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Abstract

One of the key features of the structure theory of totally disconnected

locally compact groups is the existence of certain compact open subgroups,

called tidy subgroups, which are well-behaved under the action of group

automorphisms. If V is a compact open subgroup that is tidy for the au-

tomorphism α then there is an associated closed subgroup V−− which is

invariant under α. These V−− groups are analogous to eigenspaces for lin-

ear operators in the theory of Lie groups. There is a representation of the

semi-direct product V−− o 〈α〉 as a closed subgroup of the stabiliser of an

end of a homogeneous tree, and it is this tree-representation that we aim to

understand in this thesis.

First, we use the properties of the tree-representation to reduce the

problem to understanding the automorphism groups of rooted trees that

have a self-similarity property which we call R. These groups are compact

and hence profinite, which means we can understand them in terms of their

finite quotients which have a corresponding property which we callRn. Then

we use the software package MAGMA to perform calculations with these finite

groups, generating plenty of examples and providing evidence in support of

several conjectures about the behaviour of groups with property R.

Finally, we describe two general constructions, both of which take a finite

group with property Rn and extend it to a profinite group with property

R. One construction generates the maximal such group, which turns out

to be a type of self-similar group called a finitely constrained group. We

show that all groups with property R can be approximated by these finitely

constrained groups. The other construction uses finite automata to produce

topologically finitely generated groups with property R.
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CHAPTER 1

Introduction

1.1. Background and motivation

Every locally compact group G is an extension of the connected compo-

nent of the identity G0 by the totally disconnected group G/G0. The study

of locally compact groups can therefore be separated into the two extreme

cases of connected groups and totally disconnected groups.

Connected groups are well understood through the solution to Hilbert’s

fifth problem. The results of Gleason [Gle51] and Yamabe [Yam53] show

that they are approximated by Lie groups, in the sense that every connected,

locally compact group G contains arbitrarily small normal subgroups N such

that G/N is a Lie group. This result allows the powerful techniques of Lie

theory to be applied to general connected groups.

On the other hand, totally disconnected groups are not as well under-

stood. The structure theory of totally disconnected locally compact groups

began with the work of van Dantzig [vD36] who proved that every neigh-

bourhood of the identity in a totally disconnected locally compact group

G contains a compact, open subgroup. Furthermore, if G is compact, then

every neighbourhood of the identity contains a compact open normal sub-

group N , so that G/N is finite. Hence totally disconnected compact groups

are profinite groups (inverse limits of finite groups — see [RZ10]).

Further development of the structure theory by Willis in [Wil94] ex-

amined the behaviour of group automorphisms on these compact open sub-

groups. Given a totally disconnected locally compact group G and a contin-

uous automorphism α, there exist compact open subgroups which are tidy

for α. Such a subgroup V splits into a product V = V+V− where α expands

V+ and shrinks V−. The expansion factor s(α) := |α(V+) : V+| does not

depend on V and is called the scale of α. The scale of an automorphism of a

totally disconnected locally compact group is analogous to the eigenvalues of

a linear operator in Lie theory (more precisely, to the product of the eigen-

values with absolute value greater than 1). The analogue of an eigenspace

is the closed subgroup V++ =
⋃
n≥0 α

n(V+) which is invariant under α. The

1



2 1. INTRODUCTION

scale of α−1 is defined similarly and is analogous to the eigenvalues of ab-

solute value less than 1, with the closed subgroup V−− =
⋃
n≥0 α

−n(V−)

playing the role of the eigenspace. These analogies are explained in more

detail in [Wil04a] and [Wil04b], whereas the scale function has been cal-

culated explicitly using Lie techniques in the case of Lie groups over local

fields [Glö98] and in groups constructed from p-adic Lie groups [Glö06].

1.2. Basic definitions

Let us review some of the key definitions and background results that

will be used in this thesis.

Definition 1.1. A topological group is a group that is also a topological

space, such that the group operations of multiplication and inversion are

continuous functions.

A totally disconnected locally compact group is a topological group that

is totally disconnected (connected components are all singletons) and lo-

cally compact (every point has a neighbourhood with compact closure) as a

topological space.

Definition 1.2 (Tidy subgroups and the scale function). Let G be a

totally disconnected locally compact group and let α be a continuous auto-

morphism of G. For each compact open subgroup V of G, define:

V+ =
⋂
n≥0

αn(V ) V++ =
⋃
n≥0

αn(V+)

V− =
⋂
n≥0

α−n(V ) V−− =
⋃
n≥0

α−n(V−)

V0 = V+ ∩ V−.

A compact open subgroup V is tidy for α if the following two conditions are

satisfied:

(TA) V = V+V−

(TB) V++ (and V−−) is closed.

Tidy subgroups for α can be constructed from arbitrary compact open sub-

groups by the procedure in [Wil01]. Let V be tidy for α. The scale of α is

the positive integer

s(α) := |α(V+) : V+| = |α(V ) : V ∩ α(V )| .

which is finite because α(V ) is compact and V ∩ α(V ) is open. It is shown

in [Wil04a] that the scale does not depend on the choice of tidy subgroup
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V , and that it is equivalent to:

s(α) = min{|α(U) : U ∩ α(U)| : U is a compact open subgroup of G}.

Definition 1.3 (Trees). A tree is a connected graph with no cycles.

A tree is homogeneous if all vertices have the same degree. This common

degree is called the valency of the tree. A rooted tree is a tree with one

distinguished vertex, called the root. If v is a vertex in a rooted tree X

then the children of v are the vertices adjacent to v that are further away

from the root (equivalently, the path from the root to these vertices passes

through v). The parent of a non-root vertex v is the unique vertex adjacent

to v closer to the root (along the path joining v to the root). A rooted tree

is regular if all vertices have the same number of children. Every vertex in

a regular rooted tree has the same degree d + 1, except for the root which

has degree d. If d = 2 then we call it a binary tree.

A path in a tree X is a sequence of vertices such that there is an edge

joining each vertex to its successor, with no ‘backtracking’ — that is, no

edge may be traversed more than once in succession. Paths may be finite,

singly infinite (of the form (vn)∞n=1), or doubly infinite (of the form (vn)n∈Z).

For any two vertices in a tree, there is a unique (finite) path joining them.

The boundary of a tree X, denoted ∂X, is the set of equivalence classes

of singly infinite paths in X, where two paths ξ and η are equivalent if ξ ∩ η
is infinite (equivalently, if the paths eventually coincide). These equivalence

classes are called the ends of X. We say that every doubly infinite path

(vn)n∈Z in X has precisely two ends, namely the ends corresponding to

(vn)n≥0 and (vn)n≤0. If X is a rooted tree, then the ends of X are in

bijection with the singly infinite paths starting from the root.

Definition 1.4 (Automorphisms). An automorphism of a tree X is a

bijection g on the set of vertices of X, such that g(v) is adjacent to g(w)

if and only if v is adjacent to w. The set of all automorphisms of X is a

group under composition of functions, called the automorphism group of X

and denoted Aut(X). We will denote the identity in this group by e.

Tits proved in [Tit70] that every automorphism g ∈ Aut(X) satisfies

exactly one of the following conditions: g fixes a vertex of X, g inverts an

edge of X, or there is a doubly infinite path in X along which g acts as a

translation. The first two types of automorphisms are called elliptic and the

third kind is called hyperbolic. Note that only the first kind of automorphism
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can exist if X is a rooted tree, because every automorphism of X must fix

the root.

The stabiliser of a vertex v in X is the set

st(v) = {g ∈ Aut(X) : g(v) = v}

which is always a subgroup of Aut(X). If G is a subgroup of Aut(X) then

the stabiliser of v in G is st(v) ∩ G which we denote stG(v). It is also a

subgroup of G. The stabiliser of an end ω ∈ ∂X is the set

st(ω) = {g ∈ Aut(X) : g(ξ) ∈ ω for all ξ ∈ ω}

(remembering that ω is an equivalence class of infinite paths) which is also

a subgroup of Aut(X).

Definition 1.5 (Topology and convergence). Let X be a tree. The

group Aut(X) can be made into a topological group by endowing it with

the compact-open topology, defined in this case as follows. The open neigh-

bourhoods of the identity are defined to be all unions of sets of the form

st(F ) =
⋂
v∈F st(v) where F is a finite set of vertices in X. In particular,

st(v) is an open set for all v ∈ X, and since it is also a subgroup of Aut(X)

it is closed as well. The other open sets are obtained by translating these

neighbourhoods of e; thus, the general open neighbourhoods of g ∈ Aut(X)

are unions of sets of the form

U(g, F ) = {h ∈ Aut(X) : h(v) = g(v) for all v ∈ F}

where F is a finite set of vertices in X.

It follows that every point in Aut(X) has arbitrarily small neighbour-

hoods which are both open and closed, which makes Aut(X) totally discon-

nected. It is locally compact if X is locally finite (each vertex has finite

degree), because then each st(v) will be a compact set. These are the arbi-

trarily small compact open subgroups guaranteed by van Dantzig’s theorem.

Furthermore, if X is a rooted tree, then the group Aut(X) itself is compact,

because the root is fixed by all automorphisms.

Another way of thinking of the topology on Aut(X) is in terms of con-

vergence of sequences. A sequence (gn)∞n=1 converges to g in Aut(X) if and

only if for every finite set of vertices F there exists an integer NF such that

gn(v) = g(v) for all n ≥ NF and all v ∈ F . In other words, gn → g if gn

eventually agrees with g on any finite set of vertices.
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1.3. The tree-representation

Let G be a totally disconnected locally compact group, α a continuous

automorphism of G and V a compact open subgroup tidy for α. In [BW04,

Theorem 4.1] an action of the group V−− o 〈α〉 on a homogeneous tree X

with valency s(α−1)+1 is described. The group V−−o〈α〉 has the structure

of an HNN extension as defined in [HNN49], and this group action is a

special case of the Bass-Serre construction of a graph of groups acting on a

tree, as described in [Ser80, §5] and [DD89, Example 3.5(v)]. Since we are

dealing only with this specific case, it is worthwhile to describe the tree X

and the representation in detail:

• The vertices of X are the left cosets of V− in V−−o〈α〉. The vertex

(v, αn)V−, where v ∈ V−− and n ∈ Z, will be denoted (v, n).

• There is an edge from (v,m) to (w, n) if and only if n = m + 1

and w ∈ vαm(V−). There are s(α−1) out-edges and one in-edge

for every vertex. Although this defines a directed graph, we will

ignore the edge directions and treat X as an undirected graph.

• The group V−−o〈α〉 acts on the vertices of X by left multiplication.

Let ξn = (e, n) for each n ∈ Z, where e is the identity in V−−. Note

that ξ = (ξn)n∈Z is a doubly infinite path in X. Let ∞ be the end of

ξ corresponding to (ξn)∞n=0 and let −∞ be the other end of ξ. The tree-

representation π : V−− o 〈α〉 → Aut(X) has the following properties:

(a) π is continuous with respect to the compact-open topology on

Aut(X).

(b) The image of π is a closed subgroup of Aut(X) that fixes the end

−∞ and is transitive on the other ends of X.

(c) The kernel of π is the largest compact, normal, α-stable subgroup

of V−−.

(d) π(V−−) is the set of elliptic elements in the image of π.

(e) π(α) is a translation by 1 vertex along the path ξ, directed away

from −∞.

(f) The stabilizer of the vertex ξn is π(αn(V−)), the stabiliser of the

end∞ is π(V0o〈α〉), and the stabiliser of each end other than −∞
is a conjugate of π(V0 o 〈α〉).

Note that in the case where G = Aut(X) and α is (conjugation by) a

translation along a path in X, the image of π is precisely the stabiliser in G

of the repelling end for α.
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In a nutshell, the tree-representation theorem shows that every totally

disconnected locally compact group (provided it has automorphisms with

scale 6= 1) has a sub-quotient, namely π(V−−o 〈α〉), that is isomorphic to a

closed subgroup of the stabiliser of an end of a homogeneous tree.

The goal of this work is to understand these subgroups. As we will see

in Chapter 2, it suffices to study the compact subgroup π(V−), which is the

stabiliser of the vertex ξ0.

1.4. Outline of thesis

In Chapter 2 we reduce the problem of understanding the groups arising

from the tree-representation to the problem of understanding a family of

compact groups (quotients of π(V−)). These groups act on a rooted subtree

of X, in such a way that this action completely determines the whole tree-

representation. These groups possess a defining property which we call R,

which is related to self-similarity. Such groups are profinite, which reduces

the problem further to finite groups and inverse limits thereof. These finite

groups are required to have a property Rn which is a finite-depth version of

the property R.

Chapter 3 establishes some basic properties of the finite groups with

property Rn. The most significant of these results involves the existence

of so-called rigid automorphisms, which allows us to strengthen property

Rn — and in turn, property R — by choosing appropriate conjugacy class

representatives for each group. It turns out that we can assume, without

loss of generality, that groups with property R are self-similar (in fact,

self-replicating), allowing us to draw upon the existing theory of self-similar

groups. This has been a useful source of both examples and ideas, helping

to motivate the construction of the automaton groups in Chapter 7, for

example.

Chapter 4 makes things a little more concrete by describing in detail

the tree representations of the p-adic numbers and the Laurent series over

a finite field. These examples provide the starting point for understanding

the proverbial zoo of groups satisfying property R.

Chapter 5 describes the results of preliminary calculations (using the

software package MAGMA) to find all groups with property Rn for small n

in the case of the binary tree (s(α−1) = 2). The detailed results of these

calculations, as well as the algorithm used to produce them, are deferred to

the Appendix. Some clear patterns emerge from these results, motivating
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several conjectures and two general constructions (detailed in Chapters 6

and 7). We also see how to turn the family of groups satisfying R into a

totally disconnected compact topological space, S, by associating it with the

boundary of an infinite rooted tree. We find a countable dense subset of S,

which might help to make a classification more feasible, and we also establish

a connection between finitely generated groups (an algebraic condition) and

isolated points in S (a topological condition).

