ROTATION MATRICES

Introduction

A regular convex icosahedron has 20 faces, 30 edges and 12 vertices. It is duel to the dodecahedron.
The elements of the symmetry group ofthe icosahedron:

Rotation symmetry

i. 4 rotations by multiples of $2 \pi / 5(2 \pi / 5,4 \pi / 5$, $6 \pi / 5,8 \pi / 5$) about centre of 6 pairs of opposite faces, $4 \times 6=24$ elements
ii. 2 rotation by multiples of $2 \pi / 3(2 \pi / 3,4 \pi / 3)$ about the centre of 10 pairs of opposite
faces, $2 \times 10=20$ elements
iii. 1 rotation by π about 15 pairs of opposite edges, $1 \times 15=15$ elements
In total, the rotational symmetry group has $24+20+15=59$ plus 1 neutral element. (60 elements)

Mirror reflection:

Symmetrical along the plate orthogonal to the 15 pairs of opposite edge passing through the centre of icosahedron, 60 elements.
(Isomorphic to cyclic group Z_{2})
Therefore, the symmetry group of icosahedron contains 120
elements, in other words, its order is 120.
Theorem: the rotational symmetry group of icosahedron is
isomorphic to A_{5} (A stands for alternating group) $A_{5} \rightarrow \mathrm{SO}_{3}(R)$
Euler's rotation theorem and Euler axis and angle
The theorem states that 'in 3D space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation.
The rotation axis is called a Euler axis, its product by rotation angle is known as an axis-angle.
his provide knowledge how to approach rotation group SO_{3}

Representation theory
A representation of a group G is a homomorphism from G into the general linear group of a vector space V . $\mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ For example, mapping S_{3} to $\mathrm{GL}\left(\mathrm{R}^{3}\right)$
S_{3} is the symmetry group of the set $\{1,2,3\}$, in other words, the permutations of the set $\{1,2,3\}$. We can see that the permutations $(1,2),(2,3)$ and $(1,3)$ generate the six elements of S_{3}.
In R^{3}, there are 3 axis ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) which can represent number 1, 2 and 3.
Use matrices multiplication, we can switch 3 axis around as follows:
Firstly, I have identity matrix as neural element $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Then, switch x and y by using $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}y \\ x \\ z\end{array}\right]$
Similarly, switch y and z by using $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, and switch x and z by using $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
This is a good example of an isomorphism between S 3 and a group of matrices.

Here, we combine group theory, Euler's rotation theorem and representation theory to create rotation matrices

Rotation by $2 \pi / 5$ around axis $(0,1, \varphi)$

$$
R_{2 \pi / 5}=\left[\begin{array}{ccc}
\cos \left(\frac{2 \pi}{5}\right) & -\frac{\varphi}{\sqrt{1+\varphi^{2}}} \sin \left(\frac{2 \pi}{5}\right) & \frac{1}{\sqrt{1+\varphi^{2}}} \sin \left(\frac{2 \pi}{5}\right) \\
\frac{\varphi}{\sqrt{1+\varphi^{2}}} \sin \left(\frac{2 \pi}{5}\right) & \cos \left(\frac{2 \pi}{5}\right)+\frac{1}{1+\varphi^{2}}\left(1-\cos \left(\frac{2 \pi}{5}\right)\right) & \frac{\varphi}{1+\varphi^{2}}\left(1-\cos \left(\frac{2 \pi}{5}\right)\right) \\
-\frac{1}{\sqrt{1+\varphi^{2}}} \sin \left(\frac{2 \pi}{5}\right) & \frac{\varphi}{1+\varphi^{2}}\left(1-\cos \left(\frac{2 \pi}{5}\right)\right) & \frac{\varphi^{2}}{1+\varphi^{2}}\left(1-\cos \left(\frac{2 \pi}{5}\right)\right)+\cos \left(\frac{2 \pi}{5}\right)
\end{array}\right]
$$

$$
\mathbf{R}_{2 \pi / 5}=\left[\begin{array}{ccc}
\frac{\sqrt{5}-1}{4} & -\left(\frac{\sqrt{5}+1}{4}\right) & \frac{1}{2} \\
\frac{\sqrt{5}+1}{4} & \frac{1}{2} & \frac{\sqrt{5}-1}{4} \\
-\frac{1}{2} & \frac{\sqrt{5}-1}{4} & \frac{\sqrt{5}+1}{4}
\end{array}\right]
$$

Rotation by 2π

$$
R_{2 \pi / 3}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

$\begin{array}{ccc}\text { Mirror reflection along } \mathbf{Z}, \mathbf{X} \text { axis } & \text { Mirror reflection along } \mathbf{Z} \text { axis } \\ {\left[\begin{array}{llll}1 & 0 & 0 & (0, \pm 1, \pm \varphi)\end{array}\right.} & (0, \pm \varphi, \pm 1)\end{array}$

> and rotation matrix.
> A rotation matrix can be calculated by knowing its Euler axis and angle
> $\mathrm{R}=(\cos \theta) I+(\sin \theta)[\mathrm{u}]_{\mathrm{x}}+(1-\cos \theta)(\mathrm{u} \otimes \mathrm{u})$
> $\left(\right.$ Note: $\mathrm{u}\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{t}}\right)$ is the unit vector represent axis and θ is the angle of rotation. $[\mathrm{u}]_{\mathrm{x}}$ is cross product matrix of $\mathrm{u} . \mathrm{u} \otimes \mathrm{u}$ is the out product.)

