Coxeter systems for which the Brink-Howlett automaton is minimal.

James Parkinson and Yeeka Yau

THE UNIVERSITY OF
SYDNEY

Introduction

Coxeter Groups
Automata: What and Why

The Brink-Howlett Automaton $\mathcal{A}_{\text {BH }}$
Geometric Representation of Coxeter Groups
The Root System

Minimality of $\mathcal{A}_{B H}$
Main Result
Outline of Proof

COXETER SYSTEMS

- Recall: A Coxeter System is a pair (W, S) consisting of a group W and a set of generators $S \subset W$ subject only to relations of the form

$$
(s t)^{m(s, t)}=1
$$

where $m(s, s)=1$ and $m(t, s)=m(s, t) \geq 2$ for $s \neq t$. ($m(s, t)=\infty$ is allowed).

EXAMPLES

- Symmetry groups of regular polytopes

EXAMPLES

- Symmetry groups of regular polytopes
- Weyl groups of simple Lie algebras

EXAMPLES

- Symmetry groups of regular polytopes
- Weyl groups of simple Lie algebras
- Triangle groups corresponding to tessellations of the Euclidean/Hyperbolic plane.

Preliminaries on Coxeter Groups

Preliminaries on Coxeter Groups

- The length of an element $w, \ell(w)$ is the smallest integer $k \in \mathbb{N}$ such that $w=s_{1} s_{2} \cdots s_{k}$.

Preliminaries on Coxeter Groups

- The length of an element $w, \ell(w)$ is the smallest integer $k \in \mathbb{N}$ such that $w=s_{1} s_{2} \cdots s_{k}$.
- An expression of w as a product of k elements $s_{i} \in S$ is a reduced expression for w.

Preliminaries on Coxeter Groups

- The length of an element $w, \ell(w)$ is the smallest integer $k \in \mathbb{N}$ such that $w=s_{1} s_{2} \cdots s_{k}$.
- An expression of w as a product of k elements $s_{i} \in S$ is a reduced expression for w.
- Example (affine picture from before): For

$$
W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=1,(s t)^{3}=(t u)^{3}=(s u)^{3}=1\right\rangle
$$

The word stsutu is not reduced.

Preliminaries on Coxeter Groups

- The length of an element $w, \ell(w)$ is the smallest integer $k \in \mathbb{N}$ such that $w=s_{1} s_{2} \cdots s_{k}$.
- An expression of w as a product of k elements $s_{i} \in S$ is a reduced expression for w.
- Example (affine picture from before): For

$$
W=\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=1,(s t)^{3}=(t u)^{3}=(s u)^{3}=1\right\rangle
$$

The word stsutu is not reduced.
Since $s t s=t s t$ and $u t u=t u t$. We have

$$
s t s u t u=t s t t u t=t s u t
$$

COXeter Graphs

Coxeter graph Γ of (W, S) : vertices labelled by $s \in S$ and there is an edge between vertices s and t if and only if $m(s, t) \geq 3$. The edge is labelled only if $m(s, t)>3$.

COXETER GRAPHS

Coxeter graph Γ of (W, S) : vertices labelled by $s \in S$ and there is an edge between vertices s and t if and only if $m(s, t) \geq 3$. The edge is labelled only if $m(s, t)>3$.

$$
\left\langle s, t \mid s^{2}=t^{2}=1,(s t)^{3}=1\right\rangle
$$

COXETER GRAPHS

Coxeter graph Γ of (W, S) : vertices labelled by $s \in S$ and there is an edge between vertices s and t if and only if $m(s, t) \geq 3$. The edge is labelled only if $m(s, t)>3$.

$$
\left\langle s, t \mid s^{2}=t^{2}=1,(s t)^{3}=1\right\rangle
$$

$$
\left\langle s, t, u \mid s^{2}=t^{2}=u^{2}=1,(s t)^{3}=(t u)^{3}=(s u)^{3}=1\right\rangle
$$

Automata for Groups

Motivation:

- Let G be a group with generating set S.

Automata for Groups

Motivation:

- Let G be a group with generating set S.
- The word problem: Given a word $w=s_{1} s_{2} \cdots s_{k}$ with $s_{i} \in S$, does it represent the identity?

Automata for Groups

Motivation:

- Let G be a group with generating set S.
- The word problem: Given a word $w=s_{1} s_{2} \cdots s_{k}$ with $s_{i} \in S$, does it represent the identity?
- Given a string of generators, is it a reduced expression?

Automata for Groups

Definition

Let W be a group with generating set S. A Finite State Automaton for (W, S) is a finite directed graph capable of reading words $w \in W$ and giving the answer YES if and only if the word w is reduced.

Automata for Groups

Definition

Let W be a group with generating set S. A Finite State Automaton for (W, S) is a finite directed graph capable of reading words $w \in W$ and giving the answer YES if and only if the word w is reduced.

$$
\left\langle s, t \mid s^{2}=t^{2}=1\right\rangle
$$

Finite State Automata for Coxeter Groups

Theorem (Brink-Howlett, 1993)

For each finitely generated Coxeter group W, there exists a finite state automaton which recognises the language of reduced words of W.

BRINK-HOWLETT AUTOMATON FOR $\tilde{B}_{2} \bullet \bullet^{4} \bullet$

BRINK-HOWLETT AUTOMATON FOR $\tilde{B}_{2} \bullet \bullet^{4} \bullet$

For which Coxeter systems is the Brink-Howlett automaton minimal?

Geometric Representation of Coxeter Groups

Geometric Representation of Coxeter Groups

- Step 1: Build a vector space $V=\bigoplus_{s \in S} \mathbb{R} \alpha_{s}$

Geometric Representation of Coxeter Groups

- Step 1: Build a vector space $V=\bigoplus_{s \in S} \mathbb{R} \alpha_{S}$
- Step 2: Define angles via a symmetric bilinear form:

$$
\left\langle\alpha_{s}, \alpha_{t}\right\rangle=-\cos \frac{\pi}{m(s, t)}
$$

(If W is finite, this is usual inner product)

Geometric Representation of Coxeter Groups

- Step 1: Build a vector space $V=\bigoplus_{s \in S} \mathbb{R} \alpha_{S}$
- Step 2: Define angles via a symmetric bilinear form:

$$
\left\langle\alpha_{s}, \alpha_{t}\right\rangle=-\cos \frac{\pi}{m(s, t)}
$$

(If W is finite, this is usual inner product)

- Step 3: For each $s \in S$, define $\sigma_{s} \in G L(V)$ by

$$
\sigma_{s}(v)=v-2\left\langle\alpha_{s}, v\right\rangle \alpha_{s}
$$

Geometric Representation of Coxeter Groups

- Step 1: Build a vector space $V=\bigoplus_{s \in S} \mathbb{R} \alpha_{S}$
- Step 2: Define angles via a symmetric bilinear form:

$$
\left\langle\alpha_{s}, \alpha_{t}\right\rangle=-\cos \frac{\pi}{m(s, t)}
$$

(If W is finite, this is usual inner product)

- Step 3: For each $s \in S$, define $\sigma_{s} \in G L(V)$ by

$$
\sigma_{s}(v)=v-2\left\langle\alpha_{s}, v\right\rangle \alpha_{s}
$$

- Remark: This is a faithful representation.

The Root System

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

- $\left\{\alpha_{s} \mid s \in S\right\}$ are the simple roots.

The Root System

Definition
The root system of W is the following subset of V :

$$
\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}
$$

- $\left\{\alpha_{s} \mid s \in S\right\}$ are the simple roots.
- Any root $\alpha \in \Phi$ is either a positive or negative linear combination of the basis of
 simple roots.

Constructing the Brink-Howlett Automaton

Constructing the Brink-Howlett Automaton

- Given a reduced expression for $w \in W$ and $s \in S$ we want to know:

Constructing the Brink-Howlett Automaton

- Given a reduced expression for $w \in W$ and $s \in S$ we want to know:
- Whether $\ell(w s)>\ell(w)$

Constructing the Brink-Howlett Automaton

- Given a reduced expression for $w \in W$ and $s \in S$ we want to know:
- Whether $\ell(w s)>\ell(w)$
- Where to direct the edge s from a state representing w to the state representing $w s$.

Constructing the Brink-Howlett Automaton

Constructing the Brink-Howlett Automaton

- Let $\Phi(w)=\left\{\alpha \in \Phi^{+} \mid w(\alpha)<0\right\} . \Phi(w)$ is called the inversion set of w.

Constructing the Brink-Howlett Automaton

- Let $\Phi(w)=\left\{\alpha \in \Phi^{+} \mid w(\alpha)<0\right\} . \Phi(w)$ is called the inversion set of w.
- Key fact: $\ell(w)=|\Phi(w)|$, so if $\ell(w s)>\ell(w)$ then $|\Phi(w s)|=|\Phi(w)|+1$.

Constructing the Brink-Howlett Automaton

- Let $\Phi(w)=\left\{\alpha \in \Phi^{+} \mid w(\alpha)<0\right\} . \Phi(w)$ is called the inversion set of w.
- Key fact: $\ell(w)=|\Phi(w)|$, so if $\ell(w s)>\ell(w)$ then $|\Phi(w s)|=|\Phi(w)|+1$.
- Can we determine $\Phi(w s)$ from $\Phi(w)$?

Constructing the Brink-Howlett Automaton

- Let $\Phi(w)=\left\{\alpha \in \Phi^{+} \mid w(\alpha)<0\right\} . \Phi(w)$ is called the inversion set of w.
- Key fact: $\ell(w)=|\Phi(w)|$, so if $\ell(w s)>\ell(w)$ then $|\Phi(w s)|=|\Phi(w)|+1$.
- Can we determine $\Phi(w s)$ from $\Phi(w)$?
- If $\alpha_{s} \notin \Phi(w)$ then $\ell(w s)>\ell(w)$ and

$$
\Phi(w s)=\left\{\alpha_{s}\right\} \cup s\{\Phi(w)\}
$$

Constructing the Brink-Howlett Automaton

- Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ^{+}, called the Elementary roots \mathscr{E}.

Constructing the Brink-Howlett Automaton

- Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ^{+}, called the Elementary roots \mathscr{E}.
- Since $|\mathscr{E}|<\infty$, we can focus on this finite subset of Φ^{+}.

Constructing the Brink-Howlett Automaton

- Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ^{+}, called the Elementary roots \mathscr{E}.
- Since $|\mathscr{E}|<\infty$, we can focus on this finite subset of Φ^{+}.
- Identify w with its elementary inversion set

$$
\mathscr{E}(w):=\Phi(w) \cap \mathscr{E}
$$

Constructing the Brink-Howlett Automaton

- Bridgette Brink and Bob Howlett discovered a remarkable finite subset of Φ^{+}, called the Elementary roots \mathscr{E}.
- Since $|\mathscr{E}|<\infty$, we can focus on this finite subset of Φ^{+}.
- Identify w with its elementary inversion set

$$
\mathscr{E}(w):=\Phi(w) \cap \mathscr{E}
$$

- If $\alpha_{s} \notin \mathscr{E}(w)$ then $\ell(w s)>\ell(w)$ and

$$
\mathscr{E}(w s)=\left(\left\{\alpha_{s}\right\} \cup s\{\mathscr{E}(w)\}\right) \cap \mathscr{E}
$$

Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton $\mathcal{A}_{B H}$ is minimal if and only if

$$
\mathscr{E}=\Phi_{\mathrm{sph}}^{+} .
$$

where Φ_{sph}^{+}is the set of positive roots whose support generates a finite Coxeter group (called spherical roots).

Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton $\mathcal{A}_{B H}$ is minimal if and only if

$$
\mathscr{E}=\Phi_{\mathrm{sph}}^{+} .
$$

where Φ_{sph}^{+}is the set of positive roots whose support generates a finite Coxeter group (called spherical roots).

- For $\alpha \in \Phi^{+}$, can write $\alpha=\sum_{s \in S} c_{s} \alpha_{s}$ with $c_{s} \geq 0$.

Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton $\mathcal{A}_{B H}$ is minimal if and only if

$$
\mathscr{E}=\Phi_{\mathrm{sph}}^{+}
$$

where Φ_{sph}^{+}is the set of positive roots whose support generates a finite Coxeter group (called spherical roots).

- For $\alpha \in \Phi^{+}$, can write $\alpha=\sum_{s \in S} c_{s} \alpha_{s}$ with $c_{s} \geq 0$.
- The support of $\alpha \in \Phi$ is the set $J(\alpha)=\left\{s \in S \mid c_{s} \neq 0\right\}$. Eg. if $\alpha=\alpha_{s}+\alpha_{t}$ then $J(\alpha)=\{s, t\}$.

Define \mathscr{X} to be the following set of Coxeter graphs:

$$
\mathscr{X}=\{\text { affine irreducible }\} \bigcup\{\text { compact hyperbolic }\} .
$$

with no circuits or infinite bonds.

