (T2) induce a homomorphism $\psi^{(p)} : \mathcal{K}(X_p) \to B$ such that $\psi^{(p)}(\Theta_{x,y}) = \psi_p(x)\psi_p(y)^*$ (see [6]).

Let (G, P) be a quasi-lattice ordered group and let X be a compactly aligned product system over P. A Toeplitz representation ψ of X is Nica-covariant if for every $p, q \in P$, $S \in \mathcal{K}(X_p)$, and $T \in \mathcal{K}(X_q)$, we have

$$\psi^{(p)}(S)\psi^{(q)}(T) = egin{cases} \psi^{(p \lor q)}ig((S \otimes_A 1)(T \otimes_A 1)ig) & ext{if } p \lor q < \infty \ 0 & ext{otherwise.} \end{cases}$$

Nica-Toeplitz algebra

Fowler showed in [2, Theorem 6.3] that there exist a C^* -algebra $\mathcal{NT}(X)$ and a Nica-covariant Toeplitz representation ψ of X in $\mathcal{NT}(X)$ such that:

(U) For any other Nica-covariant Toeplitz representation θ of X in a C^* -algebra B, there exists a unique homomorphism $\theta_* : \mathcal{NT}(X) \to B$ such that $\theta_* \circ \psi = \theta$.

► In addition $\mathcal{NT}(X) = \overline{\text{span}}\{\psi_p(x)\psi_q(y)^* : p, q, n \in P, x \in X_p, y \in X_q\}.$

The Cuntz-Pimsner algebra $\mathcal{O}(X)$ is the quotient of $\mathcal{NT}(X)$ by the ideal

$$\Big\{\psi(\boldsymbol{a})-\psi^{(\boldsymbol{p})}(\varphi_{\boldsymbol{p}}(\boldsymbol{a})):\boldsymbol{p}\in\boldsymbol{P},\boldsymbol{a}\in\varphi_{\boldsymbol{p}}^{-1}(\mathcal{K}(\boldsymbol{X}_{\boldsymbol{p}}))\Big\}.$$

- ► There is a gauge action $\lambda : \mathbb{T}^k \to \operatorname{Aut}(\mathcal{NT}(X))$ such that $\lambda_z(\psi_m(x)\psi_n(y)^*) = z^{m-n}(\psi_m(x)\psi_n(y)^*).$
- ▶ Fix $r \in \mathbb{R}^k$, we can define $\alpha : \mathbb{R} \to \operatorname{Aut}(\mathcal{NT}(X))$ by $\alpha_t = \gamma_{e^{itr}}$ (where $e^{itr} = (e^{itr_1}, \dots, e^{itr_k})$).
- For each ψ_m(x)ψ_n(y)* ∈ NT(X), the function t ↦ α_t(ψ_m(x)ψ_n(y)*) = e^{it(m-n)}ψ_m(x)ψ_n(y)* on ℝ extends to an entire function on all of ℂ.

A product system associated to a family of local homeomorphisms

Let h_1, \ldots, h_k be surjective local homeomorphisms on a compact Hausdorff space *Z*.

For $m \in \mathbb{N}^k$ let $h^m := h_1^{m_1} \circ \cdots \circ h_k^{m_k}$, and let $A := C_0(Z)$. There is a right action of A on $C_c(Z)$ and there is a well defined A-valued inner product on $C_c(Z)$ such that

$$(x \cdot a)(z) = x(z)a(h^m(z)), \text{ and}$$

 $\langle x, y \rangle_A(z) = \sum_{h^m(w)=z} \overline{x(w)}y(w).$

Let X_m be the completion of $C_c(Z)$ in the arising norm. The formula $(a \cdot x)(z) := a(z)x(z)$ defines a left action of A by adjointable operators on X.

 X := ∐_{m∈ℕ^k} X_m is a compactly align product system over ℕ^k with the multiplication given by

$$xy(z) := x(z)y(h^m(z))$$
 for $x \in X_m, y \in Y_n, z \in Z$

э

*-commuting maps

Let *f*, *g* be commuting maps on a set *Z*. We say *f* and *g* *-*commute*, if for every $x, y \in Z$ satisfying f(x) = g(y), there exists a unique $z \in Z$ such that x = g(z) and y = f(z).

