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Background

A map on the torus is called regular of type {a, b} if each vertex
has valency b and each face has a edges.

Altshuler (1973) proved that the graph consisting of the vertices
and edges of regular maps on the torus of types {3, 6} and {4, 4}
have a Hamilton cycle, that is, a cycle containing every vertex of
the graph. He was unable to show that the same result held for
maps of type {6, 3}.

These are maps on the torus for which every vertex has valency 3
and the faces are all hexagons.
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Background

One of the main streams in graph theoretical research has revolved
around Hamilton cycles and for a long time. Let’s establish some
context for an excursion into this topic.

A graph X is vertex-transitive if Aut(X ) acts transitively on the
vertex set. In other words, the graph looks the same at each vertex.

By far the best known and most widely studied family of
vertex-transitive graphs are Cayley graphs. They are defined as
follows.
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Cayley Graphs

Let G be a group and S ⊂ G such that 1 6∈ S and S = S−1, that
is, if s ∈ S , then s−1 ∈ S .

Define the Cayley graph on G with connection set S as follows.
The vertices are the elements of G and for each g ∈ G there are
edges to all vertices of the form gs as s runs through S . The
notation is Cay(G ;S).
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Cayley Graphs

Note that left multiplication by an element x of G is an
automorphism of Cay(G ; S) because the edge [g , gs] is mapped to
the edge [xs, xgs]. Thus, Aut(Cay(G ; S)) contains the left-regular
representation of G .

This suggests the classical theorem of Sabidussi (1958).

Theorem. A graph X is a Cayley graph if and only if Aut(X )
contains a regular subgroup.
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Cayley Graphs

Here is a whiff of the proof.

We already have seen that the automorphism group contains a
regular subgroup.

An important feature of a regular group G is that for each x , y in
the set of objects being permuted, there exists a unique f ∈ G
such that f (x) = y . Thus, arbitrarily label a vertex u of the graph
with 1 ∈ G . Now label any other vertex v with the unique element
of G that maps u to v . It is not hard to show that this labelling
with elements of G satisfies the definitions of a Cayley graph.
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Cayley Graphs

An unsolved problem from about 1969 is the following: Does every
connected Cayley graph have a Hamilton cycle?

In 1989 C.-Q. Zhang and I proved the following theorem.

Theorem. Every connected trivalent graph on a dihedral group has
a Hamilton cycle.

There are two threads from the preceding theorem I wish to follow.

The first thread is that we were told that our result settled the
unsolved problem raised by Altshuler mentioned at the beginning.
We shall see later that, in fact, this is not true.
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The Rise Of A Project

A source of frustration for C.-Q. and myself was that we could not
discover any way of using our trivalent result for Cayley graphs of
larger valency on dihedral groups. We could not even do the
tetravalent case.

I thought about this problem for a while and came up with an
approach I’ll describe shortly. A couple of definitions are required
first.

A graph X is Hamilton-connected if for every pair of vertices u and
v , there is a Hamilton path whose terminal vertices are u and v .
Similarly, a bipartite graph is Hamilton-lacable if for every pair of
vertices in opposite parts, there is a Hamilton path joining them.
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The Rise Of A Project

Hamilton connectedness and laceability are well suited for inductive
arguments, whereas, just being hamiltonian is not. We’ll look at
the white board for this.

Dave Witte Morris and I have a friendly competition about who
will be first to prove that a connected Cayley graph on a dihedral
group is hamiltonian.

My project is to try to show that Cayley graphs on dihedral groups
are either Hamilton-connected or Hamilton-laceable depending on
whether or not they are bipartite. This is a much stronger
condition but it does allow induction to be used.
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The Roadblock

If we can prove that a connected Cayley digraph on a dihedral
group whose connection set consists of three reflections is
Hamilton-lacebale, then my project can be carried out to
completion. So what are these roadblock graphs like?

Given that the dihedral group is generated by ρ and τ , where
|ρ| = n, |τ | = 2 and τρτ = ρ−1, we may assume the connection
set for our Cayley graph is {τ, ρiτ, ρjτ}.