In Chapter 6 we describe a canonical way to extend each finite group G

with property Rn to an infinite group M∞(G) with property R. We show

that this construction produces a maximal group in the sense that every

other extension of G with property R is conjugate to a subgroup ofM∞(G).

It turns out that this construction always produces a finitely constrained

group, establishing yet another connection with the theory of self-similar

groups. We also compute the Hausdorff dimension of these groups and show

that it is always strictly positive.

Chapter 7 provides a connection with the theory of automaton groups.

As an alternative to the maximal groups of Chapter 6 which are usually not

topologically finitely generated, we describe a procedure to take a group G

with property Rn and construct at least one (in fact, usually a very large

number) of topologically finitely generated extensions G(AG) with property

R. It turns out that it is possible for this construction to reproduceM∞(G),

and we conjecture that these groups are precisely the isolated points in S

from Chapter 5.





CHAPTER 2

Reduction to rooted trees

2.1. Introduction

The groups arising from the tree representation π (see Section 1.3) act

on a homogeneous tree X. In this chapter, we will see how to reduce the

study of these groups to the study of a class of groups acting on a rooted

regular tree T , which will be a subtree of X.

The image of π is a semidirect product ΓoZ, where Γ = π(V−−) is closed

in Aut(X) and Z ∼= 〈π(α)〉. For convenience we will simply write α instead

of π(α) from now on. Then n ∈ Z acts on Γ in the semidirect product by

n : g 7→ αngα−n.

Recall that α acts on X as a translation of amplitude 1 along an axis ξ =

(ξn)n∈Z, so that α(ξn) = ξn+1 for all n ∈ Z. As in Section 1.3, let ∞ be the

end of ξ corresponding to (ξn)∞n=0 and let −∞ be the other end of ξ. Then

Γ fixes −∞ and acts transitively on ∂X \ {−∞}.
We begin by focusing our attention on the group Γ.

2.2. From homogeneous trees to rooted trees

The purpose of this section is to explain the steps involved in passing

from the homogeneous tree X to the rooted tree T , and then to characterise

the subgroups of Aut(T ) that can be obtained in this way.

Let Γn = stΓ(ξn) for each n ∈ Z. Since Γ fixes −∞, it follows that Γn

fixes the entire path (ξk)k≤n. From the tree-representation and the semi-

direct product action we have:

(2.1) Γn = π(αn(V−)) = αnπ(V−)α−n = αnΓ0α
−n

and therefore:

(2.2) Γ = π(V−−) =
∞⋃
n=0

π(α−n(V−)) =
∞⋃
n=0

Γ−n =
∞⋃
n=0

α−nΓ0α
n

and this is an increasing union since Γn ⊆ Γn−1 for all n. It follows that

in order to understand the group Γ, it suffices to understand Γ0 and how it

interacts with α.

9



10 2. REDUCTION TO ROOTED TREES

Let us first examine the topology of Γ0. Like Γ, it is closed in Aut(X),

but even better, we have:

Proposition 2.1. Γn is compact for all n ∈ Z.

Proof. Vertex stabilisers are compact sets in Aut(X) and Γ is closed,

so Γn = st(ξn) ∩ Γ is compact. A

All compact, totally disconnected groups are profinite by [RZ10, The-

orem 1.1.12] so in theory we can express Γ0 as an inverse limit of finite

groups. However, for our purposes it is more convenient to express Γ0 as

an inverse limit of infinite groups, each of which is profinite and acts on a

rooted subtree of X.

Definition 2.2. For each n ∈ Z define the tree Xn to be the subtree of

X rooted at the vertex ξn and containing all vertices descending from ξn in

the direction away from −∞. That is, a vertex x ∈ X belongs to Xn if and

only if the unique path from x to −∞ passes through ξn.

Figure 2.1. The rooted subtree Xn of X.

Note that the Xn are nested, with Xn ⊂ Xn−1 for all n ∈ Z, and⋃
n∈ZXn = X. Because of the nesting we can do a little better and write

(2.3)
⋃
n≤0

Xn = X.

Compare this to the similar formula
⋃
n≤0 Γn = Γ from (2.2).

Since Γn fixes ξn and also fixes −∞, it leaves the subtree Xn invariant.

It makes sense therefore to restrict the action of Γn to Xn. This restriction
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is a continuous homomorphism from Γn to Aut(Xn), which is a compact

totally disconnected group. We will see more of this group later. For now,

we can say the following:

Proposition 2.3. Γn|Xn is a closed subgroup of Aut(Xn).

Proof. The restriction map is continuous and Γn is compact by Propo-

sition 2.1, so the image in Aut(Xn) is compact and therefore closed. A

Proposition 2.4. Γn|Xn is transitive on ∂Xn.

Proof. Γn leaves Xn invariant so the assertion is equivalent to Γn being

transitive on ∂Xn. Since∞ ∈ ∂Xn it suffices to show that for every ω ∈ ∂Xn

there exists g ∈ Γn such that g(∞) = ω. (Indeed, suppose we have shown

this. Then for any ω′ ∈ ∂Xn there would exist h ∈ Γn such that h(∞) = ω′

and we would have hg−1(ω) = ω′).

Let ω ∈ ∂Xn. Since Γ is transitive on ∂X \{−∞} there exists g ∈ Γ such

that g(∞) = ω. We must show that g ∈ Γn; in other words, that g(ξn) = ξn.

Consider the unique doubly infinite path η joining −∞ to ω and recall

that ξ is the unique path joining −∞ to ∞. Since both η and ξ share the

end −∞, they must eventually coincide. Therefore there exists N ∈ Z such

that ξk ∈ η for all k ≤ N . Furthermore, since ω ∈ ∂Xn we must have ξn ∈ η
and hence we may take N ≥ n.

It follows from the fact that Γ fixes −∞ that g(ξ) = η. Now g ∈ Γ so

by (2.2) there exists M ∈ Z such that g(ξk) = ξk for all k ≤ M . If M ≥ n

then g fixes ξn and we are done. Suppose that M < n. Since g fixes ξM we

know that g(ξn) is a vertex in η at a distance n −M from ξM . There are

only two such vertices, namely ξn and ξ2M−n (note that they both belong

to η since 2M − n < n ≤ N). The latter is fixed by g since 2M − n < M ,

therefore g(ξn) = ξn as claimed. A

We still need to understand how Γn interacts with α. We know from

(2.1) that any two of the Γn are conjugate by a power of α. We can say

more:

Lemma 2.5. If k > 0 then stΓn(ξn+k) = Γn+k = αkΓnα
−k.
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Proof. The second equality follows from (2.1). For the first:

stΓn(ξn+k) = st(ξn+k) ∩ Γn

= st(ξn+k) ∩ st(ξn) ∩ Γ

= Γn+k ∩ Γn

= Γn+k (since Γn+k ⊆ Γn). A

In other words, the stabiliser of ξn+k in Γn is conjugate to Γn itself.

Furthermore, since α is a translation along ξ, conjugation by α has the

effect of shifting the action of g ∈ Γ by one vertex away from −∞. To

explain this more precisely, first define the map

φ : Γ −→ Γ

g 7−→ αgα−1.

Clearly φ is just the tree representation of the automorphism α from V−−o
〈α〉. It is introduced here for ease of notation. By Lemma 2.5,

(2.4) φ(Γn) = Γn+1 = stΓn(ξn+1) for all n ∈ Z.

We have a similar equation for the rooted subtrees Xn:

(2.5) α(Xn) = Xn+1 for all n ∈ Z.

These two equations are compatible, in the sense that

(2.6) φ(g)(α(v)) = (αgα−1)(α(v)) = α(g(v))

for all g ∈ Γ and v ∈ X. We can depict this diagramatically:

Γn
φ−−−−→ Γn+1

	 	

Xn
α−−−−→ Xn+1

In particular, if g ∈ Γn and v ∈ Xn then restricting to the appropriate rooted

subtrees and using (2.4), (2.5) and (2.6) yields the important formula:

(2.7) Γn+1|Xn+1 = stΓn(ξn+1)|Xn+1 = φ(Γn)|α(Xn) = α(Γn|Xn).

In other words, when Xn is identified with Xn+1 via the translation α, the

action of Γn on Xn is identical to the action of Γn+1 = stΓn(ξn+1) on Xn+1.

Let us denote this more concisely by writing

(2.8) Γn+1|Xn+1

α
= Γn|Xn .
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For all n ≥ 0, Γ0 fixes ξ−n so it leaves X−n invariant and the restriction

Γ0|X−n makes sense. By (2.3) every vertex in X belongs to X−n for some

n ≥ 0, so Γ0 is determined by the restrictions Γ0|X−n for n ≥ 0. Using

Lemma 2.5 along with (2.7), we conclude that

(2.9) Γ0|X−n = stΓ−n(ξ0)|X−n = stΓ−n|X−n
(ξ0) = stα−n(Γ0|X0

)(ξ0)

for all n ≥ 0. It now follows that Γ0|X0 , along with the translation α,

completely determines each Γ0|X−n and hence all of Γ0. This means that if

we know how Γ0 acts on the rooted subtree X0 then we can reconstruct its

action on the entire homogeneous tree X.

We can be more precise about this. For each n > 0 define the map:

ψn : Γ0|X−n −→ Γ0|X−n+1

g 7−→ g|X−n+1

and note that the restriction makes sense since X−n+1 ⊂ X−n and both

subtrees are invariant under Γ0. It is clear that each ψn is a surjective

homomorphism. We therefore have an inverse system:

Γ0|X0

ψ1←− Γ0|X−1

ψ2←− Γ0|X−2

ψ3←− Γ0|X−3 ← · · ·

and so the inverse limit lim←−Γ0|X−n exists.

Proposition 2.6. Γ0 is isomorphic to lim←−Γ0|X−n as a topological group.

Proof. The inverse limit is the set of sequences of the form (gn)∞n=0

where gn ∈ Γ0|X−n and ψn(gn) = gn−1 for each n ≥ 1, with coordinate-wise

multiplication and carrying the product topology inherited from
∏∞
n=0 Γ0|X−n .

Define the map

θ : Γ0 −→ lim←−Γ0|X−n

g 7−→
(
g|X−n

)∞
n=0

.

We will show that θ is an isomorphism of topological groups. It is clear that

θ is a group homomorphism since (gh)|X−n = (g|X−n)(h|X−n) and multipli-

cation in the inverse limit is defined coordinate-wise. Each g ∈ ker θ acts

trivially on each X−n and hence on all of X by (2.3). Thus ker θ is trivial

and θ is injective.

To show that θ is surjective, suppose that (gn)∞n=0 ∈ lim←−Γ0|X−n . Define

g ∈ Aut(X) as follows. Let v ∈ X. Then v ∈ X−k for some k ≥ 0 by (2.3),

so define g(v) = gk(v). The maps ψn in the definition of the inverse limit

ensure that g is a well-defined automorphism of T . Since each gn fixes ξ0 we
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have g ∈ st(ξ0). To show that g ∈ Γ0 we express it as a limit of a sequence

of elements of Γ0 and use the fact (from Proposition 2.1) that Γ0 is closed

in Aut(X). Indeed, define a sequence (γn)∞n=0 as follows. For each n ≥ 0

let γn be any element of Γ0 such that γn|X−n = gn. Such a γn must exist

since gn ∈ Γ0|X−n . We claim that limn→∞ γn = g. Let F be any finite set

of vertices in X. By (2.3) there exists k ≥ 0 such that F ⊂ X−k (and hence

F ⊂ X−n for all n ≥ k). Then for all n ≥ k and all v ∈ F , the definitions

of γn and g imply that γn(v) = gn(v) = g(v). That is, the sequence (γn)∞n=0

eventually agrees with g on F . Since F was arbitrary, we conclude from

the definition of the topology on Aut(X) that limn→∞ γn = g as claimed.

It follows immediately from the definitions that θ(g) = (gn)∞n=0, completing

the proof that θ is surjective.

It remains to show that θ is continuous. Since lim←−Γ0|X−n carries the

product topology, by [Mun00, Theorem 19.6] it suffices to show that the

composition of θ with each of the projection maps δm : lim←−Γ0|X−n → Γ0|X−m

is continuous. This is immediate since (δm◦θ)(g) = g|X−m for all g ∈ Γ0, and

restriction to X−m is continuous. Finally, it follows from [Mun00, Theorem

26.6] that θ is a homeomorphism because Γ0 is compact and lim←−Γ0|X−n is

Hausdorff. A

Combining Proposition 2.6 with (2.9) means that if we know Γ0|X0 then

we can reconstruct Γ0 and then use (2.2) to reconstruct the entire group

Γ. Propositions 2.3 and 2.4, together with (2.7), give us the algebraic and

topological properties that Γ0|X0 inherits from Γ. Let us therefore turn our

attention to studying the subgroups of Aut(X0) with these properties.

2.3. Property R and further reduction to finite trees

Section 2.2 reduced the study of the group Γ that arises from the tree

representation, to the study of the group Γ0|X0 which acts on a rooted tree

rather than a homogeneous tree. From now on, for simplicity of notation,

let T = X0, so that Γ0|X0 is a subgroup of Aut(T ).

2.3.1. Property R. For each n > 0 define T (n) to be the subtree of

T rooted at ξn and directed away from the root ξ0. That is, T (n) is just

the tree Xn from the Section 2.2. Note that T (n) is invariant under Γn.

For convenience we will summarise the results from Section 2.2 using the

updated notation:

Proposition 2.7. Let G = Γ0|X0. Then:
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(a) G is closed in Aut(T );

(b) G is transitive on ∂T ;

(c) stG(ξ1)|T (1)
α
= G.

Proof.

(a) See Proposition 2.3.

(b) See Proposition 2.4.

(c) Follows from (2.7) by putting n = 0. A

Definition 2.8. If a subgroup G of Aut(T ) satisfies the three hypotheses

in Proposition 2.7, we will say that G has property R.