A family of maps *-commute if any two of them *-commute.

A characterisation of KMS states

Proposition.Let h_1, \ldots, h_k be *-commuting and surjective local homeomorphisms on a compact Hausdorff space *Z* and let *X* be the associated product system. Suppose $r \in (0, \infty)^k$ and $\alpha : \mathbb{R} \to \operatorname{Aut}(\mathcal{NT}(X))$ is given in terms of the gauge action by $\alpha_t = \gamma_{e^{itr}}$. Let $\beta > 0$ and ϕ be a state on $\mathcal{NT}(X)$. (a) If ϕ satisfies

$$\phi(\psi_m(\mathbf{x})\psi_n(\mathbf{y})^*) = \delta_{m,n} e^{-\beta \mathbf{r} \cdot \mathbf{m}} \phi \circ \psi_0(\langle \mathbf{y}, \mathbf{x} \rangle), \qquad (1)$$

then ϕ is a KMS_{β} state of ($\mathcal{NT}(X), \alpha$).

(b) If ϕ is a KMS $_{\beta}$ state of $(\mathcal{NT}(X), \alpha)$ and $r \in (0, \infty)^k$ has rationally independent coordinates, then ϕ satisfies (1).

A finite regular Borel measure ν on Z can be viewed as an element of $C(Z)^*$ by

$$u(a) := \int a(z) \, d\nu(z) \text{ for } a \in C(Z).$$

We can then calculate a formula for $R^n(\nu)$.

$$\int a d(R^n(\nu)) = \int \sum_{h^n(w)=z} a(w) d\nu(z) \text{ for } a \in C(Z).$$

We say a measure ν satisfies subinvariance relation if for every subset *K* of $\{1, \ldots, k\}$, we have

$$\int a d \Big(\prod_{i \in K} (1 - e^{-eta r_i} R^{e_i})
u \Big) \ge 0$$
 for all positive $a \in C(Z)$. (2)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Soloutions of the subinvariance relation Proposition. Let $r \in (0, \infty)^k$ and let

$$eta_{\mathbf{c}_i} := \limsup_{j o \infty} \Big(j^{-1} \ln \Big(\max_{z \in Z} |h_i^{-j}(z)| \Big) \Big).$$

Suppose $\beta \in (0, \infty)$ satisfies $\beta r_i > \beta_{c_i}$. Then

- (a) The series $\sum_{n \in \mathbb{N}^k} e^{-\beta r \cdot n} |h^{-n}(z)|$ converges uniformly for $z \in Z$ to a continuous function $f_{\beta}(z) \ge 1$.
- (b) Suppose ε is a finite regular Borel measure on *Z*. Then the series $\sum_{n \in \mathbb{N}^k} e^{-\beta r \cdot n} R^n \varepsilon$ converges in norm in the dual space $C(Z)^*$ with sum μ , say. Then μ satisfies the subinvariance relation and we have $\varepsilon = (\prod_{i=1}^k (1 e^{-\beta r_i} R^{e_i}))\mu$. Then μ is a probability measure if and only if $\int f_\beta d\varepsilon = 1$.
- (c) Suppose μ is a probability measure which satisfies the subinvariance relation. Then $\varepsilon = \left(\prod_{i=1}^{k} \left(1 e^{-\beta r_i} R^{e_i}\right)\right) \mu$ is a finite regular Borel measure satisfying $\sum_{n \in \mathbb{N}^k} e^{-\beta r \cdot n} R^n \varepsilon = \mu$, and we have $\int f_\beta d\varepsilon = 1$.

Theorem. Suppose $r \in (0, \infty)^k$ satisfies that $\beta r_i > \beta_{c_i}$.

