Honeycomb Toroidal Graphs

Brian Alspach
University of Newcastle

2 August 2019

Background

A map on the torus is called regular of type $\{a, b\}$ if each vertex has valency b and each face has a edges.

Background

A map on the torus is called regular of type $\{a, b\}$ if each vertex has valency b and each face has a edges.

Altshuler (1973) proved that the graph consisting of the vertices and edges of regular maps on the torus of types $\{3,6\}$ and $\{4,4\}$ have a Hamilton cycle, that is, a cycle containing every vertex of the graph.

Background

A map on the torus is called regular of type $\{a, b\}$ if each vertex has valency b and each face has a edges.

Altshuler (1973) proved that the graph consisting of the vertices and edges of regular maps on the torus of types $\{3,6\}$ and $\{4,4\}$ have a Hamilton cycle, that is, a cycle containing every vertex of the graph. He was unable to show that the same result held for maps of type $\{6,3\}$.

Background

A map on the torus is called regular of type $\{a, b\}$ if each vertex has valency b and each face has a edges.

Altshuler (1973) proved that the graph consisting of the vertices and edges of regular maps on the torus of types $\{3,6\}$ and $\{4,4\}$ have a Hamilton cycle, that is, a cycle containing every vertex of the graph. He was unable to show that the same result held for maps of type $\{6,3\}$.

These are maps on the torus for which every vertex has valency 3 and the faces are all hexagons.

Background

One of the main streams in graph theoretical research has revolved around Hamilton cycles and for a long time. Let's establish some context for an excursion into this topic.

Background

One of the main streams in graph theoretical research has revolved around Hamilton cycles and for a long time. Let's establish some context for an excursion into this topic.

A graph X is vertex-transitive if $\operatorname{Aut}(X)$ acts transitively on the vertex set. In other words, the graph looks the same at each vertex.

Background

One of the main streams in graph theoretical research has revolved around Hamilton cycles and for a long time. Let's establish some context for an excursion into this topic.

A graph X is vertex-transitive if $\operatorname{Aut}(X)$ acts transitively on the vertex set. In other words, the graph looks the same at each vertex.

By far the best known and most widely studied family of vertex-transitive graphs are Cayley graphs. They are defined as follows.

Cayley Graphs

Let G be a group and $S \subset G$ such that $1 \notin S$ and $S=S^{-1}$, that is, if $s \in S$, then $s^{-1} \in S$.

Cayley Graphs

Let G be a group and $S \subset G$ such that $1 \notin S$ and $S=S^{-1}$, that is, if $s \in S$, then $s^{-1} \in S$.

Define the Cayley graph on G with connection set S as follows. The vertices are the elements of G and for each $g \in G$ there are edges to all vertices of the form $g s$ as s runs through S. The notation is $\operatorname{Cay}(G ; S)$.

Cayley Graphs

Note that left multiplication by an element x of G is an automorphism of $\operatorname{Cay}(G ; S)$ because the edge $[g, g s]$ is mapped to the edge $[x s, x g s]$. Thus, $\operatorname{Aut}(\operatorname{Cay}(G ; S))$ contains the left-regular representation of G.

Cayley Graphs

Note that left multiplication by an element x of G is an automorphism of $\operatorname{Cay}(G ; S)$ because the edge $[g, g s]$ is mapped to the edge $[x s, x g s]$. Thus, $\operatorname{Aut}(\operatorname{Cay}(G ; S))$ contains the left-regular representation of G.

This suggests the classical theorem of Sabidussi (1958).
Theorem. A graph X is a Cayley graph if and only if $\operatorname{Aut}(X)$ contains a regular subgroup.

Cayley Graphs

Here is a whiff of the proof.

Cayley Graphs

Here is a whiff of the proof.
We already have seen that the automorphism group contains a regular subgroup.

Cayley Graphs

Here is a whiff of the proof.
We already have seen that the automorphism group contains a regular subgroup.
An important feature of a regular group G is that for each x, y in the set of objects being permuted, there exists a unique $f \in G$ such that $f(x)=y$.

Cayley Graphs

Here is a whiff of the proof.
We already have seen that the automorphism group contains a regular subgroup.
An important feature of a regular group G is that for each x, y in the set of objects being permuted, there exists a unique $f \in G$ such that $f(x)=y$. Thus, arbitrarily label a vertex u of the graph with $1 \in G$. Now label any other vertex v with the unique element of G that maps u to v. It is not hard to show that this labelling with elements of G satisfies the definitions of a Cayley graph.

