Neretin groups admit no nontrivial invariant random subgroups

Tianyi Zheng, UCSD
Symmetry in Newcastle, 26 June 2020

1. Background on Neretin groups In the 1990s Neretin introduced a class of groups as a combinatorial analogue of the diffeomorphism group of the circle.

Let J be a regular tree of finite degree $q, q \geq 3$.

$\partial J=$ the boundary of J
(identified as infinite geodesic mys from o)

Ant $(T)=$ the automorphism group of the tree T.
Equip Auth (T) with the topology of pointwise convergence.

The Neretin group \aleph_{q} is the topological full group of $\operatorname{Aut}(T) \curvearrowright \partial T$

That is, a homeomorphism $g \in H_{\text {oreo (} \partial T \text {) is in }}$ N_{q}, iff one can find a partition of ∂J into disjoint clopen subsets $\quad \partial J=\bigsqcup_{i=1}^{k} U_{i} \quad$ s.t. for each $i \in\{1,2, \ldots, k\}, \quad \exists f_{i} \in \operatorname{Ant}(T)$,

$$
\left.g\right|_{U_{i}}=\left.f_{i}\right|_{U_{i}}
$$

Explicitly, $g \in N_{q}$ can be represented by a triple (A, B, φ), where A, B are complete finite subtrees, $|\partial A|=|\partial B|, \quad \varphi$ is forest isomorphism

Ex:

φ can be written as $\varphi=\sigma\left(\varphi_{v}\right)_{v \in \partial A}$,
$\sigma: \partial A \rightarrow \partial B$ a bijection, φ_{v} is a rooted automorphism in T_{v}.

Such homeomorphisms are also called

- Spheromorphisms of ∂T (Neretin)
- almost automorphism of J
- near automorphism of J (Cornulier)
- germs of automorphisms of Ant (T) (Caprace - de Meets) Simple locally compact groups acting on trees and their germs of automorphisms
Some properties of N_{q}
- N_{q} carries a group topology s.t. the natural inclusion

$$
\text { Ant }(T) \longleftrightarrow N_{q}
$$

is continuous and open; writ. this topology, N_{q} is a non-discrete t.d.l.c. group.

- The Higman. Thompson group $V_{q-1, q}$ embeds as a dense subgroup of N_{q}. As a consequence, N_{q} is compactly generated.
- (Kapoudjian 99) N_{q} is abstractly simple.

2. Invariant random subgroups

Let G be a locally compact second countable group. Consider its Chabauty space.
$S \cup B(G)=$ the set of closed subgroups of G
The Chabauty topology is generated by open sets of the form
$O_{1}(K)=\{H \in \operatorname{SUB}(G): H \cap K=\varnothing\}, K \subset G$ compact
$O_{2}(U)=\{H \in \operatorname{SUB}(G): H \cap U \neq \varnothing\}, U \subset G$ open.
G acts on $\operatorname{SUB}(G)$ by conjugation.
An invariant random subgroup of G is a G-invariant
Borel probability measure on $\operatorname{SUB}(G)$.
Prop. (Albert - Bergeron - Bringer - Gelander - Nikolov - Raimbault - Same
Any IRS μ of G is induced by some probability measure preserving action of G.
$G \curvearrowright(X, \nu), \nu$ preserved by G
Consider the map $\quad X \rightarrow \operatorname{SuB}(G)$

$$
x \mapsto \operatorname{stab}_{G}(x)=\{g \in G: \quad g \cdot x=x\} .
$$

Then the pushforward of U is an IRS of G.

Examples of $\mathbb{R S S}_{s}$:

- $\delta_{\{N\},} N \Delta G \quad$ normal subgroup

Trivial IRS refer to $\delta_{\{\{i d\}\}}, \delta_{\{G\}}$.

- $\Gamma \leqslant G$ closed subgroup of finite covolume
$G \rightarrow \operatorname{SUB}(G) \quad$ factors through G / Γ.
$g \mapsto g \Gamma g^{-1}$
That is, the normalized Haar measure on G / T gives an IRS supported on conjugates of Γ.
- G acts on a rooted tree T_{0} by automorphisms
 It gives rise to a stabilizer $\mathbb{R S}$, supported on

$$
\left\{\operatorname{Stab}_{G}(x)\right\}_{x \in \partial T_{0}}
$$

Expect to have more $\mathbb{R S}$ s:
choose a fixed point set $C \subset \partial T_{0}$
and take $F_{G}(C)=\{g \in G: g . x=x$ for all $x \in C\}$

$$
\begin{aligned}
f(\partial T)=\{\text { closed subsets of } \partial T\} & \rightarrow \operatorname{SUB}(G) \\
C & \mapsto \operatorname{Fix}_{G}(C)
\end{aligned}
$$

push forward a G-invariant measure on $f(\partial T)$, we get an $\mathbb{R S}$.
Evidence supporting there is no interesting $\mathbb{R S}$ s
say G is defined by its action $G \curvearrowright X$.
Suppose we already know $G \curvearrowright F(X)$ admits no ergodic invariant measure other than $\delta_{\{\phi\}}, \delta_{\{x\}}$.
Example: The Higman-Thompson group $V_{d, k}$ acts on $\partial J_{d, k}$, there is no invariant measure on $f\left(\partial T_{a, k}\right)$ other than the trivial ones.

