Infinite primitive permutation groups, cartesian decompositions, and topologically simple locally compact groups

Simon M. Smith

University of Lincoln

University of Newcastle, Australia August 2020

Background

The structure theory of locally compact groups starts with a decomposition:

The structure theory of locally compact groups starts with a decomposition:

Connected case

&

Totally disconnected case

The structure theory of locally compact groups starts with a decomposition:

- Connected locally compact groups are pro-Lie (Gleason-Yamabe)
- Totally disconnected locally compact (tdlc) lots to learn

The structure theory of locally compact groups starts with a decomposition:

- Connected locally compact groups are pro-Lie (Gleason-Yamabe)
- Totally disconnected locally compact (tdlc) lots to learn

A tdlc group G is compactly generated if there is a compact subset A of G such that $G = \langle A \rangle$.

The structure theory of locally compact groups starts with a decomposition:

- Connected locally compact groups are pro-Lie (Gleason-Yamabe)
- Totally disconnected locally compact (tdlc) lots to learn
- A tdlc group G is compactly generated if there is a compact subset A of G such that $G = \langle A \rangle$.
- G compactly generated tdlc $\implies \exists$ locally finite connected graph Γ s.t.

The structure theory of locally compact groups starts with a decomposition:

- Connected locally compact groups are pro-Lie (Gleason-Yamabe)
- Totally disconnected locally compact (tdlc) lots to learn
- A tdlc group G is compactly generated if there is a compact subset A of G such that $G = \langle A \rangle$.
- G compactly generated tdlc $\implies \exists$ locally finite connected graph Γ s.t.
 - G acts as a vertex-transitive group of automorphisms on Γ
 - All vertex stabilisers are compact and open

The structure theory of locally compact groups starts with a decomposition:

- Connected locally compact groups are pro-Lie (Gleason-Yamabe)
- Totally disconnected locally compact (tdlc) lots to learn
- A tdlc group G is compactly generated if there is a compact subset A of G such that $G = \langle A \rangle$.
- G compactly generated tdlc $\implies \exists$ locally finite connected graph Γ s.t.
 - G acts as a vertex-transitive group of automorphisms on Γ
 - All vertex stabilisers are compact and open
- Γ is called a Cayley-Abels graph for G.

The structure theory of locally compact groups starts with a decomposition:

Connected case & Totally disconnected case

- Connected locally compact groups are pro-Lie (Gleason-Yamabe)
- Totally disconnected locally compact (tdlc) lots to learn

A tdlc group G is compactly generated if there is a compact subset A of G such that $G = \langle A \rangle$.

G compactly generated tdlc $\implies \exists$ locally finite connected graph Γ s.t.

- G acts as a vertex-transitive group of automorphisms on Γ
- All vertex stabilisers are compact and open

 Γ is called a Cayley-Abels graph for *G*. Can do geometric group theory: two Cayley-Abels graphs for *G* are quasi-isometric; ends of groups

Let G be a tdlc group.

Let G be a tdlc group. By van Dantzig's Theorem, G has a compact open subgroup U.

• G acts on cosets G/U by multiplication

- G acts on cosets G/U by multiplication
- Let $G/\!/U$ be the permutation group (i.e. subgroup of Sym(G/U)) induced by this action. Called the Schlichting completion

- G acts on cosets G/U by multiplication
- Let $G/\!/U$ be the permutation group (i.e. subgroup of Sym(G/U)) induced by this action. Called the Schlichting completion
- Under the topology of pointwise convergence (i.e. permutation topology), $G/\!/U$ is a tdlc group

- G acts on cosets G/U by multiplication
- Let $G/\!/U$ be the permutation group (i.e. subgroup of Sym(G/U)) induced by this action. Called the Schlichting completion
- Under the topology of pointwise convergence (i.e. permutation topology), $G/\!/U$ is a tdlc group
- As a permutation group, *G*//*U* is closed, transitive and subdegree-finite (i.e. all orbits of point stabilisers are finite)

Let G be a tdlc group. By van Dantzig's Theorem, G has a compact open subgroup U.

- G acts on cosets G/U by multiplication
- Let $G/\!/U$ be the permutation group (i.e. subgroup of Sym(G/U)) induced by this action. Called the Schlichting completion
- Under the topology of pointwise convergence (i.e. permutation topology), $G/\!/U$ is a tdlc group
- As a permutation group, *G*//*U* is closed, transitive and subdegree-finite (i.e. all orbits of point stabilisers are finite)

So the Schlichting completion allows us to see:

Let G be a tdlc group. By van Dantzig's Theorem, G has a compact open subgroup U.

- G acts on cosets G/U by multiplication
- Let $G/\!/U$ be the permutation group (i.e. subgroup of Sym(G/U)) induced by this action. Called the Schlichting completion
- Under the topology of pointwise convergence (i.e. permutation topology), $G/\!/U$ is a tdlc group

 \leftrightarrow

• As a permutation group, *G*//*U* is closed, transitive and subdegree-finite (i.e. all orbits of point stabilisers are finite)

So the Schlichting completion allows us to see:

Under their "natural" topology closed, transitive, subdegree-finite permutation groups are tldc Under their "natural" permutation representations tdlc groups are closed, transitive and subdegree-finite.

Let \mathscr{S} be the class of topologically simple groups that are nondiscrete, compactly generated, tdlc.

Let \mathscr{S} be the class of topologically simple groups that are nondiscrete, compactly generated, tdlc.

 $\mathscr S$ plays a fundamental role in the structure theory of compactly generated tdlc groups (e.g. Caprace-Monod '11)

Let \mathscr{S} be the class of topologically simple groups that are nondiscrete, compactly generated, tdlc.

