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The Fieker–Klüners algorithm
Some Details
Examples

3 Splitting Fields
By Factorization
By Fixed Fields
As a tower of extensions

Example of a splitting field computed as a tower

Solution of polynomials by radicals
Example of a solution of polynomial by radicals

4 References

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 4 / 65



Algebraic Fields

Definition

An algebraic number field is a finite algebraic extension of the rational
field.

Definition

An algebraic function field is an extension field F containing a field k such
that F is a finite algebraic extension of a rational function field k(t) for
some element t ∈ F which is transcendental over k .
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Relative Extensions

Relative Extension of k(t) or Q,
E Algebraic Extension of F∣∣∣∣∣
F Algebraic Extension of k(t) or Q∣∣∣∣∣

k(t) or Q
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Galois Groups

Definition

The Galois group, Gal(f ), of a polynomial f over a field F is the
automorphism group of the splitting field of f over F .

Gal(f ) is a group of permutations of the roots of f .

All permutations of n roots are in Sn so Gal(f ) ⊆ Sn and is often Sn.

Previous algorithms for computing Galois groups (except
Hulpke [Hul99]) all restricted the degrees of the polynomials they
accepted as input.

Previous algorithms and their degree restrictions :
I Geißler [Gei03] (23),
I Geißler and Klüners [GK00] (15),
I Eichenlaub [Eic96] and Oliver (11),
I Absolute resolvent methods (11).

Our approach following [FK14] is based on that of Stauduhar [Sta73].
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First Example

Let f (x) = x4 − 4x2 − 5 = (x2 + 1)(x2 − 5).

The Galois group of f is a subgroup of S4.

Since the 4 roots of f can be grouped into pairs, a number of these 24
permutations in S4 do not correspond to automorphisms of Q(i ,

√
5).

The Galois group of f has 4 elements, generated by the permutations

i 7→ −i and
√

5 7→ −
√

5

both of order 2.

The splitting field of f ,Q(i ,
√

5), has degree 4 over Q.

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 9 / 65



Second example

Let f (x) = x4 − 2 = (x2 −
√

2)(x2 − i2
√

2).

The 4 roots of f are 4
√

2, i 4
√

2,− 4
√

2 and −i 4
√

2.

The Galois group of f is again a subgroup of S4 but this time the
symmetries between the roots are different.

The Galois group of f has 8 elements, generated by the permutations
4
√

2 7→ i 4
√

2 of order 4 and

i 4
√

2 7→ −i 4
√

2 of order 2.

The splitting field of f ,Q( 4
√

2, i), has degree 8 over Q.
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Third Example

Let f = x4 + x3 − x2 + x + 6 which factors as a linear and a cubic (f3)
over K = Q[x ]/f and as 2 linears and a quadratic over K [x ]/f3(x). There
are no other algebraic equations satified by the roots of f and hence there
is no symmetry between these 4 roots.

The Galois group of f is S4 and is generated by the permutations

α 7→ β, β 7→ γ, γ 7→ δ, δ 7→ α of order 4 and

α 7→ β of order 2

where α, β, γ and δ are the roots of f in some order.

The splitting field of f has degree 24 over Q.
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Invariants

Definition

A polynomial I (x1, . . . , xn) ∈ R[x1, . . . , xn] such that I τ = I for all τ ∈ H
for some group H ⊆ Sn is said to be H-invariant.

Definition

A H-invariant polynomial I (x1, . . . , xn) ∈ R[x1, . . . , xn] is a G -relative
H-invariant polynomial if I τ 6= I for all τ ∈ G \ H,H ⊂ G ⊆ Sn, that is,
for the stabiliser in G we have StabG I = H.
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Resolvents

Definition

For a G -relative H-invariant polynomial I we can compute a G -relative
H-invariant resolvent polynomial

Q(G ,H)(y) =
∏

τ∈G//H

(y − I τ (x1, . . . , xn)),

where G//H denotes a system of representatives for the right cosets Hτ of
G/H. If G = Sn then we call Q an absolute resolvent, otherwise we call Q
a relative resolvent.
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Blocks

Definition

Let G be a transitive permutation group acting on a finite set Ω. A subset
∅ 6= ∆ ⊂ Ω is called a block if ∆ ∩∆σ ∈ {∅,∆} for all σ ∈ G .
The orbit of a block ∆ under G is called a block system.

