Symmetric Finite Generalised Polygons

John Bamberg

Centre for the Mathematics of Symmetry and Computation, The University of Western Australia

Theorem (B. Kerékjártó (1941))

Every triply transitive group of continuous transformations of the circle or the sphere is permutationally isomorphic to

■ $PGL(2, \mathbb{R})$ (circle) ■ $PGL(2, \mathbb{C})$ or $PGL(2, \mathbb{C}) \rtimes$ (complex conj.) (sphere).

THEOREM (T. G. OSTROM AND A. WAGNER (1959))

A finite projective plane admitting a doubly transitive group of automorphisms is Desarguesian.

¹'2-transitive and flag-transitive designs', Coding theory, design theory, group theory (Burlington, VT), 13–30, Wiley.

THEOREM (T. G. OSTROM AND A. WAGNER (1959))

A finite projective plane admitting a doubly transitive group of automorphisms is Desarguesian.

QUOTE: W. M. KANTOR $(1993)^{1}$

"This was the first time 2-transitivity produced a complete classification of finite geometries. Since then the notion of a geometric classification in terms of a group-theoretic hypothesis has become commonplace. That was not the case 35 years ago, and it is a measure of these papers' influence that this type of hypothesis is now regarded as a natural extension of Klein's Erlangen program."

¹'2-transitive and flag-transitive designs', Coding theory, design theory, group theory (Burlington, VT), 13–30, Wiley.

THEOREM (R. MOUFANG (1932/33); G. PICKERT (1955))

Let Γ be a projective plane and let $G \leq \operatorname{Aut}(\Gamma)$. If for every line ℓ , $G_{(\ell)}$ acts transitively on the points of $\Gamma \setminus \ell$, then Γ can be coordinatised by an alternative division ring.

THEOREM (R. MOUFANG (1932/33); G. PICKERT (1955))

Let Γ be a projective plane and let $G \leq \operatorname{Aut}(\Gamma)$. If for every line ℓ , $G_{(\ell)}$ acts transitively on the points of $\Gamma \setminus \ell$, then Γ can be coordinatised by an alternative division ring.

point-wise stabiliser of ℓ

D. G. HIGMAN & J. E. MCLAUGHLIN (1961)

Let Γ be a linear space and $G \leq \operatorname{Aut}(\Gamma)$.

G transitive on flags \implies G primitive on points.

Primitive

- $G \leq \text{Sym}(\Omega)$ does not preserve a partition of Ω , except the trivial ones:
 - {Ω}
 - $\{\{\omega\} \colon \omega \in \Omega\}$

2-transitive \implies 2-homogeneous \implies primitive \implies quasiprimitive \implies innately transitive \implies semiprimitive \implies transitive

W. M. KANTOR (1987)

A projective plane π of order x admitting a point-primitive automorphism group G is Desarguesian and $G \ge PSL(3, x)$, or else G is boring².

K. Thas and Zagier 2008

A non-Desarguesian projective plane π with Aut(π) point-primitive has at least 4 \times 10²² points.

²The number of points $(x^2 + x + 1)$ is a prime and G is a regular or Frobenius group of order dividing $(x^2 + x + 1)(x + 1)$ or $(x^2 + x + 1)x$.

B. XIA (2018)

If there is a finite non-Desarguesian flag-transitive projective plane of order x with $v = x^2 + x + 1$ points, then

- v is prime with $m \equiv 8 \pmod{24}$, and
- there exists a finite field F of characteristic 3, and m elements, satisfying certain polynomial equations.

N. GILL (2016)

If G acts transitively on a finite non-Desarguesian projective plane, then

- the Sylow 2-subgroups of G are cyclic or generalised quaternion, and
- if G is insoluble, then $G/O(G) \cong SL_2(5), SL_2(5).2$.

N. GILL (2016)

If G acts transitively on a finite non-Desarguesian projective plane, then

- the Sylow 2-subgroups of G are cyclic or generalised quaternion, and
- if G is insoluble, then $G/O(G) \cong SL_2(5), SL_2(5).2$.

Conjecture; D. Hughes (1959)

A finite projective plane with a transitive automorphism group is Desarguesian.

J. TITS, 1959

SUR LA TRIALITÉ

ET CERTAINS GROUPES QUI S'EN DÉDUISENT

Par J. TITS

SOMMAIRE

	-
INTRODUCTION	14
Chapitre Premier. — Préliminaires, rappels	17
 Notations, terminologie Collinéations de période 3 dans les plans projectifs R-fincine de trialité 	17 18 21
CHAPITRE II. — Propriétés générales et classification des trialités	25
 4. Points, droites et plans remarquables 5. Équations, classifications 	25 30
CHAPITRE III. — Groupes des trialités de type I	36
 § 6. Définitions. Quelques sous-groupes § 7. Structure des groupes G et G⁺ § 8. Deux cas particuliers 	36 41 45
CHAPITRE IV. — Les trialités de type II	52
 § 9. Corps de caractéristique différente de 3 § 10. Corps de caractéristique 3 	52 54
Appendice	58
§ 11. Les polygones généralisés	58
Bibliographie	60

PAGES

GENERALISED POLYGONS

GENERALISED *n*-GON:

Incidence graph has girth = $2 \times \text{diameter} = 2n$.