 \mathscr{S} plays a fundamental role in the structure theory of compactly generated tdlc groups (e.g. Caprace-Monod '11)

There are many open questions about \mathscr{S} . E.g.

Let \mathscr{S} be the class of topologically simple groups that are nondiscrete, compactly generated, tdlc.

 \mathscr{S} plays a fundamental role in the structure theory of compactly generated tdlc groups (e.g. Caprace-Monod '11)

There are many open questions about \mathscr{S} . E.g.

Q) Have we found all "types" of examples in \mathscr{S} , or are there completely new constructions?

Let \mathscr{S} be the class of topologically simple groups that are nondiscrete, compactly generated, tdlc.

 \mathscr{S} plays a fundamental role in the structure theory of compactly generated tdlc groups (e.g. Caprace-Monod '11)

There are many open questions about \mathscr{S} . E.g.

Q) Have we found all "types" of examples in $\mathscr{S},$ or are there completely new constructions? *

For a topological group G let L be the intersection of all nontrivial closed normal subgroups.

For a topological group G let L be the intersection of all nontrivial closed normal subgroups. G is monolithic with monolith L if L is nontrivial.

For a topological group G let L be the intersection of all nontrivial closed normal subgroups. G is monolithic with monolith L if L is nontrivial.

A compactly generated, non-compact, locally compact group whose proper quotients are all compact is called just-non-compact.

For a topological group G let L be the intersection of all nontrivial closed normal subgroups. G is monolithic with monolith L if L is nontrivial.

A compactly generated, non-compact, locally compact group whose proper quotients are all compact is called just-non-compact.

Theorem. (Caprace-Monod '11) A just-non-compact group is discrete & residually finite, or monolithic (with monolith $\cong \mathbb{R}^n$ or a quasi-product with finitely many isomorphic topologically simple quasi-factors).

For a topological group G let L be the intersection of all nontrivial closed normal subgroups. G is monolithic with monolith L if L is nontrivial.

A compactly generated, non-compact, locally compact group whose proper quotients are all compact is called just-non-compact.

Theorem. (Caprace-Monod '11) A just-non-compact group is discrete & residually finite, or monolithic (with monolith $\cong \mathbb{R}^n$ or a quasi-product with finitely many isomorphic topologically simple quasi-factors).

Discrete just-non-compact groups are precisely John Wilson's just infinite groups.

For a topological group G let L be the intersection of all nontrivial closed normal subgroups. G is monolithic with monolith L if L is nontrivial.

A compactly generated, non-compact, locally compact group whose proper quotients are all compact is called just-non-compact.

Theorem. (Caprace-Monod '11) A just-non-compact group is discrete & residually finite, or monolithic (with monolith $\cong \mathbb{R}^n$ or a quasi-product with finitely many isomorphic topologically simple quasi-factors).

Discrete just-non-compact groups are precisely John Wilson's just infinite groups.

General plan: better understand just-non-compact groups via their Schlichting completions.

For a topological group G let L be the intersection of all nontrivial closed normal subgroups. G is monolithic with monolith L if L is nontrivial.

A compactly generated, non-compact, locally compact group whose proper quotients are all compact is called just-non-compact.

Theorem. (Caprace-Monod '11) A just-non-compact group is discrete & residually finite, or monolithic (with monolith $\cong \mathbb{R}^n$ or a quasi-product with finitely many isomorphic topologically simple quasi-factors).

Discrete just-non-compact groups are precisely John Wilson's just infinite groups.

General plan: better understand just-non-compact groups via their Schlichting completions. *

5 Background: box product

5 Background: box product

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.
Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

For $H \leq \operatorname{Aut}(\Lambda)$ and $F \leq S_m$ both transitive, the box product $H \boxtimes F$ is the subgroup of $\operatorname{Aut}(\Gamma(m, \Lambda))$ satisfying:

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

For $H \leq \operatorname{Aut}(\Lambda)$ and $F \leq S_m$ both transitive, the box product $H \boxtimes F$ is the subgroup of $\operatorname{Aut}(\Gamma(m, \Lambda))$ satisfying:

(i) The setwise stabiliser in $H\boxtimes F$ of any lobe Λ' in $\Gamma(m,\Lambda)$ induces H on Λ'

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

For $H \leq \operatorname{Aut}(\Lambda)$ and $F \leq S_m$ both transitive, the box product $H \boxtimes F$ is the subgroup of $\operatorname{Aut}(\Gamma(m, \Lambda))$ satisfying:

- (i) The setwise stabiliser in $H\boxtimes F$ of any lobe Λ' in $\Gamma(m,\Lambda)$ induces H on Λ'
- (ii) The stabiliser in $H \boxtimes F$ of any vertex v in $\Gamma(m, \Lambda)$ permutes the m lobes containing v. The induced permutation group is F

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

For $H \leq \operatorname{Aut}(\Lambda)$ and $F \leq S_m$ both transitive, the box product $H \boxtimes F$ is the subgroup of $\operatorname{Aut}(\Gamma(m, \Lambda))$ satisfying:

- (i) The setwise stabiliser in $H\boxtimes F$ of any lobe Λ' in $\Gamma(m,\Lambda)$ induces H on Λ'
- (ii) The stabiliser in $H \boxtimes F$ of any vertex v in $\Gamma(m, \Lambda)$ permutes the m lobes containing v. The induced permutation group is F

For example ...