Let’s take a look at what is happening. Start by considering the
subgraph generated by τ and ρiτ .
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Display the vertices of the Cayley graph

as shown on the left. The left column

has the vertices of the subgroup 〈ρ〉
and the right column has the vertices of

the right coset 〈ρ〉τ .

Let’s now examine the subgraph given

by the elements τ and ρiτ .
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The beginning of a cycle C generated by

τ and ρiτ tells us exactly what is happening.

The cosets are cyclically labelled and we are

jumping by i each time return to a coset.

Thus, there are gcd(n, i) cycles comprising

the graph so each has length 2n
gcd(n,i) .
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The Roadblock

The subgraph generated by ρiτ and τ is connected if and only if
gcd(n, i) = 1. So when there are two or more cycles, the third
element ρjτ must connect the cycles together if the graph is to be
connected.

The element ρjτ generates an edge joining 1 in C and ρjτ in
another cycle C ′. Note that ρjτ generates an edge from ρi to
ρj+iτ , but this vertex also lies in C ′. So we see that the edges
generated by ρjτ join the vertices of C that lie in 〈ρ〉 to the
vertices of C ′ that lie in 〈ρ〉τ .

Let’s now draw this type of graph in a different manner which then
yields a “familiar” family.
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The next cycle then looks as shown.

Upon reaching the last cycle, it is joined to

to the first cycle by ρjτ edges but it is

an arbitrary constant jump.
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6 6

Here the jump is 2 and we have an embedding

on the torus. It is a regular (6,3) map.
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Honeycomb Toroidal Graphs

This is the family graphs we are considering and the preceding
description is how we view them. They are called honeycomb
toroidal graphs and are described as HTG(m, n, `), where m is the
number of vertical cycles, n is the length of the cycles so that
n ≥ 4 and is even, and ` is the jump from the last cycle to the first.
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The people in computer science working with this

family of graphs knew they are vertex-transitive.

Let’s show that they are Cayley graphs.

The permutation f (ui ,j) = ui ,j+2 clearly is an

automorphism.

The permutation g(ui ,j) = ui+1,j+1, i < m − 1,

and g(um−1,j) = u0,j+`+1 is an automorphism.

Note that fg = gf so that 〈f , g〉 is an abelian

group with two orbits. Because the restriction of

〈f , g〉 to an orbit is faithful, |〈f , g〉| = mn
2 .

There is an involution τ interchanging the two

orbits and satisfying τ f τ = f −1 and τgτ = g−1.

Thus, 〈f , g , τ〉 is a regular group.
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Remove the edge shown from the cycle and

move up to the next cycle. Here we end up

with a path to the target vertex but it is not

a Hamilton path.

Alter the path along the top two horizontal

edges as shown. Do the same for the other

two gaps to obtain a desired Hamilton path.
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Hamiltonicity Project

It is a little more complicated when the target vertex is in the first
column to obtain an extendable Hamilton path starting with
m = 2, but it is possible to do so.

Theorem (Alspach, Chen and Dean, 2010 ) The honeycomb
toroidal graph HTG(m, n, `) is Hamilton-laceable whenever m is
even.

Corollary. If X is a connected Cayley graph of valency at least 3 on
a generalized dihedral group whose order is divisible by 4, then X is
Hamilton-laceable if it is bipartite or Hamilton-connected if it is
not bipartite.
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Hamiltonicity Project

The situation for m odd is still up in the air although if the
analogous result is true for m = 1, then it is true for all odd m
which would, of course, settle the problem.

Sean McGuinness has shown that if n ≥ 4`2, then HTG(m, n, `) is
Hamilton-laceable (unpublished).

In some sense m = 1 is a degenerate case, but there are important
graphs in the special family. For example, the Heawood graph is
HTG(1, 14, 5).