Cayley Graphs

An unsolved problem from about 1969 is the following: Does every connected Cayley graph have a Hamilton cycle?

Cayley Graphs

An unsolved problem from about 1969 is the following: Does every connected Cayley graph have a Hamilton cycle?

In 1989 C.-Q. Zhang and I proved the following theorem.
Theorem. Every connected trivalent graph on a dihedral group has a Hamilton cycle.

Cayley Graphs

An unsolved problem from about 1969 is the following: Does every connected Cayley graph have a Hamilton cycle?

In 1989 C.-Q. Zhang and I proved the following theorem.
Theorem. Every connected trivalent graph on a dihedral group has a Hamilton cycle.

There are two threads from the preceding theorem I wish to follow.

Cayley Graphs

An unsolved problem from about 1969 is the following: Does every connected Cayley graph have a Hamilton cycle?

In 1989 C.-Q. Zhang and I proved the following theorem.
Theorem. Every connected trivalent graph on a dihedral group has a Hamilton cycle.

There are two threads from the preceding theorem I wish to follow.
The first thread is that we were told that our result settled the unsolved problem raised by Altshuler mentioned at the beginning.
We shall see later that, in fact, this is not true.

The Rise Of A Project

A source of frustration for C.-Q. and myself was that we could not discover any way of using our trivalent result for Cayley graphs of larger valency on dihedral groups. We could not even do the tetravalent case.

The Rise Of A Project

A source of frustration for C.-Q. and myself was that we could not discover any way of using our trivalent result for Cayley graphs of larger valency on dihedral groups. We could not even do the tetravalent case.

I thought about this problem for a while and came up with an approach I'll describe shortly. A couple of definitions are required first.

The Rise Of A Project

A source of frustration for C.-Q. and myself was that we could not discover any way of using our trivalent result for Cayley graphs of larger valency on dihedral groups. We could not even do the tetravalent case.

I thought about this problem for a while and came up with an approach l'll describe shortly. A couple of definitions are required first.

A graph X is Hamilton-connected if for every pair of vertices u and v, there is a Hamilton path whose terminal vertices are u and v. Similarly, a bipartite graph is Hamilton-lacable if for every pair of vertices in opposite parts, there is a Hamilton path joining them.

The Rise Of A Project

Hamilton connectedness and laceability are well suited for inductive arguments, whereas, just being hamiltonian is not. We'll look at the white board for this.

The Rise Of A Project

Hamilton connectedness and laceability are well suited for inductive arguments, whereas, just being hamiltonian is not. We'll look at the white board for this.

Dave Witte Morris and I have a friendly competition about who will be first to prove that a connected Cayley graph on a dihedral group is hamiltonian.

The Rise Of A Project

Hamilton connectedness and laceability are well suited for inductive arguments, whereas, just being hamiltonian is not. We'll look at the white board for this.

Dave Witte Morris and I have a friendly competition about who will be first to prove that a connected Cayley graph on a dihedral group is hamiltonian.

My project is to try to show that Cayley graphs on dihedral groups are either Hamilton-connected or Hamilton-laceable depending on whether or not they are bipartite. This is a much stronger condition but it does allow induction to be used.

The Roadblock

If we can prove that a connected Cayley digraph on a dihedral group whose connection set consists of three reflections is Hamilton-lacebale, then my project can be carried out to completion. So what are these roadblock graphs like?

The Roadblock

If we can prove that a connected Cayley digraph on a dihedral group whose connection set consists of three reflections is Hamilton-lacebale, then my project can be carried out to completion. So what are these roadblock graphs like?

Given that the dihedral group is generated by ρ and τ, where $|\rho|=n,|\tau|=2$ and $\tau \rho \tau=\rho^{-1}$, we may assume the connection set for our Cayley graph is $\left\{\tau, \rho^{i} \tau, \rho^{j} \tau\right\}$.

The Roadblock

If we can prove that a connected Cayley digraph on a dihedral group whose connection set consists of three reflections is Hamilton-lacebale, then my project can be carried out to completion. So what are these roadblock graphs like?