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

For $H \leq \operatorname{Aut}(\Lambda)$ and $F \leq S_m$ both transitive, the box product $H \boxtimes F$ is the subgroup of $\operatorname{Aut}(\Gamma(m, \Lambda))$ satisfying:

- (i) The setwise stabiliser in $H\boxtimes F$ of any lobe Λ' in $\Gamma(m,\Lambda)$ induces H on Λ'
- (ii) The stabiliser in $H \boxtimes F$ of any vertex v in $\Gamma(m, \Lambda)$ permutes the m lobes containing v. The induced permutation group is F

For example ...

Suppose Λ is a 2-connected, vertex transitive graph and $m \in \mathbb{N}$.

The graph $\Gamma(m, \Lambda)$ is the connectivity-one graph whose lobes are Λ and all vertices lie in *m* lobes.

For example ...

For $H \leq \operatorname{Aut}(\Lambda)$ and $F \leq S_m$ both transitive, the box product $H \boxtimes F$ is the subgroup of $\operatorname{Aut}(\Gamma(m, \Lambda))$ satisfying:

- (i) The setwise stabiliser in $H\boxtimes F$ of any lobe Λ' in $\Gamma(m,\Lambda)$ induces H on Λ'
- (ii) The stabiliser in $H \boxtimes F$ of any vertex v in $\Gamma(m, \Lambda)$ permutes the m lobes containing v. The induced permutation group is F

For example ...

Note: Any subgroup $G \leq {\rm Aut}(\Gamma(m,\Lambda))$ has a faithful action on the $(|\Lambda|,m)\text{-biregular tree}\dots$

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018).

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions.

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

 $(g_1,\ldots,g_m;\sigma) \in \operatorname{Sym}(Y)\operatorname{Wr}S_m$

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

 $(g_1,\ldots,g_m;\sigma) \in \operatorname{Sym}(Y)\operatorname{Wr} S_m$ sends $(y_1,\ldots,y_m) \in Y^m$ to

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

 $(g_1, \ldots, g_m; \sigma) \in \text{Sym}(Y) \text{Wr} S_m \text{ sends } (y_1, \ldots, y_m) \in Y^m \text{ to}$ $\sigma(g_1 y_1, \ldots, g_m y_m) = (g_{1'} y_{1'}, \ldots, g_{m'} y_{m'})$

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

$$(g_1, \dots, g_m; \sigma) \in \operatorname{Sym}(Y) \operatorname{Wr} S_m$$
 sends $(y_1, \dots, y_m) \in Y^m$ to
 $\sigma(g_1 y_1, \dots, g_m y_m) = (g_{1'} y_{1'}, \dots, g_{m'} y_{m'})$

A nontrivial homogeneous cartesian decomposition, \mathcal{E} of a set X, is a finite set of partitions $\{\Sigma_1, \ldots, \Sigma_m\}$ of X such that:

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

$$(g_1, \dots, g_m; \sigma) \in \operatorname{Sym}(Y) \operatorname{Wr} S_m$$
 sends $(y_1, \dots, y_m) \in Y^m$ to
 $\sigma(g_1 y_1, \dots, g_m y_m) = (g_{1'} y_{1'}, \dots, g_{m'} y_{m'})$

A nontrivial homogeneous cartesian decomposition, \mathcal{E} of a set X, is a finite set of partitions $\{\Sigma_1, \ldots, \Sigma_m\}$ of X such that:

• *m* > 1, each partition has at least two parts, all partitions have the same cardinality

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

$$(g_1, \dots, g_m; \sigma) \in \operatorname{Sym}(Y) \operatorname{Wr} S_m$$
 sends $(y_1, \dots, y_m) \in Y^m$ to
 $\sigma(g_1 y_1, \dots, g_m y_m) = (g_{1'} y_{1'}, \dots, g_{m'} y_{m'})$

A nontrivial homogeneous cartesian decomposition, \mathcal{E} of a set X, is a finite set of partitions $\{\Sigma_1, \ldots, \Sigma_m\}$ of X such that:

- m > 1, each partition has at least two parts, all partitions have the same cardinality
- $|\gamma_1 \cap \cdots \cap \gamma_m| = 1$ for each $\gamma_1 \in \Sigma_1, \ldots, \gamma_m \in \Sigma_m$.

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

$$(g_1, \dots, g_m; \sigma) \in \operatorname{Sym}(Y) \operatorname{Wr} S_m$$
 sends $(y_1, \dots, y_m) \in Y^m$ to
 $\sigma(g_1 y_1, \dots, g_m y_m) = (g_{1'} y_{1'}, \dots, g_{m'} y_{m'})$

A nontrivial homogeneous cartesian decomposition, \mathcal{E} of a set X, is a finite set of partitions $\{\Sigma_1, \ldots, \Sigma_m\}$ of X such that:

- *m* > 1, each partition has at least two parts, all partitions have the same cardinality
- $|\gamma_1 \cap \cdots \cap \gamma_m| = 1$ for each $\gamma_1 \in \Sigma_1, \dots, \gamma_m \in \Sigma_m$.

 \mathcal{E} is preserved by G (for $G \leq \text{Sym}(X)$) if the partitions in \mathcal{E} are permuted by G.

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

$$(g_1, \dots, g_m; \sigma) \in \operatorname{Sym}(Y) \operatorname{Wr} S_m$$
 sends $(y_1, \dots, y_m) \in Y^m$ to
 $\sigma(g_1 y_1, \dots, g_m y_m) = (g_{1'} y_{1'}, \dots, g_{m'} y_{m'})$

A nontrivial homogeneous cartesian decomposition, \mathcal{E} of a set X, is a finite set of partitions $\{\Sigma_1, \ldots, \Sigma_m\}$ of X such that:

• *m* > 1, each partition has at least two parts, all partitions have the same cardinality

•
$$|\gamma_1 \cap \cdots \cap \gamma_m| = 1$$
 for each $\gamma_1 \in \Sigma_1, \ldots, \gamma_m \in \Sigma_m$.