Remark. The symbol R has been chosen for convenience and does not

stand for any particular word; the reader might wish to associate it with the

words rooted, restriction, representation, or replicating. Indeed, property

(c) above is closely related to the definition of a self-replicating group — the

precise connection will be established in Chapter 3.

From now on we will focus entirely on studying the subgroups of Aut(T )

with property R. To make this task easier, let us introduce more convenient

notation for vertices, subtrees and automorphisms of T .

2.3.2. Vertices and words. The vertices of T can be labelled with

(finite) words over the alphabet X := {0, 1, . . . , p − 1}, where p = s(α−1).

We will use the letter p although it need not be a prime number. Each word

v over X is a string of symbols v1 · · · vn where each vi belongs to X. This

includes the empty word ∅ which represents the root of T . Words are joined

by concatenation; if v = v1 · · · vn and w = w1 · · ·wm then vw is the word

v1 · · · vnw1 · · ·wm. Using this ‘multiplicative’ notation, we may represent

repeated symbols using indices; for example, if a ∈ X, the word aaa may be

written as a3.

For any vertex in T labelled with the word v, the p children of the vertex

labelled v are labelled with the words of the form va where a ∈ X. If v 6= ∅
then the parent of v is found by deleting the last symbol of v (the root has

no parent). We always choose a labelling such that the vertex ξn from the

previous section always has the label 0n for each n > 0. The freedom in

labelling the remaining vertices can be interpreted in terms of conjugation

in the group Aut(T ) — this issue will be addressed in detail in Section 3.2.

Let |v| denote the length of the word v. Define the nth level of T ,

denoted Ln, to be the set of words of length n. Equivalently, Ln is the set
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of vertices of T at a distance n from the root. Each level Ln is invariant

under all automorphisms of T (because all automorphisms of T must fix the

root), so |g(v)| = |v| for all g ∈ Aut(T ) and all v ∈ T .

2.3.3. Vertex restrictions. For all v ∈ T , define T (v) to be the sub-

tree of T consisting of all words beginning with v (along with the edges

connecting them), called the subtree of T rooted at v. It is clear that T (v)

is isomorphic to T ; the isomorphism can be achieved by deleting the prefix

v from every word in T (v).

To define vertex restrictions we need the following result:

Lemma 2.9. Let g ∈ Aut(T ). For all v, w ∈ T ,

g(vw) = g(v)w′

for some w′ ∈ T with |w| = |w′|.

Proof. Since vw belongs to the subtree T (v) and g is an automorphism

of T , g(vw) must belong to T (g(v)). This establishes the existence of w′.

Finally, since automorphisms preserve word length, |g(vw)| = |vw| = |v| +
|w| = |g(v)|+ |w|. It follows that |w| = |w′| as claimed. A

The induced map w 7→ w′ is very useful, so we give it a name:

Definition 2.10. Let g ∈ Aut(T ) and v ∈ T . The map g|v : T → T

defined by the equation

g(vw) = g(v)g|v(w) for all w ∈ T

is called the vertex restriction of g to v (or the section of g at v).

Proposition 2.11. For all g ∈ Aut(T ) and all v ∈ T , the map g|v is an

automorphism of T .

Proof. Fix g ∈ Aut(T ) and v ∈ T . First we will show that g|v is a

bijection, by finding its inverse. For all w ∈ T , using the definition of vertex

restrictions, we have:

vw = g−1g(vw)

= g−1 (g(v)g|v(w))

= v · g−1|g(v) (g|v(w))

which implies that g−1|g(v) (g|v(w)) = w. Therefore g−1|g(v) ◦ g|v = e. A

similar calculation shows that g|v ◦ g−1|g(v) = e as well, so g|v must be a

bijection.
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It remains to show that g|v preserves the edge relation in T . Suppose

that w and w′ are adjacent vertices of T . Without loss of generality, w is

the parent of w′ so w′ = wx for some x ∈ X. We must show that g|v(w) is

the parent of g|v(wx). We will do this by expressing g(vwx) using vertex

restrictions in two different ways. First, by definition of g|v,

(2.10) g(vwx) = g(v)g|v(wx).

On the other hand,

g(vwx) = g(vw)g|vw(x) = g(v)g|v(w)g|vw(x).

Equating this with (2.10), we conclude that

g|v(wx) = g|v(w)g|vw(x)

which does indeed show that g|v(w) is the parent of g|v(wx) as required. A

It is worth pointing out a technicality here. If g(v) = v then g leaves T (v)

invariant, so it is convenient to think of the map g|v as the usual restriction

of g to T (v). However, this is not quite correct, because g|v maps T to T and

T (v) is not strictly equal to T — rather, it is identified with T by deleting

the prefix v. Furthermore, g|v is well-defined even when g(v) 6= v. The map

g|v is better understood as a composition of three maps: first the prefix v is

prepended, then g is applied, then the new prefix g(v) is deleted.

Let us establish some basic properties of vertex restrictions.

Proposition 2.12. Let g, h ∈ Aut(T ) and v, w ∈ T . Then:

(a) (g|v)|w = g|vw
(b) (gh)|v = g|h(v)h|v
(c) g−1|v = (g|g−1(v))

−1, or equivalently (g|v)−1 = g−1|g(v).

Proof. (a) Let g ∈ Aut(T ) and let v, w ∈ T . Then by definition of

vertex restriction, for all x ∈ T we have

(2.11) g(vwx) = g(vw)g|vw(x).

On the other hand, if we split the word vwx into v and wx first, we obtain:

g(vwx) = g(v)g|v(wx)

= g(v)g|v(w)(g|v)|w(x)

= g(vw)(g|v)|w(x)

for all x ∈ T . The result follows by equating this with (2.11).
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(b) Let g, h ∈ Aut(T ) and v ∈ T . First we have

(2.12) (gh)(vw) = (gh)(v)(gh)|v(w)

for all w ∈ T . On the other hand:

(gh)(vw) = g(h(vw))

= g(h(v)h|v(w))

= g(h(v))g|h(v)(h|v(w))

= (gh)(v)(g|h(v)h|v)(w)

for all w ∈ T . Again, the result follows by equating this with (2.12).

(c) Follows easily from (b) by putting h = g−1, and the equivalent

statement is obtained by swapping g and g−1. A

We can restate property R using this more convenient notation:

Definition 2.13. A subgroup G of Aut(T ) has property R if:

(R1) G is closed in Aut(T ),

(R2) G is transitive on ∂T , and

(R3) stG(0)|0 = G.

As remarked earlier, the condition (R3) is closely related to the definition

of a self-replicating group, where the vertex 0 may be replaced with any

vertex in T . We will see in Chapter 3 that this much stronger condition

actually holds, up to conjugacy, for groups with property R.

It turns out that the transitivity condition (R2) can be weakened, pro-

vided that (R1) and (R3) hold:

Proposition 2.14. Suppose that G is a subgroup of Aut(T ) that satisfies

(R1) and (R3). Then the following are equivalent:

(a) G is transitive on L1;

(b) G is transitive on Ln for all n;

(c) G is transitive on ∂T .

Proof. (a) =⇒ (b): Suppose that G satisfies (R1) and (R3), and is

transitive on L1. This forms the base step for an induction argument. Sup-

pose that G is transitive on Ln for some n ≥ 1. We must show that G is

transitive on Ln+1.

Let v1 and v2 be vertices in Ln+1. We must find g ∈ G such that

g(v1) = v2. Since G is transitive on L1 there exist h1 and h2 in G such that

both h1(v1) and h2(v2) belong to the subtree T (0). In other words, there
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exist w1 and w2 in Ln such that h1(v1) = 0w1 and h2(v2) = 0w2. Now G

is transitive on Ln so there exists k ∈ G such that k(w1) = w2. Since G

satisfies (R3) there exists g ∈ stG(0) such that g|0 = k. Then the product

h−1
2 gh1 belongs to G and

h−1
2 gh1(v1) = h−1

2 g(0w1) = h−1
2 (g(0)g|0(w1)) = h−1

2 (0w2) = v2

as required. Since v1 and v2 were arbitrary, G is transitive on Ln+1 and the

inductive step is complete.

(b) =⇒ (c): Suppose that G is transitive on Ln for all n. Identify ∂T

with the set of singly infinite paths in T descending from the root. Let

ω = (vn)∞n=0 and $ = (wn)∞n=0 be two such paths, so that v0 = w0 is the

root and vn and wn are in Ln for each n. We must find g ∈ G such that

g(ω) = $; that is, g(vn) = wn for each n.

To do this, we will use the compactness of G and the finite intersection

property. Note that G is compact because it is closed in Aut(T ) by our

assumptions and Aut(T ) is compact. For each n ≥ 1 define the set

Cn = {g ∈ G : g(vn) = wn}.

Each Cn is nonempty since G is transitive on Ln for each n. Since vn is

the parent of vn+1 and wn is the parent of wn+1, any automorphism which

sends vn+1 to wn+1 must also send vn to wn. Hence Cn+1 ⊆ Cn for each n.

It follows that the collection {Cn}∞n=1 has the finite intersection property.

Now each Cn is a left coset in G of the stabiliser stG(vn). To see this, fix

n ≥ 1 and let g ∈ Cn. We will show that Cn = gstG(vn). Let h ∈ Cn. Then

(g−1h)(vn) = g−1(wn) = vn so g−1h ∈ stG(vn) and h ∈ gstG(vn). Hence

Cn ⊆ gstG(vn). Conversely, if k ∈ stG(vn) then (gk)(vn) = g(vn) = wn

so gk ∈ Cn. Hence gstG(vn) ⊆ Cn and we conclude that Cn = gstG(vn).

Since vertex stabilisers are closed in Aut(T ) and so is G, the intersection

stG(vn) = st(vn) ∩ G is also closed. Therefore Cn is closed as well, being a

coset of stG(vn).

Since G is compact and {Cn}∞n=1 is a collection of closed subsets of

G with the finite intersection property, we conclude that the intersection⋂∞
n=1Cn is nonempty. Choose g in this intersection. Then g ∈ G and

g(vn) = wn for each n, hence g(ω) = $ as required.

(c) =⇒ (a): Suppose that G is transitive on ∂T and let v, w ∈ L1. Then

there exist ω,$ ∈ ∂T whose corresponding infinite paths descending from

the root pass through v and w respectively. By transitivity there exists

g ∈ G such that g(ω) = $ and hence g(v) = w. A
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Remark. Subgroups of Aut(T ) that are transitive on Ln for all n are

called spherically transitive (because Ln is the sphere of radius n around

the root, with respect to the graph distance on T ). Note that the proof

of (b) ⇒ (c) above does not actually require property (R3). Nor does the

converse, which can be proved by a similar argument to the one used to show

(c)⇒ (a). Therefore we have actually proved the following known result:

Proposition 2.15. A closed subgroup of Aut(T ) is spherically transitive

if and only if it is transitive on ∂T .

If property (R3) is satisfied then Proposition 2.14 says that we can

extend this equivalence to transitivity on L1.

2.3.4. Quotients and finite subtrees. We turn our attention now to

finite subtrees of T , with the aim of establishing a finite-depth version of

property R.

For each n ≥ 1, define Tn to be the subtree of T consisting of words

of length at most n. That is, Tn =
⋃n
k=0 Lk. Since each Ln is invariant

under Aut(T ), Tn is invariant also. This means we can restrict elements and

subgroups of Aut(T ) to Tn:

Definition 2.16. For all g ∈ Aut(T ) and n ≥ 1, define g[n] to be the

restriction of g to Tn.

We use this notation for g ∈ Aut(Tn) as well: if m ≤ n then g[m] is the

restriction of g to Tm.

Lemma 2.17. The map g 7→ g[n] : Aut(T ) → Aut(Tn) is a homomor-

phism, and Aut(Tn) = Aut(T )[n].

Proof. Restriction of a group action to an invariant subset is always

a homomorphism. The second claim amounts to saying that this homo-

morphism is surjective. This follows from the obvious fact that every au-

tomorphism of Tn can be extended (not uniquely) to an automorphism of

T . A

For n ≥ 1 define the nth level stabiliser st(Ln) to be the pointwise

stabiliser of Ln in Aut(T ).

Proposition 2.18. For all n ≥ 1, st(Ln) is a normal subgroup of Aut(T )

and Aut(Tn) ∼= Aut(T )/st(Ln).
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Proof. Normality follows from the fact that st(Ln) is the kernel of

the homomorphism in Lemma 2.17. The image of that homomorphism is

Aut(Tn) so the first isomorphism theorem completes the proof. A

Vertex restrictions can also be defined for automorphisms of Tn, since

Lemma 2.9 applies to Aut(Tn) as well as Aut(T ), with the appropriate mod-

ifications. The proof is essentially the same and will not be reproduced

here:

Lemma 2.19. Let g ∈ Aut(Tn). For all v, w ∈ Tn such that |vw| = n,

g(vw) = g(v)w′

for some w′ ∈ Tn with |w| = |w′|.

The definition of vertex restrictions in Aut(Tn) is the same as in Aut(T )

except for the fact that if |vw| = n then |w| = n − |v| so the induced map

w 7→ w′ from Lemma 2.19 acts on Tn−|v|.

Definition 2.20. Let g ∈ Aut(Tn) and v ∈ Tn. The map g|v : Tn−|v| →
Tn−|v| defined by the equation

g(vw) = g(v)g|v(w) for all w ∈ Tn−|v|

is called the vertex restriction of g to v.

The argument in Proposition 2.11 also works here to show that g|v is an

automorphism of Tn−|v|. It is easy to see that the formulas in Proposition

2.12 apply (replacing T with Tn as appropriate) to vertex restrictions in

Aut(Tn) as well.

2.3.5. The property Rn. We have already defined the property R for

subgroups of Aut(T ). This condition can be adapted to subgroups of Aut(Tn)

as follows. First, we need some more notation: for each n ≥ 1 define T
(0)
n to

be the subtree of Tn+1 consisting of all words beginning with 0. This tree

is isomorphic to Tn (by deleting the prefix 0), and this isomorphism of trees

induces a natural isomorphism between the groups Aut(T
(0)
n ) and Aut(Tn).

