# Coxeter systems for which the Brink-Howlett automaton is minimal.

James Parkinson and Yeeka Yau



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

#### INTRODUCTION Coxeter Groups Automata: What and Why

#### THE BRINK-HOWLETT AUTOMATON $A_{BH}$ Geometric Representation of Coxeter Groups The Root System

MINIMALITY OF  $A_{BH}$ Main Result Outline of Proof

## COXETER SYSTEMS

► Recall: A Coxeter System is a pair (W, S) consisting of a group W and a set of generators S ⊂ W subject only to relations of the form

$$(st)^{m(s,t)} = 1$$

where m(s,s) = 1 and  $m(t,s) = m(s,t) \ge 2$  for  $s \ne t$ . ( $m(s,t) = \infty$  is allowed).

## EXAMPLES

Symmetry groups of regular polytopes

### EXAMPLES

- Symmetry groups of regular polytopes
- Weyl groups of simple Lie algebras

## EXAMPLES

- Symmetry groups of regular polytopes
- Weyl groups of simple Lie algebras
- Triangle groups corresponding to tessellations of the Euclidean/Hyperbolic plane.





## PRELIMINARIES ON COXETER GROUPS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

## PRELIMINARIES ON COXETER GROUPS

▶ The **length** of an element w,  $\ell(w)$  is the smallest integer  $k \in \mathbb{N}$  such that  $w = s_1 s_2 \cdots s_k$ .

## PRELIMINARIES ON COXETER GROUPS

- ▶ The **length** of an element w,  $\ell(w)$  is the smallest integer  $k \in \mathbb{N}$  such that  $w = s_1 s_2 \cdots s_k$ .
- ► An expression of *w* as a product of *k* elements s<sub>i</sub> ∈ S is a reduced expression for *w*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

## PRELIMINARIES ON COXETER GROUPS

- ▶ The **length** of an element w,  $\ell(w)$  is the smallest integer  $k \in \mathbb{N}$  such that  $w = s_1 s_2 \cdots s_k$ .
- ► An expression of *w* as a product of *k* elements s<sub>i</sub> ∈ S is a reduced expression for *w*.
- Example (affine picture from before): For

$$W = \langle s, t, u \mid s^{2} = t^{2} = u^{2} = 1, (st)^{3} = (tu)^{3} = (su)^{3} = 1 \rangle$$

The word *stsutu* is not reduced.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

## PRELIMINARIES ON COXETER GROUPS

- ▶ The **length** of an element w,  $\ell(w)$  is the smallest integer  $k \in \mathbb{N}$  such that  $w = s_1 s_2 \cdots s_k$ .
- ► An expression of *w* as a product of *k* elements s<sub>i</sub> ∈ S is a reduced expression for *w*.
- Example (affine picture from before): For

$$W = \langle s, t, u \mid s^{2} = t^{2} = u^{2} = 1, (st)^{3} = (tu)^{3} = (su)^{3} = 1 \rangle$$

The word *stsutu* is not reduced.

Since sts = tst and utu = tut. We have

$$stsutu = tsttut = tsut$$

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

## COXETER GRAPHS

Coxeter graph  $\Gamma$  of (W, S): vertices labelled by  $s \in S$  and there is an edge between vertices s and t if and only if  $m(s, t) \ge 3$ . The edge is labelled only if m(s, t) > 3.

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

## COXETER GRAPHS

Coxeter graph  $\Gamma$  of (W, S): vertices labelled by  $s \in S$  and there is an edge between vertices s and t if and only if  $m(s, t) \ge 3$ . The edge is labelled only if m(s, t) > 3.

$$\langle s,t \mid s^2 = t^2 = 1, (st)^3 = 1 \rangle \quad \bullet \longrightarrow \bullet$$

## COXETER GRAPHS

Coxeter graph  $\Gamma$  of (W, S): vertices labelled by  $s \in S$  and there is an edge between vertices s and t if and only if  $m(s, t) \ge 3$ . The edge is labelled only if m(s, t) > 3.

$$\langle s,t \mid s^2 = t^2 = 1, (st)^3 = 1 \rangle \quad \bullet \longrightarrow \bullet$$

$$\langle s, t, u \mid s^2 = t^2 = u^2 = 1, (st)^3 = (tu)^3 = (su)^3 = 1 \rangle$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

## AUTOMATA FOR GROUPS

Motivation:

► Let *G* be a group with generating set *S*.

