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Background



1 Background: compactly generated tdlc groups
The structure theory of locally compact groups starts with a
decomposition:

Connected case & Totally disconnected case

• Connected locally compact groups are pro-Lie (Gleason-Yamabe)

• Totally disconnected locally compact (tdlc) - lots to learn

A tdlc group G is compactly generated if there is a compact subset A of
G such that G = 〈A〉.

G compactly generated tdlc =⇒ ∃ locally finite connected graph Γ s.t.

• G acts as a vertex-transitive group of automorphisms on Γ

• All vertex stabilisers are compact and open

Γ is called a Cayley-Abels graph for G.
Can do geometric group theory: two Cayley-Abels graphs for G are
quasi-isometric; ends of groups
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2 Background: Schlichting completions
Let G be a tdlc group. By van Dantzig’s Theorem, G has a compact open
subgroup U .

• G acts on cosets G/U by multiplication
• Let G//U be the permutation group (i.e. subgroup of Sym(G/U))

induced by this action. Called the Schlichting completion
• Under the topology of pointwise convergence (i.e. permutation

topology), G//U is a tdlc group
• As a permutation group, G//U is closed, transitive and

subdegree-finite (i.e. all orbits of point stabilisers are finite)

So the Schlichting completion allows us to see:

Under their “natural” topology
closed, transitive,
subdegree-finite permutation
groups are tldc

↔
Under their “natural” permutation
representations tdlc groups are
closed, transitive and
subdegree-finite.
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3 Background: the class S

Let S be the class of topologically simple groups that are nondiscrete,
compactly generated, tdlc.

S plays a fundamental role in the structure theory of compactly
generated tdlc groups (e.g. Caprace-Monod ’11)

There are many open questions about S . E.g.

Q) Have we found all “types” of examples in S , or are there completely
new constructions? *
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For a topological group G let L be the intersection of all nontrivial closed
normal subgroups. G is monolithic with monolith L if L is nontrivial.

A compactly generated, non-compact, locally compact group whose
proper quotients are all compact is called just-non-compact.

Theorem. (Caprace-Monod ‘11) A just-non-compact group is discrete &
residually finite, or monolithic
(with monolith ∼= Rn or a quasi-product with finitely many isomorphic
topologically simple quasi-factors).

Discrete just-non-compact groups are precisely John Wilson’s just
infinite groups.

General plan: better understand just-non-compact groups via their
Schlichting completions. *
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the subgroup of Aut(Γ(m,Λ)) satisfying:

(i) The setwise stabiliser in H � F of any lobe Λ′ in Γ(m,Λ) induces H
on Λ′
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6 Background: cartesian decompositions
See Praeger & Schneider’s book: Permutation groups and cartesian
decompositions (2018). Used to detect product actions. E.g.

(g1, . . . , gm;σ) ∈ Sym(Y )WrSm sends (y1, . . . , ym) ∈ Y m to
σ(g1y1, . . . , gmym) = (g1′y1′ , . . . , gm′ym′)

A nontrivial homogeneous cartesian decomposition, E of a set X, is a
finite set of partitions {Σ1, . . . ,Σm} of X such that:
• m > 1, each partition has at least two parts, all partitions have the

same cardinality
• |γ1 ∩ · · · ∩ γm| = 1 for each γ1 ∈ Σ1, . . . , γm ∈ Σm.

E is preserved by G (for G ≤ Sym(X)) if the partitions in E are permuted
by G.

• Sym(Y )WrSm, for |Y |,m > 1, preserves some E on Y m

• Conversely, if G ≤ Sym(X) preserves some E = {Σ1, . . . ,Σm} on X,
then G is a subgroup of Sym(Σ1)WrSm.
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7 Background: A cartesian decomposition example
(taken from the book)

Let C be the cube {(a, b, c) : a, b, c ∈ {1, 0}}.

Partition C according to the x-coordinate:

Σ1 := {{elements whose x coordinate is 0},
{elements whose x coordinate is 1}}

Now do the same for the y-coordinate (Σ2) and z-coordinate (Σ3)

The “points” in C can be recovered by taking intersections of parts:

|γ1 ∩ γ2 ∩ γ3| = 1 for all γi ∈ Σi

• E is a nontrivial homogeneous cartesian decomposition of C
• Aut(C) = C2WrS3 = (C2 × C2 × C2) o S3
• First C2 swaps x-coordinates, second swaps y-coords, third
z-coords
• The S3 interchanges the 3 components. Hence Aut(C) preserves E .
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Tdlc groups with maximal
compact open subgroups

&
one-ended groups in S



Theorem. (S.) Let G be non-compact tdlc and U a compact open
subgroup. Suppose further that U is maximal in G and G//U is
nondiscrete. If G//U :
• preserves no nontrivial homogeneous cartesian decomp. on G/U
• doesn’t split nontrivially as an amalgamated free product over a

compact open subgroup
then the monolith of G//U is a one-ended group in S .
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9 Tdlc groups with maximal compact open subgroups
Suppose G is a noncompact tdlc group with a compact open subgroup U
and U is maximal in G. We classify G using G//U

Then:

• G//U is just-non-compact
(For 〈1〉 6= N �c G, since U is maximal, G = NU )

• G//U is compactly generated =⇒ it has a Cayley-Abels graph Γ
(G = 〈U, g〉 for any g 6∈ U )

• G//U is primitive
(i.e. transitive with pt stabilisers maximal)

The closed, subdegree-finite, primitive permutation groups have been
classified. All (discrete & nondiscete) are monolithic

We can follow the proof to obtain a structure theorem for G . . .
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10 If the monolith of G//U is non-simple
Let L be the monolith of Ĝ := G//U . Let Û be image of U in G//U .