Note that T
(0)
n is invariant under st(0), so if g ∈ Aut(Tn+1) and g(0) = 0

then the restriction g|
T

(0)
n

is well-defined (and equal to g|0).

Now define the following maps:

ϕn : Aut(Tn) −→ Aut(Tn−1) ψn : stAut(Tn)(0) −→ Aut(Tn−1)

g 7−→ g[n−1] g 7−→ g|0.
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The map ϕn restricts Aut(Tn) to the subtree Tn−1, while ψn restricts the

stabiliser of the vertex 0 in Aut(Tn) to the subtree T
(0)
n−1 (which is then

identified with Tn−1 as described above).

Tn−1

ϕn

T
(0)
n−1

0

ψn

Figure 2.2. The restrictions ϕn and ψn on the tree Tn

Of course, we already have notation for these maps — we could write

g[n−1] for ϕn(g) and g|0 for ψn(g) — but it will often be more convenient to

refer to the maps by name and use the function notation.

Lemma 2.21. Both ϕn and ψn are surjective homomorphisms for all n.

They “commute” in the sense that

ϕn−1 ◦ ψn = ψn−1 ◦ ϕn

on the domain st(0).

Proof. Surjectivity is clear. They are homomorphisms because they

are both the restriction of a group action to an invariant subset. To prove

“commutativity”, observe that both sides of the equation are equal to the

restriction of st(0) to the subtree T
(0)
n−2. A

Vertex restrictions in Aut(Tn) interact with the homomorphisms ϕn and

ψn as follows. If g ∈ Aut(Tn) and v ∈ L1 then g|v ∈ Aut(Tn−1) and

ϕn(g)|v = ϕn−1(g|v).

If, in addition, g ∈ st(0) then by definition ψn(g) = g|0.

With this notation established, we can now define the property Rn:

Definition 2.22. A subgroup G of Aut(Tn) has property Rn if the

following two conditions hold:

(a) G is transitive on L1, and

(b) ϕn(G) = ψn(stG(0)).

Sometimes we need to refer to the group ϕn(G) explicitly. If G has property

Rn and we let H = ϕn(G), then we say that G has property Rn(H).
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The following fact is very useful:

Lemma 2.23. If a subgroup G of Aut(Tn) has property Rn then G[m] has

property Rm(G[m−1]) for 2 ≤ m ≤ n.

Proof. Suppose that G has property Rn. For 2 ≤ m ≤ n, it follows

from the definition of ϕm that ϕm(G[m]) = G[m−1]. The conclusion therefore

holds for m = n, and we proceed by induction on m (where m decreases

to 2). Suppose that G[m] has property Rm(G[m−1]) for some m where 2 ≤
m ≤ n. If m = 2 then we are done. Otherwise, we want to show that

G[m−1] has property Rm−1(G[m−2]). We already know that ϕm(G[m]) =

G[m−1] and G[m] is transitive on L1 so G[m−1] is also transitive on L1. Since

ϕm−1(G[m−1]) = G[m−2], it remains only to show that ψm−1

(
stG[m−1]

(0)
)

=

G[m−2]. Using Lemma 2.21 and the inductive hypothesis,

ψm−1

(
stG[m−1]

(0)
)

= ψm−1

(
ϕm

(
stG[m]

(0)
))

= ϕm−1

(
ψm

(
stG[m]

(0)
))

= ϕm−1(G[m−1])

= G[m−2]

as required. By induction, the conclusion holds for 2 ≤ m ≤ n. A

When we defined property R, the condition (R2) required G to be tran-

sitive on ∂T . Analogously, we want groups with propertyRn to be transitive

on the ends of Tn; that is, they must be transitive on Ln. Lemma 2.24 be-

low (an adaptation of (a) =⇒ (b) from Proposition 2.14) explains why our

definition of property Rn only requires transitivity on L1.

Lemma 2.24. If G ≤ Aut(Tn) has property Rn then G is transitive on

Ln.

Proof. Suppose that G has property Rn. Then G[m] has property

Rm(G[m−1]) for 2 ≤ m ≤ n, by Lemma 2.23. Obviously G[1] is transitive on

L1 since G is. The proof now proceeds by induction on m.

Suppose that 1 ≤ m < n and G[m] is transitive on Lm. We know

that G[m+1] has property Rm+1(G[m]), and we must show that G[m+1] is

transitive on Lm+1. Firstly, G[m+1] is transitive on Lm by the inductive

hypothesis and the fact that ϕm+1(G[m+1]) = G[m]. Now let v and w be

vertices in Lm+1. We must find g ∈ G[m+1] such that g(v) = w. Let v′

and w′ be the parents of v and w respectively, which means they are in
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Lm. Since G[m+1] is transitive on Lm, and therefore transitive on L1, there

exist h1, h2 ∈ G[m+1] such that h1(v′) ∈ T
(0)
m and h2(w′) ∈ T

(0)
m . Hence

h1(v) ∈ T
(0)
m and h2(w) ∈ T

(0)
m as well. Now G[m] is transitive on Lm so

stG[m+1]
(0)
∣∣∣
T

(0)
m

= ψm+1(stG[m+1]
(0)) = G[m] is transitive on Lm of T

(0)
m .

Therefore there exists k ∈ stG[m+1]
(0) such that k(h1(v)) = h2(w). Finally,

let g = h−1
2 kh1. Then g ∈ G[m+1] since h1, h2 and k are, and g(v) = w as

required. A

2.3.6. Wreath recursion. If an automorphism g in Aut(T ) fixes L1

(pointwise) then it follows from the defining equation for g|v that g is com-

pletely determined by the p-tuple (g|0, . . . , g|p−1), and conversely such a

p-tuple uniquely defines an automorphism fixing L1. If we take another au-

tomorphism h that fixes L1 then we have another p-tuple (h|0, . . . , h|p−1).

It follows from Proposition 2.12 that (gh)|v = g|vh|v for all v ∈ L1, so multi-

plication in st(L1) is pointwise multiplication of these p-tuples. Thus, st(L1)

is isomorphic to Aut(T )×· · ·×Aut(T ). By Proposition 2.18, the quotient of

Aut(T ) by st(L1) is Aut(T1) which is isomorphic to Sym(p). We can identify

this quotient with a subgroup of Aut(T ) as follows.

Let g be an arbitrary element of Aut(T ). Define σg to be the automor-

phism of T such that for all v ∈ L1, σg(v) = g(v) and σg|v = e. In other

words,

σg(vw) = g(v)w for all v ∈ L1 and all w ∈ T .

Each σg is completely determined by its action on L1. It is now easy to see

that the set S := {σg : g ∈ Aut(T )} is a subgroup of Aut(T ) isomorphic to

Aut(T1) and hence isomorphic to Sym(p). Putting all this together, we can

express Aut(T ) as a semi-direct product:

Proposition 2.25. Aut(T ) is isomorphic to Sn(Aut(T )×· · ·×Aut(T )),

where there are p factors of Aut(T ) in the product.

Proof. We have seen (Proposition 2.18) that Aut(T )× · · · × Aut(T ) ∼=
st(L1) is normal in Aut(T ), and it follows from the definition of S that the

intersection of S with st(L1) is trivial. Thus, it suffices to show that every

element of Aut(T ) can be expressed as a product of an element of S and and

an element of st(L1).

Let g ∈ Aut(T ) and define σg ∈ S as above. It follows easily from

the definition that σ−1
g g fixes L1, and (σ−1

g g)|v = σ−1
g |g(v)g|v = g|v for all

v ∈ L1. Thus, using the notation above for elements of st(L1), we may write
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σ−1
g g = (g|0, . . . , g|p−1) and hence

(2.13) g = σg(g|0, . . . , g|p−1)

which expresses g as the required product. A

Remark 2.26. This kind of semi-direct product is known as a wreath

product, denoted S o Aut(T ). For multiplication in the wreath product, the

group S ∼= Sym(p) acts on the direct product of p copies of Aut(T ) by

permuting the factors. It is straightforward to show that this is precisely

how multiplication in the semi-direct product for Aut(T ) works.

A similar argument works for Aut(Tn) as well, but instead we get:

(2.14) Aut(Tn) ∼= S n (Aut(Tn−1)× · · · × Aut(Tn−1)).

and (2.13) holds as well. Additionally, for g ∈ Aut(Tn) this decomposition

interacts with the restriction map ϕn via the simple formula

(2.15) ϕn(σg(g|0, . . . , g|p−1)) = σg(ϕn−1(g|0), . . . , ϕn−1(g|p−1)).

We can also use (2.14) to find a formula for |Aut(Tn)|. Since |S| = |Sym(p)| =
p! we have

(2.16) |Aut(Tn)| = p! |Aut(Tn−1)|p .

Using the fact that Aut(T1) ∼= S, this recurrence relation can be easily solved

to get:

(2.17) |Aut(Tn)| = p!1+p+···+pn−1
= p!

pn−1
p−1 .

Remark 2.27. Since each copy of Aut(Tn−1) in (2.14) is also a semi-

direct product of the same form, we get the structure of Aut(Tn) as an

iterated wreath product of n copies of S, written S o (S o (· · · o S)). For more

details of iterated wreath products and their relationship with rooted trees

see [OOR04].

It follows from (2.13) that we may define an element of Aut(T ) by spec-

ifying an element of S and a p-tuple of elements of Aut(T ). This method is

known as wreath recursion. It can indeed be literally recursive, since it is

possible for g|v to be equal to g for one or more v. It can also happen that

an automorphism h appears in the decomposition of g while g appears in

the decomposition of h, creating a kind of mutual recursion. This is very

common, for example, when defining automaton groups such as the ones in

Chapter 7.
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2.3.7. Inverse limits. Every group G that has property R is profinite,

since it is a closed subgroup of the profinite group Aut(T ). We can now give

an explicit description of G as an inverse limit of finite groups with property

Rn. More importantly, we can use the inverse limit to construct a group with

property R from a sequence of groups with property Rn. This construction

will be invoked frequently in later chapters.

Definition 2.28. Let {Gn}∞n=1 be a sequence of groups such that Gn is

a subgroup of Aut(Tn) for all n, and ϕn(Gn) = Gn−1 for all n ≥ 2. Define:

G∞ := {g ∈ Aut(T ) : g[n] ∈ Gn for all n}.

Proposition 2.29. Let {Gn}∞n=1 be as above. Then G∞ is a closed

subgroup of Aut(T ).

Proof. First we must show that G∞ is a group. Clearly the identity is

in G∞. Suppose g, h ∈ G∞. Then for all n, (g−1h)[n] = (g[n])
−1(h[n]) which

belongs to Gn since Gn is a group. Therefore g−1h ∈ G∞. It follows that

G∞ is a subgroup of Aut(T ).

To show that G∞ is closed in Aut(T ), note that every finite set of vertices

in T is contained in Tm for some m, so a sequence {gn}∞n=1 converges to g

in Aut(T ) if and only if for each positive integer m there exists a positive

integer Nm such that gn(v) = g(v) for all n ≥ Nm and all v ∈ Tm. That is,

(gn)[m] = g[m] for all n ≥ Nm.

Let {gn}∞n=1 be a sequence in G∞ and suppose that limn→∞ gn = g. Fix

a positive integer m. Then (gn)[m] ∈ Gm for all n by definition of G∞. From

the definition of convergence, there exists n such that g[m] = (gn)[m], hence

g[m] ∈ Gm. Since this holds for all m, we conclude that g ∈ G∞. Therefore

G∞ is closed. A

If {Gn}∞n=1 is a sequence of groups as above then the surjective maps ϕn

turn the sequence into an inverse system:

G1
ϕ1←− G2

ϕ2←− G3
ϕ3←− · · ·

and so the inverse limit lim←−Gn exists. It turns out that this inverse limit is

precisely the group G∞ we have just defined.

Proposition 2.30. Let {Gn}∞n=1 be a sequence of groups as in Definition

2.28. Then G∞ is isomorphic, as a topological group, to the inverse limit

lim←−Gn.
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Proof. See the proof of Proposition 2.6. Simply replaceX =
⋃
n≥0X−n

with T =
⋃
n≥0 Tn and a similar argument carries through. Note that Propo-

sition 2.29 implies that G∞ is compact since it is a closed subgroup of the

compact group Aut(T ). A

With this result in mind, from now on we will simply use the notation

lim←−Gn to refer to the group G∞. This has the notational advantage of

explicitly referring to the sequence index n, as well as reminding us of the

profinite structure of the group.

The most important fact about the group lim←−Gn — indeed, the purpose

of its construction — is that it has property R whenever each of the Gn has

property Rn. Before we prove this, we need to establish a number of other

important properties of lim←−Gn.

Proposition 2.31. Let {Gn}∞n=1 be as in Definition 2.28. Then:

(a) (lim←−Gn)[n] = Gn for all n;

(b) If G is any subgroup of Aut(T ) then lim←−G[n] = G, the topological

closure of G in Aut(T );

(c) If G is a closed subgroup of Aut(T ) such that G[n] = Gn for all n,

then G = lim←−Gn;

(d) If {Hn}∞n=1 is another sequence of groups as in Definition 2.28 and

Hn ≤ Gn for all n, then lim←−Hn ≤ lim←−Gn with equality if and only

if Hn = Gn for all n.

Proof. (a) Follows from general facts about inverse limits (see [RZ10,

Prop. 1.1.10]) since each ϕn is surjective.

(b) and (c) are also general results. See [RZ10, Corollary 1.1.8].

(d) The inequality follows immediately from the initial definition of G∞.

The ‘if’ part of the equality is obvious, and the ‘only if’ part follows from

part (a). A

Now we are in a position to prove the main result of this section. Recall

that the sequence {Gn}∞n=1 in Definition 2.28 was subject to the condition

ϕn(Gn) = Gn−1 for all n. This condition is subsumed by property Rn, so

if we assume instead that Gn has property Rn(Gn−1) for each n then the

group lim←−Gn is still perfectly well defined.