## AUTOMATA FOR GROUPS

Motivation:

- ► Let *G* be a group with generating set *S*.
- The word problem: Given a word  $w = s_1 s_2 \cdots s_k$  with  $s_i \in S$ , does it represent the identity?

## AUTOMATA FOR GROUPS

Motivation:

- ► Let *G* be a group with generating set *S*.
- The word problem: Given a word  $w = s_1 s_2 \cdots s_k$  with  $s_i \in S$ , does it represent the identity?
- Given a string of generators, is it a reduced expression?

## AUTOMATA FOR GROUPS

#### Definition

Let W be a group with generating set S. A **Finite State Automaton** for (W, S) is a finite directed graph capable of reading words  $w \in W$  and giving the answer YES if and only if the word w is reduced.

## AUTOMATA FOR GROUPS

#### Definition

Let W be a group with generating set S. A **Finite State Automaton** for (W, S) is a finite directed graph capable of reading words  $w \in W$  and giving the answer YES if and only if the word w is reduced.

$$\langle s, t \mid s^2 = t^2 = 1 \rangle$$

## FINITE STATE AUTOMATA FOR COXETER GROUPS

#### Theorem (Brink-Howlett, 1993)

For each finitely generated Coxeter group W, there exists a finite state automaton which recognises the language of reduced words of W.

The Brink-Howlett Automaton  $A_{BH}$ 00000000 BRINK-HOWLETT AUTOMATON FOR  $\tilde{B}_2 \quad \bullet^4 \bullet^4$ 



The Brink-Howlett Automaton  $A_{BH}$ 00000000 BRINK-HOWLETT AUTOMATON FOR  $\tilde{B}_2 \quad \bullet^4 \bullet^4$ 



< □ > < @ > < E > < E > E のQ@

## For which Coxeter systems is the Brink-Howlett automaton minimal?

## GEOMETRIC REPRESENTATION OF COXETER GROUPS

• Step 1: Build a vector space  $V = \bigoplus_{s \in S} \mathbb{R}\alpha_s$ 

- **Step 1:** Build a vector space  $V = \bigoplus_{s \in S} \mathbb{R}\alpha_s$
- Step 2: Define angles via a symmetric bilinear form:

$$\langle \alpha_s, \alpha_t \rangle = -\cos \frac{\pi}{m(s,t)}$$

(If *W* is finite, this is usual inner product)

- **Step 1:** Build a vector space  $V = \bigoplus_{s \in S} \mathbb{R}\alpha_s$
- Step 2: Define angles via a symmetric bilinear form:

$$\langle \alpha_s, \alpha_t \rangle = -\cos \frac{\pi}{m(s,t)}$$

(If *W* is finite, this is usual inner product)

Step 3: For each  $s \in S$ , define  $\sigma_s \in GL(V)$  by

$$\sigma_s(v) = v - 2\langle \alpha_s, v \rangle \alpha_s$$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Step 1: Build a vector space  $V = \bigoplus_{s \in S} \mathbb{R}\alpha_s$
- Step 2: Define angles via a symmetric bilinear form:

$$\langle \alpha_s, \alpha_t \rangle = -\cos \frac{\pi}{m(s,t)}$$

(If *W* is finite, this is usual inner product)

► Step 3: For each  $s \in S$ , define  $\sigma_s \in GL(V)$  by

$$\sigma_s(v) = v - 2\langle \alpha_s, v \rangle \alpha_s$$

• **Remark:** This is a faithful representation.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## The Root System