The blocks we use will be subsets of Ω = {roots of f }.
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Stauduhar

Theorem (Generalization of [Sta73], Theorem 5)

Let f (x) be a separable polynomial of degree n over a field F . Let
α1, . . . , αn be a fixed ordering of the roots of f (x) in Sf . Suppose G is a
subgroup of Sn and suppose that with respect to the given ordering of the
roots, the Galois group Gal(f ) of f (x) is a subgroup of G . Let H be a
subgroup of G and I (x1, . . . , xn) ∈ R[x1, . . . , xn] be a G -relative
H-invariant polynomial. Let τ1, . . . , τk be representatives for the right
cosets of H in G . For all i , I τi (α1, . . . , αn) is a root of the resolvent
polynomial

Q(G ,H)(y) =
k∏

i=1

(y − I τi (α1, . . . , αn)) ∈ F [y ].

Assume I τi (α1, . . . , αn) is not a repeated root of Q(G ,H)(y). Then

Gal(f ) ⊆ τiHτ−1
i iff I τi (α1, . . . , αn) ∈ F .
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Stauduhar — Idea of Proof/Use of Invariants

Very roughly,

I (α1, . . . , αn) ∈ F ⇒ σ(I ) = I , σ ∈ Gal(f )⇒ Gal(f ) ∩ G ⊆ H ⇒
Gal(f ) ⊆ H

σ ∈ Gal(f ) ⊂ H ⇒ σ(I ) = I ⇒ I (α1, . . . , αn) ∈ F

When Gal(f ) ⊆ H, the symmetries between the roots contribute to
I (α1, . . . , αn) ∈ F .
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Examples

Invariants for the maximal subgroups of S4 are :

1 x1 (non transitive)
2 ((x1 + x2)2 + (x3 + x4)2)

I (− 4
√

2 + 4
√

2)2 + (−i 4
√

2 + i 4
√

2)2 = 0 ∈ Q
I (−i + i)2 + (−

√
5 +
√

5)2 = 0 ∈ Q
3 (((x2−x4)∗(x3−x4))∗(((x1−x3)∗(x1−x2))∗((x1−x4)∗(x2−x3))))

> for x in MaximalSubgroups(Sym(4)) do

for> for y in Sym(4) do

for|for> Evaluate(RelativeInvariant(Sym(4), x‘subgroup),

PermuteSequence([x[1] : x in Roots(f, KKK)], y)) in Q;

for|for> end for;

for> end for;

false false false false false false false false ...
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The Fieker–Klüners Algorithm

Algorithm (Computation of the Galois group of a polynomial)

Input : a monic, integral, separable polynomial f of degree n over
F = Q,Fq(t), Q(t) or an extension thereof.

1 Compute a splitting field Sf for f over a completion of F .

2 Find a group G ⊆ Sn which contains Gal(f )

3 While G has maximal subgroups which could contain Gal(f )

1 For each maximal subgroup H of G , compute a G -relative H-invariant
polynomial IH .

2 For a cheap maximal subgroup H of G (Stauduhar)

1 Compute the precision m needed in the roots of f and the roots of f in
Sf to precision m.

2 for the representatives τ ∈ G//H of cosets of H in G , evaluate I τH at
the roots of f . Decide whether this is the image of an element of F in
Sf . If so Gal(f ) ⊆ τHτ−1 and restart the loop (3) with G = τHτ−1.

4 Gal(f ) is G
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Setup for Galois group computation

The algorithm was stated in full generality. Here we detail the specific
differences for characteristic p function fields.

1 Splitting Field Sf ,P :
I when F is a number field can use the complex field or a p-adic field.
I when F is a function field can use a series ring as an analogue of a

p-adic field.

These p-adic completions have better precision management than the
complex field.