Theorem 2.32. Let {Gn}∞n=1 be a sequence of groups such that Gn has

property Rn(Gn−1) for each n ≥ 2. Then lim←−Gn has property R, and

(lim←−Gn)[n] = Gn for all n. Furthermore, it is the unique subgroup of Aut(T )

with these properties.
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Proof. Let {Gn}∞n=1 be as stated. It follows from Proposition 2.31 that

(lim←−Gn)[n] = Gn for all n, and that lim←−Gn is the only closed subgroup of

Aut(T ) with that property. Since being closed in Aut(T ) is part of prop-

erty R, it remains only to show that lim←−Gn is transitive on ∂T and that

stlim←−Gn(0)|0 = lim←−Gn.

Now (lim←−Gn)[n] = Gn is transitive on Ln for each n because each Gn has

property Rn. Therefore lim←−Gn is transitive on each Ln as well, and hence

it is transitive on ∂T by Proposition 2.14. For each n we have(
stlim←−Gn(0)|0

)
[n]

=
(
stlim←−Gn(0)[n+1]

)∣∣∣
0

= stGn+1(0)|0 = Gn

since Gn+1 has property Rn+1(Gn). Thus, by Proposition 2.31(c), the result

will follow if we can show that stlim←−Gn(0)|0 is closed, or equivalently that

stlim←−Gn(0) is closed in Aut(T ). We already know that lim←−Gn is closed, as

is st(0) by definition of the topology on Aut(T ), so the intersection st(0) ∩
lim←−Gn = stlim←−Gn(0) must be closed as well. This completes the proof. A

Remark 2.33. Suppose that we only have the sequence of groups Gn for

n ≥ N for someN . Then we can still define the inverse limit lim←−Gn as above,

simply by adding the restrictions (GN )[n] for n < N to the beginning of the

sequence. This is necessary, for example, in Section 6.3 for the construction

of the infinite maximal group M∞(G).



CHAPTER 3

Groups with property R: general results

3.1. Introduction

In this chapter we establish some basic facts about groups with property

R, as well as the finite groups with property Rn for some n. Section 3.2

looks at conjugacy of groups in Aut(T ). We will see how to strengthen the

property R, without loss of generality, by choosing appropriate represen-

tatives from each conjugacy class. The main result is Theorem 3.18 which

characterises groups with property R, up to conjugacy, in terms of so-called

self-replicating groups. This theorem facilitates many of the later results in

this thesis, including the constructions in Chapters 6 and 7, and connects

this work with the rich theory of self-similar groups.

The finite-depth property Rn can be strengthened in a similar way. In

section 3.3 we use this to give concrete results about the relative sizes of the

finite groups with property Rn. Then, in section 3.4, we turn our attention

to the special case of p-groups with property Rn and pro-p groups with

property R. We provide a simple criterion for a group with property Rn or

property R to be a p-group or pro-p group respectively. We also describe the

lattice of subgroups of Aut(Tn) with property Rn(G) when G is a p-group.

This last result will help to simplify the automated search (see Appendix

A), particularly in the case p = 2.

3.2. Conjugacy and rigid automorphisms

In Chapter 2 we identified the rooted tree T with the words over the

alphabet {0, 1, . . . , p − 1}. Note that we are not assuming that p is prime.

This allocates a convenient label to each vertex of T , allowing us to refer

to particular vertices and describe automorphisms of T explicitly. We must

remember, however, that the rooted tree T is part of a homogeneous tree X,

and the subgroups of Aut(T ) with propertyR come from larger groups acting

on X that include a common translation, α. This translation determines a

preferred axis, whose vertices in T we have labelled ∅, 0, 00, 000, . . ., where

29
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α(0n) = 0n+1 (of course, α is not an automorphism of T and this equation

only makes sense if we think of T as part of X).

With the labelling of the axis fixed by α, there is still freedom to label

the other vertices of T however we wish, as long as the edge relation is

satisfied. For example, consider the simplest case where p = 2 and our

alphabet is {0, 1}. The two vertices on L1 are labelled 0 and 1 and we have

no choice in the matter because 0 is determined by α. On L2, the vertex

00 is determined and thus 01 must be its sibling; but the other two vertices

can be labelled 10 and 11 as we please. In general, α will determine which

vertices we label 0n (and when p = 2 this also determines the vertices of the

form 0n1) and the other vertices can be labelled arbitrarily, consistent with

the edge relation in T .

The reason this is important is that if we label the tree differently, the

group actions will look different. We would like to identify two groups

with property R as equivalent if they can be identified under a relabelling

of T (preserving the edge relation). Since such a relabelling is simply a

bijection on T that preserves the edge relation, it can be identified with a

unique automorphism of T . It turns out that, from the point of view of a

group G acting on T , relabelling T is equivalent to conjugating G by this

automorphism:

Proposition 3.1. Let φ be a relabelling of T and let G be a subgroup of

Aut(T ). Let x be the automorphism of T corresponding to φ. Then

xgx−1(φ(v)) = φ(g(v))

for all g ∈ G and all v ∈ T . In other words, the action of xGx−1 on T with

respect to the new labelling φ is equal to the action of G on T with respect

to the original labelling.

Proof. The assertion is an immediate consequence of identifying x with

φ as a mapping on the vertices of T . A

Consequently, the equivalence relation we would like to define on the

groups with property R is simply conjugacy in Aut(T ). We will therefore

study the groups with property R up to conjugacy, and hence those with

property Rn up to conjugacy in Aut(Tn). This means we are free to choose

representatives from each conjugacy class, which raises the question: how

should we determine which representatives to choose? As the results of

this section will demonstrate, we can choose a representative from each
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conjugacy class that satisfies a stronger version of the condition R. Recall

that the property R includes a kind of self-similarity condition, namely that

stG(0)|0 = G, where equality occurs after the canonical identification of T (0)

with T (i.e. using α as above). What about restriction to other subtrees?

For example, how does stG(1)|1 compare to G when T (1) is identified with

T? What about stG(v)|v for arbitrary v ∈ T? As it turns out, we can prove

that all such restrictions are conjugate to G.

Proposition 3.2. Suppose that G ≤ Aut(T ) has property R and let v

be any vertex in T . Then stG(v)|v is conjugate to G, under the canonical

identification of T (v) with T .

Proof. Since G has property R, we know that stG(0)|0 = G. Repeat-

edly applying this identification we conclude that for all n, stG(0n)|0n = G

when the subtree T (0n) is identified with T . Now fix v ∈ T . Then v ∈ Ln
for some n. Let x be any element of G such that x(0n) = v. Such an x

exists since 0n ∈ Ln and G is transitive on Ln. Then a simple calculation

shows that stG(v) = x (stG(0n))x−1. Now, using the formulae for vertex

restrictions, we obtain:

stG(v)|v =
(
x (stG(0n))x−1

)
|v

= (x stG(0n)) |x−1(v) x
−1|v

= (x stG(0n)) |0n
(
x|x−1(v)

)−1

= (x|0n) stG(0n)|0n (x|0n)−1

= (x|0n)G (x|0n)−1

which is a conjugate of G, as claimed. A

It turns out that if we are careful, we can choose a representative from

the conjugacy class of G so that all of these restrictions are actually equal

to G. The key to this is to conjugate G by an appropriately “nice” element

of Aut(T ). By “nice” we mean an automorphism that moves a vertex v,

say, but acts trivially on the subtree below v. In other words, an element

g ∈ Aut(T ) such that the vertex restriction g|v is trivial. We will call such

automorphisms rigid.

Definition 3.3. Let u and v be vertices of T and let g be an automor-

phism of T . Then g is rigid at u if the restriction g|u is trivial. Further,

we say that g is (u, v)-rigid if g|u is trivial and g(u) = v; this means that

g(uw) = vw for all w ∈ T .
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These definitions also apply mutatis mutandis to automorphisms and

vertices of the finite trees Tn.

Remark. It might be necessary to find another name for these rigid

automorphisms if they are to be used in the future, to avoid potential con-

fusion with the concept of the rigid stabiliser of a vertex v ∈ T — this is

the subgroup of Aut(T ) that fixes v and all vertices outside the subtree T (v).

On the other hand, an automorphism g that is rigid at v need not fix v, but

fixes (in a sense, if the subtrees T (g(v)) and T (v) are identified) the vertices

inside T (v).

Rigid automorphisms are extremely useful tools for dealing with vertex

restrictions. Conjugation by an automorphism rigid at v has the effect of

moving the vertex restriction at v to another vertex:

Lemma 3.4. Let v be a vertex of T . Suppose that g ∈ Aut(T ) fixes v and

h ∈ Aut(T ) is rigid at v. Then (hgh−1)|h(v) = g|v.

Proof. The hypotheses imply that g(v) = v and h|v = e. A direct

calculation gives the result:

(hgh−1)|h(v) = (hg)|v h−1|h(v) = h|g(v)g|v(h|v)−1 = h|vg|v = g|v. A

Our approach will be to use these rigid automorphisms to move vertex

restrictions from 0 (or more generally 0n) to other vertices of T , thereby

showing that all restrictions are equal. The easiest way to do this is one

level at a time; that is, we will arrive at the result for groups with property

R by proving it for groups with property Rn for each n.

First, we must establish some properties of conjugacy in both Aut(Tn)

and Aut(T ). In particular, we need to know when conjugacy preserves prop-

erty Rn. The following result gives sufficient conditions for this:

Proposition 3.5. Suppose that G is a subgroup of Aut(Tn) with property

Rn, and let x ∈ st(0) such that ϕn(x) = ψn(x). Then x−1Gx also has

property Rn.

Further, let H = G[n−1] so that G has property Rn(H), and suppose that

ϕn(x) = ψn(x) = e. Then x−1Gx also has property Rn(H).

Proof. Firstly, since G is transitive on L1, the same is true for x−1Gx

for any x ∈ Aut(Tn).

Let x ∈ st(0) and suppose that ϕn(x) = ψn(x). We know that ϕn(G) =

ψn(stG(0)), and we must show that this equality holds for x−1Gx. First,
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note that x fixes 0 so x−1stG(0)x = stx−1Gx(0). The claim now follows

immediately from the fact that both ϕn and ψn are homomorphisms.

Now let H be as stated and suppose that ϕn(x) = ψn(x) = e, i.e. that

x ∈ kerϕn ∩ kerψn. Since ϕn and ψn are homomorphisms, we obtain

ϕn(x−1Gx) = ϕn(G) = H

and since x−1Gx has property Rn it follows that

ψn(stx−1Gx(0)) = ϕn(x−1Gx) = H

so x−1Gx has property Rn(H) as required. A

We will also need to know how conjugacy in Aut(Tn) for each n carries

through the inverse limit to conjugacy in Aut(T ), if indeed it does at all.

Fortunately, it does — although the proof invokes the topology on Aut(T )

and it would not work without the condition that groups with property R
are closed.

Proposition 3.6. Let G and G′ be subgroups of Aut(T ) with property

R and suppose that G[n] is conjugate to G′[n] in Aut(Tn) for all n. Then G

is conjugate to G′.

Proof. Let G and G′ be as stated. For each n ≥ 1, define the following

sets:

Cn = {x ∈ Aut(Tn) : x−1G[n]x = G′[n]}

and C̃n = {x ∈ Aut(T ) : (x−1Gx)[n] = G′[n]}.

Our assumptions imply that each Cn is nonempty. Our conclusion will

follow if we can show that the intersection
⋂∞
n=1 C̃n is nonempty. To see

why, suppose that there is an x in this intersection. Then x ∈ C̃n for all

n, so (x−1Gx)[n] = G′[n] for all n. Now G is closed in Aut(T ), hence so is

x−1Gx. Therefore, by Proposition 2.31(c),

x−1Gx = lim←−(x−1Gx)[n] = lim←−G
′
[n] = G′

since G′ is also closed in Aut(T ), proving that G is conjugate to G′.

We will show that the intersection of the C̃n is nonempty by invoking

the finite intersection property in the compact group Aut(T ). It is clear

that C̃n+1 ⊆ C̃n for all n, so to show that the C̃n have the finite intersection

property we need only show that each C̃n is nonempty. To do this, we will

show that, for all n,

(3.1) C̃n = {x ∈ Aut(T ) : x[n] ∈ Cn}.
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Fix n ≥ 1. If x ∈ Aut(T ) and x[n] ∈ Cn then (x−1Gx)[n] = x−1
[n]G[n]x[n] =

G′[n] so x ∈ C̃n. Conversely, if x ∈ C̃n then G′[n] = (x−1Gx)[n] = x−1
[n]G[n]x[n]

which implies that x[n] ∈ Cn. Therefore (3.1) holds. In fact, this actu-

ally shows that (C̃n)[n] = Cn for all n. We have assumed that each Cn is

nonempty, so it follows that each C̃n is also nonempty and thus the C̃n have

the finite intersection property.

Now let us show that each C̃n is closed in Aut(T ). Recall that Aut(T )

is homeomorphic to the inverse limit lim←−Aut(Tn). Let θn be the projection

onto Aut(Tn) for each n; that is, θn(g) = g[n] for all g ∈ Aut(T ). It follows

from (3.1) that C̃n = θ−1
n (Cn) for all n. The topology in the inverse limit

means that each θn is continuous. Since Aut(Tn) is finite and therefore

discrete, each Cn is closed in Aut(Tn), so the continuity of θn implies that

C̃n is closed in Aut(T ) for each n.

In summary, {C̃n}∞n=1 is a family of nonempty, closed sets with the

finite intersection property. Since Aut(T ) is compact, it follows that the

intersection
⋂∞
n=1 C̃n is nonempty as required. A

Having established the important properties of conjugacy, we are going

to show how conjugation by appropriate rigid automorphisms allows us to

strengthen the properties R and Rn without loss of generality; i.e. by choos-

ing an appropriate conjugacy class representative. The desired representa-

tives all contain “sufficiently many” rigid automorphisms, in the following

precise sense:

Definition 3.7. Let G be a subgroup of Aut(T ). We say that G has

sufficient rigid automorphisms if for each pair of vertices u and v in L1 there

exists an automorphism g ∈ G such that g is (u, v)-rigid; that is, g(u) = v

and g|u = e.