Affine irreducible graphs (other than \tilde{A}_{n})

Compact hyperbolic graphs with no curcuits or infinite bonds

$$
\stackrel{a}{b} \quad \text { where } a, b<\infty, \frac{1}{a}+\frac{1}{b}<\frac{1}{2} \text {. }
$$

Theorem (J. Parkinson, Y.Y, 2018)

Let (W, S) be a finitely generated Coxeter system. The following are equivalent:
(1) The Brink-Howlett automaton $\mathcal{A}_{B H}$ is minimal.
(2) The Coxeter graph of (W, S) does not have a subgraph contained in \mathscr{X}.
(3) The set of elementary roots is $\mathscr{E}=\Phi_{\text {sph }}^{+}$.

The automaton $\mathcal{A}_{B H}$ is minimal for this Coxeter group!

Minimal automaton

- For $w \in W$ define the cone type of w :

$$
T(w)=\{v \in W \mid \ell(w v)=\ell(w)+\ell(v)\} .
$$

Minimal automaton

- For $w \in W$ define the cone type of w :

$$
T(w)=\{v \in W \mid \ell(w v)=\ell(w)+\ell(v)\} .
$$

- In the unique minimal automaton recognising the language of reduced words each state must be equivalent to a single cone type.

Minimal automaton

- For $w \in W$ define the cone type of w :

$$
T(w)=\{v \in W \mid \ell(w v)=\ell(w)+\ell(v)\} .
$$

- In the unique minimal automaton recognising the language of reduced words each state must be equivalent to a single cone type.
- The automaton $\mathcal{A}_{B H}$ is minimal if and only if $T(w)=T(v)$ whenever $\mathscr{E}(w)=\mathscr{E}(v)$.

Outline of Proof

$(1) \Longrightarrow(2)$: If $\mathcal{A}_{B H}$ is minimal for W then Γ_{W} does not have a subgraph in \mathscr{X}.

Outline of Proof

$(1) \Longrightarrow(2):$ If $\mathcal{A}_{B H}$ is minimal for W then Γ_{W} does not have a subgraph in \mathscr{X}.

Lemma

Let (W, S) be a finitely generated Coxeter system. If there exists $J \subset S$ and $t \in S$ such that:
(i) J is spherical, and
(ii) $J \cup\{t\}$ is not spherical, and
(iii) $w_{J}\left(\alpha_{t}\right) \in \mathscr{E}$, where w_{J} is the unique longest element of W_{J}.

Then $T\left(t \cdot w_{J}\right)=T\left(w_{J}\right)$ and $\mathscr{E}\left(w_{J}\right) \neq \mathscr{E}\left(t \cdot w_{J}\right)$.

- Examining the diagrams Γ in \mathscr{X}, applying the lemma, we find our desired $J \subset S$ and $t \in S$.
- Examining the diagrams Γ in \mathscr{X}, applying the lemma, we find our desired $J \subset S$ and $t \in S$.
- In the case of affine graphs, we make a special choice based on the root system Φ_{0} of the associated finite Weyl group.
- Examining the diagrams Γ in \mathscr{X}, applying the lemma, we find our desired $J \subset S$ and $t \in S$.
- In the case of affine graphs, we make a special choice based on the root system Φ_{0} of the associated finite Weyl group.
- Fact: Let φ be the highest root of Φ_{0}. There is a unique simple root α_{t}, such that $\left\langle\varphi, \alpha_{t}\right\rangle=1$ and $\left\langle\varphi, \alpha_{i}\right\rangle=0$ for all other simple roots α_{i}.
- Examining the diagrams Γ in \mathscr{X}, applying the lemma, we find our desired $J \subset S$ and $t \in S$.
- In the case of affine graphs, we make a special choice based on the root system Φ_{0} of the associated finite Weyl group.
- Fact: Let φ be the highest root of Φ_{0}. There is a unique simple root α_{t}, such that $\left\langle\varphi, \alpha_{t}\right\rangle=1$ and $\left\langle\varphi, \alpha_{i}\right\rangle=0$ for all other simple roots α_{i}.
- Let $t \in S$ be the simple reflection associated to α_{t}.

$\tilde{D}_{n}:$

Take t to be the red dot and $J=S \backslash\{t\}$. Then $T\left(t w_{J}\right)=T\left(w_{J}\right)$ and $\mathscr{E}\left(t w_{J}\right) \neq \mathscr{E}\left(w_{J}\right)$.