## THE ROOT SYSTEM

Definition The root system of W is the following subset of V:

$$\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$$

## THE ROOT SYSTEM

Definition The root system of W is the following subset of V:

$$\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$$



## THE ROOT SYSTEM

Definition The root system of W is the following subset of V:

$$\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$$



## THE ROOT SYSTEM

Definition The root system of W is the following subset of V:

$$\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$$



## THE ROOT SYSTEM

Definition The root system of W is the following subset of V:

$$\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$$



イロト イ理ト イヨト イヨト

3

990

## THE ROOT SYSTEM

Definition The **root system** of W is the following subset of V:

$$\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$$

•  $\{\alpha_s \mid s \in S\}$  are the simple roots.



イロト イ理ト イヨト イヨト

500

3

## THE ROOT SYSTEM

Definition The **root system** of W is the following subset of V:

- $\Phi = \{w(\alpha_s) \mid w \in W, s \in S\}$
- $\{\alpha_s \mid s \in S\}$  are the simple roots.
- Any root *α* ∈ Φ is either a **positive** or **negative** linear combination of the basis of simple roots.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

► Given a reduced expression for w ∈ W and s ∈ S we want to know:

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

- ► Given a reduced expression for w ∈ W and s ∈ S we want to know:
- Whether  $\ell(ws) > \ell(w)$

- ► Given a reduced expression for w ∈ W and s ∈ S we want to know:
- Whether  $\ell(ws) > \ell(w)$
- Where to direct the edge s from a state representing w to the state representing ws.

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

Let Φ(w) = {α ∈ Φ<sup>+</sup> | w(α) < 0}. Φ(w) is called the *inversion set* of w.

- Let Φ(w) = {α ∈ Φ<sup>+</sup> | w(α) < 0}. Φ(w) is called the *inversion set* of w.
- Key fact:  $\ell(w) = |\Phi(w)|$ , so if  $\ell(ws) > \ell(w)$  then  $|\Phi(ws)| = |\Phi(w)| + 1$ .

- Let Φ(w) = {α ∈ Φ<sup>+</sup> | w(α) < 0}. Φ(w) is called the *inversion set* of w.
- Key fact:  $\ell(w) = |\Phi(w)|$ , so if  $\ell(ws) > \ell(w)$  then  $|\Phi(ws)| = |\Phi(w)| + 1$ .
- Can we determine  $\Phi(ws)$  from  $\Phi(w)$ ?

- Let Φ(w) = {α ∈ Φ<sup>+</sup> | w(α) < 0}. Φ(w) is called the *inversion set* of w.
- Key fact:  $\ell(w) = |\Phi(w)|$ , so if  $\ell(ws) > \ell(w)$  then  $|\Phi(ws)| = |\Phi(w)| + 1$ .
- Can we determine  $\Phi(ws)$  from  $\Phi(w)$ ?
- If  $\alpha_s \notin \Phi(w)$  then  $\ell(ws) > \ell(w)$  and

$$\Phi(ws) = \{\alpha_s\} \cup s\{\Phi(w)\}$$

<ロト < 母 ト < 豆 ト < 豆 ト < 豆 - の < 0</p>

CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

► Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ<sup>+</sup>, called the *Elementary* roots *&*.

- ► Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ<sup>+</sup>, called the *Elementary* roots *E*.
- Since  $|\mathscr{E}| < \infty$ , we can focus on this finite subset of  $\Phi^+$ .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

- ► Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ<sup>+</sup>, called the *Elementary* roots *E*.
- Since |𝔅| < ∞, we can focus on this finite subset of Φ<sup>+</sup>.
- ► Identify *w* with its *elementary inversion set*