We can immediately rework this definition to make it easier to use, by

reducing it to the case where v = u+ 1. Recall that the vertices on L1 are

identified with the set {0, 1, . . . , p− 1} so the expression u+ 1 makes sense,

provided u ≤ p− 2.

Lemma 3.8. Let G be a subgroup of Aut(T ). Suppose that for each vertex

v ∈ {0, 1, . . . , p− 2} on L1, there exists an automorphism g ∈ G such that g

is (v, v + 1)-rigid. Then G has sufficient rigid automorphisms.

Proof. Suppose that G contains a (v, v + 1)-rigid automorphism for

each v ∈ {0, 1, . . . , p− 2}, and let u and v be fixed vertices in L1. We must

show that there exists g ∈ G such that g(u) = v and g|u = e.
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If u = v then the identity in G is (u, v)-rigid so we are done. Suppose

that u < v. Then, by our assumption, for all w such that u ≤ w ≤ v − 1,

there exists an automorphism gw ∈ G such that gw(w) = (w + 1) and

gw|w = e. Define g = gv−1 · · · gu to be the product of all these gw, which

belongs to G since G is a group. Then it follows that g(u) = v and g|u =

gv−1|v−1 · · · gu|u = e, which means that g is (u, v)-rigid.

Suppose now that u > v. By a similar argument there exists g ∈ G that

is (v, u)-rigid. Then g−1(u) = v and g−1|u = (g|g−1(u))
−1 = (g|v)−1 = e so

g−1 is (u, v)-rigid and the proof is complete. A

Note that Definition 3.7 and Lemma 3.8 apply also to automorphisms

of the finite trees Tn and subgroups of Aut(Tn), since they refer only to L1

of the tree.

The next step is to use the above to show that if a subgroup H of

Aut(Tn−1) has sufficient rigid automorphisms then so does a conjugacy class

representative of every group with property Rn(H).

Proposition 3.9. Let n ≥ 2 and let H be a subgroup of Aut(Tn−1) that

has sufficient rigid automorphisms. Suppose that G is a subgroup of Aut(Tn)

with property Rn(H). Then there exists a conjugate of G in Aut(Tn) with

property Rn(H) that has sufficient rigid automorphisms.

Proof. Let H and G be as stated. The idea is to start with G and

(carefully) construct a series of conjugates of G, producing more rigid au-

tomorphisms at each step until we can invoke Lemma 3.8. More precisely,

we claim that, for each integer r such that 0 ≤ r ≤ p − 1, there exists a

subgroup G(r) of Aut(Tn) such that:

(a) G(r) is conjugate to G in Aut(Tn);

(b) G(r) has property Rn(H); and

(c) for each v ∈ L1 such that 0 ≤ v ≤ r − 1, there is a (v, v + 1)-rigid

automorphism in G(r).

By Lemma 3.8, it suffices to prove this claim for the case r = p − 1. The

proof is by induction on r. Starting with r = 0, the claim is trivially satisfied

by G itself. Suppose that the claim is true for some r ≥ 0, so that there

exists a group G(r) with properties (a)–(c). If r = p − 1 then we are done

so suppose further that r ≤ p− 2 (hence r + 1 is a valid vertex in L1).

We must find a group G(r+1) with properties (a)–(c). Any conjugate of

the existing group G(r) will satisfy (a). If we conjugate by an x ∈ Aut(Tn)

such that ϕn(x) = ψn(x) = e then (b) is satisfied by Proposition 3.5. To
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satisfy (c) we must preserve the existing rigid automorphisms in G(r) while

creating a new (r, r + 1)-rigid automorphism. We have assumed that H

contains such an automorphism; call it h. Then h(r) = r + 1 and h|r = e.

Since G(r) has property Rn(H), there exists an automorphism g ∈ G(r) such

that ϕn(g) = h. Therefore g(r) = r + 1 and ϕn−1(g|r) = h|r = e.

Now define the automorphism x ∈ Aut(Tn) as follows:

x(v) = v for all v ∈ L1;

x|v =

g|r if v = r + 1

e if v 6= r + 1.

This means that x acts trivially everywhere except on the subtree rooted

at r + 1 ∈ L1, where it acts as g|r. In particular, ϕn(x) = ψn(x) = e

so conjugating G(r) by x will preserve property Rn(H) by Proposition 3.5.

With this in mind, define G(r+1) = x−1G(r)x. By assumption (c) on G(r),

for each i = 0, 1, . . . , r − 1 there exists gi ∈ G(r) which is (i, i + 1)-rigid.

Define g̃i = x−1gix for each i, and g̃r = x−1gx. Clearly each of these g̃i

belong to G(r+1). We claim that each g̃i is (i, i + 1)-rigid. First, we have

g̃i(i) = i + 1 since x fixes L1 and gi(i) = i + 1 for each i. For the vertex

restrictions, if 0 ≤ i ≤ r − 1 we have

g̃i|i = (x−1gix)|i = (x−1gi)|i x|i = (x−1|i+1) gi|i x|i = (x|i+1)−1gi|i x|i = e.

The last equality follows because x|i and x|i+1 are both trivial (since neither

i nor i+ 1 is equal to r+ 1) and gi|i is trivial (since gi is rigid at i). If i = r

a similar calculation shows that

g̃r|r = (x−1gx)|r = (x|r+1)−1g|r x|r = e

since x|r+1 = g|r and x|r = e.

We have proven that g̃i is (i, i + 1)-rigid for all 0 ≤ i ≤ r which means

G(r+1) has the required properties (a)–(c) and the inductive step is complete.

Finally, the group G(p−1) is the required conjugate of G. A

Proposition 3.9 applies to groups with property Rn(H), assuming that

H already has sufficient rigid automorphisms. It turns out that we can

actually drop that assumption, as long as we are only interested in whether

the group has property Rn rather than Rn(H) for a specific H.

Proposition 3.10. Suppose that G is a subgroup of Aut(Tn) with prop-

erty Rn. Then there exists an automorphism x ∈ Aut(Tn) where x ∈ st(0)



3.2. CONJUGACY AND RIGID AUTOMORPHISMS 37

and ϕn(x) = ψn(x), such that x−1Gx has property Rn and has sufficient

rigid automorphisms.

Proof. The proof is by induction on n. The base case n = 1 is easy

since all vertex restrictions are trivial for g ∈ Aut(T1). Thus every element

of Aut(T1) is trivially rigid, so G has sufficient rigid automorphisms since it

is transitive on L1. We may therefore take x = e.

Suppose that the assertion holds for all groups with property Rn. Let

G be a subgroup of Aut(Tn+1) with property Rn+1. Then G[n] has property

Rn so the inductive hypothesis implies that there exists an x ∈ Aut(Tn)

where x ∈ st(0) and ϕn(x) = ψn(x), such that x−1G[n]x has property Rn
and has sufficient rigid automorphisms.

Let y be any element of Aut(Tn+1) such that ϕn+1(y) = ψn+1(y) = x

(note that ϕn+1(y) = x means that y ∈ st(0) so ψn+1(y) is defined). We

will first verify that such a y exists. The condition ϕn+1(y) = x specifies

the action of y on Tn, leaving us free to define its action on Ln+1. Now

ψn+1(y) = y|0 and ϕn(y|0) = ϕn+1(y)|0 = x|0 = ψn(x) = ϕn(x) is already

specified. This means that y|0 agrees with x on Tn−1, so we may put y|0 = x.

This defines y on the part of Ln+1 below the vertex 0. If we choose the action

of y on the rest of Ln+1 arbitrarily, we still have ϕn+1(y) = x and now we

also have ψn+1(y) = y|0 = x as desired.

Let G′ = y−1Gy. Then G′ has property Rn+1 by Proposition 3.5. In

fact, it has property Rn+1(x−1G[n]x) since

ϕn+1(G′) = ϕn+1(y)−1ϕn+1(G)ϕn+1(y) = x−1G[n]x.

Since x−1G[n]x has sufficient rigid automorphisms, Proposition 3.9 implies

that there is a conjugate G′′ of G′ that has property Rn+1(x−1G[n]x) and

also has sufficient rigid automorphisms. A careful reading of the proof of

Proposition 3.9 shows that the conjugating element z ∈ Aut(Tn) satisfies

ϕn+1(z) = ψn+1(z) = e. That is,

G′′ = z−1G′z = z−1(y−1Gy)z = (yz)−1G(yz)

and ϕn+1(yz) = ψn+1(yz) since both ϕn+1 and ψn+1 are homomorphisms.

The automorphism yz has the properties we want, so the inductive step is

complete and so is the proof. A

The upshot of these results is that we may now assume without loss

of generality (that is, up to conjugacy) that every group with property Rn
has sufficient rigid automorphisms. The benefit of this is illustrated by
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Proposition 3.11 and its Corollary 3.12, which will allow us to impose a

stronger self-similarity condition on groups with property Rn.

Proposition 3.11. Suppose that G is a subgroup of Aut(Tn) with prop-

erty Rn(H) that has sufficient rigid automorphisms. Then g|v ∈ H for all

g ∈ G and all v ∈ L1.

Proof. Let g ∈ G and v ∈ L1. We aim to use the condition ψn(stG(0)) =

H to show that g|v ∈ H. The first step is to find h ∈ G such that h(v) = v

and h|v = g|v. If g(v) = v already then simply put h = g. Otherwise, since G

has sufficient rigid automorphisms, there exists x ∈ G such that x(g(v)) = v

and x|g(v) = e. In other words, x is a (g(v), v)-rigid automorphism. Now let

h = xg which is in G since both x and g are in G. Then h(v) = x(g(v)) = v

and h|v = x|g(v)g|v = g|v as desired.

The next step is to find k ∈ G such that k(0) = 0 and k|0 = g|v.
If v = 0 then simply put k = h. Otherwise, since H has sufficient rigid

automorphisms, there exists y ∈ G such that y(v) = 0 and y|v = e. Let k =

yhy−1, which is in G since both h and y are in G. Then k(0) = yhy−1(0) =

yh(v) = y(v) = 0 and Lemma 3.4 implies that k|0 = (yhy−1)|y(v) = h|v =

g|v. Now k ∈ stG(0) so ψn(k) ∈ H, but ψn(k) = k|0 = g|v and thus g|v ∈ H
as required. A

Corollary 3.12. Suppose that G is a subgroup of Aut(Tn) with property

Rn. Then there exists a conjugate G′ of G in Aut(Tn) with property Rn such

that g|v ∈ G′[n−1] for all g ∈ G′ and all v ∈ L1.

Further, we may assume that the conjugating element x belongs to st(0)

and satisfies ϕn(x) = ψn(x).

Proof. Follows immediately from Propositions 3.10 and 3.11. A

We may therefore, without loss of generality, strengthen property Rn
when convenient, by adding the condition:

(3.2) g|v ∈ G[n−1] for all g ∈ G and all v ∈ L1.

Note that the existing condition Rn implies that g|0 ∈ G[n−1] for all g ∈
stG(0) because ψn(g) = g|0 for g ∈ st(0). The new condition (3.2) asserts

that g|v ∈ G[n−1] even when g /∈ st(v). This is the critical ingredient in

the construction of the maximal groups in Chapter 6 and the automata in

Chapter 7.

Returning now to the infinite tree T , we can strengthen the self-similarity

condition in property R in an analogous way to Rn.
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Proposition 3.13. Suppose that G ≤ Aut(T ) has property R. Then

there exists a group Ĝ with property R that is conjugate to G in Aut(T ),

such that g|v ∈ Ĝ for all g ∈ Ĝ and all v ∈ T .

Proof. Since G has property R, we know that G[n] has property Rn
for each n. Then Proposition 3.10 implies that for each n ≥ 1 there exists

G′n conjugate to G[n] that has property Rn and has sufficient rigid automor-

phisms. The inductive step in the proof of Proposition 3.10 actually shows

that we may take each G′n to have property Rn(G′n−1) for all n ≥ 2. This

allows us to define the subgroup Ĝ of Aut(T ) by

Ĝ = lim←−G
′
n.

Then Theorem 2.32 tells us that Ĝ has property R and Ĝ[n] = G′n for all

n. This means that Ĝ[n] is conjugate to G[n] for all n, so we conclude from

Proposition 3.6 that Ĝ is conjugate to G in Aut(T ).

It remains to show that g|v ∈ Ĝ for all g ∈ Ĝ and all v ∈ T . Let

us do this first for v ∈ L1. Fix v ∈ L1 and let g ∈ Ĝ. For each n ≥ 1,

(g|v)[n] = g[n+1]|v ∈ Ĝ[n] since g[n+1] ∈ Ĝ[n+1] = G′n+1 which has sufficient

rigid automorphisms, so Proposition 3.11 applies. Since this is true for all

n, we conclude that g|v ∈ lim←− Ĝ[n] = Ĝ.

This forms the base step for an induction argument. Suppose that g|v ∈
Ĝ for all g ∈ Ĝ and all v ∈ Ln for some n ≥ 1. Now fix v ∈ Ln+1. Then v

can be expressed uniquely as v = uw where u ∈ Ln and w ∈ L1. Fix g ∈ Ĝ.

Then g|v = g|uw = (g|u)|w. By the inductive hypothesis g|u ∈ Ĝ, and since

w ∈ L1 it follows from the base step that (g|u)|w ∈ Ĝ which completes the

induction and the proof. A

The group Ĝ in Proposition 3.13 belongs to a widely-studied class of

groups called self-similar groups. A subset of these, called self-replicating

groups, were foreshadowed in Chapter 2 and are the focus of the main result

of this chapter. The definitions are as follows:

Definition 3.14. A subgroup G of Aut(T ) is self-similar if

G|v ⊆ G for all v ∈ T

and G is self-replicating if

stG(v)|v = G for all v ∈ T.