(a) Suppose that ε is a finite regular Borel measure on Z such that $\int f_{\beta} d\varepsilon = 1$, and take $\mu = \sum_{n=0}^{\infty} e^{-\beta n} R^n \varepsilon$. Then there is a KMS_{β} state ϕ_{ε} on $(\mathcal{NT}(X), \alpha)$ such that

$$\phi_{\varepsilon}(\psi_m(x)\psi_p(y)^*) = \begin{cases} 0 & \text{if } m \neq p \\ e^{-\beta r \cdot m} \int \langle y, x \rangle \, d\mu & \text{if } m = p. \end{cases}$$

(b) If in addition *r* has rationally independent coordinates, then the map ε → φ_ε is an affine isomorphism of
 Σ_β := {ε ∈ M(Z)₊ : ∫ f_β dε = 1} onto the simplex of *KMS_β* states of (*NT*(X), α).

Proof

▶ Let $H := \bigoplus_{n \in \mathbb{N}^k} L^2(Z, \mathbb{R}^n \varepsilon)$, and define $\theta_m : X_m \to B(H)$ by

$$(heta_m(x)\xi)_n(z) = egin{cases} 0 & ext{if } n
eq m \ x(z)\xi_{n-m}(h^m(z)) & ext{if } n \geq k. \end{cases}$$

- ▶ θ is a Nica-covariant Toeplitz representation of *X*. Then there is a homomorphism $\theta_* : \mathcal{NT}(X) \to B(H)$.
- ▶ For $q \in \mathbb{N}^k$, choose a partition $\{Z_{q,i} : 1 \le i \le I_q\}$ of *Z* by Borel sets such that h^q is injective on each $Z_{q,i}$. Define $\xi^{q,i} \in H$ by

$$\xi_n^{q,i} = \begin{cases} 0 & \text{if } n \neq q \\ \chi_{Z_{q,i}} & \text{if } n = k. \end{cases}$$

• We aim to define our state $\phi_{\varepsilon} : \mathcal{NT}(X) \to \mathbb{C}$ by

$$\phi_{\varepsilon}(b) = \sum_{q \in \mathbb{N}^k} \sum_{i=1}^{l_q} e^{-\beta r \cdot q} \big(\theta_*(b) \xi^{q,i} \, | \, \xi^{q,i} \big) \quad \text{for } b \in \mathcal{T}(X(E)),$$

k-graphs

A *k*-graph (Λ , *d*) consists of a countable small category Λ (with range and source maps *r* and *s* respectively) together with a functor $d : \Lambda \to \mathbb{N}^k$ satisfying the factorisation property :

for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda = \mu \nu$ and $d(\mu) = m, d(\nu) = n$.

k-graphs

Suppose that Λ is a *k*-graph with vertex set Λ^0 and degree map $d : \Lambda \to \mathbb{N}^k$.

- ► For any $n \in \mathbb{N}^k$, we write $\Lambda^n := \{\lambda \in \Lambda^* : d(\lambda) = n\}$.
- All k-graphs considered here are finite in the sense that Λⁿ is finite for all n ∈ ℝ^k.
- Given $v, w \in \Lambda^0$, $v\Lambda^n w$ denotes $\{\lambda \in \Lambda^n : r(\lambda) = v \text{ and } s(\lambda) = w\}.$
- We say Λ has no sinks if $\Lambda^n v \neq \emptyset$ for every $v \in \Lambda^0$ and $n \in \mathbb{N}^k$.
- ▶ A has no sources if $vA^n \neq \emptyset$ for every $v \in A^0$ and $n \in \mathbb{N}^k$.
- For $\mu, \nu \in \Lambda$, we write

 $\Lambda^{\min}(\mu,\nu) := \{(\xi,\eta) \in \Lambda \times \Lambda : \mu\xi = \nu\eta \text{ and } d(\mu\xi) = d(\mu) \lor d(\nu)\}.$

k-graphs C*-algebras

Given a *k*- graph Λ , a Toeplitz-Cuntz-Krieger Λ -family in a C^* -algebra *B* is a set of partial isometries $\{S_{\lambda} : \lambda \in \Lambda\}$ such that

