KMS states on C^{*}-algebras of $*$-commuting local homeomorphisms and applications in k-graph algebras

Zahra Afsar
University of Sydney

This talk is about a joint work
with Astrid an Huef and lain Raeburn
March 2019

Product system of Hilbert bimoduls

Let A be a C^{*}-algebra. A right Hilbert $A-A$ bimodule is a right A-module X equibed with
(a) An A-valued inner product such that $\langle x, y \cdot a\rangle_{A}=\langle x, y\rangle_{A} a$, and X is complete in the norm given by $\|x\|=\left\|\langle x, x\rangle_{A}\right\|^{\frac{1}{2}}$.
(b) A homomorphism $\varphi: A \rightarrow \mathcal{L}(X)$. We view φ as a left action of A on X and write $a \cdot x$ for $\varphi(a)(x)$.
\Rightarrow For $x, y \in X$, there is an adjointable operator $\Theta_{x, y}$ on X such that

$$
\Theta_{x, y}(z)=x \cdot\langle y, z\rangle
$$

The algebra of (compact operators) is

$$
\mathcal{K}(X):=\operatorname{span}\left\{\Theta_{x, y}: x, y \in X\right\} \subset \mathcal{L}(X)
$$

Product system of Hilbert bimoduls

Let A be a C^{*}-algebra. A right Hilbert $A-A$ bimodule is a right A-module X equibed with
(a) An A-valued inner product such that $\langle x, y \cdot a\rangle_{A}=\langle x, y\rangle_{A} a$, and X is complete in the norm given by $\|x\|=\left\|\langle x, x\rangle_{A}\right\|^{\frac{1}{2}}$.
(b) A homomorphism $\varphi: A \rightarrow \mathcal{L}(X)$. We view φ as a left action of A on X and write $a \cdot x$ for $\varphi(a)(x)$.

- For $x, y \in X$, there is an adjointable operator $\Theta_{x, y}$ on X such that

$$
\Theta_{x, y}(z)=x \cdot\langle y, z\rangle
$$

The algebra of (compact operators) is

$$
\mathcal{K}(X):=\overline{\operatorname{span}}\left\{\Theta_{x, y}: x, y \in X\right\} \subset \mathcal{L}(X)
$$

Let P be a semigroup with identity e. A product system over P of right Hilbert $A-A$ bimodule is $X:=\bigsqcup_{p \in P} X_{p}$ such that
(P1) For $p \in P, X_{p}$ is a right Hilbert $A-A$ bimodule.
(P2) The identity fibre X_{e} equals the standard bimodule ${ }_{A} A_{A}$.
(P3) X is a semigroup and for each $p, q \in P \backslash\{e\}$ the map $(x, y) \mapsto x y: X_{p} \times X_{q} \rightarrow X_{p q}$, extends to an isomorphism $\sigma_{p, q}: X_{p} \otimes_{A} X_{q} \rightarrow X_{p q}$.
(P4) The multiplications $X_{e} \times X_{p} \rightarrow X_{p}$ and $X_{p} \times X_{e} \rightarrow X_{p}$ satisfy

$$
a x=\varphi_{p}(a) z, \quad x a=x \cdot a \text { for } a \in X_{e} \text { and } x \in X_{p}
$$

If P is a subsemigroup of a group G such that $P \cap P^{-1}=\{e\}$. Then $p \leq q \Leftrightarrow p^{-1} q \in P$ defines a partial order on G.

We say (G, P) is a quasi-lattice ordered group if for any two elements $p, q \in G$ which have a common upper bound in P there is a least upper bound $p \vee q \in P$. Let $p \vee q=\infty$ when $p, q \in G$ have no common upper bound.

A product system over P in the quasi-lattice ordered group (G, P) is compactly aligned, if for all $p, q \in P$ with $p \vee q<\infty$, $S \in \mathcal{K}\left(X_{p}\right)$ and $T \in \mathcal{K}\left(X_{q}\right)$, we have

$$
\left(S \otimes_{A} 1\right)\left(T \otimes_{A} 1\right) \in \mathcal{K}\left(X_{p \vee q}\right)
$$