We can immediately rephrase Proposition 3.13 in these terms:
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Corollary 3.15. Suppose that G has property R. Then G is conjugate

in Aut(T ) to a self-similar group with property R.

Recall that property R includes the condition stG(0)|0 = G. The next

step is to use Proposition 3.13 to replace the vertex 0 with any vertex in T

without loss of generality. Then we will be able to replace ‘self-similar’ in

Corollary 3.15 with ‘self-replicating’.

Proposition 3.16. Suppose that G has property R. Then G is conjugate

in Aut(T ) to a self-replicating group with property R.

Proof. Define the same Ĝ as in Proposition 3.13. Fix v ∈ T . Since Ĝ

has property R, Proposition 3.2 tells us that st
Ĝ

(v)|v is conjugate to Ĝ. It

follows that (st
Ĝ

(v)|v)[n] is conjugate to Ĝ[n] for all n, and hence

(3.3)
∣∣∣(stĜ(v)|v

)
[n]

∣∣∣ =
∣∣∣Ĝ[n]

∣∣∣
for all n. We also conclude from Proposition 3.13 that st

Ĝ
(v)|v ⊆ Ĝ, whence

(st
Ĝ

(v)|v)[n] ⊆ Ĝ[n] for all n. Thus it follows from (3.3) that (st
Ĝ

(v)|v)[n] =

Ĝ[n] for all n. Now st
Ĝ

(v)|v is closed in Aut(T ) since it is conjugate to Ĝ

which is closed in Aut(T ). Therefore by Proposition 2.31(c),

st
Ĝ

(v)|v = lim←−(st
Ĝ

(v)|v)[n] = lim←− Ĝ[n] = Ĝ

as required. A

Since the self-replicating group Ĝ we constructed in the proof of Propo-

sition 3.16 is actually the same self-similar group Ĝ from Proposition 3.13,

we may immediately conclude:

Corollary 3.17. Suppose that G is self-similar and has property R.

Then G is self-replicating.

It follows immediately from the definitions that every closed, spherically

transitive, self-replicating group has property R. This result does not quite

give us the converse of Proposition 3.16 but it does yield the following the-

orem — the main result of this chapter — which characterises groups with

property R up to conjugacy:

Theorem 3.18. Let G be a subgroup of Aut(T ). Then G is conjugate to

a group with property R if and only if G is conjugate to a closed, spherically

transitive, self-replicating group.

Thus, the study of groups with propertyR is equivalent, up to conjugacy,

to the study of closed, spherically transitive, self-replicating groups.
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3.3. Sizes of groups with property Rn

Let n ≥ 2 and let H be a subgroup of Aut(Tn−1) with property Rn−1.

The self-similarity condition in property Rn allows us, given any group G

with property Rn(H), to relate |G| to |H|. The kernels of the restriction

maps ϕn and ψn play a crucial role in this; if we know the orders of these

kernels in G then we can give an exact result for |G| in terms of |H|. If not,

then we can still use information about H to place upper and lower bounds

on |G|.
In this section, to make the proofs easier, we will invoke Corollary 3.12

and assume (3.2) holds in addition to property Rn. However, it is worth

pointing out that the results remain valid with property Rn alone, since

conjugacy does not affect the size of the group. As in the previous section,

we are not assuming that p is prime.

Proposition 3.19. Suppose that G ≤ Aut(Tn) satisfies Rn(H). Then

(a) |G| = |kerG(ϕn)| |H| = p
∣∣kerstG(0)(ψn)

∣∣ |H|.
(b) kerG(ϕn) is nontrivial.

(c) |G| ≥ p |H|.
(d) |G| ≤ |kerH(ϕn−1)|p |H| ≤

∣∣H[1]

∣∣ |H|p.
Proof. Parts (b) and (c) follow from part (a). Let us prove (a). Since

G satisfies Rn(H), we have ϕn(G) = H which implies the first equality.

Also, ψn(stG(0)) = H implies that |stG(0)| =
∣∣kerstG(0)(ψn)

∣∣ |H|. Since G

is transitive on L1, it follows from the orbit-stabiliser theorem that |G| =

p |stG(0)| and the second equality in (a) follows.

There are two inequalities to prove in part (d). The first will follow

from part (a) if we can show that |kerG(ϕn)| ≤ |kerH(ϕn−1)|p. This can be

done by finding an injection from kerG(ϕn) into the product (kerH(ϕn−1))p.

Let x ∈ kerG(ϕn). Since ϕn(x) is trivial, x fixes L1 and so we can write

x = (x|0, . . . , x|p−1). Then e = ϕn(x) = (ϕn−1(x|0), . . . , ϕn−1(x|p−1)) which

implies that ϕn−1(x|v) = e for all v ∈ L1. Now x|v ∈ H for all v ∈ L1 (note

that we are invoking (3.2) here) so x|v ∈ kerH(ϕn−1) for all v ∈ L1. The

map x 7→ (x|0, . . . , x|p−1) is therefore the required injection, since the tuple

(x|0, . . . , x|p−1) uniquely determines x.

For convenience, let us define K = G[n−2] = ϕn−1(H), so that H has

property Rn−1(K). In order to prove the second inequality in (d), we need

another inequality first; namely

(3.4) |H| ≤
∣∣K[1]

∣∣ |K|p .
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Note that K[1] = H[1]
∼= H/stH(L1), so |H| =

∣∣K[1]

∣∣ |stH(L1)|. Hence it

suffices to show that |stH(L1)| ≤ |K|p. Again, we will do this by finding

an injection from stH(L1) into Kp. Let x = (x|0, . . . , x|p−1) ∈ stH(L1). By

(3.2), x|v ∈ K for all v ∈ L1 so once again the map x 7→ (x|0, . . . , x|p−1) is

the required injection and thus (3.4) holds.

We can now prove the second inequality. Multiplying both sides of (3.4)

by |H|p and observing that H[1] = K[1], we obtain

|H|p+1 ≤
∣∣H[1]

∣∣ |H|p |K|p .
Now part (a) applied to H implies that |H| = |kerH(ϕn−1)| |K|, hence

|kerH(ϕn−1)|p |H| = |H|
p+1

|K|p
≤
∣∣H[1]

∣∣ |H|p
as required. A

3.4. p-groups and the pro-p group Autp(T )

Definition 3.20. Suppose that p is prime. Let Cp denote the cyclic

subgroup of Aut(T1) generated by the p-cycle (0 1 · · · p− 1). Define:

Autp(T ) := {g ∈ Aut(T ) : (g|v)[1] ∈ Cp for all v ∈ T}.

In other words, Autp(T ) consists of the automorphisms of T whose action

on the p children of each vertex (viewed as an element of Aut(T1)) is an

element of Cp. It is a subgroup of Aut(T ). We may also define the finite-

depth version:

Autp(Tn) := {g ∈ Aut(Tn) : (g|v)[1] ∈ Cp for all v ∈ Tn−1}.

Note that the definition specifies v ∈ Tn−1 rather than Tn so that there will

be children of v for g|v to act on. This is a subgroup of Aut(Tn) and it has

the structure of an iterated wreath product:

Autp(Tn) ∼= Cp o (Cp o (· · · ))︸ ︷︷ ︸
n factors

which is the same structure as Aut(Tn) (see (2.14)) but with Sym(p) replaced

by Cp. Thus, using a similar argument to the one used to derive (2.17), we

obtain the analogous formula:

(3.5) |Autp(Tn)| = p
pn−1
p−1 .

Hence Autp(Tn) is a p-group for all n. Then, following Proposition 2.30, we

may view Autp(T ) as the inverse limit of the Autp(Tn), making it a pro-p

group.
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It turns out that, given a group G ≤ Aut(T ) with property R or a

finite group G ≤ Aut(Tn) with property Rn, we can tell if G is contained in

Autp(T ) or Autp(Tn) simply by looking at its action on level 1 of the tree:

Proposition 3.21. Suppose that p is prime. Let n ≥ 2 and suppose that

G ≤ Aut(Tn) has property Rn and that G[1] = Cp. Then G is a subgroup of

Autp(Tn) and is therefore a p-group.

Proof. Let n and G be as stated. Let g ∈ G and v ∈ Tn−1. Since G has

property Rn, (g|v)[1] ∈ G[1] = Cp. This holds for arbitrary v so we conclude

that g ∈ Autp(Tn). Since g was also arbitrary, it follows that G ≤ Autp(Tn).

Subgroups of p-groups are also p-groups so G is a p-group as claimed. A

Proposition 3.22. Suppose that p is prime. Suppose that G ≤ Aut(T )

has property R and that G[1] = Cp. Then G is a subgroup of Autp(T ) and

is therefore a pro-p group.

Proof. The proof is similar to Proposition 3.21. Let G be as stated and

let g ∈ G and v ∈ T . By self-similarity, (g|v)[1] ∈ G[1] = Cp. Since this holds

for arbitrary v, we conclude that g ∈ Autp(T ). Since g was also arbitrary, it

follows that G ≤ Autp(T ). Finally, since G is closed and a subgroup of the

pro-p group Autp(T ), it follows that G is itself a pro-p group. A

As a consequence of these results, the case p = 2 is special:

Proposition 3.23. If p = 2, then:

(a) For all n, Aut2(Tn) = Aut(Tn);

(b) Aut2(T ) = Aut(T );

(c) For all n, every group with property Rn is a 2-group;

(d) Every group with property R is a pro-2 group.

Proof. If p = 2 then Aut(T1) = C2. Parts (a) and (b) now follow from

the definitions. Since the only transitive subgroup of C2 is C2 itself, part

(c) now follows from Proposition 3.21 and part (d) follows from Proposition

3.22. A

When we are considering p-groups with property Rn, as we will be in

Chapter 5 when we focus on the case p = 2, some of the general properties

of p-groups help to simplify our calculations. For example, suppose we fix

a subgroup H of Aut(Tn−1) and consider the possible groups G ≤ Aut(Tn)

with property Rn(H). We can order those groups by inclusion, setting up

a lattice (see Figure 5.1 for example). We will now show that for any two
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groups in the lattice, every subgroup of Aut(Tn) between these subgroups

also has property Rn(H) and therefore belongs to the lattice as well.

Proposition 3.24. Let n ≥ 2 and let H be a subgroup of Aut(Tn−1)

with property Rn−1. Suppose that G1, G2 and G3 are subgroups of Aut(Tn)

such that G1 ⊆ G2 ⊆ G3, and that G1 and G3 both have property Rn(H).

Then G2 also has property Rn(H).

Proof. Let n, H, G1, G2 and G3 be as stated. Then G2 is transitive

on L1 since G2 contains G1 which is transitive on L1. Now H = ϕn(G1) ⊆
ϕn(G2) ⊆ ϕn(G3) = H so ϕn(G2) = H. Similarly ψn(stG2(0)) = H since

stG1(0) ⊆ stG2(0) ⊆ stG3(0), which completes the proof. A

We can show that this ‘filling in’ of the subgroup lattice occurs to the

maximum possible extent in the case of p-groups, in that every possible

power of p occurs as the order of a group. This gives the lattice a particularly

simple structure. In order to prove this, we need some facts about p-groups.

Lemma 3.25. The center of a p-group is always nontrivial.

Proof. Let G be a p-group. Recall the class equation for finite groups,

obtained by enumerating the conjugacy classes:

|G| = |Z(G)|+
∑
i

|G : CG(xi)|

where Z(G) is the center of G, CG(xi) is the centraliser of xi in G, and the

xi are a full set of conjugacy class representatives not in Z(G). Since G is

a p-group, each |G : CG(xi)| is divisible by p and hence so is |Z(G)|. Since

the identity belongs to Z(G), it follows that |Z(G)| ≥ p and thus Z(G) is

nontrivial. A

Lemma 3.26. If G is a p-group and H is a proper subgroup of G, then

H is properly contained in its normaliser NG(H).

Proof. By induction on |G|. The result is immediate if |G| = p since

then G is cyclic of order p and the only subgroups of G are the trivial

subgroup and G.

Suppose that the Lemma holds for all p-groups G with |G| ≤ pn for some

n ≥ 1. LetG be a p-group such that |G| = pn+1. LetH be a proper subgroup

ofG and suppose for a contradiction thatH = NG(H) (note thatH is always

contained in NG(H)). The center Z(G) commutes with everything in G so

it is normal in G and normalises H. Hence Z(G) C NG(H), and so in our

case Z(G) C H.
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Now H is a proper subgroup of G so we may view the quotient group

H/Z(G) as a proper subgroup of G/Z(G). By Lemma 3.25, Z(G) is non-

trivial so |G/Z(G)| < |G|. Since G/Z(G) is a p-group, we can apply the

inductive hypothesis to conclude that H/Z(G) is normalised by some ele-

ment of G/Z(G) which is not in H/Z(G). Lifting to G, we conclude that

H is normalised by some element of G not in H, which contradicts our

assumption that H = NG(H). This completes the inductive step and the

proof. A

Lemma 3.27. Let G be a p-group and let H be a proper subgroup of G.

Then there exists a positive integer r and a chain of subnormal subgroups

H = H0 C H1 C · · · C Hr = G such that |Hi : Hi−1| = p for 1 ≤ i ≤ r.

Proof. Let G be a p-group. Note that if H is any proper subgroup of

G then the index |G : H| = pm for some m ≥ 1.

The proof is by induction on m. The base case m = 1 is trivial except for

the normality condition. By Lemma 3.26, the normaliser NG(H) properly

contains H. Since H has index p in G, it follows that NG(H) = G and so

H is normal in G.

Now fix m ≥ 1 and suppose that the claim holds for all subgroups of

G with index pm. Let H be a subgroup of G with index pm+1. By Lemma

3.26, NG(H) properly contains H as a normal subgroup, so we can form

the quotient group NG(H)/H which is a nontrivial p-group. By Cauchy’s

theorem, there exists an element of order p in NG(H)/H. This amounts

to saying that there exists g ∈ NG(H) such that g /∈ H and gp ∈ H.

