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Graph Isomorphism (GraphIso)
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Graph isomorphism problem
Given two graphs G = (V, E) and H = (U, F ), decide whether ∃ a
bijective map f : V → U , such that v ∼ v′ if and only if f(v) ∼ f(v′).
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A partial review of some results on GrI

1960’s • Studied in chemistry; combinatorial methods.
1970’s • Received considerable attention; Babai’s group-theoretic

approach; McKay’s nauty.
Early 1980’s • Luks’ algorithm for graphs with bounded degrees;

exp(Õ(
√

n))-time algorithm by Babai and Luks.
Late 1980’s • Unlikely to be NP-complete via interactive proofs.

... • Relatively quiet period.
2010’s • McKay and Piperno, nauty and Traces; Babai’s

quasipolynomial-time algorithm.

Theorem (Babai, 2015; cf. arXiv 1710.04574 by Helfgott)
There exists an algorithm that decides whether two graphs of size n are
isomorphic in time exp(O((log n)3)).
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Three types of algorithms for GraphIso

Practical algorithms Implemented software that is effective in practice but
with no provable guarantees.

Nauty by McKay in 1978; Nauty and Traces by McKay and Piperno in
2013.

✓
Average-case algorithms An algorithm that works for (G, H) where G is a
random graph.

An efficient algorithm by Babai-Erdős-Selkow in 1980, with follow-up
improvements by Karp, Lipton, and Babai-Kučera. ✓

Worst-case algorithms An algorithm with rigorous analysis on the running
time.

Poly-time algorithm for graphs of constant degrees [Luks, 1982].
exp(Õ(

√
n)) for general graphs [Babai-Luks, 1983].

exp((log n)3)-time for general graphs by Babai in 2015. ✓
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Isomorphism testing in light of Babai’s breakthrough

Babai’s quasi-polytime algorithm is a cultimation of the journal of
graph isomorphism.

One cloud: how about improving to polynomial-time?

It is perhaps time to look further at some other isomorphism testing
problems.

(Finite) Group isomorphism problem
“Given” two finite groups (G, ◦) and (H, ∗), decide whether there exists a
bijective map f : G → H , such that ∀g, g′ ∈ G, f(g ◦ g′) = f(g) ∗ f(g′).
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Some remarks on GroupIso

GroupIso has been studied in computational group theory (CGT) and
theoretical computer science (TCS) communities.

B(p, 2) denotes the class of p-groups of class 2 and exponent p.

In the following, we assume n represents the group order.

1960’s • Studied in CGT with succinct representations1; the
nlog n+O(1)-time algorithm.

1970’s • Studied in TCS with Caylay table representations, which
reduces to graph isomorphism (GraphIso).

• Realized that B(p, 2) forms a bottleneck; GraphIso
reduces to GroupIso with succinct representations.

1980’s to • Progress in CGT by Cannon, Holt, O’Brien, and others.
2010’s • n

1
4 n+o(log n)-time by Rosenbaum; dynamic programming

technique; multilinear algebra perspective; progress on
B(p, 2).

1Groups are stored in a data structure with polylogarithmic size.
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p-groups of class 2 and exponent p

In the following, p is an odd prime.

It has been widely regarded that B(p, 2) is a bottleneck for GroupIso.

For G ∈ B(p, 2), the commutator map gives an alternating bilinear
map from G/[G, G] × G/[G, G] to [G, G].
Baer’s correspondence tells us testing isomorphism of B(p, 2) is
equivalent to the following linear algebraic problem.

Pseudo-isometry of alternating bilinear maps
Let V , U be linear spaces over Fp. Given two alternating bilinear maps
α, β : V × V → U , decide whether ∃S ∈ GL(V ), T ∈ GL(U), such that
T ◦ α ◦ S = β.

This problem makes sense for any (computable) field; we stick to Fp and Fq

in this talk.
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An linear algebraic analogue of GraphIso

Let Λ(n, p) be the linear space of n × n alternating matrices over Fp.
Subspaces of Λ(n, p) are called alternating matrix spaces.

We then have an even more concrete formulation.

Alternating matrix space isometry problem (AltSpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that ⟨StA1S, . . . , StAmS⟩ = ⟨B1, . . . , Bm⟩.

E.g.

 1 −1 1
1 1 1

−1 −1 1

 ⟨

 0 1 0
−1 0 1
0 −1 0

 ,

 0 0 1
0 0 1

−1 −1 0

⟩

 1 1 −1
−1 1 −1
1 1 1



= ⟨

0 −1 0
1 0 3
0 −3 0

 ,

 0 −1 2
1 0 1

−2 −1 0

⟩
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Some facts about AltSpIso

What do we hope to achieve for AltSpIso?

