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Theorem (B. Kerékjártó (1941))

Every triply transitive group of continuous transformations of the
circle or the sphere is permutationally isomorphic to

PGL(2,R) (circle)

PGL(2,C) or PGL(2,C) o (complex conj.) (sphere).
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Theorem (T. G. Ostrom and A. Wagner (1959))

A finite projective plane admitting a doubly transitive group of
automorphisms is Desarguesian.

Quote: W. M. Kantor (1993)1

“This was the first time 2-transitivity produced a complete classification of
finite geometries. Since then the notion of a geometric classification in terms of
a group-theoretic hypothesis has become commonplace. That was not the case
35 years ago, and it is a measure of these papers’ influence that this type of
hypothesis is now regarded as a natural extension of Klein’s Erlangen program.”

1‘2-transitive and flag-transitive designs’, Coding theory, design theory,
group theory (Burlington, VT), 13–30, Wiley.
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Theorem (R. Moufang (1932/33); G. Pickert (1955))

Let Γ be a projective plane and let G 6 Aut(Γ). If for every line `,
G(`) acts transitively on the points of Γ \ `,
then Γ can be coordinatised by an alternative division ring.

point-wise stabiliser of `
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Flag

D. G. Higman & J. E. McLaughlin (1961)

Let Γ be a linear space and G 6 Aut(Γ).

G transitive on flags =⇒ G primitive on points.

Primitive

G 6 Sym(Ω) does not preserve a partition of Ω, except the trivial ones:

{Ω}
{{ω} : ω ∈ Ω}

2-transitive =⇒ 2-homogeneous =⇒ primitive =⇒ quasiprimitive

=⇒ innately transitive =⇒ semiprimitive =⇒ transitive

John Bamberg Symmetric Finite Generalised Polygons



W. M. Kantor (1987)

A projective plane π of order x admitting a point-primitive
automorphism group G is Desarguesian and G > PSL(3, x), or else
G is boring2.

K. Thas and Zagier 2008

A non-Desarguesian projective plane π with Aut(π) point-primitive
has at least 4× 1022 points.

2The number of points (x2 + x + 1) is a prime and G is a regular or
Frobenius group of order dividing (x2 + x + 1)(x + 1) or (x2 + x + 1)x .

John Bamberg Symmetric Finite Generalised Polygons



B. Xia (2018)

If there is a finite non-Desarguesian flag-transitive projective plane
of order x with v = x2 + x + 1 points, then

v is prime with m ≡ 8 (mod 24), and

there exists a finite field F of characteristic 3, and m
elements, satisfying certain polynomial equations.
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N. Gill (2016)

If G acts transitively on a finite non-Desarguesian projective plane,
then

the Sylow 2-subgroups of G are cyclic or generalised
quaternion, and

if G is insoluble, then G/O(G ) ∼= SL2(5),SL2(5).2.

Conjecture; D. Hughes (1959)

A finite projective plane with a transitive automorphism group is
Desarguesian.
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J. Tits, 1959
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Generalised polygons
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Generalised n-gon:
Incidence graph has girth = 2× diameter = 2n.

Feit-Higman Theorem (1964):
Thick =⇒ n ∈ {2, 3, 4, 6, 8}.
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Generalised polygons

Equivalent definition

(i) there are no ordinary k-gons for 2 6 k < n,

(ii) any two elements are contained in some ordinary n-gon.

order (s, t)

every line has s + 1 points,
every point lies on t + 1 lines.

thick if s, t > 2.
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Classical examples

3 projective planes

Desarguesian planes → PSL(3, q).

4 generalised quadrangles

polar spaces associated with PSp(4, q),
PSU(4, q) and PSU(5, q), and their duals.

6 generalised hexagons

geometries for G2(q) and 3D4(q).

8 generalised octagons

geometries for 2F4(q).

Many other examples of projective planes and generalised
quadrangles known.
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Importance

Building blocks of a building.

Important to groups of Lie type, in many ways.

Missing piece of the classification of spherical buildings.

Many connections to other things in finite geometry and
combinatorics.
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Symmetry

‘Classical’ =⇒
Moufang, flag-transitive, point-primitive, and line-primitive.

Moufang for generalised quadrangles

For each path (v0, v1, v2, v3), the group G
[1]
v0 ∩ G

[1]
v1 ∩ G

[1]
v2 acts

transitively on Γ(v3) \ {v2}.

G
[1]
vi is the kernel of the action of Gvi on Γ(vi ).
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Projective planes

2-transitive

Flag-transitive

Point-primitive

Point-transitive

Moufang

Antiflag-transitive

John Bamberg Symmetric Finite Generalised Polygons



Projective planes

2-transitive

Flag-transitive

Point-primitive

Point-transitive

Moufang

Antiflag-transitive

Classical (Ostrom-Wagner 1959)
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Projective planes

2-transitive

Flag-transitive

Point-primitive

Point-transitive

Moufang

Antiflag-transitive

Classical (Ostrom-Wagner 1959)

Classical or small group (Kantor 1987)

Classical or small group (Kantor 1987)

Classical or some control over minimal
normal subgroups (Gill 2007,2016)
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Generalised quadrangles

Rank 3 on points

Flag-transitive

Point or line primitive

Point-distance-transitive

Point and line dist.-transitive

1
2
-Moufang

Moufang

Antiflag-transitive

Locally 2-transitive

Buekenhout, Van Maldeghem (1994)

Kantor (1991)

B., Li, Swartz (2018)

B., Li, Swartz (2019+)

Thas,Thas,VM (1991)

Fong, Seitz (1973)
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The generalised quadrangle of order (3, 5)

Derived from Sp(4, 4)-GQ.