 $\mathscr{E}(w):=\Phi(w)\cap \mathscr{E}$ 

- ► Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ<sup>+</sup>, called the *Elementary* roots *E*.
- Since  $|\mathscr{E}| < \infty$ , we can focus on this finite subset of  $\Phi^+$ .
- ► Identify *w* with its *elementary inversion set*

$$\mathscr{E}(w) := \Phi(w) \cap \mathscr{E}$$

• If 
$$\alpha_s \notin \mathscr{E}(w)$$
 then  $\ell(ws) > \ell(w)$  and

$$\mathscr{E}(ws) = \big(\{\alpha_s\} \cup s\{\mathscr{E}(w)\}\big) \cap \mathscr{E}$$

## Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton  $A_{BH}$  is minimal if and only if

 $\mathscr{E} = \Phi_{\rm sph}^+.$ 

where  $\Phi_{\text{sph}}^+$  is the set of positive roots whose support generates a finite *Coxeter group (called spherical roots)*.

## Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton  $A_{BH}$  is minimal if and only if

$$\mathscr{E} = \Phi_{\mathsf{sph}}^+$$

where  $\Phi_{\text{sph}}^+$  is the set of positive roots whose support generates a finite *Coxeter group (called spherical roots)*.

• For 
$$\alpha \in \Phi^+$$
, can write  $\alpha = \sum_{s \in S} c_s \alpha_s$  with  $c_s \ge 0$ .

## Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton  $A_{BH}$  is minimal if and only if

$$\mathscr{E} = \Phi_{\mathsf{sph}}^+$$

where  $\Phi_{\text{sph}}^+$  is the set of positive roots whose support generates a finite Coxeter group (called **spherical roots**).

- For  $\alpha \in \Phi^+$ , can write  $\alpha = \sum_{s \in S} c_s \alpha_s$  with  $c_s \ge 0$ .
- The support of  $\alpha \in \Phi$  is the set  $J(\alpha) = \{s \in S \mid c_s \neq 0\}$ . Eg. if  $\alpha = \alpha_s + \alpha_t$  then  $J(\alpha) = \{s, t\}$ .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Define  $\mathscr{X}$  to be the following set of Coxeter graphs:

 $\mathscr{X} = \{ affine irreducible \} \bigcup \{ compact hyperbolic \}.$ 

with no circuits or infinite bonds.

#### Affine irreducible graphs (other than $\tilde{A}_n$ )



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Compact hyperbolic graphs with no curcuits or infinite bonds

• • • • • • where 
$$a, b < \infty, \frac{1}{a} + \frac{1}{b} < \frac{1}{2}$$
.







## Theorem (J. Parkinson, Y.Y, 2018)

*Let* (*W*, *S*) *be a finitely generated Coxeter system. The following are equivalent:* 

- (1) The Brink-Howlett automaton  $A_{BH}$  is minimal.
- (2) The Coxeter graph of (W, S) does not have a subgraph contained in  $\mathscr{X}$ .
- (3) The set of elementary roots is  $\mathscr{E} = \Phi_{\text{sph}}^+$ .



The automaton  $A_{BH}$  is minimal for this Coxeter group!

## MINIMAL AUTOMATON

For  $w \in W$  define the *cone type* of w:

$$T(w) = \{ v \in W \mid \ell(wv) = \ell(w) + \ell(v) \}.$$

## MINIMAL AUTOMATON

For  $w \in W$  define the *cone type* of w:

$$T(w) = \{v \in W \mid \ell(wv) = \ell(w) + \ell(v)\}.$$

 In the unique minimal automaton recognising the language of reduced words each state must be equivalent to a single cone type.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

# MINIMAL AUTOMATON

• For  $w \in W$  define the *cone type* of w:

$$T(w) = \{v \in W \mid \ell(wv) = \ell(w) + \ell(v)\}.$$

- In the unique minimal automaton recognising the language of reduced words each state must be equivalent to a single cone type.
- ► The automaton  $A_{BH}$  is minimal if and only if T(w) = T(v) whenever  $\mathscr{E}(w) = \mathscr{E}(v)$ .