(TCK1) { $S_{v} : v \in \Lambda^{0}$ } is a set of mutually orthogonal projections, (TCK2) $S_{\lambda}S_{\mu} = S_{\lambda\mu}$ whenever $s(\lambda) = r(\mu)$, (TCK3) $S_{\mu}^{*}S_{\nu} = \sum_{(\xi,\eta)\in\Lambda^{\min}(\mu,\nu)} S_{\xi}S_{\eta}^{*}$ for all $\mu, \nu \in \Lambda$. We interpret empty sums as 0. We can prove that

$$\mathcal{S}_{\mathbf{v}} \geq \sum_{\lambda \in \mathbf{v} \wedge^n} \mathcal{S}_{\lambda} \mathcal{S}^*_{\lambda} ext{ for all } \mathbf{v} \in \Lambda^0 ext{ and } n \in \mathbb{N}^k.$$

A Toeplitz-Cuntz-Krieger Λ -family $\{S_{\lambda} : \lambda \in \Lambda\}$ is a Cuntz-Krieger Λ -family if we also have

(CK)
$$S_v = \sum_{\lambda \in v \Lambda^n} S_\lambda S_\lambda^*$$
 for all $v \in \Lambda^0$ and $n \in \mathbb{N}^k$.

k-graphs *C**-algebras

The Toeplitz algebra $\mathcal{TC}^*(\Lambda)$ is generated by a universal Toeplitz-Cuntz-Krieger Λ -family $\{s_{\lambda} : \lambda \in \Lambda\}$.

The Cuntz-Krieger algebra $C^*(\Lambda)$ is the quotient of $\mathcal{T}C^*(\Lambda)$ by the ideal

$$\langle \boldsymbol{s}_{\boldsymbol{v}} - \sum_{\lambda \in \boldsymbol{v} \wedge^n} \boldsymbol{s}_{\lambda} \boldsymbol{s}_{\lambda}^* : \boldsymbol{v} \in \Lambda^0 \rangle.$$

There is a strongly continuous gauge action $\tilde{\gamma} : \mathbb{T}^k \to \mathcal{T}C^*(\Lambda)$ such that $\tilde{\gamma}_z(s_{\lambda}) = z^{d(\lambda)}s_{\lambda}$. Since $\tilde{\gamma}$ fixes the kernel of the quotient map, it induces a natural gauge action of \mathbb{T}^k on $C^*(\Lambda)$.

Infinite-path space and shifts

Let
$$\Omega_k := \{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \le n\}.$$

The set Ω_k is a *k*-graph with $r(m, n) = (m, m), s(m, n) = (n, n), (m, n)(n, p) = (m, p)$ and $d(m, n) = n - m$.

The set

 $\Lambda^{\infty} := \{ z : \Omega_k \to \Lambda : z \text{ is a functor intertwining the degree maps} \}$

is called infinite-path space of Λ .

For $p \in \mathbb{N}^k$, the shift map $\sigma^p : \Lambda^\infty \to \Lambda^\infty$ is defined by $\sigma^p(z)(m,n) = z(m+p,n+p)$ for all $z \in \Lambda^\infty$ and $(m,n) \in \Omega_k$.

• Clearly
$$\sigma^{p} \circ \sigma^{q} = \sigma^{q} \circ \sigma^{p}$$
 for $p, q \in \mathbb{N}^{k}$

A *k*-graph Λ is 1-coaligned if for all $1 \le i \ne j \le k$ and $(\lambda, \mu) \in \Lambda^{e_i} \times \Lambda^{e_j}$ with $s(\lambda) = s(\mu)$ there exists a unique pair $(\eta, \zeta) \in \Lambda^{e_j} \times \Lambda^{e_i}$ such that $\eta \lambda = \zeta \mu$.

Lemma. Let Λ be a finite 1-coaligned *k*-graph. Suppose that $0 \le i \ne j \le k$. Then the shift maps σ^{e_i} and σ^{e_j} *-commute.

