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COXETER SYSTEMS

I Recall: A Coxeter System is a pair (W,S) consisting of
a group W and a set of generators S ⊂W subject only
to relations of the form

(st)m(s,t) = 1

where m(s, s) = 1 and m(t, s) = m(s, t) ≥ 2 for s 6= t.
(m(s, t) =∞ is allowed).
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EXAMPLES

I Symmetry groups of regular polytopes

I Weyl groups of simple Lie algebras

I Triangle groups corresponding to tessellations of the
Euclidean/Hyperbolic plane.
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PRELIMINARIES ON COXETER GROUPS

I The length of an element w, `(w) is the smallest
integer k ∈ N such that w = s1s2 · · · sk.

I An expression of w as a product of k elements si ∈ S is
a reduced expression for w.

I Example (affine picture from before): For

W = 〈s, t,u | s2 = t2 = u2 = 1, (st)3 = (tu)3 = (su)3 = 1〉

The word stsutu is not reduced.

Since sts = tst and utu = tut. We have

stsutu = tsttut = tsut
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COXETER GRAPHS

Coxeter graph Γ of (W,S): vertices labelled by s ∈ S and
there is an edge between vertices s and t if and only if
m(s, t) ≥ 3. The edge is labelled only if m(s, t) > 3.

〈s, t | s2 = t2 = 1, (st)3 = 1〉

〈s, t,u | s2 = t2 = u2 = 1, (st)3 = (tu)3 = (su)3 = 1〉
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AUTOMATA FOR GROUPS

Motivation:
I Let G be a group with generating set S.

I The word problem: Given a word w = s1s2 · · · sk with
si ∈ S, does it represent the identity?

I Given a string of generators, is it a reduced expression?
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AUTOMATA FOR GROUPS

Definition
Let W be a group with generating set S. A Finite State Automaton
for (W,S) is a finite directed graph capable of reading words w ∈W
and giving the answer YES if and only if the word w is reduced.

〈s, t | s2 = t2 = 1〉
t s

t

s

Start
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FINITE STATE AUTOMATA FOR COXETER GROUPS

Theorem (Brink-Howlett, 1993)

For each finitely generated Coxeter group W, there exists a finite state
automaton which recognises the language of reduced words of W.
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BRINK-HOWLETT AUTOMATON FOR B̃2
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For which Coxeter systems is the Brink-Howlett automaton
minimal?
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GEOMETRIC REPRESENTATION OF COXETER GROUPS

I Step 1: Build a vector space V =
⊕

s∈S Rαs

I Step 2: Define angles via a symmetric
bilinear form:

〈αs, αt〉 = − cos
π

m(s, t)

(If W is finite, this is usual inner product)

I Step 3: For each s ∈ S, define σs ∈ GL(V)
by

σs(v) = v− 2〈αs, v〉αs

I Remark: This is a faithful representation.

←→
σs

−αs αs
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THE ROOT SYSTEM

Definition
The root system of W is the following
subset of V:

Φ = {w(αs) | w ∈W, s ∈ S}

t(αs) st(αs)

s
t

αs

αt

D10

I {αs | s ∈ S} are the simple
roots.

I Any root α ∈ Φ is either a
positive or negative linear
combination of the basis of
simple roots.
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CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

I Given a reduced expression for w ∈W and s ∈ S we
want to know:

I Whether `(ws) > `(w)

I Where to direct the edge s from a state representing w
to the state representing ws.
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CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

I Let Φ(w) = {α ∈ Φ+ | w(α) < 0}. Φ(w) is called the
inversion set of w.

I Key fact: `(w) = |Φ(w)|, so if `(ws) > `(w) then
|Φ(ws)| = |Φ(w)|+ 1.

I Can we determine Φ(ws) from Φ(w)?

I If αs /∈ Φ(w) then `(ws) > `(w) and

Φ(ws) = {αs} ∪ s{Φ(w)}
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CONSTRUCTING THE BRINK-HOWLETT AUTOMATON

I Bridgette Brink and Bob Howlett discovered a
remarkable finite subset of Φ+, called the Elementary
roots E .

I Since |E | <∞, we can focus on this finite subset of
Φ+.

I Identify w with its elementary inversion set

E (w) := Φ(w) ∩ E

I If αs /∈ E (w) then `(ws) > `(w) and

E (ws) =
(
{αs} ∪ s{E (w)}

)
∩ E
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Conjecture (Hohlweg-Nadeau-Williams, 2016)

The Brink-Howlett automaton ABH is minimal if and only if

E = Φ+
sph.

where Φ+
sph is the set of positive roots whose support generates a finite

Coxeter group (called spherical roots).

I For α ∈ Φ+, can write α =
∑

s∈S csαs with cs ≥ 0.

I The support of α ∈ Φ is the set J(α) = {s ∈ S | cs 6= 0}. Eg. if
α = αs + αt then J(α) = {s, t}.
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Define X to be the following set of Coxeter graphs:

X =
{

affine irreducible
}⋃{

compact hyperbolic
}
.

with no circuits or infinite bonds.
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Affine irreducible graphs (other than Ãn)

B̃n:
4

C̃n:
4 4

D̃n:

Ẽ8:

G̃2: 6

Ẽ6:
F̃4: 4

Ẽ7:
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Compact hyperbolic graphs with no curcuits or infinite bonds

a b
where a, b <∞, 1

a + 1
b <

1
2 .