Then ∃ topologically simple, nonabelian infinite K ≤ L st

• K closed and normal in L
• M = K × · · · ×K = Km, for m ∈ N is dense in L
• M �G//U

• K acts faithfully and transitively on a set Y (so wlog K ≤ Sym(Y ))
with projection π1(M ∩ Û) = StabK(y) for some y ∈ Y
• Û acts on components of M by conjugation, inducing a transitive

subgroup F ≤ Sm

=⇒ ∃ a permutational embedding (φ, θ) of G//U into Sym(Y m) st

• θ : G/U ↪→→ Y m with θ(U) = (y, . . . , y)

• φ(M y G/U) = (Km y Y m) (Km y Y m is product action)
• φ(Û) ≤ ψ(NÛ (K))WrF (Wr action is product action)

(here ψ : NÛ (K)→ NStabSym(Y)(y)(K) is a known homomorphism)
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• Û acts on components of M by conjugation, inducing a transitive

subgroup F ≤ Sm

=⇒ ∃ a permutational embedding (φ, θ) of G//U into Sym(Y m) st

• θ : G/U ↪→→ Y m with θ(U) = (y, . . . , y)

• φ(M y G/U) = (Km y Y m) (Km y Y m is product action)
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11 If the monolith of G//U is non-simple
Now take H to be the closure of Kψ(NÛ (K)) ≤ Sym(K). Then, up to
permutation isomorphism:

• G//U is cocompact in HWrF (Wr acting via product action)
• H is noncompact tdlc with a compact open subgroup W that is

maximal so H is subject to this classification
• H = H//W & has monolith K - so topologically simple monolith
• The action of a setwise stabiliser in G//U y Y m of any fibre (e.g.
Y × {y} × · · · × {y}) induces a dense subgroup of H

Any point stabiliser in G//U permutes the fibres containing that
point, inducing F

(we say G//U is fibrelobe-full on Y m)
• G//U is one-ended
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12 Simple monolith & G//U has > 1 end
For g ∈ G let Γ be the digraph with vertices V = G/U and arcs G(U, gU).

Now G//U is primitive with > 1 end. Using results in graph theory (R.
Möller, H. Jung & M. Watkins, S.) g can be chosen so that
• Γ = Γ(m,Λ) with m ≥ 2 and Λ primitive with ≤ 1 end

Hence G//U ≤ Aut(Γ(m,Λ)).
• Lobe stabilisers in G//U induce a subgroup of Aut(Λ). Let H be its

closure
• Vertex stabilisers induce F ≤ Sm on the set of all lobes containing

that vertex
Hence G//U ≤ H � F . Since G//U is primitive, so too is H
• H is noncompact tdlc with a compact open subgroup W that is

maximal so H is subject to this classification
• The action of G//U on any lobe induces a dense subgroup of H
• Any point stabiliser in G//U induces F on the lobes containing that

point

(we say G//U is fibrelobe-full on Γ(m,Λ))
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13 Simple monolith & G//U is 1-ended
Here we have less to go on

CĜ(L) �NĜ(L) = Ĝ

L is the minimal closed normal subgroup of G//U so CĜ(L) is trivial or
contains L.

Since L is nonabelian, must have CĜ(L) is trivial.

Hence G//U acts faithfully on L by conjugation, and so as abstract
groups we have

L ≤ G//U ≤ Aut(L).

Thus G//U is almost topologically simple, with precisely one end.

• Discrete example: Tarski-Ol’Shanskiı̆ Monsters
• Nondiscrete examples: Certain completions of Kac-Moody groups

(Caprace, Marquis, Rémy)
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14 A classification theorem
Theorem. (S.) Let G be non-compact and tdlc, and U compact open
subgroup that is maximal. Then ∃ finite nontrivial transitive F ≤ Sm and
a tdlc group H that itself has a proper compact open subgroup W that is
maximal, such that H = H//W and precisely one of the following holds
for G//U :

(OAS) G//U is one-ended and has a nonabelian cocompact
monolith L that is one-ended, topologically simple and compactly
generated, with (as abstract groups) L ≤ G//U ≤ Aut(L).

(PA) G//U is a fibrelobe-full, primitive (and therefore cocompact)
subgroup of HWrF (acting via product action) and H = H//W is
infinite of type OAS or BP.

(BP) G//U is a fibrelobe-full, primitive (and therefore cocompact)
subgroup of H � F and H = H//W is either a finite nonregular
primitive permutation group, or H is infinite of type OAS or PA.

(This decomposition eventually halts after finitely many steps)
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So G//U ≤prim (((H0WrF1) � F2)WrF3 · · ·� Fn−1)WrFn

H0 is OAS or finite primitive & non-reg
Fi are finite transitive



16 A test for one-ended groups in S

If G//U is of type (BP), G ≤ Aut(Γ(m,Λ)) and:
• G//U acts faithfully on the (|Λ|,m)-biregular tree
• Edge stabilisers are compact open
• G//U splits as an amalgamated free prod. over a comp. open subgp

If G//U is infinite of type (PA), G//U ≤ HWrF y Y m and:
• πi : Y m → Y proj. to i-th coord =⇒ Σi := π−1i (Y ) partitions Y m

• E = {Σ1, . . . ,Σm} is a nontrivial homogeneous cartesian
decomposition of Y m = G/U

• E is preserved by HWrF and so by G//U

Theorem. (S.) Let G be non-compact tdlc and U a compact open
subgroup. Suppose further that U is maximal in G and G//U is
nondiscrete. If G//U :
• preserves no nontrivial homogeneous cartesian decomp. on G/U
• doesn’t split nontrivially as an amalgamated free product over a

compact open subgroup
then the monolith of G//U is a one-ended group in S .
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