Representations

Let B be a C^{*}-algebra. A function $\psi: X \rightarrow B$ is a (Toeplitz) representation of X if:
(T1) For each $p \in P \backslash\{e\}, \psi_{p}: X_{p} \rightarrow B$ is linear, and $\psi_{e}: A \rightarrow B$ is a homomorphism,
(T2) $\psi_{p}(x)^{*} \psi_{p}(y)=\psi_{e}(\langle x, y\rangle)$ for $p \in P$, and $x, y \in X_{p}$, and
(T3) $\psi_{p q}(x y)=\psi_{p}(x) \psi_{q}(y)$ for $p, q \in P, x \in X_{p}$, and $y \in X_{q}$.
The conditions (T1) and (T2) induce a homomorphism $\psi^{(p)}: \mathcal{K}\left(X_{p}\right) \rightarrow B$ such that $\psi^{(p)}\left(\Theta_{x, y}\right)=\psi_{p}(x) \psi_{p}(y)^{*}$ (see [6]).

Let (G, P) be a quasi-lattice ordered group and let X be a compactly aligned product system over P. A Toeplitz representation ψ of X is Nica-covariant if for every $p, q \in P$, $S \in \mathcal{K}\left(X_{p}\right)$, and $T \in \mathcal{K}\left(X_{q}\right)$, we have

$$
\psi^{(p)}(S) \psi^{(q)}(T)= \begin{cases}\psi^{(p \vee q)}\left(\left(S \otimes_{A} 1\right)\left(T \otimes_{A} 1\right)\right) & \text { if } p \vee q<\infty \\ 0 & \text { otherwise }\end{cases}
$$

Nica-Toeplitz algebra

Fowler showed in [2, Theorem 6.3] that there exist a C^{*}-algebra $\mathcal{N} \mathcal{T}(X)$ and a Nica-covariant Toeplitz representation ψ of X in $\mathcal{N} \mathcal{T}(X)$ such that:
(U) For any other Nica-covariant Toeplitz representation θ of X in a C^{*}-algebra B, there exists a unique homomorphism $\theta_{*}: \mathcal{N} \mathcal{T}(X) \rightarrow B$ such that $\theta_{*} \circ \psi=\theta$.

- In addition

$$
\mathcal{N T}(X)=\overline{\operatorname{span}}\left\{\psi_{p}(x) \psi_{q}(y)^{*}: p, q, n \in P, x \in X_{p}, y \in X_{q}\right\} .
$$

The Cuntz-Pimsner algebra $\mathcal{O}(X)$ is the quotient of $\mathcal{N T}(X)$ by the ideal

$$
\left\{\psi(a)-\psi^{(p)}\left(\varphi_{p}(a)\right): p \in P, a \in \varphi_{p}^{-1}\left(\mathcal{K}\left(X_{p}\right)\right)\right\} .
$$

- There is a gauge action $\lambda: \mathbb{T}^{k} \rightarrow \operatorname{Aut}(\mathcal{N} \mathcal{T}(X))$ such that $\lambda_{z}\left(\psi_{m}(x) \psi_{n}(y)^{*}\right)=z^{m-n}\left(\psi_{m}(x) \psi_{n}(y)^{*}\right)$.
- Fix $r \in R^{k}$, we can define $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(\mathcal{N} \mathcal{T}(X))$ by $\alpha_{t}=\gamma_{e^{i t r}}\left(\right.$ where $\left.e^{i t r}=\left(e^{i t r_{1}}, \ldots, e^{i t r_{k}}\right)\right)$.
- For each $\psi_{m}(x) \psi_{n}(y)^{*} \in \mathcal{N} \mathcal{T}(X)$, the function $t \mapsto \alpha_{t}\left(\psi_{m}(x) \psi_{n}(y)^{*}\right)=e^{i t(m-n)} \psi_{m}(x) \psi_{n}(y)^{*}$ on \mathbb{R} extends to an entire function on all of \mathbb{C}.

A product system associated to a family of local homeomorphisms

Let h_{1}, \ldots, h_{k} be surjective local homeomorphisms on a compact Hausdorff space Z.

- For $m \in \mathbb{N}^{k}$ let $h^{m}:=h_{1}^{m_{1}} \circ \cdots \circ h_{k}^{m_{k}}$, and let $A:=C_{0}(Z)$. There is a right action of A on $C_{C}(Z)$ and there is a well defined A-valued inner product on $C_{C}(Z)$ such that

$$
\begin{aligned}
& (x \cdot a)(z)=x(z) a\left(h^{m}(z)\right), \text { and } \\
& \langle x, y\rangle_{A}(z)=\sum_{h^{m}(w)=z} \overline{x(w) y(w)}
\end{aligned}
$$

Let X_{m} be the completion of $C_{c}(Z)$ in the arising norm. The formula $(a \cdot x)(z):=a(z) x(z)$ defines a left action of A by adjointable operators on X.

- $X:=\bigsqcup_{m \in \mathbb{N}^{k}} X_{m}$ is a compactly align product system over \mathbb{N}^{k} with the multiplication given by

$$
x y(z):=x(z) y\left(h^{m}(z)\right) \text { for } x \in X_{m}, y \in Y_{n}, z \in Z
$$

*-commuting maps

Let f, g be commuting maps on a set Z. We say f and g *-commute, if for every $x, y \in Z$ satisfying $f(x)=g(y)$, there exists a unique $z \in Z$ such that $x=g(z)$ and $y=f(z)$.

- A family of maps $*$-commute if any two of them $*$-commute.

A characterisation of KMS states

Proposition.Let h_{1}, \ldots, h_{k} be $*$-commuting and surjective local homeomorphisms on a compact Hausdorff space Z and let X be the associated product system. Suppose $r \in(0, \infty)^{k}$ and $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(\mathcal{N} \mathcal{T}(X))$ is given in terms of the gauge action by $\alpha_{t}=\gamma_{e^{\text {etr }}}$. Let $\beta>0$ and ϕ be a state on $\mathcal{N} \mathcal{T}(X)$.
(a) If ϕ satisfies

$$
\begin{equation*}
\phi\left(\psi_{m}(x) \psi_{n}(y)^{*}\right)=\delta_{m, n} e^{-\beta r \cdot m} \phi \circ \psi_{0}(\langle y, x\rangle), \tag{1}
\end{equation*}
$$

then ϕ is a KMS_{β} state of $(\mathcal{N} \mathcal{T}(X), \alpha)$.
(b) If ϕ is a KMS_{β} state of $(\mathcal{N T}(X), \alpha)$ and $r \in(0, \infty)^{k}$ has rationally independent coordinates, then ϕ satisfies (1).

A finite regular Borel measure ν on Z can be viewed as an element of $C(Z)^{*}$ by

$$
\nu(a):=\int a(z) d \nu(z) \text { for } a \in C(Z)
$$

We can then calculate a formula for $R^{n}(\nu)$.

$$
\int \operatorname{ad}\left(R^{n}(\nu)\right)=\int \sum_{h^{n}(w)=z} a(w) d \nu(z) \quad \text { for } a \in C(Z)
$$

We say a measure ν satisfies subinvariance relation if for every subset K of $\{1, \ldots, k\}$, we have

$$
\begin{equation*}
\int \operatorname{ad}\left(\prod_{i \in K}\left(1-e^{-\beta r_{i}} R^{e_{i}}\right) \nu\right) \geq 0 \text { for all positive } a \in C(Z) \tag{2}
\end{equation*}
$$

Soloutions of the subinvariance relation

Proposition. Let $r \in(0, \infty)^{k}$ and let

$$
\beta_{c_{i}}:=\limsup _{j \rightarrow \infty}\left(j^{-1} \ln \left(\max _{z \in Z}\left|h_{i}^{-j}(z)\right|\right)\right) .
$$

Suppose $\beta \in(0, \infty)$ satisfies $\beta r_{i}>\beta_{c_{i}}$. Then
(a) The series $\sum_{n \in \mathbb{N}^{k}} e^{-\beta r \cdot n}\left|h^{-n}(z)\right|$ converges uniformly for $z \in Z$ to a continuous function $f_{\beta}(z) \geq 1$.
(b) Suppose ε is a finite regular Borel measure on Z. Then the series $\sum_{n \in \mathbb{N}^{k}} e^{-\beta r \cdot n} R^{n} \varepsilon$ converges in norm in the dual space $C(Z)^{*}$ with sum μ, say. Then μ satisfies the subinvariance relation and we have $\varepsilon=\left(\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} R^{e_{i}}\right)\right) \mu$. Then μ is a probability measure if and only if $\int f_{\beta} d \varepsilon=1$.
(c) Suppose μ is a probability measure which satisfies the subinvariance relation. Then $\varepsilon=\left(\prod_{i=1}^{k}\left(1-e^{-\beta r_{i}} R^{e_{i}}\right)\right) \mu$ is a finite regular Borel measure satisfying
$\sum_{n \in \mathbb{N}^{k}} e^{-\beta r \cdot n} R^{n} \varepsilon=\mu$, and we have $\int f_{\beta} d \varepsilon=1$.

Theorem. Suppose $r \in(0, \infty)^{k}$ satisfies that $\beta r_{i}>\beta_{c_{i}}$.
(a) Suppose that ε is a finite regular Borel measure on Z such that $\int f_{\beta} d \varepsilon=1$, and take $\mu=\sum_{n=0}^{\infty} e^{-\beta n} R^{n} \varepsilon$. Then there is a KMS_{β} state ϕ_{ε} on $(\mathcal{N} \mathcal{T}(X), \alpha)$ such that

$$
\phi_{\varepsilon}\left(\psi_{m}(x) \psi_{p}(y)^{*}\right)= \begin{cases}0 & \text { if } m \neq p \\ e^{-\beta r \cdot m} \int\langle y, x\rangle d \mu & \text { if } m=p\end{cases}
$$

(b) If in addition r has rationally independent coordinates, then the map $\varepsilon \mapsto \phi_{\varepsilon}$ is an affine isomorphism of
$\Sigma_{\beta}:=\left\{\varepsilon \in M(Z)_{+}: \int f_{\beta} d \varepsilon=1\right\}$ onto the simplex of $K M S_{\beta}$ states of $(\mathcal{N} \mathcal{T}(X), \alpha)$.

Proof

- Let $H:=\bigoplus_{n \in \mathbb{N}^{k}} L^{2}\left(Z, R^{n} \varepsilon\right)$, and define $\theta_{m}: X_{m} \rightarrow B(H)$ by

$$
\left(\theta_{m}(x) \xi\right)_{n}(z)= \begin{cases}0 & \text { if } n \ngtr m \\ x(z) \xi_{n-m}\left(h^{m}(z)\right) & \text { if } n \geq k .\end{cases}
$$

- θ is a Nica-covariant Toeplitz representation of X. Then there is a homomorphism $\theta_{*}: \mathcal{N} \mathcal{T}(X) \rightarrow B(H)$.
- For $q \in \mathbb{N}^{k}$, choose a partition $\left\{Z_{q, i}: 1 \leq i \leq I_{q}\right\}$ of Z by Borel sets such that h^{q} is injective on each $Z_{q, i}$. Define $\xi^{q, i} \in H$ by

$$
\xi_{n}^{q, i}= \begin{cases}0 & \text { if } n \neq q \\ \chi z_{q, i} & \text { if } n=k .\end{cases}
$$

- We aim to define our state $\phi_{\varepsilon}: \mathcal{N} \mathcal{T}(X) \rightarrow \mathbb{C}$ by

$$
\phi_{\varepsilon}(b)=\sum_{q \in \mathbb{N}^{k}} \sum_{i=1}^{I_{q}} e^{-\beta r \cdot q}\left(\theta_{*}(b) \xi^{q, i} \mid \xi^{q, i}\right) \quad \text { for } b \in \mathcal{T}(X(E)),
$$

k-graphs

A k-graph (\wedge, d) consists of a countable small category Λ (with range and source maps r and s respectively) together with a functor $d: \Lambda \rightarrow \mathbb{N}^{k}$ satisfying the factorisation property :
for every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^{k}$ with $d(\lambda)=m+n$, there are unique elements $\mu, \nu \in \Lambda$ such that $\lambda=\mu \nu$ and $d(\mu)=m, d(\nu)=n$.

k-graphs

Suppose that Λ is a k-graph with vertex set Λ^{0} and degree map $d: \Lambda \rightarrow \mathbb{N}^{k}$.

- For any $n \in \mathbb{N}^{k}$, we write $\Lambda^{n}:=\left\{\lambda \in \Lambda^{*}: d(\lambda)=n\right\}$.
- All k-graphs considered here are finite in the sense that Λ^{n} is finite for all $n \in \mathbb{N}^{k}$.
- Given $v, w \in \Lambda^{0}, v \Lambda^{n} w$ denotes $\left\{\lambda \in \Lambda^{n}: r(\lambda)=v\right.$ and $\left.s(\lambda)=w\right\}$.
- We say Λ has no sinks if $\Lambda^{n} v \neq \emptyset$ for every $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$.
- Λ has no sources if $v \Lambda^{n} \neq \emptyset$ for every $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$.
- For $\mu, \nu \in \Lambda$, we write

$$
\Lambda^{\min }(\mu, \nu):=\{(\xi, \eta) \in \Lambda \times \Lambda: \mu \xi=\nu \eta \text { and } d(\mu \xi)=d(\mu) \vee d(\nu)\}
$$