Given that the dihedral group is generated by ρ and τ, where $|\rho|=n,|\tau|=2$ and $\tau \rho \tau=\rho^{-1}$, we may assume the connection set for our Cayley graph is $\left\{\tau, \rho^{i} \tau, \rho^{j} \tau\right\}$.

Let's take a look at what is happening. Start by considering the subgraph generated by τ and $\rho^{i} \tau$.

The Roadblock

$1 \bullet$	$\bullet \tau$
$\rho \bullet$	$\bullet \rho \tau$
$\rho^{2} \bullet$	$\bullet \rho^{2} \tau$
$\rho^{3} \bullet$	$\bullet \rho^{3} \tau$

Display the vertices of the Cayley graph as shown on the left. The left column has the vertices of the subgroup $\langle\rho\rangle$ and the right column has the vertices of the right coset $\langle\rho\rangle \tau$.

$$
\begin{array}{ll}
\rho^{n-2} \bullet & \bullet \rho^{n-2} \tau \\
\rho^{n-1} \bullet & \bullet \rho^{n-1} \tau
\end{array}
$$

The Roadblock

$1 \bullet$	$\bullet \tau$
$\rho \bullet$	$\bullet \rho \tau$
$\rho^{2} \bullet$	$\bullet \rho^{2} \tau$
$\rho^{3} \bullet$	$\bullet \rho^{3} \tau$

Display the vertices of the Cayley graph as shown on the left. The left column has the vertices of the subgroup $\langle\rho\rangle$ and the right column has the vertices of the right coset $\langle\rho\rangle \tau$.

Let's now examine the subgraph given by the elements τ and $\rho^{i} \tau$.
$\rho^{n-2} \bullet \quad \bullet \rho^{n-2} \tau$
ρ^{n-1} 。

- $\rho^{n-1} \tau$

The Roadblock

The beginning of a cycle C generated by τ and $\rho^{i} \tau$ tells us exactly what is happening. The cosets are cyclically labelled and we are jumping by i each time return to a coset.

The Roadblock

The beginning of a cycle C generated by τ and $\rho^{i} \tau$ tells us exactly what is happening. The cosets are cyclically labelled and we are jumping by i each time return to a coset.

Thus, there are $\operatorname{gcd}(n, i)$ cycles comprising the graph so each has length $\frac{2 n}{\operatorname{gcd}(n, i)}$.

The Roadblock

The subgraph generated by $\rho^{i} \tau$ and τ is connected if and only if $\operatorname{gcd}(n, i)=1$. So when there are two or more cycles, the third element $\rho^{j} \tau$ must connect the cycles together if the graph is to be connected.

The Roadblock

The subgraph generated by $\rho^{i} \tau$ and τ is connected if and only if $\operatorname{gcd}(n, i)=1$. So when there are two or more cycles, the third element $\rho^{j} \tau$ must connect the cycles together if the graph is to be connected.

The element $\rho^{j} \tau$ generates an edge joining 1 in C and $\rho^{j} \tau$ in another cycle C^{\prime}. Note that $\rho^{j} \tau$ generates an edge from ρ^{i} to $\rho^{j+i} \tau$, but this vertex also lies in C^{\prime}. So we see that the edges generated by $\rho^{j} \tau$ join the vertices of C that lie in $\langle\rho\rangle$ to the vertices of C^{\prime} that lie in $\langle\rho\rangle \tau$.

The Roadblock

The subgraph generated by $\rho^{i} \tau$ and τ is connected if and only if $\operatorname{gcd}(n, i)=1$. So when there are two or more cycles, the third element $\rho^{j} \tau$ must connect the cycles together if the graph is to be connected.

The element $\rho^{j} \tau$ generates an edge joining 1 in C and $\rho^{j} \tau$ in another cycle C^{\prime}. Note that $\rho^{j} \tau$ generates an edge from ρ^{i} to $\rho^{j+i} \tau$, but this vertex also lies in C^{\prime}. So we see that the edges generated by $\rho^{j} \tau$ join the vertices of C that lie in $\langle\rho\rangle$ to the vertices of C^{\prime} that lie in $\langle\rho\rangle \tau$.

Let's now draw this type of graph in a different manner which then yields a "familiar" family.

The Roadblock

Draw two cycles vertically that are joined by $\rho^{j} \tau$-edges.

The Roadblock

Draw two cycles vertically that are joined by $\rho^{j} \tau$-edges. Insert the $\rho^{j} \tau$-edges.