Brute-force algorithm: pn2 · poly(n, m, log p).
Poly-time algorithm: poly(n, m, log p) – polynomial in the finite
matrix group model.

A quite moderate goal: pO(n+m) – polynomial in the group order.

In NP ∩ coAM, so unlikely to be NP-complete.

The relationship between AltSpIso and GraphIso:

GraphIso reduces to solving AltSpIso in poly(n, m, log p)[Folklore].
Solving AltSpIso in time pO(n+m) reduces to solving GraphIso on
graphs of size pO(n+m) [Hedrlín-Pultr].

The current techniques for GraphIso seem not helpful for AltSpIso.

Achieving a pO(n+m)-time algorithm would remove a key bottleneck
for getting a poly-time algorithm for GraphIso.
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GraphIso and AltSpIso

GraphIso AltSpIso
Objects G, H ⊆ Λn G, H ≤ Λ(n, p)

Symmetry Sn GL(n, p)
Worst-case
Complexity
Average-case
Complexity

Random Model

Practical
Group-Theoretic

Technique
Combinatorial

Technique
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Objects G, H ⊆ Λn G, H ≤ Λ(n, p)

Symmetry Sn GL(n, p)
Worst-case exp((log n)O(1))

pn2 · poly(n, m, log p)Complexity [Babai ’16]
Average-case
Complexity

Random Model

Practical
Group-Theoretic

Technique
Combinatorial

Technique

Seems not helpful to AltSpIso:
qn2 · poly(n, m, log q) is quasipolynomial in qO(n+m);

Not helpful to improve GroupIso [Babai ’16, Le Gall-Rosenbaum ’16].
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GraphIso and AltSpIso

GraphIso AltSpIso
Objects G, H ⊆ Λn G, H ≤ Λ(n, p)

Symmetry Sn GL(n, p)
Worst-case exp((log n)O(1))

pn2 · poly(n, m, log p)Complexity [Babai ’16]
Average-case linear time in ER(n, m) ?
Complexity [Babai-Erdős-Selkow ’80]

Random Model

Practical
Group-Theoretic

Technique
Combinatorial

Technique

For most G, test isomorphism with H in linear time [Babai-Erdős-Selkow ’80].
Follow-up improved by [Lipton ’78], [Karp ’79] and [Babai-Kučera ’79].
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Random Model
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[Erdős-Rényi ’59]

Practical
Group-Theoretic

Technique
Combinatorial

Technique

Erdős-Rényi model: Randomly choose a graph with n vertices and m edges with
probability 1/

((n
2)
m

)
.
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GraphIso and AltSpIso

GraphIso AltSpIso
Objects G, H ⊆ Λn G, H ≤ Λ(n, p)

Symmetry Sn GL(n, p)
Worst-case exp((log n)O(1))

pn2 · poly(n, m, log p)Complexity [Babai ’16]
Average-case linear time in ER(n, m) ?
Complexity [Babai-Erdős-Selkow ’80]

Random Model
Erdős-Rényi model ?
[Erdős-Rényi ’59]

Practical Nauty & Traces1 Magma & Gap2

Group-Theoretic
Technique

Combinatorial
Technique

1Developed by McKay & Piperno.
2We thank James B. Wilson for for communicating his hands-on experience to us.
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GraphIso and AltSpIso

GraphIso AltSpIso
Objects G, H ⊆ Λn G, H ≤ Λ(n, p)

Symmetry Sn GL(n, p)
Worst-case exp((log n)O(1))

pn2 · poly(n, m, log p)Complexity [Babai ’16]
Average-case linear time in ER(n, m) ?
Complexity [Babai-Erdős-Selkow ’80]

Random Model
Erdős-Rényi model ?
[Erdős-Rényi ’59]

Practical Nauty & Traces Magma & Gap
Group-Theoretic Permutation group

Matrix group algorithm
Technique algorithm

Combinatorial Individualization ?
Technique and refinement
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AltSpIso and other isomorphism testing problems

Some other isomorphism testing problems have been studied.

Linear code equivalence: whether two linear subspaces are the same
up to permuting coordinates. Studied in coding theory since 1990’s.

Polynomial map isomorphism: whether two polynomial maps from
Fn

q → Fm
q , defined by quadratic polynomials, are the same up to

GL(n, q) × GL(m, q). Studied in cryptography since 1990’s.