For Λ , shifts gives a product system $X(\Lambda^{\infty})$. We write $\mathcal{NT}(X(\Lambda^{\infty}))$ and $\mathcal{O}(X(\Lambda^{\infty}))$ for the corresponding Nica-Toeplitz algebra and Cuntz-Pimsner algebra.

Proposition. Let Λ be a finite 1-coaligned *k*-graph with no sinks or sources. For each $\lambda \in \Lambda$, let $S_{\lambda} := \psi_{d(\lambda)}(\chi_{Z(\lambda)})$. Then

(a) The set $\{S_{\lambda} : \lambda \in \Lambda\}$ is a Toeplitz-Cuntz-Krieger Λ -family in $\mathcal{NT}(\mathcal{X}(\Lambda^{\infty}))$. The homomorphism $\pi_{S} : \mathcal{TC}^{*}(\Lambda) \to \mathcal{NT}(\mathcal{X}(\Lambda^{\infty}))$ is injective and intertwines the

respective gauge actions of \mathbb{T}^k (that is, $\pi_S \circ \tilde{\gamma} = \gamma \circ \pi_S$).

(b) Let $q : \mathcal{NT}(X(\Lambda^{\infty})) \to \mathcal{O}(X(\Lambda^{\infty}))$ be the quotient map. Then $\{q \circ S_{\lambda} : \lambda \in \Lambda\}$ is a Cuntz-Krieger Λ -family in $\mathcal{O}(X(\Lambda^{\infty}))$. The corresponding homomorphism $\pi_{q \circ S} : C^*(\Lambda) \to \mathcal{O}(X(\Lambda^{\infty}))$ is an isomorphism and intertwines the respective gauge actions of \mathbb{T}^k . Theorem 6.1 [aHLRS-2014]. Let Λ be a finite *k*-graph without sources, and let A_i be the vertex matrices of Λ . Suppose that $r \in (0, \infty)^k$ satisfies $\beta r_i > \ln \rho(A_i)$ for $1 \le i \le k$, and define $\tilde{\alpha} : \mathbb{R} \to \operatorname{Aut}(\mathcal{T}C^*(\Lambda) \operatorname{by}\tilde{\alpha}_t = \tilde{\gamma}_{e^{itr}}$ For $v \in \Lambda^0$, the series $\sum_{\mu \in v\Lambda} e^{-\beta r \dot{d}(\mu)}$ converges with sum $y_v \ge 1$. Set $y = (y_v) \in [1, \infty)^{\Lambda^0}$ Then there is an affine issomorphism from

$$\Sigma_{\beta} := \{ \epsilon \in [0,\infty)^{\Lambda^0} : \epsilon \cdot y = 1 \}$$

onto the simplex of KMS_{β} states of ($\mathcal{T}C^*(\Lambda), \tilde{\alpha}$).

Corollary. The injection $\pi_S : \mathcal{TC}^*(\Lambda) \to \mathcal{NT}(X(\Lambda^{\infty}))$ is not a surjection and $\mathcal{TC}^*(\Lambda)$ is substantially smaller than $\mathcal{NT}(X(\Lambda^{\infty}))$.

- Z. Afsar, A. an Huef and I. Raeburn, KMS states on C*-algebras associated to local homeomorphisms, Internat. J. Math. 25 (2014), no. 8, 1450066(27 pages).
- N. J. Fowler, Discrete product systems of Hilbert bimodules, *Pacific J. Math.* **204** (2002), 335–375.
- A. an Huef, M. Laca, I. Raeburn and A. Sims, KMS states on the *C**-algebras associated to higher-rank graphs, *J. Funct. Anal.* **266** (2014), 265–283.
- A. Kumjian and D. Pask, Higher-rank graph *C**-algebras, *New York J. Math.* **6** (2000), 1–20.
- M. Laca and S. Neshveyev, KMS states of quasi-free dynamics on Pimsner algebras, *J. Funct. Anal.* **211** (2004), 457–482.
- M.V. Pimsner, A class of *C**-algebras generalizing both Cuntz-Krieger algebras and crossed products by *Z*, *Fields Institute Comm.* **12** (1997), 189–212.