Neretin groups admit no nontrivial invariant random subgroups

Tianyi Zheng, UCSD Symmetry in Newcastle, 26 June 2020

1. Background on Neretin groups In the 1990s Neretin introduced a class of groups as a combinatorial analogue of the diffeomorphism group of the circle.

Let T be a regular tree of finite degree q, $q \ge 3$. $T \xrightarrow{f'}_{(identified as infinite geodesic maps from o)}$ Aut(T) = the automorphism group of the tree T,Equip Aut(T) with the topology of pointwise convergence. The Neretin group N_q is the topological full group qf Aut(T) $q \ge T$.

- That is, a homeomorphism $g \in Homeo(\partial T)$ is in N_q , iff one can find a partition of ∂T into disjoint clopen subsets $\partial T = \bigcup_{i=1}^{k} U_i$ s.t. for each $i \in \{1, 2, ..., k\}$, $\exists f_i \in Aut(T)$, $g|_{U_i} = f_i|_{U_i}$.

 φ can be written as $\varphi = \mathcal{E}(\varphi_{\nu})_{\nu \in \partial A}$, $\mathcal{E}: \partial A \rightarrow \partial B$ a bijection, φ_{ν} is a rooted automorphism in T_{ν} . Such homeomorphisms are also called • Spheromorphisms of 2T (Neretin) • almost automorphism of T • near automorphism of T (Cornulier) • germs of automorphisms of Aut(T) (Caprace - de Medis) simple locally compact groups acting on trees and their germs of automorphisms Some properties of Ng • Ng Carries a group topology s.t. the natural inclusion Aut(T) ~ Ng is continuous and open; wrt. this topology, Ng is a hon-discrete t.d.l.c. group.

- The Higman Thompson group Vq-1,q embeds as a dense subgroup of Nq. As a consequence, Nq is compactly generated.
- · (Kapondjian 99) Ng is abstractly simple.

2. Invariant random subgroups Let G be a locally compact second countable group. Consider its Chabauty space.

SUB(G) = the set of closed subgroups of G.
The Chabauty topology is generated by open sets of the form

$$O_1(K) = \{H \in SUB(G) : H \cap K = \emptyset\}, K \subset G$$
 compact
 $O_2(U) = \{H \in SUB(G) : H \cap U \neq \emptyset\}, U \subset G$ open.
G acts on $SUB(G)$ by conjugation.
An invariant random subgroup of G is a G-invariant
Borel probability measure on $SUB(G)$.
Prop · (Abért-Bergeron-Biringer-Gelander-Nikolov-Raimbault-Samet
Any IRS μ of G is induced by some probability measure
preservin action of G.

Then the pushforward of
$$\mathcal{D}$$
 is an IRS of G.
Examples of IRSs:
• \mathcal{S}_{iN} , $N \triangleleft G$ normal subgroup
Trivial IRSs refer to $\mathcal{S}_{i\{ia\}}$, \mathcal{S}_{iG} .
• $\Gamma \leq G$ closed subgroup of finite covolume
 $G \Rightarrow SUB(G)$ factors through G/Γ .
 $g \mapsto g \Gamma g^{-1}$
That is, the normalized their measure on G/Γ gives an IRS
supported on conjugates of Γ .
• G acts on a rooted tree T_o by automorphisms
 $\mathcal{G} \land (\partial T_o, m)$, m invariant measure
 $\int Stab_G(w)_{x \in \partial T_o}$.
Expect to have more IRSs :

choose a fixed point set
$$G \, c \, \partial T$$
.
and take $\operatorname{Fix}_{G}(C) = \{g \in G : g, x \in x \text{ for all } x \in C\}$
 $\mathcal{F}(\partial T) = \{\operatorname{closed} \text{ subsets of } \partial T\} \rightarrow \operatorname{SUB}(G)$
 $C \mapsto \operatorname{Fix}_{G}(C)$
puth forward a G -invariant measure on $\mathcal{F}(\partial T)$, we get an IRS.
Evidence supporting there is no interesting IRSs
Say G is defined by its action $G \cap X$.
Suppose we already know $G \cap \mathcal{F}(X)$ admits
no ergodic invariant measure other than S_{idd} , S_{iX} .
Example: The Higman-Thompson group $V_{d,k}$ acts
On $\partial T_{d,k}$, there is no invariant measure on
 $\mathcal{F}(\partial T_{d,k})$ other than the trivial ones
In the situation of countable topological full groups
Ohe can upgrade
no nontrivial ergodic invariant measure on $\mathcal{F}(X)$