## OUTLINE OF PROOF

(1)  $\implies$  (2): If  $\mathcal{A}_{BH}$  is minimal for W then  $\Gamma_W$  does not have a subgraph in  $\mathscr{X}$ .

## OUTLINE OF PROOF

(1)  $\implies$  (2): If  $\mathcal{A}_{BH}$  is minimal for W then  $\Gamma_W$  does not have a subgraph in  $\mathscr{X}$ .

#### Lemma

*Let* (W, S) *be a finitely generated Coxeter system. If there exists*  $J \subset S$  *and*  $t \in S$  *such that:* 

- (i) J is spherical, and
- (ii)  $J \cup \{t\}$  is not spherical, and
- (iii)  $w_J(\alpha_t) \in \mathscr{E}$ , where  $w_J$  is the unique longest element of  $W_J$ .

Then  $T(t \cdot w_J) = T(w_J)$  and  $\mathscr{E}(w_J) \neq \mathscr{E}(t \cdot w_J)$ .

Examining the diagrams  $\Gamma$  in  $\mathscr{X}$ , applying the lemma, we find our desired  $J \subset S$  and  $t \in S$ .

- Examining the diagrams  $\Gamma$  in  $\mathscr{X}$ , applying the lemma, we find our desired  $J \subset S$  and  $t \in S$ .
- In the case of affine graphs, we make a special choice based on the root system Φ<sub>0</sub> of the associated finite Weyl group.

- Examining the diagrams  $\Gamma$  in  $\mathscr{X}$ , applying the lemma, we find our desired  $J \subset S$  and  $t \in S$ .
- In the case of affine graphs, we make a special choice based on the root system Φ<sub>0</sub> of the associated finite Weyl group.
- Fact: Let  $\varphi$  be the highest root of  $\Phi_0$ . There is a unique simple root  $\alpha_t$ , such that  $\langle \varphi, \alpha_t \rangle = 1$  and  $\langle \varphi, \alpha_i \rangle = 0$  for all other simple roots  $\alpha_i$ .

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Examining the diagrams  $\Gamma$  in  $\mathscr{X}$ , applying the lemma, we find our desired  $J \subset S$  and  $t \in S$ .
- In the case of affine graphs, we make a special choice based on the root system Φ<sub>0</sub> of the associated finite Weyl group.
- Fact: Let  $\varphi$  be the highest root of  $\Phi_0$ . There is a unique simple root  $\alpha_t$ , such that  $\langle \varphi, \alpha_t \rangle = 1$  and  $\langle \varphi, \alpha_i \rangle = 0$  for all other simple roots  $\alpha_i$ .
- Let  $t \in S$  be the simple reflection associated to  $\alpha_t$ .



Take *t* to be the red dot and  $J = S \setminus \{t\}$ . Then  $T(tw_J) = T(w_J)$  and  $\mathscr{E}(tw_J) \neq \mathscr{E}(w_J)$ .

 For compact hyperbolic graphs, let *t* be the red dot. Then  $J = S \setminus \{t\}$ .



# (2) $\implies$ (3): If $\Gamma_W$ does not have a subgraph in $\mathscr{X}$ then $\mathscr{E} = \Phi_{\text{sph}}^+$ .

(2)  $\implies$  (3): If  $\Gamma_W$  does not have a subgraph in  $\mathscr{X}$  then  $\mathscr{E} = \Phi_{\text{sph}}^+$ .

• Assume  $\Gamma_W$  does not have a subgraph contained in  $\mathscr{X}$  and suppose there is a non-spherical root  $\alpha \in \mathscr{E}$ .

(2)  $\implies$  (3): If  $\Gamma_W$  does not have a subgraph in  $\mathscr{X}$  then  $\mathscr{E} = \Phi_{\text{sph}}^+$ .

- Assume  $\Gamma_W$  does not have a subgraph contained in  $\mathscr{X}$  and suppose there is a non-spherical root  $\alpha \in \mathscr{E}$ .
- Using a key result of Brink, Γ(J(α)) must be a tree with no infinite bonds.