In the situation of countable topological full groups, One can upgrade
no nontrivial ergodic invariant measure on $f(x)$
\rightarrow no nontrivial ergodic IRS
3. Double commutator lemma for RS (Z, 19)

Let Γ be a countable group acting faithfully on a second countable Hausdorff space X by homeomorphisms. Let μ be an ergodic $\mathbb{R S}$ of $\Gamma, \mu \neq \delta_{\text {\{id }\}}$. Then for μ-a.e. H, there exists $U \subset X, U$ open and nonempty, s.t.

$$
H \geqslant\left[R_{\Gamma}(U), R_{\Gamma}(U)\right]
$$

$R_{\Gamma}(U)$ is the rigid stabilizer of Γ in U,

$$
R_{\Gamma}(U)=\left\{g \in \Gamma: \quad g . x=x \text { for all } x \in U^{c}\right\}
$$

Lemma Continued
If in addition, we assume that $R_{\Gamma}(U)$ has no fixed point in U, for all nonempty open U.

Then for μ-a.e. H, if $x \in X$ is not a fixed pot. of H, then there is an open nhl V of x, s.t.

$$
H>\left[R_{\Gamma}(V), R_{\Gamma}(V)\right]
$$

The double commutator lemma for normal subgroup is well known,

Higman simplicity th ${ }^{m}$, Grigorchut, Matui, Nekrashevych....
For $\mathbb{R S S}_{s}$ it is used in a similar way to relate H to its fixed point seton X.
Example: The derived subgroup $V_{a, k}^{\prime}$ has no nontrivial $I R S_{s}$ (Dudko. Medynets).

Can the lemma be extended to t.d.l.c. groups?
By explicit counting arguments, shown to be tome in elliptic subgroups of $N_{\text {cretin group }} N_{q}(Z .19)$.

Bader. Caprace-Gelander. Mores: N_{q} does not contain any lattice
Proof goes through open subgroup
expand the tree to level n
$A=B$

$$
\begin{aligned}
O_{n} & =\left\{(A, B, \varphi): A=B=T_{n}\right\} \\
& =\left(\prod_{v \in L_{n}} A_{n} t\left(T_{v}\right)\right) \notin \operatorname{sym}\left(L_{n}\right) \\
O & =U O_{n}
\end{aligned}
$$

Suppose Γ is a lattice in N_{q}.
then $\Gamma_{0}=\Gamma \cap O$ is a lattice in 0 .
Contradiction comes from

- Γ_{0} is discrete $\leadsto \exists \cap$ large enough, $\Gamma \cap\left(\prod_{\text {rect }} A u t\left(T_{0}\right)\right)=$ ii .
- Γ_{0} has finite covolume in $0 \leadsto$ the projection of

4. Neretin groups have no nontrivial IRS

$$
O_{A}=\bigcup_{n=0}^{\infty} O_{A, n}
$$

egg. $A=$

$A_{n}=\operatorname{expand} A$ down n levels

$$
O_{A, n}=\left(\prod_{u \in \partial A_{n}} A_{u t}\left(T_{u}\right)\right) \rtimes \underline{\operatorname{Sym}\left(\partial A_{n}\right)}
$$

Outline: Let μ be an ergodic $\mathbb{R S}$ of $\lambda_{q} \mu \neq \delta_{\text {\{id }\}}$.

1. H has to intersect some O_{A}

Lemma: for μ-ae. H, there exists a finite complete A,
s.t. $H \cap O_{A} \neq\{i d\}$

Stop 1 implies it is meaningful to consider induced IRS

$$
\begin{aligned}
\operatorname{SUB}\left(N_{q}\right) & \rightarrow \operatorname{SUB}\left(\theta_{A}\right) \\
H & \mapsto H \cap \theta_{A}
\end{aligned}
$$

push μ forward to μ_{A},
where A goes over finite complete subtrees. (countable $\left.\begin{array}{c}\text { collection }\end{array}\right)$
2. Consider an ergodic IRS η of $\theta_{A}, \eta \neq \delta_{\text {\{ia\}\} }}$.

Prop: for η-a.e. H, there exists $U \subset \partial T, U$ open, nonempty, such that

$$
H \geqslant\left[R_{O_{A}}(U), R_{O_{A}}(U)\right]
$$

3. Recall that the Higman. Thompson group $V_{q-1, q}$ is dense in N_{q}. It follows that if H contains $\left[R_{\theta_{A}}(v), R_{O_{A}}(\tau)\right]$, then $H \cap V^{\prime} \neq\{i d\}$. $1+2$ implies that the induced IRS

$$
\begin{aligned}
\operatorname{SUB}\left(N_{q}\right) & \rightarrow \operatorname{SUB}\left(V^{\prime}\right) \\
H & \mapsto H \cap V^{\prime}
\end{aligned}
$$

μ poshforward to $\mu_{V^{\prime}}$, does not charge the trivial subgroup \{id\}.

Finally, invoke the result that V^{\prime} has no nontrivial IRS, it follows $\mu_{V^{\prime}}=\delta_{\left\{V^{\prime}\right\}}$.

Back to $\operatorname{suB}\left(\aleph_{q}\right)$, it means μ-a.e. $H \geqslant V^{\prime}$. Key picture in step 2 :

Covering, intersection, inducing $\mid R S s$, condition (disintegration) to arrive at probability measures that can be understood.

$$
\mathcal{Y}_{u, v}^{A}= \begin{cases}H: H \text { contains an element } \gamma \\ \text { that moves } T_{u} \text { to } T_{v,} \text { and } \\ \gamma \in O_{A, 0}\end{cases}
$$

Expand n steps down, the projection of $H \cap O_{A, n}$ to $\operatorname{sym}\left(\partial A_{n}\right)$ cannot be small.