2 We can compute a smaller starting group using the subfields of
F [x ]/f . For function fields with characteristic p these can now be
computed using [vHKN11]. This may save a number of “descent”
steps (3) from Sn – a substantial gain for some groups.

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 23 / 65



Invariants (Step 3.1)

When F has characteristic 0 invariants in Z[X1, . . . ,Xn] can be used.

When F is a characteristic p function field invariants in
Fq[t][X1, . . . ,Xn], must be used.

The general I (X ) =
∑

τ∈H(
∏n−1

i=1 X i
i )τ is expensive to use due to

many multiplications.

When G 6< An,H < An, I (X ) =
∏

1≤k<j≤n(Xk − Xj) (SqrtDisc) is
sometimes better but I is G -invariant in characteristic 2.

In characteristic 2 when G 6< An,H < An we can use

I (X ) =
∏

1≤k<j≤n
(Xk + ūXj) = I1 + ūI2 ([Els13] SqrtDisc)

where I1 and I2 are also G -relative H-invariant and ū is the image of

u in F2[u]/〈u2 − 1〉, also I (X ) =
∑

1≤k<j≤n Xk

∏
1≤r<s≤n(Xr+Xs)

Xk+Xj

although the former is the most efficient.
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An invariant in characteristic 2

s1 ≡ sm When G ⊆ Sn/l oΓ Sl for some l |n, Γ = {1, . . . , l} there is a
subgroup H with the same block systems as G such that

I (X ) =
∏
b∈B

E ({Xj : j ∈ b}) (sm)

where E is the efficient [Els13] SqrtDisc invariant and

I (X ) =
∑
b∈B

(
∑

j ,j ′∈b,j<j ′

Xj

Xj + Xj ′
) (s1)

are both G -relative H-invariant where B = {bi}1≤i≤l is a
block system of both G and H, #bi = n/l .
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Other invariants in characteristic p 6= 2

When the characteristic of F is not 2, the following gives polynomials
I (X ) = I (X1, . . . ,Xn) which are G -relative H-invariant polynomials for
some maximal subgroup H when G satisfies the conditions given.

SqrtDisc, [Gei03] Algorithm 6.24 Step 1 When G 6< An,H < An

I (X ) =
∏

1≤i<j≤n
(Xi − Xj)

D, [Gei03] Satz 6.8, Algorithm 6.24 Step 3.2.2 When G is a subgroup of
Sn/l oΓ Sl for some l |n, Γ = {1, . . . , l}, H is a subgroup of
Sn/l oΓ Al having the same block systems as G ,

I (X ) =
∏

1≤i<j≤#B

(yi − yj)

where yj =
∑

j ′∈bj Xj ′ and B is a block system of both G

and H, |B| = l ,#bj = n/l , bj ∈ B.
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Other invariants

Let H be a maximal subgroup of G ⊆ Sn. Then for all characteristics of F ,
the following gives polynomials I (X ) = I (X1, . . . ,Xn) which are G -relative
H-invariant polynomials when G and H satisfy the conditions given.

Intransitive, [FK14] Lemma 5.1 When H is an intransitive group and there
is an orbit O of H which is not invariant under G ,

I (X ) =
∑
i∈O

Xi .

ProdSum, [Gei03] Algorithm 6.24 Step 3.1, [FK14] Lemma 5.3, [Els14b]
When there exists a block system B of H which is not a
block system of G ,

I (X ) =
∏
b∈B

(
∑
i∈b

Xi ) and I (X ) =
∑
b∈B

(
∑
i∈b

Xi )
e

where e = 2 unless p = 2 then e = 3.
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Theorem ([Fie09], [Gei03] Satz 6.21, Algorithm 6.24 Step 5, [FK14]
Lemma 5.8)

Let H1,H2 ⊂ G ⊆ Sn be two distinct subgroups of index 2 in G with
G -relative Hi -invariants Ii , G//Hi = {Id, τi}. Then, when the
characteristic of F is 2,

I (X ) =

{
I1 + I2, if I τii = Ii + 1

I1I
τ2
2 + I2I

τ1
1 otherwise

is a G -relative H-invariant where H = 〈H1 ∩ H2, τ1τ2〉 and when the
characteristic of F is not 2

I (X ) = I1I2, if I τii = −Ii

I (X ) = (I1 − I τ1
1 )(I2 − I τ2

2 ) otherwise

is a G -relative H-invariant where H = (H1 ∩ H2) ∪ ((G \ H1) ∩ (G \ H2)).
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First Example

> SetVerbose("GaloisGroup", 3);

> G, R, S := GaloisGroup(x^4-4*x^2-5);

Intransitive case!

computing Galois groups of factors...