(2)  $\implies$  (3): If  $\Gamma_W$  does not have a subgraph in  $\mathscr{X}$  then  $\mathscr{E} = \Phi_{\text{sph}}^+$ .

- Assume  $\Gamma_W$  does not have a subgraph contained in  $\mathscr{X}$  and suppose there is a non-spherical root  $\alpha \in \mathscr{E}$ .
- Using a key result of Brink, Γ(J(α)) must be a tree with no infinite bonds.



• Let  $e_m$  be an edge with maximal edge label *m* of  $\Gamma(J(\alpha))$ .





• Let  $e_m$  be an edge with maximal edge label *m* of  $\Gamma(J(\alpha))$ .



• Nonexistence of sub-graphs of type  $\tilde{G}_2$  and



▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

 $\implies m < 6.$ 



< □ > < @ > < E > < E > E のQ@



• Suppose there is another edge  $e_i$  with label 4 or 5.

- Suppose m = 5.
- Suppose there is another edge  $e_i$  with label 4 or 5.
- ► Nonexistence of sub-graphs:



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

However, nonexistence of



gives a contradiction.



<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

However, nonexistence of



gives a contradiction.

• Therefore, there is a unique edge label of m = 5.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



•  $\implies$   $\Gamma(J(\alpha))$  must be of type  $H_3$  or  $H_4$ .



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで



•  $\implies$   $\Gamma(J(\alpha))$  must be of type  $H_3$  or  $H_4$ .



▶ But these are finite Coxeter groups. Contradiction.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト



•  $\implies$   $\Gamma(J(\alpha))$  must be of type  $H_3$  or  $H_4$ .



▶ But these are finite Coxeter groups. Contradiction.

• Cases m = 4 and m = 3 are similar.

・ロト・日本・日本・日本・日本・日本

(3) 
$$\implies$$
 (1): If  $\mathscr{E} = \Phi_{\text{sph}}^+$  then  $\mathcal{A}_{BH}$  is minimal.

(3) 
$$\implies$$
 (1): If  $\mathscr{E} = \Phi_{\text{sph}}^+$  then  $\mathcal{A}_{BH}$  is minimal.

Proven by Hohlweg, Nadeau and Williams (2016).

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

(3) 
$$\implies$$
 (1): If  $\mathscr{E} = \Phi_{\text{sph}}^+$  then  $\mathcal{A}_{BH}$  is minimal.

- ▶ Proven by Hohlweg, Nadeau and Williams (2016).
- ► Using the key fact that *A*<sub>BH</sub> is minimal for finite Coxeter groups.

# CONNECTIONS WITH MINIMAL AUTOMATA

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

### CONNECTIONS WITH MINIMAL AUTOMATA

In progress towards decidability of the word problem in general Artin-Tits groups, Dehornoy, Dyer and Hohlweg showed that every Artin-Tits group admits a finite subset called a *Garside family*.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

# CONNECTIONS WITH MINIMAL AUTOMATA

- In progress towards decidability of the word problem in general Artin-Tits groups, Dehornoy, Dyer and Hohlweg showed that every Artin-Tits group admits a finite subset called a *Garside family*.
- Garside families can be studied in the Coxeter group setting (as *Garside shadows*) and there is a conjectural strong relationship between the set of cone types of a Coxeter group and its minimal Garside shadow.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

# CONNECTIONS WITH MINIMAL AUTOMATA

- In progress towards decidability of the word problem in general Artin-Tits groups, Dehornoy, Dyer and Hohlweg showed that every Artin-Tits group admits a finite subset called a *Garside family*.
- Garside families can be studied in the Coxeter group setting (as *Garside shadows*) and there is a conjectural strong relationship between the set of cone types of a Coxeter group and its minimal Garside shadow.
- ► Hence good reasons to explore more of this story...

#### Thank you.

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >