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What is Noncommutative analysis?

A mathematical framework for studying problems arising from
physics, signal analysis and other areas.

A generalisation of classical calculus, where familiar algebraic
identities like xy = yx fail to hold.

A source of new ideas for classical calculus, geometry,
probability etc.

So how is noncommutative analysis used?
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What is noncommutativity?

In arithmetic, multiplication is commutative:

3× 4 = 4× 3 = 12.

Order of terms does not matter.
For operations, this is not the case.
Putting on socks then shoes is different to putting on shoes then
socks.
Exactly the same principle applies to observables in quantum
mechanics.
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Quantum mechanical observables

Early on in the history of quantum mechanics, physicists realised
that noncommutativity was essential to understand the structure of
observables:
“[...] rewriting Heisenberg’s form of Bohr’s quantum condition, I
recognized at once its formal significance. It meant that the two
matrix products pq and qp are not identical. ”
- physicist Max Born, describing his realisation c.1925 that
observables in quantum mechanics do not commute.
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Modern quantum mechanics

Over the 20th century physcists and mathematicians such as John
von Neumann, Paul Dirac and others reformulated quantum
mechanics into a sophisticated mathematical theory. The core
ideas are:

Hilbert spaces

C ∗-algebras and von Neumann algebras

Noncommutative algebra

My work focuses on applications of these ideas to the rest of
mathematics. This is a heavily studied but still active area of
research.
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A puzzle

Suppose that you have two coins:

(If you toss one of them, it returns either heads or tails.)
Toss both at once and count the number of heads.
What are the possible outcomes??
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A puzzle

Answer:
There are two possible outcomes:{

2 +
√

2

2
,

2−
√

2

2

}
.

Obviously these are no ordinary coins!
(This is not just a word game, there is legitimate mathematics and
careful science here.)
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About those coins...

That “coin toss” is actually the outcome of measuring the
observables:

A =

(
1 0
0 0

)
and:

B =

(
1
2

1
2

1
2

1
2

)
on a two-state quantum system (a qubit).
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About those coins...

What we have here are two random variables which, when
individually measured, yield the values {0, 1}, but when their sum

is measured yields {2+
√
2

2 , 2−
√
2

2 }.

Obviously no real coins behave like this, but there are actual
physical objects (in quantum mechanics) with this behaviour.
Quantum probability theory was developed as an extension of
probability theory to study this sort of situation. It has since
developed into a mature area of mathematics with many other
applications.
It is very counterintuitive that there are only two possible
outcomes rather than three (like the classical case of {0, 1, 2}) but
quantum probability generalises classical probability and permits
far more varied behaviour.
The outcome of {2+

√
2

2 , 2−
√
2

2 } is particular to this choice of A and
B, other “quantum coins” can exhibit very different behaviour.
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Recent applications of noncommutative mathematics

Besides applications to physics, there are applications of
noncommutative analysis in other areas. Our group has made
contributions to:

Perturbation theory, and

Fractal geometry.
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Perturbation theory

How do noncommutating operators behave under small
perturbations?
The classical Taylor formula states that when ε is small:

f (x + ε) ∼ f (x) + f ′(x)ε+
1

2
f ′′(x)ε2 + · · · .

But when x and y do not commute this is no longer valid. Instead
we have:

f (A + B) ∼ f (A) + T A,A

f [1]
(B) +

1

2
T A,A,A

f [2]
(B) + · · · .

The symbol T denotes a multiple operator integral: a fundamental
tool in noncommutative perturbation theory.
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Applications of perturbation theory

With double operator integral theory, we can obtain precise
answers to questions in quantum physics such as:

(i) How does the number of quantum states bound by a
potential change under small perturbations? (see
Birman-Solomyak, J. Soviet Math. (1992)).

(ii) What about when a magnetic field is activated? (see our
own recent work, Levitina-S-Zanin arXiv:1703.04254).

Besides this, there are many applications of noncommutative
methods outside of mathematical physics.
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Fractal geometry

How do you integrate functions on a fractal?

Fractals like the above Julia set are typically non-rectifiable,
meaning that one cannot measure their length in the usual way.
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Fractal geometry

A. Connes proposed a formula for the Hausdorff measure λp of a
Julia set J: ∫

J
f (z)dλp(z) = cp−

∫
f (Z )|d̄Z |p

this is a kind of p-dimensional integral, where 1 < p < 2 is the
Hausdorff dimension.
The strange notations −

∫
and d̄ come from Connes’ quantised

calculus, essentially a noncommutative tool.
We have been able to prove this formula for the first time using
recently developed noncommutative methods: See Connes-S-Zanin
Sb. Math. (2017) and Connes-McDonald-S-Zanin Ergod. Th. &
Dynam. Sys. (2017).



Breakthrough methods for Noncommutative Calculus

Noncommutative geometry

Noncommutative geometry asks the question: how do you study
“spaces” when the coordinates do not commute? Examples of
such spaces arise in physics, such as the phase space in quantum
mechanics.
A fundamental example: “quantum tori”

This picture is supposed to represent a quantum torus somehow,
but really these “spaces” cannot be visualised.



Breakthrough methods for Noncommutative Calculus

Quantum tori

Quantum Tori are the most heavily studied “noncommutative
spaces” (i.e., noncommutative algebras with many of the features
of algebras of functions on spaces).
Let 0 < θ < 2π, and consider the two infinite matrices:

U =



. . .

e−2iθ

e−iθ

1
e iθ

e2iθ

. . .


(the blank regions are filled with zeros)
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Quantum Tori

and:

V =



. . . 1
0 1

0 1
0 1

0 1
0

. . .





Breakthrough methods for Noncommutative Calculus

Quantum Tori

The operators U and V satisfy the relation:

UV = e−2iθVU.

Together they generate an algebra called the “noncommutative
torus” C (T2

θ).
Despite having little resemblance to a geometric space, there has
been great interest in studying C (T2

θ) as a tractable
noncommutative space.
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Quantum Tori

A number of basic questions concerning calculus on quantum tori
have remained open.
For example: Connes proposed a definition of a “quantum
differential” d̄x for x ∈ C (T2

θ). How do the properties of this d̄x
relate to classical differentiability?
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Calculus on quantum tori

One of our most recent results provide an almost complete answer
to this question:

Theorem (McDonald-S-Xiong. Com. Math. Phys 2019)

Let x ∈ L2(Td
θ ) ∩ Ẇ 1

d (Td
θ ) be self-adjoint. For any continuous

normalized trace ϕ on L1,∞ we have

ϕ(|d̄x |d) = cd

∫
Sd−1

τ
(( d∑

j=1

|∂jx − sj

d∑
k=1

sk∂kx |2
) d

2

)
ds ≈d ‖x‖Ẇ 1

d
.
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Comparison to the commutative case

In the commutative (θ = 0) case then the formula for ϕ(|d̄x |d) has
been known since the 1980s (Connes. 1988)

ϕ(|d̄ f |d) = cd

∫
Td

 d∑
j=1

|∂j f |2
d/2

dt

but the noncommutative case has not been known until recently.
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Thank you for listening!