Found some possible primes: [

<7, [ 2, 2 ], 2>

]

computing starting group

starting group order 4

done, and now the descents...

Start Generic Stauduhar Algo

Trying to descend from group of order 4 = [ <2, 2> ]
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First Example (cont)

Have to consider 3 subgroups (classes of them) initially

Reduce to 3 (using divisor of order 1)

Further reduce to 3 (using rejected subgroups)

Further reduce to 3 (using normal and known subgroups)

Further reduce to 1 (using sieve)

Doing Stauduhar for group 2 of index 2 = [ <2, 1> ] with

invariant of type FactorDelta

removed all cosets

Time: 0.000

Stauduhar returns 0 (subgroup ruled out)

added wrong subgroup

All subgroups are ruled out.
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First Example (cont)

> G;

Permutation group G acting on a set of cardinality 4

Order = 4 = 2^2

(1, 2)

(3, 4)

> Z<z> := Universe(R);

> R;

[ -3*z - 2 + O(7), 3*z + 2 + O(7),

-z - 3 + O(7), z + 3 + O(7) ]

> RelativeInvariant(G, Subgroups(G)[3]‘subgroup);

((x3 - x4) * (x1 - x2))
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Second Example

> G, R, S := GaloisGroup(x^4-2);

Choose p= 73 of type : [ 1, 1, 1, 1 ]

Finding splitting field

Input over : 73-adic ring

Compute starting group:

Degrees of subfields [ 2 ]

Trying to identify the blocksystem with precision 1

Starting group reached lower bound of order 8

> TransitiveGroupDescription(G); G;

D(4)

Permutation group G acting on a set of cardinality 4

Order = 8 = 2^3

(1, 2)(3, 4) (2, 3)

> R;

[ 739032016 + O(73^5), -725592308 + O(73^5),

725592308 + O(73^5), -739032016 + O(73^5) ]

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 33 / 65



Third Example

> G, R, S := GaloisGroup(x^4 + x^3 - x^2 + x + 7);

GetShapes started....

Shapes and primes found:

[ 1, 1, 2 ] [ 7, 41, 47, 61, 79 ]

[ 2, 2 ] [ 59 ]

[ 1, 3 ] [ 5, 11, 17, 19, 23, 29, 31, 43, 53, 83 ]

[ 4 ] [ 13, 37, 71, 73 ]

Choose p= 379 of type : [ 1, 1, 1, 1 ]

Sn found

> TransitiveGroupDescription(G); G;

S(4)

Symmetric group G acting on a set of cardinality 4

Order = 24 = 2^3 * 3

(1, 2, 3, 4)

(1, 2)
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Example over Fq(t) [Sut15b] Example 1, [Sut15a] Example
12

Let F = F7(t) and f = x8 + t + 1 ∈ F [x ],Gal(f ) ⊆ S8 with order 40320.

> SetVerbose("GaloisGroup", 3);

> F<t> := FunctionField(GF(7));

> P<x> := PolynomialRing(F);

> G, R, S := GaloisGroup(x^8 + t + 1);

Degrees of subfields [ 4, 2 ]

Computing group of subfield given by x^4 + t + 1

Proven subfield group (D 4) of order 8 found.