Cubic form equivalence: whether two cubic forms in Fq[x1, . . . , xn] are
the same to GL(n, q). Studied in TCS in early 2000’s.

Theorem (Grochow-Q, 2019)
All these problems reduce to AltSpIso.

This suggests that AltSpIso captures the difficulties of all these problems.
Perhaps it is even difficult enough to be used for cryptographic purposes.
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Two concrete results on AltSpIso

In the following, I will introduce two concrete results on AltSpIso,
based on joint works with Gábor Ivanyos and Yinan Li.

These are algorithms with rigorous (worst-case or average-case)
analyses.

Thanks to the great works of Peter Brooksbank and James Wilson, they
are also implemented in Magma, and shown to be helpful for practical
computations.

One algorithm heavily depends on the ∗-algebra technique first
developed by James Wilson.

AltSpIso is too difficult in both theoretical and practical senses, so an
interaction between CGT and TCS will be helpful.
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A similar problem
Recall that the key problem is:

Alternating matrix space isometry problem (AltSpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that ⟨StA1S, . . . , StAmS⟩ = ⟨B1, . . . , Bm⟩.

How about the following similar problem?

Alternating matrix tuple isometry problem (AltTpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that (StA1S, . . . , StAmS) = (B1, . . . , Bm).

This problem was thought to be difficult in cryptography in the 1990’s.

A poly-time algorithm for AltTpIso implies a
pm2 · poly(n, m, log p)-time algorithm for AltSpIso.

Youming Qiao | UTS: QSI | 3rd May 2019@ Symmetry in Newcastle, U Newcastle 17 / 35



A similar problem
Recall that the key problem is:

Alternating matrix space isometry problem (AltSpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that ⟨StA1S, . . . , StAmS⟩ = ⟨B1, . . . , Bm⟩.

How about the following similar problem?

Alternating matrix tuple isometry problem (AltTpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that (StA1S, . . . , StAmS) = (B1, . . . , Bm).

This problem was thought to be difficult in cryptography in the 1990’s.

A poly-time algorithm for AltTpIso implies a
pm2 · poly(n, m, log p)-time algorithm for AltSpIso.

Youming Qiao | UTS: QSI | 3rd May 2019@ Symmetry in Newcastle, U Newcastle 17 / 35



A similar problem
Recall that the key problem is:

Alternating matrix space isometry problem (AltSpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that ⟨StA1S, . . . , StAmS⟩ = ⟨B1, . . . , Bm⟩.

How about the following similar problem?

Alternating matrix tuple isometry problem (AltTpIso)
Let Ai, Bi ∈ Λ(n, p), i = 1, . . . , m. Decide whether there exists
S ∈ GL(n, p), such that (StA1S, . . . , StAmS) = (B1, . . . , Bm).

This problem was thought to be difficult in cryptography in the 1990’s.

A poly-time algorithm for AltTpIso implies a
pm2 · poly(n, m, log p)-time algorithm for AltSpIso.

Youming Qiao | UTS: QSI | 3rd May 2019@ Symmetry in Newcastle, U Newcastle 17 / 35



AltTpIso can be efficiently solved

Theorem (Ivanyos-Q)
There exists a randomized polynomial-time algorithm for AltTpIso.

One key ingredient is the ∗-algebra technique, first introduced for
computing with p-groups by J. B. Wilson.

The other key ingredient is the solution to the module isomorphism
problem.

Overall, the algorithm can be viewed as a reduction from alternating
matrix tuples, to single classical forms.
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Structure of algebras

Let A be a finite dimensional associative algebra over F.

Rad(A): the radical, e.g. the largest
nilpotent ideal.

A/Rad(A): semisimple, that is,
isomorphic to a direct sum of simple
algebras.

Si
∼= M(ni,Fi): a full matrix algebra

over Fi, an extension field of F.

Theorem ([Rónyai 90])
Over Fq , the above structural information of A can be computed in
randomized polynomial time.
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Structure of ∗-algebras
Let ∗ : A → A be an involution, e.g. an anti-automorphism such that
∀a ∈ A, (a∗)∗ = a.

Rad(A) is invariant under ∗: ∗ induces an
involution on A/Rad(A).
Recall that Si

∼= M(ni,Fi).
1 S∗

i = Sj , i ̸= j. Then Si
∼= Sj , and

(a, b)∗ = (b, a), (a, b) ∈ Si ⊕ Sj .
2 S∗

i = Si. There is a classical form
F ∈ M(ni,Fi), such that
A∗ = F −1AtF for A ∈ Si.

Theorem ([Wilson 09])
Over Fq , the above structural information can be computed in randomized
polynomial time.
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Module isomorphism problem

Module isomorphism problem
Given n × n matrices A1, . . . , Am, and B1, . . . , Bm, decide whether there
exist an invertible C , such that for all i ∈ [m], CAi = BiC .

Theorem ([Chistov-Ivanyos-Karpinski 97, Brooksbank-Luks 08])
There are deterministic efficient algorithms for the module isomorphism
problem over any field.

It allows an easy linearisation, i.e. set up XAi = BiX , and search for
an invertible matrix in the solution space.

Can be solved very efficiently in practice by MeatAxe.

To the contrary, AltTpIso does not allow for such a straightforward
linearisation.
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Isometry testing algorithm outline

Given A1, . . . , Am, B1, . . . , Bm, n × n alternating matrices over F, do the
following:

1 Compute invertible D, E, such that ∀i, DtAi = BiE, by reducing to
module isomorphism problem.

2 Compute a linear basis for the algebra
A = {F : ∃!F ′, ∀i, F tBi = BiF

′} ⊆ M(n,F).
A is a ∗-algebra: F ∗ = F ′, because of the alternating condition.

3 F = D−1E−1 ∈ A, F ∗ = F . The problem then boils down to compute
X ∈ A, such that X∗X = F .

1 Reduce to semisimple A.
2 Reduce to simple Si

∼= M(ni,Fi) and S∗
i = Si.

Let Fi be the classical form from the action of ∗ on Si. The question then
becomes whether two single forms F Fi and Fi are isometric.
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1 The journey of graph isomorphism

2 Isomorphism testing after graph isomorphism

3 Concrete result one: tuples instead of spaces

4 Concrete result two: an average-case algorithm

5 Conclusion



GraphIso and AltSpIso

GraphIso AltSpIso
Objects G, H ⊆ Λn G, H ≤ Λ(n, q)

Symmetry Sn GL(n, q)
Worst-case exp((log n)O(1))

qn2 · poly(n, m, log q)Complexity [Babai ’16]
Average-case linear time in ER(n, m) ?
Complexity [Babai-Erdős-Selkow ’80]

Random Model
Erdős-Rényi model ?
[Erdős-Rényi ’59]

Practical Nauty & Traces Magma & Gap
Group-Theoretic Permutation group

Matrix group algorithm
Technique algorithm

Combinatorial Individualization ?
Technique and refinement
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An attempt to address the challenges [Li-Q]

GraphIso AltSpIso
Objects G, H ⊆ Λn G, H ≤ Λ(n, q)

Symmetry Sn GL(n, q)
Worst-case exp((log n)O(1))

qn2 · poly(n, m, log q)Complexity [Babai ’16]
Average-case linear time in ER(n, m)

qO(n) in LinER(n, m, q)Complexity [Babai-Erdős-Selkow ’80]
Random Model Erdős-Rényi model Linear algebraic analogue of

[Erdős-Rényi ’59] Erdős-Rényi model
Practical Nauty & Traces Magma & Gap

Group-Theoretic Permutation group
Matrix group algorithm

Technique algorithm

Combinatorial Individualization
Linear-algebraic analogue

Technique and refinement
of individualization

and refinement
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From graphs to alternating matrix spaces

Vector v ⇐= Vertex i.

Alternating matrix H ⇐= Edge {i, j}.

Alternating matrix space G ⇐= Graph G.

The Erdős-Rényi Model (ER(n, m)): Randomly choose a graph with vertex set

[n] and m edges. Each graph appears with probability 1/
((n

2 )
m

)
.

Linear algebraic analogue of the Erdős-Rényi Model (LinER(n, m, q)):
Randomly choose a dim-m alternating matrix space G ≤ Λ(n, q) with

probability 1/
[(n

2 )
m

]
q
.

Previous works with a similar strategy:

Linear algebraic analogue of the perfect matching problem on bipartite graphs
[Garg-Gurvits-Oliveira-Wigderson ’16, Ivanyos-Q-Subrahmanyam ’17].

Zero-error capacity of quantum channels ⇒ Non-commutative graph
[Duan-Severini-Winter ’13].
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AltSpIso in the LinER(n, m) setting

Theorem (Li-Q)

Let m = cn for some constant c.