 \mathcal{E} is preserved by G (for $G \leq \text{Sym}(X)$) if the partitions in \mathcal{E} are permuted by G.

• $\operatorname{Sym}(Y)\operatorname{Wr}S_m$, for |Y|, m > 1, preserves some \mathcal{E} on Y^m

See Praeger & Schneider's book: *Permutation groups and cartesian decompositions* (2018). Used to detect product actions. E.g.

$$(g_1, \dots, g_m; \sigma) \in \operatorname{Sym}(Y) \operatorname{Wr} S_m$$
 sends $(y_1, \dots, y_m) \in Y^m$ to
 $\sigma(g_1 y_1, \dots, g_m y_m) = (g_{1'} y_{1'}, \dots, g_{m'} y_{m'})$

A nontrivial homogeneous cartesian decomposition, \mathcal{E} of a set X, is a finite set of partitions $\{\Sigma_1, \ldots, \Sigma_m\}$ of X such that:

• *m* > 1, each partition has at least two parts, all partitions have the same cardinality

•
$$|\gamma_1 \cap \cdots \cap \gamma_m| = 1$$
 for each $\gamma_1 \in \Sigma_1, \ldots, \gamma_m \in \Sigma_m$.

 \mathcal{E} is preserved by G (for $G \leq \text{Sym}(X)$) if the partitions in \mathcal{E} are permuted by G.

- $\operatorname{Sym}(Y)\operatorname{Wr}S_m$, for |Y|, m > 1, preserves some $\mathcal E$ on Y^m
- Conversely, if $G \leq \text{Sym}(X)$ preserves some $\mathcal{E} = \{\Sigma_1, \ldots, \Sigma_m\}$ on X, then G is a subgroup of $\text{Sym}(\Sigma_1) \text{Wr} S_m$.

7 Background: A cartesian decomposition example (taken from the book)

(taken from the book)

Let C be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

(taken from the book)

Let C be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

(taken from the book)

Let C be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{\{\text{elements whose } x \text{ coordinate is 0}\}, \\ \{\text{elements whose } x \text{ coordinate is 1}\}\}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

(taken from the book)

Let C be the cube $\{(a,b,c):a,b,c\in\{1,0\}\}.$

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

The "points" in C can be recovered by taking intersections of parts:

(taken from the book)

Let C be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

The "points" in C can be recovered by taking intersections of parts:

 $|\gamma_1 \cap \gamma_2 \cap \gamma_3| = 1$ for all $\gamma_i \in \Sigma_i$

(taken from the book)

Let *C* be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

The "points" in C can be recovered by taking intersections of parts:

 $|\gamma_1 \cap \gamma_2 \cap \gamma_3| = 1$ for all $\gamma_i \in \Sigma_i$

• \mathcal{E} is a nontrivial homogeneous cartesian decomposition of C

(taken from the book)

Let *C* be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

The "points" in C can be recovered by taking intersections of parts:

$$|\gamma_1 \cap \gamma_2 \cap \gamma_3| = 1$$
 for all $\gamma_i \in \Sigma_i$

- \mathcal{E} is a nontrivial homogeneous cartesian decomposition of C
- $\operatorname{Aut}(C) = C_2 \operatorname{Wr} S_3 = (C_2 \times C_2 \times C_2) \rtimes S_3$

(taken from the book)

Let *C* be the cube $\{(a, b, c) : a, b, c \in \{1, 0\}\}$.

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

The "points" in C can be recovered by taking intersections of parts:

$$|\gamma_1 \cap \gamma_2 \cap \gamma_3| = 1$$
 for all $\gamma_i \in \Sigma_i$

- \mathcal{E} is a nontrivial homogeneous cartesian decomposition of C
- $\operatorname{Aut}(C) = C_2 \operatorname{Wr} S_3 = (C_2 \times C_2 \times C_2) \rtimes S_3$
- First *C*₂ swaps *x*-coordinates, second swaps *y*-coords, third *z*-coords

(taken from the book)

Let C be the cube $\{(a,b,c):a,b,c\in\{1,0\}\}.$

Partition *C* according to the *x*-coordinate:

 $\Sigma_1 := \{ \{ \text{elements whose } x \text{ coordinate is 0} \}, \\ \{ \text{elements whose } x \text{ coordinate is 1} \} \}$

Now do the same for the *y*-coordinate (Σ_2) and *z*-coordinate (Σ_3)

The "points" in C can be recovered by taking intersections of parts:

 $|\gamma_1 \cap \gamma_2 \cap \gamma_3| = 1$ for all $\gamma_i \in \Sigma_i$

- \mathcal{E} is a nontrivial homogeneous cartesian decomposition of C
- $\operatorname{Aut}(C) = C_2 \operatorname{Wr} S_3 = (C_2 \times C_2 \times C_2) \rtimes S_3$
- First *C*₂ swaps *x*-coordinates, second swaps *y*-coords, third *z*-coords
- The S_3 interchanges the 3 components. Hence Aut(C) preserves \mathcal{E} .
Tdlc groups with maximal compact open subgroups & one-ended groups in $\mathscr S$ Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and $G/\!/U$ is nondiscrete. If $G/\!/U$:

• preserves no nontrivial homogeneous cartesian decomp. on G/U

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

- preserves no nontrivial homogeneous cartesian decomp. on ${\cal G}/U$
- doesn't split nontrivially as an amalgamated free product over a compact open subgroup

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

- preserves no nontrivial homogeneous cartesian decomp. on G/U
- doesn't split nontrivially as an amalgamated free product over a compact open subgroup

then the monolith of $G/\!/U$ is a one-ended group in \mathscr{S} .