Reduced order of starting group by using subfield groups

to 64, TGI: 8T26 = 1/2[2^4]eD 4

Trying to descend from group of order 64

Have to consider 6 subgroups (classes of them) initially
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Lifting roots in Power series ring over GF(7^16) to

precision 10

Further reduce to 4 (using rejected subgroups)

Further reduce to 2 (using sieve)

Doing Stauduhar for group 1 of index 2 = (TGI: 8T15)

no cosets remaining, group not possible

Doing Stauduhar for group 5 of index 2 = (TGI: 8T15)

Found 2 cosets as simple zeros and 0 cosets as multiples

DESCENT

Trying to descend from group of order 32

Have to consider 6 subgroups (classes of them) initially

Further reduce to 4 (using rejected subgroups)

Doing Stauduhar for group 5 of index 2 = (D 8)

no cosets remaining, group not possible
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Doing Stauduhar for group 1 of index 2 = (TGI: 8T8)

Doing Stauduhar for group 3 of index 2 = (TGI: 8T8)

no cosets remaining, group not possible

Doing Stauduhar for group 6 of index 2 = (D 8)

Doing Stauduhar for group 1 of index 2 = (TGI: 8T8)

Doing Stauduhar for group 6 of index 2 = (D 8)

Found 2 cosets as simple zeros and 0 cosets as multiples

DESCENT

Trying to descend from group of order 16

Have to consider 2 subgroups (classes of them) initially

Reduce to 2 (using divisor of order 1)

Further reduce to 0 (using rejected subgroups)

Time: 0.360
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> TransitiveGroupDescription(G); G;

D(8)

Permutation group G acting on a set of cardinality 8

Order = 16 = 2^4

(2, 8)(3, 7)(4, 6)

(1, 2)(3, 8)(4, 7)(5, 6)

(1, 3, 5, 7)(2, 4, 6, 8)

(1, 5)(2, 6)(3, 7)(4, 8)

> Z<z> := Universe(R); W<w> := CoefficientRing(Z);

> WW<ww> := Parent(Eltseq(Eltseq(R[1])[1])[1]);

> Z, R;

Power series ring in z over GF(7^16)

[ (5*ww + 5)*w^3 + 4*ww*w^3*z + ... + O(z^4),

(5*ww + 2)*w^3 + (6*ww + 4)*w^3*z + ... + O(z^4),

(3*ww + 1)*w^3 + 5*w^3*z + 5*w^3*z^2 + ... + O(z^4),

(4*ww + 1)*w^3 + (ww + 4)*w^3*z + ... + O(z^4),

.

. ]
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Example over an extension of Fq(t)

> F<t> := FunctionField(GF(7));

> P<x> := PolynomialRing(F);

> FF<a> := FunctionField(x^2 + t);

> P<x> := PolynomialRing(FF);

> time G := GaloisGroup(x^8 + a + 1);

Time: 0.460

> G;

Permutation group acting on a set of cardinality 8

Order = 16 = 2^4

(1, 8)(2, 7)(3, 6)(4, 5)

(1, 8, 7, 6, 5, 4, 3, 2)

(1, 3, 5, 7)(2, 4, 6, 8)

(1, 5)(2, 6)(3, 7)(4, 8)

> TransitiveGroupDescription(G);

D(8)
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Examples of polynomials with degree > 23

> F<t> := FunctionField(GF(7)); P<x> := PolynomialRing(F);

> f := x^103 + t + 4; time G := GaloisGroup(f); G;

Time: 479.330

Permutation group G acting on a set of cardinality 103

Order = 5253 = 3 * 17 * 103

> f := x^143 + t + 4; time G := GaloisGroup(f); G;

Time: 1338.900

Permutation group G acting on a set of cardinality 143

Order = 8580 = 2^2 * 3 * 5 * 11 * 13

> f := x^201 + t + 4; time G := GaloisGroup(f); G;

Time: 3554.240

Permutation group G acting on a set of cardinality 201

Order = 13266 = 2 * 3^2 * 11 * 67
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Splitting Field by Factorization

> Fqt<t>:=FunctionField(GF(101)); P<x>:=PolynomialRing(Fqt);

> f := x^6 + 98*t*x^4 + (2*t + 2)*x^3 + 3*t^2*x^2 +

> (6*t^2 + 6*t)*x + 100*t^3 + t^2 + 2*t + 1;

> tt := Cputime(); F := ext<Fqt | f>;

> time Factorization(Polynomial(F, f));

[

<$.1 + 100*F.1, 1>,

<$.1 + 26*t/(t^3 + 2*t^2 + 4*t + 2)*F.1^5 +

(66*t + 66)/ (t^3 + 2*t^2 + 4*t + 2)*F.1^4 + ....