The Roadblock

Draw two cycles vertically that are joined by $\rho^{j} \tau$-edges. Insert the $\rho^{j} \tau$-edges.

If there is another cycle, then it looks like this.

The Roadblock

Draw two cycles vertically that are joined by $\rho^{j} \tau$-edges. Insert the $\rho^{j} \tau$-edges.

If there is another cycle, then it looks like this.

The next cycle then looks as shown.

The Roadblock

Draw two cycles vertically that are joined by $\rho^{j} \tau$-edges. Insert the $\rho^{j} \tau$-edges.

If there is another cycle, then it looks like this.
The next cycle then looks as shown.
Upon reaching the last cycle, it is joined to to the first cycle by $\rho^{j} \tau$ edges but it is an arbitrary constant jump.

The Roadblock

Draw two cycles vertically that are joined by $\rho^{j} \tau$-edges. Insert the $\rho^{j} \tau$-edges.

If there is another cycle, then it looks like this.
The next cycle then looks as shown.
Upon reaching the last cycle, it is joined to to the first cycle by $\rho^{j} \tau$ edges but it is an arbitrary constant jump.

Here the jump is 2 and we have an embedding on the torus. It is a regular $(6,3)$ map.

Honeycomb Toroidal Graphs

This is the family graphs we are considering and the preceding description is how we view them. They are called honeycomb toroidal graphs and are described as $\operatorname{HTG}(m, n, \ell)$, where m is the number of vertical cycles, n is the length of the cycles so that $n \geq 4$ and is even, and ℓ is the jump from the last cycle to the first.

Honeycomb Toroidal Graphs

The people in computer science working with this
 family of graphs knew they are vertex-transitive.

Honeycomb Toroidal Graphs

The people in computer science working with this
 family of graphs knew they are vertex-transitive. Let's show that they are Cayley graphs.

Honeycomb Toroidal Graphs

The people in computer science working with this
 family of graphs knew they are vertex-transitive. Let's show that they are Cayley graphs.
The permutation $f\left(u_{i, j}\right)=u_{i, j+2}$ clearly is an automorphism.

Honeycomb Toroidal Graphs

The people in computer science working with this
 family of graphs knew they are vertex-transitive. Let's show that they are Cayley graphs.
The permutation $f\left(u_{i, j}\right)=u_{i, j+2}$ clearly is an automorphism.
The permutation $g\left(u_{i, j}\right)=u_{i+1, j+1}, i<m-1$, and $g\left(u_{m-1, j}\right)=u_{0, j+\ell+1}$ is an automorphism.

Honeycomb Toroidal Graphs

The people in computer science working with this
 family of graphs knew they are vertex-transitive. Let's show that they are Cayley graphs.

The permutation $f\left(u_{i, j}\right)=u_{i, j+2}$ clearly is an automorphism.
The permutation $g\left(u_{i, j}\right)=u_{i+1, j+1}, i<m-1$, and $g\left(u_{m-1, j}\right)=u_{0, j+\ell+1}$ is an automorphism.

Note that $f g=g f$ so that $\langle f, g\rangle$ is an abelian group with two orbits. Because the restriction of $\langle f, g\rangle$ to an orbit is faithful, $|\langle f, g\rangle|=\frac{m n}{2}$.

Honeycomb Toroidal Graphs

The people in computer science working with this
 family of graphs knew they are vertex-transitive. Let's show that they are Cayley graphs.

The permutation $f\left(u_{i, j}\right)=u_{i, j+2}$ clearly is an automorphism.
The permutation $g\left(u_{i, j}\right)=u_{i+1, j+1}, i<m-1$, and $g\left(u_{m-1, j}\right)=u_{0, j+\ell+1}$ is an automorphism.
Note that $f g=g f$ so that $\langle f, g\rangle$ is an abelian group with two orbits. Because the restriction of $\langle f, g\rangle$ to an orbit is faithful, $|\langle f, g\rangle|=\frac{m n}{2}$.
There is an involution τ interchanging the two orbits and satisfying $\tau f \tau=f^{-1}$ and $\tau g \tau=g^{-1}$. Thus, $\langle f, g, \tau\rangle$ is a regular group.

Honeycomb Toroidal Graphs

Theorem. (Alspach and Dean, 2009). Honeycomb toroidal graphs are Cayley graphs on generalized dihedral groups.