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G.

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Then:

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Then:

• $G/\!/U$ is just-non-compact

(For $\langle 1 \rangle \neq N \trianglelefteq_c G$, since U is maximal, G = NU)

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Then:

• $G/\!/U$ is just-non-compact

(For $\langle 1 \rangle \neq N \trianglelefteq_c G$, since U is maximal, G = NU)

• $G/\!/U$ is compactly generated \implies it has a Cayley-Abels graph Γ ($G = \langle U, g \rangle$ for any $g \notin U$)

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Then:

• $G/\!/U$ is just-non-compact

(For $\langle 1 \rangle \neq N \trianglelefteq_c G$, since U is maximal, G = NU)

- $G/\!/U$ is compactly generated \implies it has a Cayley-Abels graph Γ ($G = \langle U, g \rangle$ for any $g \notin U$)
- $G/\!\!/U$ is primitive

(i.e. transitive with pt stabilisers maximal)

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Then:

• $G/\!/U$ is just-non-compact

(For $\langle 1 \rangle \neq N \trianglelefteq_c G$, since U is maximal, G = NU)

- $G/\!/U$ is compactly generated \implies it has a Cayley-Abels graph Γ ($G = \langle U, g \rangle$ for any $g \notin U$)
- $G/\!\!/U$ is primitive

(i.e. transitive with pt stabilisers maximal)

The closed, subdegree-finite, primitive permutation groups have been classified.

Suppose *G* is a noncompact tdlc group with a compact open subgroup *U* and *U* is maximal in *G*. We classify *G* using G//U

Then:

• $G/\!/U$ is just-non-compact

(For $\langle 1 \rangle \neq N \trianglelefteq_c G$, since U is maximal, G = NU)

- $G/\!/U$ is compactly generated \implies it has a Cayley-Abels graph Γ ($G = \langle U, g \rangle$ for any $g \notin U$)
- $G/\!\!/U$ is primitive

(i.e. transitive with pt stabilisers maximal)

The closed, subdegree-finite, primitive permutation groups have been classified. All (discrete & nondiscete) are monolithic

Suppose G is a noncompact tdlc group with a compact open subgroup U and U is maximal in G. We classify G using $G/\!/U$

Then:

• $G/\!/U$ is just-non-compact

(For $\langle 1 \rangle \neq N \trianglelefteq_c G$, since U is maximal, G = NU)

- $G/\!/U$ is compactly generated \implies it has a Cayley-Abels graph Γ ($G = \langle U, g \rangle$ for any $g \notin U$)
- $G/\!\!/U$ is primitive

(i.e. transitive with pt stabilisers maximal)

The closed, subdegree-finite, primitive permutation groups have been classified. All (discrete & nondiscete) are monolithic

We can follow the proof to obtain a structure theorem for $G \dots$

¹⁰ If the monolith of $G/\!/U$ is non-simple

¹⁰ If the monolith of $G/\!/U$ is non-simple Let *L* be the monolith of $\hat{G} := G/\!/U$.

¹⁰ If the monolith of $G/\!/U$ is non-simple

Let *L* be the monolith of $\hat{G} := G/\!/U$. Let \hat{U} be image of *U* in $G/\!/U$.

¹⁰ If the monolith of $G/\!/U$ is non-simple

Let *L* be the monolith of $\hat{G} := G/\!/U$. Let \hat{U} be image of *U* in $G/\!/U$.

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$
- *K* acts faithfully and transitively on a set *Y* (so wlog $K \leq \text{Sym}(Y)$) with projection $\pi_1(M \cap \hat{U}) = \text{Stab}_K(y)$ for some $y \in Y$

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$
- *K* acts faithfully and transitively on a set *Y* (so wlog $K \leq Sym(Y)$) with projection $\pi_1(M \cap \hat{U}) = Stab_K(y)$ for some $y \in Y$
- + \hat{U} acts on components of M by conjugation, inducing a transitive subgroup $F \leq S_m$

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$
- *K* acts faithfully and transitively on a set *Y* (so wlog $K \leq Sym(Y)$) with projection $\pi_1(M \cap \hat{U}) = Stab_K(y)$ for some $y \in Y$
- \hat{U} acts on components of M by conjugation, inducing a transitive subgroup $F \leq S_m$
- $\implies \exists$ a permutational embedding (ϕ, θ) of $G/\!/U$ into $\operatorname{Sym}(Y^m)$ st

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$
- *K* acts faithfully and transitively on a set *Y* (so wlog $K \leq \text{Sym}(Y)$) with projection $\pi_1(M \cap \hat{U}) = \text{Stab}_K(y)$ for some $y \in Y$
- + \hat{U} acts on components of M by conjugation, inducing a transitive subgroup $F \leq S_m$
- $\implies \exists$ a permutational embedding (ϕ, θ) of $G/\!\!/U$ into $\operatorname{Sym}(Y^m)$ st
 - $\theta: G/U \hookrightarrow Y^m$ with $\theta(U) = (y, \dots, y)$

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$
- *K* acts faithfully and transitively on a set *Y* (so wlog $K \leq Sym(Y)$) with projection $\pi_1(M \cap \hat{U}) = Stab_K(y)$ for some $y \in Y$
- + \hat{U} acts on components of M by conjugation, inducing a transitive subgroup $F \leq S_m$
- $\implies \exists$ a permutational embedding (ϕ, θ) of $G/\!\!/U$ into $\operatorname{Sym}(Y^m)$ st
 - $\theta: G/U \hookrightarrow Y^m$ with $\theta(U) = (y, \dots, y)$
 - $\phi(M \curvearrowright G/U) = (K^m \curvearrowright Y^m)$ ($K^m \curvearrowright Y^m$ is product action)

Let L be the monolith of $\hat{G} := G/\!\!/ U$. Let \hat{U} be image of U in $G/\!/ U$.