<$.1^2 + (13*t/(t^3 + 2*t^2 + 4*t + 2)*F.1^5 + (33*t +

33)/(t^3 + 2*t^2 + 4*t + 2)*F.1^4 + 24*t^2/(t^3 +

2*t^2 + 4*t + 2)*F.1^3 + ....

<$.1^2 + (62*t/(t^3 + 2*t^2 + 4*t + 2)*F.1^5 + (2*t + 2)/

(t^3 + 2*t^2 + 4*t + 2)*F.1^4 + ....

]

Time: 0.040
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Splitting Field by Factorization (cont)

> FF := ext<F | $1[3][1] : Check := false>;

> time Factorization(Polynomial(FF, DefiningPolynomial(FF)));

[

<$.1 + 100*FF.1, 1>,

<$.1 + FF.1 + 13*t/(t^3 + 2*t^2 + 4*t + 2)*F.1^5 + .....

]

Time: 2.860

> time Factorization(Polynomial(FF, $2[4][1]));

[

<$.1 + 100*FF.1 + 75*t/(t^3 + 2*t^2 + 4*t + 2)*F.1^5 + ....

<$.1 + FF.1 + 88*t/(t^3 + 2*t^2 + 4*t + 2)*F.1^5 + ....

]

Time: 3.660

> Cputime(tt);

7.170
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Computing Fixed Fields of Subgroups

Algorithm (Compute a Fixed Field of a subgroup ([FK06])

Given a subgroup U ⊆ G = Gal(f ) compute the subfield of the splitting
field of f fixed by U.

1 Compute a G -relative U-invariant polynomial I and the right
transversal G//U.

2 Compute a bound B on the evaluation of I at the roots {ri}ni=1 and
compute the roots to a precision that allows the bound B to be used.

3 Compute the polynomial g with roots {I τ (r1, . . . , rn) : τ ∈ G//U}.
4 Map the coefficients of g back to the coefficient ring of f using B.

The resulting polynomial defines the fixed field of U.

β = I (r1, . . . , rn)→ g(β) = 0,

σ ∈ U → σ(β) = I σ(r1, . . . , rn) = I (r1, . . . , rn) = β.
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Computations of a Splitting Field using Fixed Fields

Algorithm (Compute a Splitting Field using a fixed field of the Galois
group)

Given a polynomial f over F compute the splitting field of f over F .

1 Compute G = Gal(f ).

2 Compute the fixed field of the subgroup {Id(G )}.
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Example of a splitting field computed using a fixed field

> tt := Cputime(); G, _, S := GaloisGroup(f); G;

Permutation group G acting on a set of cardinality 6

Order = 12 = 2^2 * 3

(2, 3)(5, 6)

(1, 2)(4, 5)

(1, 4)(2, 5)(3, 6)

> time FunctionField(GaloisSubgroup(S, sub<G | >)));

Algebraic function field defined over Univariate rational

function field over GF(101) by

x^12 + 47*t*x^10 + 3*t^2*x^8 + (65*t^3 + 54*t^2 + 7*t

+ 54)*x^6 + (41*t^4 + 18*t^3 + 36*t^2 + 18*t)*x^4 +

(14*t^5 + 61*t^4 + 21*t^3 + 61*t^2)*x^2 + 80*t^6 +

77*t^5 + 75*t^4 + 64*t^3 + 31*t^2 + 88*t + 22

Time: 0.050

> Cputime(tt);

0.500
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Algorithm (Compute a Splitting Field as a tower of extensions using a
Galois group ([FK06]))

Given a polynomial f ∈ F [x ] of degree n, where F is Q,Q(α) or Fq(t),
compute a splitting field for f as a tower of extensions of F .