Honeycomb Toroidal Graphs

Theorem. (Alspach and Dean, 2009). Honeycomb toroidal graphs are Cayley graphs on generalized dihedral groups.

Now let's look at the hamiltonicity project. Use $\operatorname{HTG}(m, 24,6)$ as an example.

Hamiltonicity Project

Hamiltonicity Project

Suppose we want a Hamilton path joining the two vertices shown.

Hamiltonicity Project

Suppose we want a Hamilton path joining the two vertices shown.

Start as shown and note that it closes off to a cycle before we reach our target vertex.

Hamiltonicity Project

Suppose we want a Hamilton path joining the two vertices shown.

Start as shown and note that it closes off to a cycle before we reach our target vertex.

Remove the edge shown from the cycle and move up to the next cycle. Here we end up with a path to the target vertex but it is not a Hamilton path.

Hamiltonicity Project

Suppose we want a Hamilton path joining the two vertices shown.

Start as shown and note that it closes off to a cycle before we reach our target vertex.

Remove the edge shown from the cycle and move up to the next cycle. Here we end up with a path to the target vertex but it is not a Hamilton path.

Alter the path along the top two horizontal edges as shown. Do the same for the other two gaps to obtain a desired Hamilton path.

Hamiltonicity Project

Hamiltonicity Project

Suppose you want to add two columns between the the first and second column.

Hamiltonicity Project

Suppose you want to add two columns between the the first and second column.

Change the horizontal 3 -paths as shown next.

Hamiltonicity Project

Suppose you want to add two columns between the the first and second column.

Change the horizontal 3 -paths as shown next.
We now have a Hamilton path joining them.

Hamiltonicity Project

Suppose you want to add two columns between the the first and second column.

Change the horizontal 3-paths as shown next.
We now have a Hamilton path joining them.
Suppose we now wish to add two columns to the right of the target vertex.

Hamiltonicity Project

Suppose you want to add two columns between the the first and second column.

Change the horizontal 3-paths as shown next.
We now have a Hamilton path joining them.
Suppose we now wish to add two columns to the right of the target vertex.

Detach and reattach the jump edges as shown.

Hamiltonicity Project

Suppose you want to add two columns between the the first and second column.

Change the horizontal 3-paths as shown next.
We now have a Hamilton path joining them.
Suppose we now wish to add two columns to the right of the target vertex.

Detach and reattach the jump edges as shown.
Fill in to capture all the vertices as shown.

Hamiltonicity Project

It is a little more complicated when the target vertex is in the first column to obtain an extendable Hamilton path starting with $m=2$, but it is possible to do so.

Hamiltonicity Project

It is a little more complicated when the target vertex is in the first column to obtain an extendable Hamilton path starting with $m=2$, but it is possible to do so.

Theorem (Alspach, Chen and Dean, 2010) The honeycomb toroidal graph $\operatorname{HTG}(m, n, \ell)$ is Hamilton-laceable whenever m is even.

Corollary. If X is a connected Cayley graph of valency at least 3 on a generalized dihedral group whose order is divisible by 4 , then X is Hamilton-laceable if it is bipartite or Hamilton-connected if it is not bipartite.

Hamiltonicity Project

The situation for m odd is still up in the air although if the analogous result is true for $m=1$, then it is true for all odd m which would, of course, settle the problem.

Hamiltonicity Project

The situation for m odd is still up in the air although if the analogous result is true for $m=1$, then it is true for all odd m which would, of course, settle the problem.
Sean McGuinness has shown that if $n \geq 4 \ell^{2}$, then $\operatorname{HTG}(m, n, \ell)$ is Hamilton-laceable (unpublished).

Hamiltonicity Project

The situation for m odd is still up in the air although if the analogous result is true for $m=1$, then it is true for all odd m which would, of course, settle the problem.
Sean McGuinness has shown that if $n \geq 4 \ell^{2}$, then $\operatorname{HTG}(m, n, \ell)$ is Hamilton-laceable (unpublished).

In some sense $m=1$ is a degenerate case, but there are important graphs in the special family. For example, the Heawood graph is $\operatorname{HTG}(1,14,5)$.

Hamiltonicity Project

The situation for m odd is still up in the air although if the analogous result is true for $m=1$, then it is true for all odd m which would, of course, settle the problem.
Sean McGuinness has shown that if $n \geq 4 \ell^{2}$, then $\operatorname{HTG}(m, n, \ell)$ is Hamilton-laceable (unpublished).