- K closed and normal in L
- $M = K \times \cdots \times K = K^m$, for $m \in \mathbb{N}$ is dense in L
- $M \trianglelefteq G /\!\!/ U$
- *K* acts faithfully and transitively on a set *Y* (so wlog $K \leq Sym(Y)$) with projection $\pi_1(M \cap \hat{U}) = Stab_K(y)$ for some $y \in Y$
- + \hat{U} acts on components of M by conjugation, inducing a transitive subgroup $F \leq S_m$
- $\implies \exists$ a permutational embedding (ϕ, θ) of $G/\!\!/U$ into $\operatorname{Sym}(Y^m)$ st
 - $\theta: G/U \hookrightarrow Y^m$ with $\theta(U) = (y, \dots, y)$
 - $\phi(M \curvearrowright G/U) = (K^m \curvearrowright Y^m)$ ($K^m \curvearrowright Y^m$ is product action)
 - $\phi(\hat{U}) \leq \psi(N_{\hat{U}}(K)) \operatorname{Wr} F$ (Wr action is product action) (here $\psi : N_{\hat{U}}(K) \to N_{\operatorname{Stab}_{\operatorname{Sym}(Y)}(y)}(K)$ is a known homomorphism)

Now take *H* to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \text{Sym}(K)$.

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq Sym(K)$. Then, up to permutation isomorphism:

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

• $G/\!/U$ is cocompact in HWrF

(Wr acting via product action)

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

- G//U is cocompact in HWrF (Wr acting via product action)
- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

- G//U is cocompact in HWrF (Wr acting via product action)
- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- $H = H/\!/W$ & has monolith K so topologically simple monolith

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

- G//U is cocompact in HWrF (Wr acting via product action)
- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- $H = H/\!/W$ & has monolith K so topologically simple monolith
- The action of a setwise stabiliser in $G/\!/U \curvearrowright Y^m$ of any fibre (e.g. $Y \times \{y\} \times \cdots \times \{y\}$) induces a dense subgroup of H

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

- G//U is cocompact in HWrF (Wr acting via product action)
- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- $H = H/\!/W$ & has monolith K so topologically simple monolith
- The action of a setwise stabiliser in $G/\!/U \curvearrowright Y^m$ of any fibre (e.g. $Y \times \{y\} \times \cdots \times \{y\}$) induces a dense subgroup of H

Any point stabiliser in $G/\!/U$ permutes the fibres containing that point, inducing F

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

- G//U is cocompact in HWrF (Wr acting via product action)
- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- H = H/W & has monolith K so topologically simple monolith
- The action of a setwise stabiliser in $G/\!/U \curvearrowright Y^m$ of any fibre (e.g. $Y \times \{y\} \times \cdots \times \{y\}$) induces a dense subgroup of H

Any point stabiliser in $G/\!/U$ permutes the fibres containing that point, inducing F

```
(we say G/\!/U is fibrelobe-full on Y^m)
```

Now take H to be the closure of $K\psi(N_{\hat{U}}(K)) \leq \mathrm{Sym}(K).$ Then, up to permutation isomorphism:

- G//U is cocompact in HWrF (Wr acting via product action)
- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- $H = H/\!/W$ & has monolith K so topologically simple monolith
- The action of a setwise stabiliser in $G/\!/U \curvearrowright Y^m$ of any fibre (e.g. $Y \times \{y\} \times \cdots \times \{y\}$) induces a dense subgroup of H

Any point stabiliser in $G/\!\!/U$ permutes the fibres containing that point, inducing F

(we say $G/\!/U$ is fibrelobe-full on Y^m)

• $G/\!\!/U$ is one-ended
For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU). Now $G/\!/U$ is primitive with > 1 end.

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now G//U is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now G//U is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

• Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

Hence $G/\!\!/U \leq H \boxtimes F$.

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

Hence $G/\!/U \le H \boxtimes F$. Since $G/\!/U$ is primitive, so too is H

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

Hence $G/\!/U \le H \boxtimes F$. Since $G/\!/U$ is primitive, so too is H

• *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

Hence $G/\!\!/U \le H \boxtimes F$. Since $G/\!/U$ is primitive, so too is H

- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- The action of $G/\!\!/U$ on any lobe induces a dense subgroup of H

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

Hence $G/\!\!/U \le H \boxtimes F$. Since $G/\!/U$ is primitive, so too is H

- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- The action of $G/\!/U$ on any lobe induces a dense subgroup of H
- Any point stabiliser in $G/\!/U$ induces F on the lobes containing that point

For $g \in G$ let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now $G/\!/U$ is primitive with > 1 end. Using results in graph theory (R. Möller, H. Jung & M. Watkins, S.) g can be chosen so that

• $\Gamma = \Gamma(m, \Lambda)$ with $m \ge 2$ and Λ primitive with ≤ 1 end

Hence $G/\!/U \leq \operatorname{Aut}(\Gamma(m, \Lambda))$.