Automorphism group: 26 : (3.A6.2).

Point-primitive

Flag-transitive

Line-imprimitive

• G
G  (G) p G

p p

H(q)

H(2) H(2)D

GQ(3, 5)

Picture courtesy of James Evans.
John Bamberg Symmetric Finite Generalised Polygons



General results

Fong and Seitz (1973)
A finite thick generalised polygon satisfying the Moufang condition
is classical or dual classical.

Buekenhout-Van Maldeghem (1994)

A finite thick generalised polygon with a group acting
distance-transitively on points is classical or GQ(3, 5).

Distance-transitive =⇒ point-primitive.
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For generalised quadrangles

B., Giudici, Morris, Royle, Spiga (2012)
If G acts primitively on the points and lines of a thick GQ then:

G is almost simple3.

If G is also flag-transitive, then G is of Lie type.

Two known flag-transitive GQ’s that are point-primitive but
line-imprimitive:

GQ(3,5),

GQ of order (15,17) arising from Lunelli-Sce hyperoval.

3G has a unique minimal normal subgroup N, and N is a nonabelian simple
group: N E G 6 Aut(N)
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O’Nan-Scott in a nutshell

Theorem (The ‘O’Nan-Scott’ Theorem)

Suppose a finite permutation group G acts primitively on a set Ω.
Then one of the following occurs:

K Abelian

HA

K simple

CG (K) = 1

K regular

AS

HS

CG (K) = 1

Kα subdirect K

Kα simple

PA

TW

HC SD

CD
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(HC) K .Inn(K) E G 6 K .Aut(K)
Ω = K , holomorph action

(SD) K = T k E G 6 T k .(Out(T ) × Sk ),
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K Abelian

HAHA

K simple

CG (K) = 1

K regular

AS

HSHS

CG (K) = 1

Kα subdirect K

Kα simple

PA

TW

HCHC SD

CD

Point-primitive & line-transitive4

4B., Glasby, Popiel, Praeger 2017
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K Abelian

HAHAHA

K simple

CG (K) = 1

K regular

AS

HS

CG (K) = 1

Kα subdirect K

Kα simple

PA

TW

HCHC SD

CD

Point-primitive4

4B., Popiel, Praeger 2019
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K Abelian

HAHA

K simple

CG (K) = 1

K regular

ASAS

HSHS

CG (K) = 1

Kα subdirect K

Kα simple

PAPA

TWTW

HCHC SDSD

CDCD

Point-primitive (aim)
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B., Popiel, Praeger (2019)

If G acts primitively on the points of a thick GQ, not affine, then
one of the following occurs:

type soc(G) necessary conditions

HS T × T T has Lie type with Lie rank 6 7
SD T k T has Lie type with Lie rank 6 8,

or T = Altm with m 6 18, or T sporadic
CD (T k)r r 6 3; T has Lie type with Lie rank 6 3,

or T = Altm with m 6 9, or T sporadic
PA T r r 6 4;
AS, TW – some information on fixities

Remark

With some extra work, we think HS can be removed completely.
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Generalised hexagons and octagons

Schneider & Van Maldeghem (2008)
A group acting flag-transitively, point-primitively and
line-primitively on a generalised hexagon or octagon is almost
simple of Lie type.

B., Glasby, Popiel, Praeger, Schneider (2017)
A group acting point-primitively on a generalised hexagon or
octagon is almost simple of Lie type.

Morgan & Popiel (2016)
Moreover, if T 6 G 6 Aut(T ) with T simple, then

(i) T 6= 2B2(q) or 2G2(q);

(ii) if T = 2F4(q), then Γ is the classical generalised octagon or
its dual.
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Antiflag

Generalised quadrangle

Given an antiflag (P, `), there is a unique line m on P concurrent
with `.
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Theorem (B., Li, Swartz 2018)

Let Q be a finite thick generalised quadrangle and suppose
G 6 Aut(Q) acting transitively on the antiflags. Then Q is
classical or GQ(3, 5), GQ(5, 3).

strategy

G acts quasiprimitively on points OR lines.

G point-primitive & line-imprimitive =⇒ Q ∼= GQ(3, 5).

Reduce to G acting primitively on both points and lines of almost simple type.

|TP |3 > |T | where soc(G) = T ; use the characterisation result by Alavi and
Burness to determine possibilities for G and GP .
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Groups-on-graphs Geometry

Locally 3-arc transitive Antiflag transitive
Locally 2-arc transitive Transitive on collinear point-pairs and

concurrent line-pairs
Edge transitive Flag transitive
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Theorem (B., Li, Swartz (submitted))

If Q is a thick locally (G , 2)-transitive generalised quadrangle, then
one of the following holds:

Q ∼= GQ(3, 5),GQ(5, 3), or

Q is classical.

strategy

G acts quasiprimitively on points OR lines.

G point-quasiprimitive & line-nonquasiprimitive =⇒ Q ∼= GQ(3, 5).

Reduce to G acting primitively on points, almost simple type, socle of Lie type.

|TP |3 > |T | where soc(G) = T ; use the characterisation result by Alavi and
Burness to determine possibilities for G and GP .
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Open problems

1 Show that if G acts flag-transitive on a finite GQ, then G acts
primitively on points OR lines.

2 Are all point-primitive GQ’s point-distance-transitive?

3 Find new generalised hexagons and octagons.

4 Show that if G acts primitively on the points of a finite GQ,
and intransitively on the lines, then the G -orbits on lines
divide them in half. (James Evans)
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