4 5 5 5

4 5 5 5

5 5

5 5
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Theorem (J. Parkinson, Y.Y, 2018)

Let (W,S) be a finitely generated Coxeter system. The following are
equivalent:
(1) The Brink-Howlett automaton ABH is minimal.
(2) The Coxeter graph of (W,S) does not have a subgraph contained

in X .
(3) The set of elementary roots is E = Φ+

sph.
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∞

4

∞

∞ ∞

5

∞

∞

∞

The automaton ABH is minimal for this Coxeter group!
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MINIMAL AUTOMATON

I For w ∈W define the cone type of w:

T(w) = {v ∈W | `(wv) = `(w) + `(v)}.

I In the unique minimal automaton recognising the
language of reduced words each state must be equivalent
to a single cone type.

I The automaton ABH is minimal if and only if T(w) = T(v)
whenever E (w) = E (v).



INTRODUCTION THE BRINK-HOWLETT AUTOMATON ABH MINIMALITY OF ABH

MINIMAL AUTOMATON

I For w ∈W define the cone type of w:

T(w) = {v ∈W | `(wv) = `(w) + `(v)}.

I In the unique minimal automaton recognising the
language of reduced words each state must be equivalent
to a single cone type.

I The automaton ABH is minimal if and only if T(w) = T(v)
whenever E (w) = E (v).



INTRODUCTION THE BRINK-HOWLETT AUTOMATON ABH MINIMALITY OF ABH

MINIMAL AUTOMATON

I For w ∈W define the cone type of w:

T(w) = {v ∈W | `(wv) = `(w) + `(v)}.

I In the unique minimal automaton recognising the
language of reduced words each state must be equivalent
to a single cone type.

I The automaton ABH is minimal if and only if T(w) = T(v)
whenever E (w) = E (v).



INTRODUCTION THE BRINK-HOWLETT AUTOMATON ABH MINIMALITY OF ABH

OUTLINE OF PROOF

(1) =⇒ (2): If ABH is minimal for W then ΓW does not have a
subgraph in X .

Lemma
Let (W,S) be a finitely generated Coxeter system. If there exists J ⊂ S
and t ∈ S such that:

(i) J is spherical, and
(ii) J ∪ {t} is not spherical, and

(iii) wJ(αt) ∈ E , where wJ is the unique longest element of WJ.

Then T(t · wJ) = T(wJ) and E (wJ) 6= E (t · wJ).
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I Examining the diagrams Γ in X , applying the lemma, we
find our desired J ⊂ S and t ∈ S.

I In the case of affine graphs, we make a special choice based
on the root system Φ0 of the associated finite Weyl group.

I Fact: Let ϕ be the highest root of Φ0. There is a unique
simple root αt, such that 〈ϕ, αt〉 = 1 and 〈ϕ, αi〉 = 0 for all
other simple roots αi.

I Let t ∈ S be the simple reflection associated to αt.
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B̃n:
4

C̃n:
4 4

D̃n:

Ẽ8:

G̃2: 6

Ẽ6:
F̃4: 4

Ẽ7:

Take t to be the red dot and J = S \ {t}. Then T(twJ) = T(wJ) and
E (twJ) 6= E (wJ).
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For compact hyperbolic graphs, let t be the red dot. Then J = S \ {t}.

a b
where a, b <∞, 1

a + 1
b <

1
2 .

4 5 5 5

4 5 5 5

5 5

5 5
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(2) =⇒ (3): If ΓW does not have a subgraph in X then
E = Φ+

sph.

I Assume ΓW does not have a subgraph contained in X and
suppose there is a non-spherical root α ∈ E .

I Using a key result of Brink, Γ(J(α)) must be a tree with no
infinite bonds.
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I Let em be an edge with maximal edge label m of Γ(J(α)).

m

I Nonexistence of sub-graphs of type G̃2 and

s0 s1 s2
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I Suppose m = 5.

I Suppose there is another edge ej with label 4 or 5.

I Nonexistence of sub-graphs:
4 5 5 5

4 5 5 5

4 5 5 5

=⇒ d(em, ej) > 3.
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I However, nonexistence of
5

gives a contradiction.
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I But nonexistence of
5 5

5 5

I =⇒ Γ(J(α)) must be of type H3 or H4.

5 5

I But these are finite Coxeter groups. Contradiction.

I Cases m = 4 and m = 3 are similar.
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(3) =⇒ (1): If E = Φ+
sph then ABH is minimal.

I Proven by Hohlweg, Nadeau and Williams (2016).

I Using the key fact that ABH is minimal for finite Coxeter
groups.
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CONNECTIONS WITH MINIMAL AUTOMATA

I In progress towards decidability of the word problem in
general Artin-Tits groups, Dehornoy, Dyer and Hohlweg
showed that every Artin-Tits group admits a finite subset
called a Garside family.

I Garside families can be studied in the Coxeter group setting
(as Garside shadows) and there is a conjectural strong
relationship between the set of cone types of a Coxeter
group and its minimal Garside shadow.

I Hence good reasons to explore more of this story...
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Thank you.
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