1 Compute G = Gal(f ). If G is trivial then F is a splitting field.

2 Compute a descending chain C of subgroups Ck of G as stabilizers
and matching invariants Ik starting with C0 = G .

3 for each Ck 6= G in the chain C find the minimal polynomial of a
relative primitive element for the next extension Fk by

1 Compute the right transversal Tk = Ck−1//Ck .
2 Compute the p-adic roots of f to enough precision and transform them.
3 Compute the coefficients of the absolute basis for the power sums of

evaluations of Ik at the transformed roots permuted by each
permutation in τ ∈ Tk multiplied by each permutation π in

∏
j<k Tj .

4 Map these coefficients back to F and so gain the power sums in Fk−1.
5 The monic polynomial whose other coefficients are elementary

symmetric functions in the power sums defines Fk .
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Problems in Characteristic p

The elementary symmetric functions using power sums pm are

lel(xi ) =
l∑

m=1

(−1)m−1el−m(xi )pm(xi ), 1 ≤ l ≤ #Tk

What if #Tk ≥ char(F ) so that l ≡ 0 mod char(F ) occurs?

Can we compute the coefficients of∏
τ∈Tk

(x − I τ (r1, . . . , rn))

without directly using elementary symmetric functions?

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 51 / 65



Problems in Characteristic p

The elementary symmetric functions using power sums pm are

lel(xi ) =
l∑

m=1

(−1)m−1el−m(xi )pm(xi ), 1 ≤ l ≤ #Tk

What if #Tk ≥ char(F ) so that l ≡ 0 mod char(F ) occurs?

Can we compute the coefficients of∏
τ∈Tk

(x − I τ (r1, . . . , rn))

without directly using elementary symmetric functions?

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 51 / 65



Problems in Characteristic p

The elementary symmetric functions using power sums pm are

lel(xi ) =
l∑

m=1

(−1)m−1el−m(xi )pm(xi ), 1 ≤ l ≤ #Tk

What if #Tk ≥ char(F ) so that l ≡ 0 mod char(F ) occurs?

Can we compute the coefficients of∏
τ∈Tk

(x − I τ (r1, . . . , rn))

without directly using elementary symmetric functions?

Nicole Sutherland (CAG) Galois Groups and Splitting Fields May 3, 2019 51 / 65



Example of a splitting field computed as a tower

> time GSF := GaloisSplittingField(f : Roots := false);

Time: 0.750

> Fqta<aa> := CoefficientField(GSF);

> _<y> := PolynomialRing(Fqta);

> GSF:Maximal;

GSF

| y^2 + (62*t/(t^3 + 2*t^2 + 4*t + 2)*aa^5 + (2*t + 2)/

| (t^3 + 2*t^2 + 4*t + 2)*aa^4 + 29*t^2/(t^3 + 2*t^2

| + 4*t + 2)*aa^3 + (50*t^2 + 50*t)/(t^3 + 2*t^2 + 4*t

| + 2)*aa^2 + (8*t^3 + 4*t^2 + 8*t + 4)/(t^3 + 2*t^2 +

| 4*t + 2)*aa + (92*t^3 + 92*t^2)/(t^3 + 2*t^2 + 4*t +

| 2))*y + (2*t + 2)/(t^3 + 2*t^2 + 4*t + 2)*aa^5 + ....

Fqta<aa>

| x^6 + 98*t*x^4 + (2*t + 2)*x^3 + 3*t^2*x^2 +

| (6*t^2 + 6*t)*x + 100*t^3 + t^2 + 2*t + 1

Univariate rational function field over GF(101)
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Solution of a polynomial by radicals

Algorithm (Solve a polynomial by radicals using its Galois group)

Given a polynomial f over F compute a tower of radical extensions over
which f splits.

1 Compute G = Gal(f ) and check G is solvable.

2 Determine which roots of unity are needed and compute the Galois
group G of the product of f and the associated cyclotomic
polynomials divided by their GCD with f .

3 Compute a chain C of subgroups, starting with G , then those which
stabilize an increasing number of roots of unity and ending with the
rest of the composition series.

4 Compute the tower of cyclic fields from C using the Splitting Field
Algorithm Step 3.

5 Transform cyclic extensions to radical extensions.
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Cyclic extension to radical extension

degree 2 map α, a zero of x2 + a1x + a0, to α + a1/2, a zero of
x2 − a0/4

degree > 2
∑

i ζ
iσ(n−i)(a), is a primitive element such that its degree-th

power is in Fk−1 where ζ is a root of unity and σ generates
the automorphism group of the cyclic extension1.

1B. L. van der Waerden, Modern algebra, Frederick Ungar Publishing Co., 1966.
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Automorphisms

Used Galois group when extension was at the top

Can always use Galois group since each extension in the tower is
normal even if the extension is not normal as an extension of the
coefficient ring of the polynomial

Can get the Galois group for free from the Galois correspondence as
the cyclic group of order p which is the quotient of two subgroups of
the Galois group.

Even easier than that : all non-identity elements of a cyclic group of
order p generate the group so can use any automorphism, that is,
map the generator of the cyclic but non radical extension to any one
of the roots of the cyclic defining polynomial.

So at least one of the three problems is solved!
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Degree = Characteristic extensions

In characteristic p :

xp − a is inseparable : only has one distinct root, not p, derivative 0

In a cyclic degree p extension Fk/Fk−1 there exists β such that
βp − β ∈ Fk−1.2

xp − x − a =
∏p−1

i=1 (x − (β + i)) defines an Artin–Schreier extension.

It is customary to use a wider definition of solvability by radicals in
prime characteristic.3

In prime characteristic allow adjoining of elements α such that αp − α
lies in a given field.4

2H. Stichtenoth, Algebraic function fields and codes, Springer, 1993, A13
3I. Stewart, Galois Theory, Chapman and Hall, 1989, p 129
4I. Stewart, Galois Theory, Chapman and Hall, 1989, Remark p 147
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How to compute a such that xp − x + a defines the cyclic
extension?

S. Lang, Algebra, Springer, 2002, Theorems 6.3 and 6.4 give us

α = 1/Tr(θ)

p−1∑
i=1

iσi (θ)

where Tr(θ) 6= 0, so

a = αp − α

Two problems solved!
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Example of a solution of polynomial by radicals

> time S := SolveByRadicals(f); CS<cs> := CoefficientRing(S);

Time: 0.940

> _<t> := CoefficientRing(CS); S:Maximal;

S

| $.1^2 + 100*t

CS<cs>

| $.1^3 + 8*t + 8

|

Univariate rational function field over GF(101^2)

Variables: t

> DefiningPolynomial(ConstantField(S));

t^2 + 26

> _<w> := ConstantField(S); Roots(f, S);

[ <S.1 + (51*w + 25)*cs, 1>, <100*S.1 + (51*w + 25)*cs, 1>,

<S.1 + (50*w + 25)*cs, 1>, <100*S.1 + (50*w + 25)*cs, 1>,

<S.1 + 51*cs, 1>, <100*S.1 + 51*cs, 1> ]
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An example with a degree characteristic extension

> f := x^5 + x^4 + t; G := GaloisGroup(f);

> TransitiveGroupDescription(G); IsSoluble(G);

F(5) = 5:4 true

> S := SolveByRadicals(f); CS<cs> := CoefficientRing(S);

> CCS<ccs> := CoefficientRing(CS);

> S:Maximal;

S

| $.1^5 + 4*$.1 + 2/t^2*ccs*cs

CS<cs>

| $.1^2 + 2*ccs

CCS<ccs>

| x^2 + 4*t^3

Univariate rational function field over GF(5)

Variables: t
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And the radical roots

> Roots(f, S);

[ <S.1^4 + S.1^3 + S.1^2 + S.1, 1>,

<S.1^4 + 3*S.1^3 + 4*S.1^2 + 2*S.1, 1>,

<S.1^4 + 2*S.1^3 + 4*S.1^2 + 3*S.1, 1>,

<S.1^4 + 4*S.1^3 + S.1^2 + 4*S.1, 1>,

<S.1^4 + 4, 1>

]

> Roots(f, FunctionField(f));

[

<$.1, 1>

]
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