For compact hyperbolic graphs, let t be the red dot. Then $J=S \backslash\{t\}$.

$$
\stackrel{a}{b} \quad \text { where } a, b<\infty, \frac{1}{a}+\frac{1}{b}<\frac{1}{2} \text {. }
$$

$(2) \Longrightarrow(3)$: If Γ_{W} does not have a subgraph in \mathscr{X} then $\mathscr{E}=\Phi_{\mathrm{sph}}^{+}$.
$(2) \Longrightarrow$ (3): If Γ_{W} does not have a subgraph in \mathscr{X} then $\mathscr{E}=\Phi_{\mathrm{sph}}^{+}$.

- Assume Γ_{W} does not have a subgraph contained in \mathscr{X} and suppose there is a non-spherical root $\alpha \in \mathscr{E}$.
$(2) \Longrightarrow(3)$: If Γ_{W} does not have a subgraph in \mathscr{X} then $\mathscr{E}=\Phi_{\mathrm{sph}}^{+}$.
- Assume Γ_{W} does not have a subgraph contained in \mathscr{X} and suppose there is a non-spherical root $\alpha \in \mathscr{E}$.
- Using a key result of Brink, $\Gamma(J(\alpha))$ must be a tree with no infinite bonds.
$(2) \Longrightarrow$ (3): If Γ_{W} does not have a subgraph in \mathscr{X} then $\mathscr{E}=\Phi_{\mathrm{sph}}^{+}$.
- Assume Γ_{W} does not have a subgraph contained in \mathscr{X} and suppose there is a non-spherical root $\alpha \in \mathscr{E}$.
- Using a key result of Brink, $\Gamma(J(\alpha))$ must be a tree with no infinite bonds.

- Let e_{m} be an edge with maximal edge label m of $\Gamma(J(\alpha))$.

- Let e_{m} be an edge with maximal edge label m of $\Gamma(J(\alpha))$.

- Nonexistence of sub-graphs of type \tilde{G}_{2} and

- Suppose $m=5$.
- Suppose $m=5$.
- Suppose there is another edge e_{j} with label 4 or 5 .
- Suppose $m=5$.
- Suppose there is another edge e_{j} with label 4 or 5 .
- Nonexistence of sub-graphs:

- However, nonexistence of

gives a contradiction.
- However, nonexistence of

gives a contradiction.
- Therefore, there is a unique edge label of $m=5$.
- But nonexistence of

- But nonexistence of

- $\Longrightarrow \Gamma(J(\alpha))$ must be of type H_{3} or H_{4}.

- But nonexistence of

- $\Longrightarrow \Gamma(J(\alpha))$ must be of type H_{3} or H_{4}.

- But these are finite Coxeter groups. Contradiction.
- But nonexistence of

- $\Longrightarrow \Gamma(J(\alpha))$ must be of type H_{3} or H_{4}.

- But these are finite Coxeter groups. Contradiction.
- Cases $m=4$ and $m=3$ are similar.
$(3) \Longrightarrow(1)$: If $\mathscr{E}=\Phi_{\text {sph }}^{+}$then $\mathcal{A}_{B H}$ is minimal.
$(3) \Longrightarrow(1)$: If $\mathscr{E}=\Phi_{\text {sph }}^{+}$then $\mathcal{A}_{B H}$ is minimal.
- Proven by Hohlweg, Nadeau and Williams (2016).
$(3) \Longrightarrow(1)$: If $\mathscr{E}=\Phi_{\text {sph }}^{+}$then $\mathcal{A}_{B H}$ is minimal.
- Proven by Hohlweg, Nadeau and Williams (2016).
- Using the key fact that $\mathcal{A}_{B H}$ is minimal for finite Coxeter groups.

Connections with Minimal Automata

Connections with Minimal Automata

- In progress towards decidability of the word problem in general Artin-Tits groups, Dehornoy, Dyer and Hohlweg showed that every Artin-Tits group admits a finite subset called a Garside family.

Connections with Minimal Automata

- In progress towards decidability of the word problem in general Artin-Tits groups, Dehornoy, Dyer and Hohlweg showed that every Artin-Tits group admits a finite subset called a Garside family.
- Garside families can be studied in the Coxeter group setting (as Garside shadows) and there is a conjectural strong relationship between the set of cone types of a Coxeter group and its minimal Garside shadow.

Connections with Minimal Automata

- In progress towards decidability of the word problem in general Artin-Tits groups, Dehornoy, Dyer and Hohlweg showed that every Artin-Tits group admits a finite subset called a Garside family.
- Garside families can be studied in the Coxeter group setting (as Garside shadows) and there is a conjectural strong relationship between the set of cone types of a Coxeter group and its minimal Garside shadow.
- Hence good reasons to explore more of this story...

Thank you.