A nice way to describe this special family is to start with a
Hamilton cycle of even length n. Then choose an odd integer
` ≤ n/2 and join every even labelled vertex (assuming they are
labelled cyclically using 0, 1, . . . , n − 1) i to i + `.
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Three particular graphs have been studied and given names based
on how they usually are drawn.

The three just pictured are called hexagonal honeycomb tori and
simply are HTG(m, 6m, 3m) in our notation.

The rectangular honeycomb torus is just HTG(m, n, 0) which
forces m to be even.

The rhombic honeycomb torus is HTG(m, 2m,m), m ≥ 2.
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Connectivity

Every vertex-transitive graph has edge connectivity equal to its
valency. Thus, HTG(m, n, `) is 3-edge-connected.

The vertex connectivity of a Cayley graph is strictly greater than
two-thirds of its valency. Thus, HTG(m, n, `) is 3-connected.

The importance of the preceding results is that between any two
distinct vertices of HTG(m, n, `) there are three internally disjoint
paths joining them and there are three edge-disjoint paths joining
them. This is of interest because of how many faults the network
can tolerate.
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Cycle Spectrum

It is clear that honeycomb toroidal graphs have only even length
cycles because they are bipartite. They also have 6-cycles so that
they have girth at most 6. However, some have girth 4 and we
know exactly when.

Proposition (Alspach and Connor, 2017). The honeycomb toroidal
graph HTG(m, n, `) has girth 4 if and only if it satisfies one of the
following conditions:

I n = 4,

I m = 1 and ` ∈ {3, n − 3},
I m = 1, n ≡ 0(mod 4) and ` ∈ {n/2− 1, n/2 + 1},
I m = 1, n ≡ 2(mod 4) and ` = n/2, and

I m = 2 and ` ∈ {0, 2, n − 2}.
Otherwise, it has girth 6.
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Cycle Spectrum

A graph is even pancyclic if it has cycles of all even lengths from 4
through 2bn/2c.

A connected bipartite Cayley graph of valency at least 3 on an
abelian group is even pancyclic so that we expect honeycomb
toroidal graphs to be rich in even length cycles as the underlying
group is “close” to being abelian.

I had Josh Connor look at this problem for his AMSI Summer
Research Project over the 2017–2018 break.
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Cycle Spectrum

Theorem (Connor, 2018). The honeycomb toroidal graph
HTG(m, n, `) has cycles of all lengths r , where r ≡ 2(mod 4) and
6 ≤ r ≤ mn.

We did not obtain an answer for what is happening with cycles of
lengths r ≡ 0(mod 4). We found examples of honeycomb toroidal
graphs missing various lengths of this type. This was even true for
those that have girth 4.

Research Problem: Determine the cycle lengths occurring in
honeycomb toroidal graphs.
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Paths

Diameter is a graph parameter of interest because it gives a lower
bound on the time required to propogate a message to all the
vertices of a graph. This parameter has been studied but primarily
for the particular honeycomb toroidal graphs that have been
consider by researchers in computer architecture.

Theorem (Yang, 2004). The diameter of HTG(m, 2m,m) is

I b4m3 c when m ≡ 1, 4(mod 6), and

I d4m3 e otherwise.

Theorem (Stojmenovic, 1997). The diameter of HTG(m, 6m, 3m)
is 2m.
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Paths

Theorem. The diameter of HTG(m, n, 0) is (m + n)/2 when
n ≥ m and is m otherwise.

Research Problem: Determine the diameter of an arbitrary
HTG(m, n, `).
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Path Lengths

If the distance between two vertices u, v ∈ HTG(m, n, `) is L, then
it’s possible there could be paths of all lengths L, L + 2, . . . ,
through mn or mn − 1 depending on the parity of L.

This problem has been studied but in a very limited way. That
suggests

Research Problem: Study the path length spectrum problem for
honeycomb toroidal graphs.
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Other Parameters

There are other parameters associated with these highly symmetric
graphs of small valency in which the computer scientists working in
this area have an interest. They either have been investigated
almost not at all or just for the special honeycomb toroidal graphs
mentioned earlier.
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