In some sense $m=1$ is a degenerate case, but there are important graphs in the special family. For example, the Heawood graph is $\operatorname{HTG}(1,14,5)$.

A nice way to describe this special family is to start with a Hamilton cycle of even length n. Then choose an odd integer $\ell \leq n / 2$ and join every even labelled vertex (assuming they are labelled cyclically using $0,1, \ldots, n-1$) i to $i+\ell$.

Computer Science Viewpoint

Computer Science Viewpoint

Three particular graphs have been studied and given names based on how they usually are drawn.

Computer Science Viewpoint

Three particular graphs have been studied and given names based on how they usually are drawn.

The three just pictured are called hexagonal honeycomb tori and simply are $\operatorname{HTG}(m, 6 m, 3 m)$ in our notation.

Computer Science Viewpoint

Three particular graphs have been studied and given names based on how they usually are drawn.

The three just pictured are called hexagonal honeycomb tori and simply are $\operatorname{HTG}(m, 6 m, 3 m)$ in our notation.

The rectangular honeycomb torus is just $\operatorname{HTG}(m, n, 0)$ which forces m to be even.

Computer Science Viewpoint

Three particular graphs have been studied and given names based on how they usually are drawn.

The three just pictured are called hexagonal honeycomb tori and simply are $\operatorname{HTG}(m, 6 m, 3 m)$ in our notation.

The rectangular honeycomb torus is just $\operatorname{HTG}(m, n, 0)$ which forces m to be even.

The rhombic honeycomb torus is $\operatorname{HTG}(m, 2 m, m), m \geq 2$.

Connectivity

Every vertex-transitive graph has edge connectivity equal to its valency. Thus, $\operatorname{HTG}(m, n, \ell)$ is 3-edge-connected.

Connectivity

Every vertex-transitive graph has edge connectivity equal to its valency. Thus, $\operatorname{HTG}(m, n, \ell)$ is 3-edge-connected.

The vertex connectivity of a Cayley graph is strictly greater than two-thirds of its valency. Thus, $\operatorname{HTG}(m, n, \ell)$ is 3 -connected.

Connectivity

Every vertex-transitive graph has edge connectivity equal to its valency. Thus, $\operatorname{HTG}(m, n, \ell)$ is 3-edge-connected.

The vertex connectivity of a Cayley graph is strictly greater than two-thirds of its valency. Thus, $\operatorname{HTG}(m, n, \ell)$ is 3 -connected.

The importance of the preceding results is that between any two distinct vertices of $\operatorname{HTG}(m, n, \ell)$ there are three internally disjoint paths joining them and there are three edge-disjoint paths joining them. This is of interest because of how many faults the network can tolerate.

Cycle Spectrum

It is clear that honeycomb toroidal graphs have only even length cycles because they are bipartite. They also have 6-cycles so that they have girth at most 6 . However, some have girth 4 and we know exactly when.

Cycle Spectrum

It is clear that honeycomb toroidal graphs have only even length cycles because they are bipartite. They also have 6 -cycles so that they have girth at most 6 . However, some have girth 4 and we know exactly when.

Proposition (Alspach and Connor, 2017). The honeycomb toroidal graph $\operatorname{HTG}(m, n, \ell)$ has girth 4 if and only if it satisfies one of the following conditions:

- $n=4$,
- $m=1$ and $\ell \in\{3, n-3\}$,
- $m=1, n \equiv 0(\bmod 4)$ and $\ell \in\{n / 2-1, n / 2+1\}$,
- $m=1, n \equiv 2(\bmod 4)$ and $\ell=n / 2$, and
- $m=2$ and $\ell \in\{0,2, n-2\}$.

Otherwise, it has girth 6.

Cycle Spectrum

A graph is even pancyclic if it has cycles of all even lengths from 4 through $2\lfloor n / 2\rfloor$.

Cycle Spectrum

A graph is even pancyclic if it has cycles of all even lengths from 4 through $2\lfloor n / 2\rfloor$.

A connected bipartite Cayley graph of valency at least 3 on an abelian group is even pancyclic so that we expect honeycomb toroidal graphs to be rich in even length cycles as the underlying group is "close" to being abelian.