- Lobe stabilisers in $G/\!\!/U$ induce a subgroup of $\operatorname{Aut}(\Lambda)$. Let H be its closure
- Vertex stabilisers induce $F \leq S_m$ on the set of all lobes containing that vertex

Hence $G/\!\!/U \le H \boxtimes F$. Since $G/\!/U$ is primitive, so too is H

- *H* is noncompact tdlc with a compact open subgroup *W* that is maximal so *H* is subject to this classification
- The action of $G/\!\!/U$ on any lobe induces a dense subgroup of H
- Any point stabiliser in $G/\!/U$ induces F on the lobes containing that point

(we say $G/\!/U$ is fibrelobe-full on $\Gamma(m, \Lambda)$)

¹³ Simple monolith & $G/\!/U$ is 1-ended

¹³ Simple monolith & $G/\!\!/U$ is 1-ended

Here we have less to go on

¹³ Simple monolith & $G/\!\!/U$ is 1-ended

Here we have less to go on

 $C_{\hat{G}}(L) \trianglelefteq N_{\hat{G}}(L) = \hat{G}$

Here we have less to go on

 $C_{\hat{G}}(L) \trianglelefteq N_{\hat{G}}(L) = \hat{G}$

L is the minimal closed normal subgroup of $G/\!\!/U$ so $C_{\hat{G}}(L)$ is trivial or contains L.

Here we have less to go on

 $C_{\hat{G}}(L) \trianglelefteq N_{\hat{G}}(L) = \hat{G}$

L is the minimal closed normal subgroup of $G/\!\!/U$ so $C_{\hat{G}}(L)$ is trivial or contains L.

Since *L* is nonabelian, must have $C_{\hat{G}}(L)$ is trivial.

Here we have less to go on

 $C_{\hat{G}}(L) \trianglelefteq N_{\hat{G}}(L) = \hat{G}$

L is the minimal closed normal subgroup of $G/\!/U$ so $C_{\hat{G}}(L)$ is trivial or contains L.

Since *L* is nonabelian, must have $C_{\hat{G}}(L)$ is trivial.

Hence $G/\!/U$ acts faithfully on L by conjugation, and so as abstract groups we have

 $L \leq G//U \leq \operatorname{Aut}(L).$

Here we have less to go on

 $C_{\hat{G}}(L)\trianglelefteq N_{\hat{G}}(L)=\hat{G}$

L is the minimal closed normal subgroup of $G/\!/U$ so $C_{\hat{G}}(L)$ is trivial or contains L.

Since *L* is nonabelian, must have $C_{\hat{G}}(L)$ is trivial.

Hence $G/\!/U$ acts faithfully on L by conjugation, and so as abstract groups we have

$$L \le G//U \le \operatorname{Aut}(L).$$

Thus G//U is almost topologically simple, with precisely one end.

Here we have less to go on

 $C_{\hat{G}}(L)\trianglelefteq N_{\hat{G}}(L)=\hat{G}$

L is the minimal closed normal subgroup of $G/\!/U$ so $C_{\hat{G}}(L)$ is trivial or contains L.

Since *L* is nonabelian, must have $C_{\hat{G}}(L)$ is trivial.

Hence $G/\!/U$ acts faithfully on L by conjugation, and so as abstract groups we have

$$L \le G//U \le \operatorname{Aut}(L).$$

Thus $G/\!/U$ is almost topologically simple, with precisely one end.

• Discrete example: Tarski-Ol'Shanskiĭ Monsters

Here we have less to go on

 $C_{\hat{G}}(L)\trianglelefteq N_{\hat{G}}(L)=\hat{G}$

L is the minimal closed normal subgroup of $G/\!/U$ so $C_{\hat{G}}(L)$ is trivial or contains L.

Since *L* is nonabelian, must have $C_{\hat{G}}(L)$ is trivial.

Hence $G/\!/U$ acts faithfully on L by conjugation, and so as abstract groups we have

$$L \le G//U \le \operatorname{Aut}(L).$$

Thus $G/\!/U$ is almost topologically simple, with precisely one end.

- Discrete example: Tarski-Ol'Shanskiĭ Monsters
- Nondiscrete examples: Certain completions of Kac-Moody groups (Caprace, Marquis, Rémy)

¹⁴ A classification theorem

Theorem. (S.) Let G be non-compact and tdlc, and U compact open subgroup that is maximal.

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$ and a tdlc group *H* that itself has a proper compact open subgroup *W* that is maximal,

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$ and a tdlc group *H* that itself has a proper compact open subgroup *W* that is maximal, such that $H = H/\!/W$ and precisely one of the following holds for $G/\!/U$:

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$ and a tdlc group *H* that itself has a proper compact open subgroup *W* that is maximal, such that $H = H/\!/W$ and precisely one of the following holds for $G/\!/U$:

(OAS) $G/\!/U$ is one-ended and has a nonabelian cocompact monolith L that is one-ended, topologically simple and compactly generated, with (as abstract groups) $L \leq G/\!/U \leq \operatorname{Aut}(L)$.

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$ and a tdlc group *H* that itself has a proper compact open subgroup *W* that is maximal, such that $H = H/\!/W$ and precisely one of the following holds for $G/\!/U$:

(OAS) $G/\!/U$ is one-ended and has a nonabelian cocompact monolith L that is one-ended, topologically simple and compactly generated, with (as abstract groups) $L \leq G/\!/U \leq \operatorname{Aut}(L)$.

(PA) $G/\!/U$ is a fibrelobe-full, primitive (and therefore cocompact) subgroup of HWrF (acting via product action) and $H = H/\!/W$ is infinite of type OAS or BP.

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$ and a tdlc group *H* that itself has a proper compact open subgroup *W* that is maximal, such that $H = H/\!/W$ and precisely one of the following holds for $G/\!/U$:

(OAS) $G/\!/U$ is one-ended and has a nonabelian cocompact monolith L that is one-ended, topologically simple and compactly generated, with (as abstract groups) $L \leq G/\!/U \leq \operatorname{Aut}(L)$.