k-graphs C^{*}-algebras

Given a k - graph Λ, a Toeplitz-Cuntz-Krieger Λ-family in a C^{*}-algebra B is a set of partial isometries $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ such that
(TCK1) $\left\{S_{v}: v \in \Lambda^{0}\right\}$ is a set of mutually orthogonal projections,
(TCK2) $S_{\lambda} S_{\mu}=S_{\lambda \mu}$ whenever $s(\lambda)=r(\mu)$,
(TCK3) $S_{\mu}^{*} S_{\nu}=\sum_{(\xi, \eta) \in \Lambda^{\min }(\mu, \nu)} S_{\xi} S_{\eta}^{*}$ for all $\mu, \nu \in \Lambda$.
We interpret empty sums as 0 . We can prove that

$$
S_{v} \geq \sum_{\lambda \in v \Lambda^{n}} S_{\lambda} S_{\lambda}^{*} \text { for all } v \in \Lambda^{0} \text { and } n \in \mathbb{N}^{k}
$$

A Toeplitz-Cuntz-Krieger Λ-family $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is a Cuntz-Krieger \wedge-family if we also have
(CK) $\quad S_{v}=\sum_{\lambda \in v \Lambda^{n}} S_{\lambda} S_{\lambda}^{*}$ for all $v \in \Lambda^{0}$ and $n \in \mathbb{N}^{k}$.

k-graphs C^{*}-algebras

The Toeplitz algebra $\mathcal{T} C^{*}(\Lambda)$ is generated by a universal Toeplitz-Cuntz-Krieger Λ-family $\left\{s_{\lambda}: \lambda \in \Lambda\right\}$.
The Cuntz-Krieger algebra $C^{*}(\Lambda)$ is the quotient of $\mathcal{T} C^{*}(\Lambda)$ by the ideal

$$
\left\langle s_{v}-\sum_{\lambda \in v \Lambda^{n}} s_{\lambda} s_{\lambda}^{*}: v \in \Lambda^{0}\right\rangle .
$$

There is a strongly continuous gauge action $\tilde{\gamma}: \mathbb{T}^{k} \rightarrow \mathcal{T} C^{*}(\Lambda)$ such that $\tilde{\gamma}_{z}\left(s_{\lambda}\right)=z^{d(\lambda)} s_{\lambda}$. Since $\tilde{\gamma}$ fixes the kernel of the quotient map, it induces a natural gauge action of \mathbb{T}^{k} on $C^{*}(\Lambda)$.

Infinite-path space and shifts

Let $\Omega_{k}:=\left\{(m, n) \in \mathbb{N}^{k} \times \mathbb{N}^{k}: m \leq n\right\}$.

- The set Ω_{k} is a k-graph with
$r(m, n)=(m, m), s(m, n)=(n, n),(m, n)(n, p)=(m, p)$ and $d(m, n)=n-m$.
- The set
$\Lambda^{\infty}:=\left\{z: \Omega_{k} \rightarrow \Lambda: z\right.$ is a functor intertwining the degree maps $\}$
is called infinite-path space of Λ.
- For $p \in \mathbb{N}^{k}$, the shift map $\sigma^{p}: \Lambda^{\infty} \rightarrow \Lambda^{\infty}$ is defined by $\sigma^{p}(z)(m, n)=z(m+p, n+p)$ for all $z \in \Lambda^{\infty}$ and $(m, n) \in \Omega_{k}$.
- Clearly $\sigma^{p} \circ \sigma^{q}=\sigma^{q} \circ \sigma^{p}$ for $p, q \in \mathbb{N}^{k}$.

A k-graph Λ is 1 -coaligned if for all $1 \leq i \neq j \leq k$ and $(\lambda, \mu) \in \Lambda^{e_{i}} \times \Lambda^{e_{j}}$ with $s(\lambda)=s(\mu)$ there exists a unique pair $(\eta, \zeta) \in \Lambda^{e_{j}} \times \Lambda^{e_{i}}$ such that $\eta \lambda=\zeta \mu$.

Lemma. Let \wedge be a finite 1-coaligned k-graph. Suppose that $0 \leq i \neq j \leq k$. Then the shift maps $\sigma^{e_{i}}$ and $\sigma^{e_{j}} *$-commute.

For Λ, shifts gives a product system $X\left(\Lambda^{\infty}\right)$. We write $\mathcal{N} \mathcal{T}\left(X\left(\Lambda^{\infty}\right)\right)$ and $\mathcal{O}\left(X\left(\Lambda^{\infty}\right)\right)$ for the corresponding Nica-Toeplitz algebra and Cuntz-Pimsner algebra.

Proposition. Let Λ be a finite 1-coaligned k-graph with no sinks or sources. For each $\lambda \in \Lambda$, let $S_{\lambda}:=\psi_{d(\lambda)}\left(\chi_{z(\lambda)}\right)$. Then
(a) The set $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ is a Toeplitz-Cuntz-Krieger Λ-family in $\mathcal{N} \mathcal{T}\left(X\left(\Lambda^{\infty}\right)\right)$. The homomorphism $\pi_{S}: \mathcal{T} C^{*}(\Lambda) \rightarrow \mathcal{N} \mathcal{T}\left(X\left(\Lambda^{\infty}\right)\right)$ is injective and intertwines the respective gauge actions of \mathbb{T}^{k} (that is, $\pi_{S} \circ \tilde{\gamma}=\gamma \circ \pi_{S}$).
(b) Let $q: \mathcal{N} \mathcal{T}\left(X\left(\Lambda^{\infty}\right)\right) \rightarrow \mathcal{O}\left(X\left(\Lambda^{\infty}\right)\right)$ be the quotient map. Then $\left\{q \circ S_{\lambda}: \lambda \in \Lambda\right\}$ is a Cuntz-Krieger Λ-family in $\mathcal{O}\left(X\left(\Lambda^{\infty}\right)\right)$. The corresponding homomorphism $\pi_{q \circ S}: C^{*}(\Lambda) \rightarrow \mathcal{O}\left(X\left(\Lambda^{\infty}\right)\right)$ is an isomorphism and intertwines the respective gauge actions of \mathbb{T}^{k}.

Theorem 6.1 [aHLRS-2014]. Let \wedge be a finite k-graph without sources, and let A_{i} be the vertex matrices of Λ. Suppose that $r \in(0, \infty)^{k}$ satisfies $\beta r_{i}>\ln \rho\left(A_{i}\right)$ for $1 \leq i \leq k$, and define $\tilde{\alpha}: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathcal{T} C^{*}(\Lambda)\right.$ by $\tilde{\alpha}_{t}=\tilde{\gamma}_{e^{i t r}}$
For $v \in \Lambda^{0}$, the series $\sum_{\mu \in v \Lambda} e^{-\beta r \dot{d}(\mu)}$ converges with sum $y_{v} \geq 1$. Set $y=\left(y_{v}\right) \in[1, \infty)^{\wedge^{0}}$ Then there is an affine issomorphism from

$$
\Sigma_{\beta}:=\left\{\epsilon \in[0, \infty)^{\wedge^{0}}: \epsilon \cdot y=1\right\}
$$

onto the simplex of KMS_{β} states of $\left(\mathcal{T} C^{*}(\Lambda), \tilde{\alpha}\right)$.

Corollary. The injection $\pi_{s}: \mathcal{T} C^{*}(\Lambda) \rightarrow \mathcal{N T}\left(X\left(\Lambda^{\infty}\right)\right)$ is not a surjection and $\mathcal{T} C^{*}(\Lambda)$ is substantially smaller than $\mathcal{N} \mathcal{T}\left(X\left(\Lambda^{\infty}\right)\right)$.

R．Afsar，A．an Huef and I．Raeburn，KMS states on C＊－algebras associated to local homeomorphisms， Internat．J．Math． 25 （2014），no．8，1450066（27 pages）．

目 N．J．Fowler，Discrete product systems of Hilbert bimodules，Pacific J．Math． 204 （2002），335－375．
（R．A．an Huef，M．Laca，I．Raeburn and A．Sims，KMS states on the C^{*}－algebras associated to higher－rank graphs，J． Funct．Anal． 266 （2014），265－283．
－A．Kumjian and D．Pask，Higher－rank graph C^{*}－algebras， New York J．Math． 6 （2000），1－20．

目 M．Laca and S．Neshveyev，KMS states of quasi－free dynamics on Pimsner algebras，J．Funct．Anal． 211 （2004）， 457－482．

目 M．V．Pimsner，A class of C^{*}－algebras generalizing both Cuntz－Krieger algebras and crossed products by Z，Fields Institute Comm． 12 （1997），189－212．