Cycle Spectrum

A graph is even pancyclic if it has cycles of all even lengths from 4 through $2\lfloor n / 2\rfloor$.

A connected bipartite Cayley graph of valency at least 3 on an abelian group is even pancyclic so that we expect honeycomb toroidal graphs to be rich in even length cycles as the underlying group is "close" to being abelian.

I had Josh Connor look at this problem for his AMSI Summer Research Project over the 2017-2018 break.

Cycle Spectrum

Theorem (Connor, 2018). The honeycomb toroidal graph $\operatorname{HTG}(m, n, \ell)$ has cycles of all lengths r, where $r \equiv 2(\bmod 4)$ and $6 \leq r \leq m n$.

Cycle Spectrum

Theorem (Connor, 2018). The honeycomb toroidal graph HTG (m, n, ℓ) has cycles of all lengths r, where $r \equiv 2(\bmod 4)$ and $6 \leq r \leq m n$.

We did not obtain an answer for what is happening with cycles of lengths $r \equiv 0(\bmod 4)$. We found examples of honeycomb toroidal graphs missing various lengths of this type. This was even true for those that have girth 4.

Cycle Spectrum

Theorem (Connor, 2018). The honeycomb toroidal graph $\operatorname{HTG}(m, n, \ell)$ has cycles of all lengths r, where $r \equiv 2(\bmod 4)$ and $6 \leq r \leq m n$.

We did not obtain an answer for what is happening with cycles of lengths $r \equiv 0(\bmod 4)$. We found examples of honeycomb toroidal graphs missing various lengths of this type. This was even true for those that have girth 4.

Research Problem: Determine the cycle lengths occurring in honeycomb toroidal graphs.

Paths

Diameter is a graph parameter of interest because it gives a lower bound on the time required to propogate a message to all the vertices of a graph. This parameter has been studied but primarily for the particular honeycomb toroidal graphs that have been consider by researchers in computer architecture.

Paths

Diameter is a graph parameter of interest because it gives a lower bound on the time required to propogate a message to all the vertices of a graph. This parameter has been studied but primarily for the particular honeycomb toroidal graphs that have been consider by researchers in computer architecture.

Theorem (Yang, 2004). The diameter of $\operatorname{HTG}(m, 2 m, m)$ is

- 【4m $\rfloor\rfloor$ when $m \equiv 1,4(\bmod 6)$, and
- $\left\lceil\frac{4 m}{3}\right\rceil$ otherwise.

Paths

Diameter is a graph parameter of interest because it gives a lower bound on the time required to propogate a message to all the vertices of a graph. This parameter has been studied but primarily for the particular honeycomb toroidal graphs that have been consider by researchers in computer architecture.

Theorem (Yang, 2004). The diameter of $\operatorname{HTG}(m, 2 m, m)$ is

- ไ4m 3\rfloor when $m \equiv 1,4(\bmod 6)$, and
- $\left\lceil\frac{4 m}{3}\right\rceil$ otherwise.

Theorem (Stojmenovic, 1997). The diameter of $\operatorname{HTG}(m, 6 m, 3 m)$ is 2 m .

Paths

Theorem. The diameter of $\operatorname{HTG}(m, n, 0)$ is $(m+n) / 2$ when $n \geq m$ and is m otherwise.

Paths

Theorem. The diameter of $\operatorname{HTG}(m, n, 0)$ is $(m+n) / 2$ when $n \geq m$ and is m otherwise.

Research Problem: Determine the diameter of an arbitrary $\operatorname{HTG}(m, n, \ell)$.

Path Lengths

If the distance between two vertices $u, v \in \operatorname{HTG}(m, n, \ell)$ is L, then it's possible there could be paths of all lengths $L, L+2, \ldots$, through $m n$ or $m n-1$ depending on the parity of L.

Path Lengths

If the distance between two vertices $u, v \in \operatorname{HTG}(m, n, \ell)$ is L, then it's possible there could be paths of all lengths $L, L+2, \ldots$, through $m n$ or $m n-1$ depending on the parity of L.

This problem has been studied but in a very limited way. That suggests
Research Problem: Study the path length spectrum problem for honeycomb toroidal graphs.

Other Parameters

There are other parameters associated with these highly symmetric graphs of small valency in which the computer scientists working in this area have an interest. They either have been investigated almost not at all or just for the special honeycomb toroidal graphs mentioned earlier.

Thank You