For most G ∈ LinER(n, m, q) (all but 1
qΩ(n) fraction),

Test isometry with any H ≤ Λ(n, q) in time qO(n).

Why m = cn? (m ≤
(

n
2
)
)

For m = Ω(n2), the brute-force algorithm runs in time qO(n+m).

For m = O(1), AltSpIso can be solved in randomized poly(n, m, log q) by the
last result.
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Individualisation and Refinement in GraphIso

Aim: For most graphs G, |Iso(G, H)| ≤ |Aut(G)| ≤ nO(log n) [BES80].

View σ ∈ Sn as bijective map σ : [n] → [n]

k-individualization:

Fix the image of 1, . . . , k.

Enumeration cost nk.

Refinement: Focus on the induced Bipartite Graph: ∀ j ∈ [n] \ [k], the adjacency
relation with [k] are distinct.
At most one way to extend σ to automorphism.

(011)

(100)
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The Linear Algebraic Analogue of Individualization

Recall: vertex i =⇒ vector v

Bij. Map σ ∈ Sn T ∈ GL(n, q)

Ind. Fix the image of 1, . . . , k
Fix the image, L, of e1, . . . er

1

Cost

U ∼= Fn
q V ∼= Fn

q

TL

e1

e2
er

T (L)

T e1

T e2

T er

1r is a constant decided by m and n.
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U ∼= Fn
q V ∼= Fn

q

TL

e1

e2
er

T (L)
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T e2

T er

R

T (R)

“Induced Bipartite Graph”

T (L)
T (R)

?

1r is a constant decided by m and n.
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Recall: vertex i =⇒ vector v

Bij. Map σ ∈ Sn T ∈ GL(n, q)

Ind. Fix the image of 1, . . . , k
Fix the image, L, of e1, . . . er

1

Fix a complement subspace R
L ∩ R = {0}, ⟨L, R⟩ = Fn

q .
Cost nk qr × qr(n−r) = qO(n)

The “Induced Bipartite Graph”

Apply the chosen ind. to G, representing its linear basis as a 3-tensor.
Take the upper-right subtensor of size r × (n − r) × m

⇒ “induced bipartite graph” BG .
1r is a constant decided by m and n.
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The Linear Algebraic Analogue of Refinement

Linear Algebraic “Labeling”?
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BGP = BG ⇒ ∃ Q s.t. (P, Q) ∈ Adj(B′
G)

Theorem: For most G ∈ LinER(n, m, q) (1/qΩ(n) fraction), |Adj(B′
G)| ≤ qO(n).

◦ The proof is inspired by the stable concept from geometric invariant theory.

◦ Plus basic algebraic results and probability calculations.
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Theorem: For most G ∈ LinER(n, m, q) (1/qΩ(n) fraction), |Adj(B′
G)| ≤ qO(n).

◦ The proof is inspired by the stable concept from geometric invariant theory.

◦ Plus basic algebraic results and probability calculations.

For most G ∈ LinER(n, m, q) (1/qΩ(n) fraction), |Aut(G)| ≤ qO(n).
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Isomorphism testing and cryptography

AltSpIso seems to be much more difficult than the graph isomorphism
problem. Given its (current) difficulty, one may hope to use it for
cryptographic purposes [Brassard-Yung, Patarin].

One-way function: for G action on S, fs(g) = g · s;

Identification: Alice proves to Bob that this is the real Alice;

Signature: Alice proves to Bob that the message is from Alice.

Post-quantum security: the negative evidence for the hidden subgroup
approach on graph isomorphism is the strongest known theoretical
limitation on a class of quantum algorithms [Hallgren, Moore, …].
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Summary

A bit summary of the main messages:

Despite Babai’s recent progress on GraphIso, certain isomorphism
testing problems still pose a great challenge for algorithm design.

A key problem is AltSpIso, which captures the difficulties of many
other isomorphism testing problems.

The research into AltSpIso has lead a nice interaction among
combinatorics, algebra, and algorithm design.

Despite the progress, AltSpIso still stands as a difficult problem – both
in theory and in practice.
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A future direction?

Alternating matrix spaces as a linear algebraic analogue of graphs?

Structures: perfect matchings [Lovász], cuts and connectivities [Li-Q],
independent sets and vertex colorings [Bei-Chen-Guan-Q-Sun];

Techniques: the augmenting path [Ivanyos-Karpinski-Q-Santha],
individualisation and refinement [Li-Q];

Questions: enumeration [BCGQS], probabilistic [LQ], and extremal
[Turán, Buhler-Gupta-Harris].
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