GENERALISED POLYGONS

GENERALISED *n*-GON:

 $\begin{array}{ll} \mbox{Incidence graph has girth} = 2 \times \mbox{diameter} = 2n. \\ \mbox{Feit-Higman Theorem (1964):} \\ \mbox{Thick} \implies n \in \{2,3,4,6,8\}. \end{array}$

Equivalent definition

- (I) there are no ordinary k-gons for $2 \leq k < n$,
- (II) any two elements are contained in some ordinary *n*-gon.

EQUIVALENT DEFINITION

- (I) there are no ordinary k-gons for $2 \leq k < n$,
- (II) any two elements are contained in some ordinary *n*-gon.

```
order (s, t)
every line has s + 1 points,
every point lies on t + 1 lines.
thick if s, t ≥ 2.
```

CLASSICAL EXAMPLES

3 projective planes

4 generalised quadrangles

6 generalised hexagons

8 generalised octagons

3 projective planes Desarguesian planes → PSL(3, q).
4 generalised quadrangles polar spaces associated with PSp(4, q), PSU(4, q) and PSU(5, q), and their duals.
6 generalised hexagons geometries for G₂(q) and ³D₄(q).
8 generalised octagons

geometries for ${}^{2}F_{4}(q)$.

 3 projective planes
 Desarguesian planes → PSL(3, q).

 4 generalised quadrangles
 polar spaces associated with PSp(4, q), PSU(4, q) and PSU(5, q), and their duals.

 6 generalised hexagons
 geometries for G₂(q) and ³D₄(q).

 8 generalised octagons
 geometries for ²F₄(q).

Many other examples of projective planes and generalised quadrangles known.

MARKETPLACE > ART > MATHEMATICAL ART >

- Building blocks of a building.
- Important to groups of Lie type, in many ways.
- Missing piece of the classification of spherical buildings.
- Many connections to other things in finite geometry and combinatorics.

'Classical' \implies

Moufang, flag-transitive, point-primitive, and line-primitive.

MOUFANG FOR GENERALISED QUADRANGLES

For each path (v_0, v_1, v_2, v_3) , the group $G_{v_0}^{[1]} \cap G_{v_1}^{[1]} \cap G_{v_2}^{[1]}$ acts transitively on $\Gamma(v_3) \setminus \{v_2\}$.

 $G_{v_i}^{[1]}$ is the kernel of the action of G_{v_i} on $\Gamma(v_i)$.

PROJECTIVE PLANES

PROJECTIVE PLANES

PROJECTIVE PLANES

The generalised quadrangle of order (3, 5)

- Derived from Sp(4, 4)-GQ.
- Automorphism group: 2^6 : $(3.A_6.2)$.
- Point-primitive
- Flag-transitive
- Line-imprimitive

Picture courtesy of James Evans.

John Bamberg

Symmetric Finite Generalised Polygons

Fong and Seitz (1973)

A finite thick generalised polygon satisfying the Moufang condition is classical or dual classical.

Fong and Seitz (1973)

A finite thick generalised polygon satisfying the Moufang condition is classical or dual classical.

BUEKENHOUT-VAN MALDEGHEM (1994)

 A finite thick generalised polygon with a group acting distance-transitively on points is classical or GQ(3,5).

Fong and Seitz (1973)

A finite thick generalised polygon satisfying the Moufang condition is classical or dual classical.

BUEKENHOUT-VAN MALDEGHEM (1994)

- A finite thick generalised polygon with a group acting distance-transitively on points is classical or GQ(3,5).
- Distance-transitive \implies point-primitive.

B., GIUDICI, MORRIS, ROYLE, SPIGA (2012)If *G* acts primitively on the points and lines of a thick GQ then:

- G is almost simple³.
- If G is also flag-transitive, then G is of Lie type.

³G has a unique minimal normal subgroup N, and N is a nonabelian simple group: $N \leq G \leq \operatorname{Aut}(N)$

B., GIUDICI, MORRIS, ROYLE, SPIGA (2012) If G acts primitively on the points and lines of a thick GQ then:

- *G* is almost simple³.
- If G is also flag-transitive, then G is of Lie type.

Two known flag-transitive GQ's that are point-primitive but line-imprimitive:

- GQ(3,5),
- GQ of order (15,17) arising from Lunelli-Sce hyperoval.