(PA) $G/\!/U$ is a fibrelobe-full, primitive (and therefore cocompact) subgroup of HWrF (acting via product action) and $H = H/\!/W$ is infinite of type OAS or BP.

(BP) $G/\!/U$ is a fibrelobe-full, primitive (and therefore cocompact) subgroup of $H \boxtimes F$ and $H = H/\!/W$ is either a finite nonregular primitive permutation group, or H is infinite of type OAS or PA.

Theorem. (S.) Let *G* be non-compact and tdlc, and *U* compact open subgroup that is maximal. Then \exists finite nontrivial transitive $F \leq S_m$ and a tdlc group *H* that itself has a proper compact open subgroup *W* that is maximal, such that $H = H/\!/W$ and precisely one of the following holds for $G/\!/U$:

(OAS) $G/\!/U$ is one-ended and has a nonabelian cocompact monolith L that is one-ended, topologically simple and compactly generated, with (as abstract groups) $L \leq G/\!/U \leq \operatorname{Aut}(L)$.

(PA) $G/\!/U$ is a fibrelobe-full, primitive (and therefore cocompact) subgroup of HWrF (acting via product action) and $H = H/\!/W$ is infinite of type OAS or BP.

(BP) $G/\!/U$ is a fibrelobe-full, primitive (and therefore cocompact) subgroup of $H \boxtimes F$ and $H = H/\!/W$ is either a finite nonregular primitive permutation group, or H is infinite of type OAS or PA.

(This decomposition eventually halts after finitely many steps)

So $G/\!/U \leq_{\text{prim}} (((H_0 \operatorname{Wr} F_1) \boxtimes F_2) \operatorname{Wr} F_3 \cdots \boxtimes F_{n-1}) \operatorname{Wr} F_n$

 H_0 is OAS or finite primitive & non-reg F_i are finite transitive

 $_{\rm 16}\,$ A test for one-ended groups in ${\cal S}$

¹⁶ A test for one-ended groups in \mathscr{S} If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

$_{\rm 16}\,$ A test for one-ended groups in ${\mathscr S}$

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

+ $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H \text{Wr} F \frown Y^m$ and:

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \leq H WrF \curvearrowright Y^m$ and:

• $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m

If $G/\!\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H \text{Wr} F \frown Y^m$ and:

- $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m
- $\mathcal{E} = \{\Sigma_1, \dots, \Sigma_m\}$ is a nontrivial homogeneous cartesian decomposition of $Y^m = G/U$

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H WrF \frown Y^m$ and:

- $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m
- $\mathcal{E} = \{\Sigma_1, \dots, \Sigma_m\}$ is a nontrivial homogeneous cartesian decomposition of $Y^m = G/U$
- \mathcal{E} is preserved by $H \mathrm{Wr} F$ and so by $G /\!\!/ U$

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H WrF \frown Y^m$ and:

- $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m
- $\mathcal{E} = \{\Sigma_1, \dots, \Sigma_m\}$ is a nontrivial homogeneous cartesian decomposition of $Y^m = G/U$
- \mathcal{E} is preserved by $H \mathrm{Wr} F$ and so by $G /\!\!/ U$

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H \text{Wr} F \frown Y^m$ and:

- $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m
- $\mathcal{E} = \{\Sigma_1, \dots, \Sigma_m\}$ is a nontrivial homogeneous cartesian decomposition of $Y^m = G/U$
- \mathcal{E} is preserved by $H \mathrm{Wr} F$ and so by $G /\!\!/ U$

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

• preserves no nontrivial homogeneous cartesian decomp. on G/U

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H \text{Wr} F \frown Y^m$ and:

- $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m
- $\mathcal{E} = \{\Sigma_1, \dots, \Sigma_m\}$ is a nontrivial homogeneous cartesian decomposition of $Y^m = G/U$
- \mathcal{E} is preserved by $H \mathrm{Wr} F$ and so by $G /\!\!/ U$

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

- preserves no nontrivial homogeneous cartesian decomp. on ${\cal G}/U$
- doesn't split nontrivially as an amalgamated free product over a compact open subgroup

If $G/\!/U$ is of type (BP), $G \leq \operatorname{Aut}(\Gamma(m, \Lambda))$ and:

- $G/\!\!/U$ acts faithfully on the $(|\Lambda|, m)$ -biregular tree
- Edge stabilisers are compact open
- $G/\!/U$ splits as an amalgamated free prod. over a comp. open subgp

If $G/\!/U$ is infinite of type (PA), $G/\!/U \le H \text{Wr} F \frown Y^m$ and:

- $\pi_i: Y^m \to Y$ proj. to *i*-th coord $\implies \Sigma_i := \pi_i^{-1}(Y)$ partitions Y^m
- $\mathcal{E} = \{\Sigma_1, \dots, \Sigma_m\}$ is a nontrivial homogeneous cartesian decomposition of $Y^m = G/U$
- \mathcal{E} is preserved by $H \mathrm{Wr} F$ and so by $G /\!\!/ U$

Theorem. (S.) Let *G* be non-compact tdlc and *U* a compact open subgroup. Suppose further that *U* is maximal in *G* and G//U is nondiscrete. If G//U:

- preserves no nontrivial homogeneous cartesian decomp. on ${\cal G}/U$
- doesn't split nontrivially as an amalgamated free product over a compact open subgroup

then the monolith of $G/\!/U$ is a one-ended group in \mathscr{S} .