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plan

(1) IFS, attractor A ,points π(σ) and addresses σ ∈ Σ,
golden b

(2) T, tilings Π(θ), and addresses θ ∈ Σ†

(3) π ×Π : Σ× Σ† → A×T

(4) rigidity, recognizability, deflation α and inflation α−1

(5) subshifts of finite type, graph IFS, and Markov
measures
(6) three examples, pedal triangle, golden bsquare,
fish-horn
(7) key theorem and action of the group of isometries
(8) shift invariant measures and their relation to
disjunctive points
(9) the big picture
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Π(θ) for θ ∈ Σ

given θ ∈ Σ†, how to construct Π(θ)

Π(θ|k) = f−θ|k {π(σ) : ξ− (σ) ≤ ξ (θ) < ξ (σ)}
Theorem: Π(θ|0) ⊂ Π(θ|1) ⊂ Π(θ|2)...
tiling metric
illustrate for the golden b
applies to any OSC IFS
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(6) Examples

robinson, golden bsquare, fish-horn, purely fractal
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