³*G* has a unique minimal normal subgroup *N*, and *N* is a nonabelian simple group: $N \leq G \leq \operatorname{Aut}(N)$

O'NAN-SCOTT IN A NUTSHELL

THEOREM (THE 'O'NAN-SCOTT' THEOREM)

Suppose a finite permutation group G acts primitively on a set Ω . Then one of the following occurs:

O'NAN-SCOTT IN A NUTSHELL

THEOREM (THE 'O'NAN-SCOTT' THEOREM)

Suppose a finite permutation group G acts primitively on a set Ω . Then one of the following occurs:

⁴B., Glasby, Popiel, Praeger 2017

JOHN BAMBERG SYMMETRIC FINITE GENERALISED POLYGONS

⁴B., Popiel, Praeger 2019

B., POPIEL, PRAEGER (2019)

If G acts primitively on the points of a thick GQ, not affine, then one of the following occurs:

type	soc(G)	necessary conditions
HS	$T \times T$	${\cal T}$ has Lie type with Lie rank \leqslant 7
SD	T^k	${\mathcal T}$ has Lie type with Lie rank \leqslant 8,
		or $T = Alt_m$ with $m \leq 18$, or T sporadic
CD	$(T^k)^r$	$r \leq 3$; T has Lie type with Lie rank ≤ 3 ,
		or $T = Alt_m$ with $m \leqslant 9$, or T sporadic
PA	T^r	$r \leqslant 4;$
AS, TW	-	some information on fixities

Remark

With some extra work, we think HS can be removed completely.

SCHNEIDER & VAN MALDEGHEM (2008) A group acting flag-transitively, point-primitively and line-primitively on a generalised hexagon or octagon is almost simple of Lie type. SCHNEIDER & VAN MALDEGHEM (2008) A group acting flag-transitively, point-primitively and line-primitively on a generalised hexagon or octagon is almost simple of Lie type.

B., GLASBY, POPIEL, PRAEGER, SCHNEIDER (2017) A group acting point-primitively on a generalised hexagon or octagon is almost simple of Lie type. SCHNEIDER & VAN MALDEGHEM (2008) A group acting flag-transitively, point-primitively and line-primitively on a generalised hexagon or octagon is almost simple of Lie type.

B., GLASBY, POPIEL, PRAEGER, SCHNEIDER (2017) A group acting point-primitively on a generalised hexagon or octagon is almost simple of Lie type.

MORGAN & POPIEL (2016) Moreover, if $T \leq G \leq Aut(T)$ with T simple, then

(I)
$$T \neq {}^{2}B_{2}(q)$$
 or ${}^{2}G_{2}(q)$;

(II) if $T = {}^{2}F_{4}(q)$, then Γ is the classical generalised octagon or its dual.

ANTIFLAG

ANTIFLAG

GENERALISED QUADRANGLE

Given an antiflag (P, ℓ) , there is a unique line *m* on *P* concurrent with ℓ .

ANTIFLAG

GENERALISED QUADRANGLE

Given an antiflag (P, ℓ) , there is a unique line *m* on *P* concurrent with ℓ .

THEOREM (B., LI, SWARTZ 2018)

Let Q be a finite thick generalised quadrangle and suppose $G \leq \operatorname{Aut}(Q)$ acting transitively on the antiflags. Then Q is classical or GQ(3,5), GQ(5,3).

STRATEGY

- G acts quasiprimitively on points OR lines.
- G point-primitive & line-imprimitive $\implies Q \cong GQ(3,5)$.
- Reduce to G acting primitively on both points and lines of almost simple type.
- $|T_P|^3 > |T|$ where soc(G) = T; use the characterisation result by Alavi and Burness to determine possibilities for G and G_P .

GROUPS-ON-GRAPHS	Geometry
Locally 3-arc transitive Locally 2-arc transitive	Antiflag transitive Transitive on collinear point-pairs and
Edge transitive	concurrent line-pairs Flag transitive

THEOREM (B., LI, SWARTZ (SUBMITTED))

If Q is a thick locally (G, 2)-transitive generalised quadrangle, then one of the following holds:

- $Q \cong GQ(3,5), GQ(5,3), or$
- Q is classical.

STRATEGY

- G acts quasiprimitively on points OR lines.
- G point-quasiprimitive & line-nonquasiprimitive $\implies Q \cong GQ(3,5)$.
- Reduce to G acting primitively on points, almost simple type, socle of Lie type.
- $|T_P|^3 > |T|$ where soc(G) = T; use the characterisation result by Alavi and Burness to determine possibilities for G and G_P .

- Show that if G acts flag-transitive on a finite GQ, then G acts primitively on points OR lines.
- 2 Are all point-primitive GQ's point-distance-transitive?
- 3 Find new generalised hexagons and octagons.
- Show that if G acts primitively on the points of a finite GQ, and intransitively on the lines, then the G-orbits on lines divide them in half.
 (James Evans)