3. Double commutator lemma for IRS (Z. 19) Let [7 be a countable group acting faithfully on a Second countable Hansdorff space X by homeomorphisms. Let μ be an ergodic IRS of Γ , $\mu \neq S_{\text{sid}}$. Then for µ-a.e. H, there exists UCX, U open and non-empty, s.t. $|-| \ge \left[R_{\Gamma}(U), R_{\Gamma}(U) \right]$ Rist, (V) $R_{\Gamma}(U)$ is the rigid stabilizer of Γ in U, $R_F(U) = \{g \in \Gamma : g : x = x \text{ for all } x \in U^c\}$

Lemma Continued

If in addition, we assume that $R_{\Gamma}(U)$ has no fixed point in U, for all non-empty open U. Then for μ -a.e. H, if $x \in X$ is not a fixed pt. of H, then there is an open n-bhd V of x, s.t. $H > [R_{\Gamma}(V), R_{\Gamma}(V)]$.

Can the lemma be extended to t.d.L.C. groups?
By explicit counting arguments, shown to be true in
elliptic subgroups of Nevetin group Ng (Z. 19).
Bader Caproce - Gelader - Mozes : Ng does not contain any lattree
Proof goes through open subgroup O:
expand the tree to level n

$$A=B$$

 M
 T_n
 $= (II, Aut(T_v)) \times Sym(L_n)$
 $O = (UO_n)$
Suppose Γ is a lattice in Ng.
then $\Gamma_0 = \Gamma \cap O$ is a lattice in O.
Contradiction comes from
 Γ_0 is discrete $\rightarrow \exists n$ large enough, $\Gamma \cap (II = Aut(T_v)) = 143$.
 Γ_0 has finite covolume in O \rightarrow the projection of

4. Neretin groups have no nontrivial IRS

$$O_{A} = \bigcup_{n=0}^{\infty} O_{A,n}$$
eg. $A = \bigwedge_{A} = \bigwedge_{A} A_{n} = expand A down n levels$

$$O_{A,n} = \left(\prod_{u \in \partial A_{n}} Aut(T_{u}) \right) \times Sym(\partial A_{n})$$

$$A_{i} = \bigwedge_{A} A_{i} = \bigwedge_{A} Aut(T_{u}) \times Sym(\partial A_{n})$$
Outline: Let μ be an ergodic IRS of N_{a} , $\mu \neq S_{Sid}$.
1. H has to intersect Some O_{A}
Lemma: for μ -a.e. H, there exists a finite complete A, s.t. $H \cap O_{A} \neq \{id\}$

Step 1 implies it is meaningful to consider induced IRSs
SUB(
$$N_q$$
) \rightarrow SUB(S_A)
H \mapsto H \cap O_A
push μ forward to μ_A ,
Where A goes over finite complete subtrees (countable)
Collection
2. Consider an ergodic IRS η of O_A , $\eta \neq \delta_{Fig}$.
Prop: for η -ac. H, there exists $U \subset \partial T$, U open,
Non-empty, such that
 $H \geq [R_{O_A}(U), R_{O_A}(U)].$
3. Recall that the Higman-Thompson group V_{geolog} is
define in N_q . It follows that if
H contains $[R_{O_A}(U), R_{O_A}(U)]$, then $H \cap V' \neq fid$.
($i + 2$ implies that the induced IRS
SUB(N_q) \Rightarrow SUB(V')
 $H \mapsto H \cap V'$
 μ poshforward to $\mu_{V'}$,
does not charge the trivial subgroup fiel.