Let H1 = 〈H, g〉. Since g normalises H we have H1 = 〈g〉H =
⋃p−1
i=0 g

iH

and thus |H1| = p |H|. Therefore H is a normal subgroup of H1 with

index p. It follows that H1 has index pm in G and so we may apply the

inductive hypothesis to H1 to complete the chain of subgroups from H to

G as required. A

With these Lemmas at our disposal, we can now prove our result.

Proposition 3.28. Let n ≥ 2 and let H be a subgroup of Autp(Tn−1)

with property Rn−1. Suppose that G and G′ are subgroups of Autp(Tn) with

property Rn(H), and that G ⊆ G′. Then there exists a positive integer r

and a chain of subgroups

G = G0 C G1 C · · · C Gr = G′,

all of which have property Rn(H), such that |Gi : Gi−1| = p for 1 ≤ i ≤ r.
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Proof. Let n, H, G and G′ be as stated. As subgroups of the p-group

Autp(Tn), both G and G′ are p-groups. Lemma 3.27 implies that there is a

chain of subnormal subgroups from G to G′ with index p at each step, and

Proposition 3.24 implies that they all have property Rn(H). A

If G is a p-group with property Rn then this result allows us to program

a systematic and efficient search for all subgroups of G with property Rn, by

finding first all index-p subgroups of G with property Rn (taking advantage

of efficient algorithms for finding maximal subgroups of a finite group) and

then recursively looking inside those. This is the basis of the algorithm

described in Appendix A. Because of Proposition 3.23, the restriction to

p-groups is no restriction at all in the case p = 2, which was the focus of our

calculations. We will see the fruits of these calculations in Chapter 5.

Before we enlist the help of a computer, though, some important exam-

ples of groups with property R (and Rn) appear in other contexts and are

already well-known. Chapter 4 covers these examples in detail.



CHAPTER 4

Basic examples

This brief chapter covers a couple of introductory examples of well-

known totally disconnected locally compact groups and their tree repre-

sentations. This is intended to make the ideas in Chapter 2 a little more

concrete, and to provide a starting point for the investigations in Chapter

5.

Example 4.1 (The p-adic numbers). Let G = Qp be the additive group

of p-adic numbers for some prime p. G is a totally disconnected locally

compact group with the usual topology induced by the p-adic valuation.

The subgroup V = Zp of p-adic integers is a compact open subgroup of G.

Define α : G → G by α(x) = px. Then α is a continuous automorphism

of G. Now Zp ⊂ p−1Zp which means V ⊂ α−1(V ) and therefore V− =⋂
n≥0 α

−n(V ) = V . On the other hand, V+ =
⋂
n≥0 α

n(V ) is trivial and so

we have V = V+V−. Finally V++ is obviously trivial as well, and

V−− =
⋃
n≥0

α−n(V ) =
⋃
n≥0

p−nZp = Qp = G

is closed in G so it follows that V is tidy for α. The scale of α is 1 since

α(V ) ⊂ V (this fact alone implies that V is tidy for α) and

s(α−1) =
∣∣α−1(V ) : V ∩ α−1(V )

∣∣ =
∣∣p−1Zp : Zp

∣∣ = p.

The tree representation π : V−− o 〈α〉 → Aut(X) therefore acts on a homo-

geneous tree of valency p+1. We can describe this action in detail, illustrat-

ing the reduction from the homogeneous tree to the rooted tree described in

Chapter 2. The vertices of X are the left cosets of V− in V−− o 〈α〉, which

are the cosets of Zp in Qp o 〈α〉. Denote each coset (x, αn)Zp by the pair

(x, n), where x ∈ Qp and n ∈ Z. It follows from straightforward calculations

that:

(a) (x, n) = (y,m) if and only if n = m and x− y ∈ pnZp.
(b) There is a unique in-edge to the vertex (x, n), from the vertex

(x, n− 1).

47
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(c) There are p out-edges from the vertex (x, n), to the vertices (x +

cpn, n+ 1) where c ∈ {0, 1, . . . , p− 1}.

The path ξ = {ξn}n∈Z defined in Section 2.2 consists of the vertices (0, n)

where n ∈ Z. Note that π(α)(0, n) = (0, n + 1) for all n, so π(α) acts as a

translation of amplitude 1 along ξ. In general the action of α on the tree is

π(α)(x, n) = (px, n+ 1).

For v ∈ V−− = Qp, the action is

π(v)(x, n) = (v + x, n).

It follows from property (a) that π(v) fixes the vertex (x, n) if and only if

v ∈ pnZp. In other words, st(x, n) = π(pnZp) for each n ∈ Z. We can

use this to show that π is faithful, by showing that kerπ is trivial. Indeed,

suppose that v ∈ kerπ. Then π(v) fixes every vertex in X, so

v ∈
⋂
n∈Z

pnZp = {0}

as claimed.

Consider the subtree T rooted at the vertex ξ0 = (0, 0) as defined in

section 2.3. Recall that the nth level of T , denoted Ln, is the set of ver-

tices of T which are a distance of n from the root ξ0. Since L1 is just the

set of children of ξ0, property (c) tells us that L1 consists of the vertices

(0, 1), (1, 1), . . . , (p − 1, 1). Repeatedly applying property (c) yields a nice

description of Ln for each n:

Ln =

{(
n−1∑
i=0

cip
i, n

)
: ci ∈ {0, 1, . . . , p− 1}

}
.

Observe that every vertex of T has p children, and Ln contains pn vertices,

indexed by the integers modulo pn.

We know from Section 2.2 that st(ξ0) = π(Zp) acts on T and that this

action determines the whole representation. The action of π(Zp) on T can

be understood by considering its action on each level of T . For each n ∈ N,

the element v ∈ Zp acts on Ln by

π(v)(x, n) = (v + x, n)

where x =
∑n−1

i=0 cip
i as above. Now the vertices (pn + x, n) and (x, n) are

identical by property (a), so π(pn) fixes every vertex of Ln. In fact it follows

easily from property (a) that the action of π(Zp) on Ln is cyclic of order pn,

where

π(v)(x, n) = ((v + x) mod pn, n).
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In other words, when the vertices of Ln are identified with the integers

modulo pn as above, then π(Zp) acts on Ln by addition modulo pn. This

is simply a reflection of the fact that stπ(Zp)(Ln) = π(pnZp), and therefore

π(Zp)[n] = π(Zp)/π(pnZp) ∼= Z/pnZ.

This action of π(Zp) on T is related to the adding machine or odometer

[Šun11, Example 3], which is known to be self-replicating. It is also an

automaton group; see Example 7.7. If we view Z as the cyclic subgroup of

Zp generated by 1, then we obtain the odometer as the action of π(Z) on T .

Indeed, the action of 1 on any vertex v ∈ Ln satisfies

π(1)(v, n) = ((v + 1) mod pn, n).

This is the reason for the name odometer — it is generated by an automor-

phism that “counts” up by 1.

It is worth pointing out a subtlety that arises from the topology here.

Both π(Z) and π(Zp) have the same action on Ln for all n ∈ N; that is,

π(Z)[n] = π(Zp)[n]. In other words, if we truncate the tree T at level n (for

any n) then π(Zp) is indistinguishable from the odometer. However, since

π(Zp) is closed, Proposition 2.31(b) tells us that it must be the closure of

the odometer group in Aut(T ). We can give an explicit example of a closure

point: consider v =
∑∞

k=0 p
2k ∈ Zp. The action of π(v) on Ln is the same

as the action of π
(∑b(n−1)/2c

k=0 p2k
)
∈ π(Z) since π(p2k) ∈ st(Ln) for 2k ≥ n.

Yet π(v) /∈ π(Z) since v is not a finite sum nor the additive inverse of a finite

sum. On the other hand we can see that π(v) belongs to the closure of π(Z)

since on each level it agrees with some element of π(Z).

Thus, the difference between the odometer and π(Zp) only becomes clear

when we look at their actions on the boundary of T . The odometer is

countable, so each of its orbits on ∂T must be countable. Since ∂T is

uncountable the odometer cannot be transitive on ∂T , whereas the tree

representation theorem tells us that the uncountable group π(Zp) does act

transitively on ∂T . Indeed, we can find an explicit bijection between ∂T

and Zp so that the action of π(Zp) on ∂T is just addition of p-adic integers.

Let ω = (v1, v2, . . .) be an end of T . Using the labelling described above, we

may take v1 = (c1, 1), v2 = (c1 + c2p, 2), v3 = (c1 + c2p+ c3p
2, 3) and so on,

where ci ∈ {0, 1, . . . , p − 1} for each i. Then we identify ω with the p-adic

integer
∑∞

i=1 cip
i. From the above description of the action of π(Zp) on T ,

it follows that

π(v)(ω) = v + ω
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for all v ∈ Zp. Transitivity is now obvious. This labelling is just a con-

sequence of the fact that Zp = lim←−Z/pnZ, where we are using the above

identification of Z/pnZ with Ln.

Example 4.2 (Laurent series). Again let p be a prime and let G =

Fp((t)) be the additive group of formal Laurent series over the finite field Fp.
Elements of G have the form f(t) =

∑∞
n=N ant

n, where ai ∈ Fp for each i,

and N ∈ Z. Addition is performed component-wise. Note the similarity to

the p-adic expansion
∑∞

n=N anp
n; the difference is that for Laurent series

there is no ‘carrying’ involved; addition of the separate coefficients is carried

out in Fp. This small difference results in a very different action of G on the

tree, as we will see. Define the map α : G→ G by α(f(t)) = tf(t). Then α

is a continuous automorphism of G, analogous to multiplication by p in the

p-adic numbers.

The subgroup V = Fp[[t]] of G, defined by

Fp[[t]] =

{ ∞∑
n=0

ant
n : ai ∈ Fp

}

is compact and open in G. We have α(V ) = tFp[[t]] ⊂ V and hence V ⊂
α−1(V ). Similarly to the p-adic case, we have V− = V and V+ = {0}, which

again yields V−− = G and V++ = {0}, so V is tidy for α. We also have

s(α−1) =
∣∣α−1(V ) : V ∩ α−1(V )

∣∣ =
∣∣t−1Fp[[t]] : Fp[[t]]

∣∣ = p

so once again the homogeneous tree X has valency p + 1. Similarly to the

p-adic case, the stabiliser of ξn is π(tnFp[[t]]), so π(Fp[[t]]) itself stabilises

ξ0 and acts on the rooted tree T . We also have a similar description of the

vertices of T as ordered pairs of the form (x, n) where x ∈ Fp[[t]] and n ≥ 0,

where:

Ln =

{(
n−1∑
i=0

cit
i, n

)
: ci ∈ {0, 1, . . . , p− 1}

}
.

The action of π(Fp[[t]]) on Ln is similar as well. For all v ∈ Fp[[t]]:

(4.1) π(v)(x, n) = ((v + x) mod tn, n).

The difference between Fp[[t]] and Zp becomes apparent when we consider

the action of 1 ∈ Fp[[t]] on Ln. In the case of 1 ∈ Zp this action was cyclic

of order pn. However, because addition in Fp[[t]] is term-by-term addition

of power series (or polynomials) without the “carrying” that occurs in the

p-adic numbers, the action of 1 ∈ Fp[[t]] on Ln has order p rather than pn.
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In fact, a similar argument applies to the action of any element of Fp[[t]] —

it is either trivial or has order p.

It is clear from (4.1) that the stabiliser of Ln is π(tnFp[[t]]), so the action

on Ln is isomorphic to the quotient Fp[[t]]/tnFp[[t]] by Proposition 2.18. This

group has order pn, and in fact is isomorphic to the direct product Cp ×
· · ·×Cp of n copies of the cyclic group of order p. To make this isomorphism

explicit, the n-tuple (a0, . . . , an−1) where each ai ∈ Fp (note that the additive

group of Fp is isomorphic to Cp) corresponds to the coset q(t)·tnFp[[t]] where

q(t) = a0 + a1t + · · · + an−1t
n−1. Compare this with the p-adic expansion

of the integers modulo pn from Example 4.1. It follows that the action of

π(Fp[[t]]) on Ln is generated by the set {π(1), π(t), π(t2), . . . , π(tn−1)} where

each generator has order p, and π(tm) fixes Lm for each m.

Despite the initial similarity between this example and Example 4.1,

they are at opposite extremes when it comes to the number of generators

for their action on T — π(Zp) is the closure of a cyclic group, and it follows

from the above discussion that π(Fp[[t]]) is not even topologically finitely

generated.

Example 4.3 (Direct products). If G is a totally disconnected locally

compact group with a continuous automorphism α, then the direct product

Gn = G × · · · ×G with the product topology is also a totally disconnected

locally compact group. Define the map α̃ : Gn → Gn by

α̃(g1, g2, . . . , gn) = (g2, . . . , gn, α(g1)).

Then α̃ is a continuous automorphism of Gn. Furthermore, if V is tidy

for α in G then V n = V × · · · × V is tidy for α̃ in Gn, and it follows that

s(α̃) = s(α) and s(α̃−1) = s(α−1). Therefore the tree representation will act

on the same homogeneous tree in both cases (up to isomorphism) although

the actions will be different.

This kind of construction only works for direct products of copies of the

same group — it is not so easy to generalise this to G ×H where G 6= H,

even in the case where the automorphisms have the same scale and G and

H act on isomorphic trees.





CHAPTER 5

The family of groups with property R

5.1. Introduction

In Chapter 4 we saw concrete examples of groups with property R.

Ultimately we would like to move towards a classification of these groups, but

in the meantime we can look for systematic ways to generate new examples.

A starting point for this is to follow Section 2.3 and look at the finite groups

with property Rn. The idea, which we develop in Sections 5.2 and 5.3, is to

enlist the help of a computer to calculate all possible groups with property

Rn for a fixed n (of which there are finitely many, since Aut(Tn) is finite)

and then try to establish how each of those can be extended to produce

groups with property Rn+1. Specifically, for any subgroup G of Aut(Tn)

with property Rn, we wish to construct the set En+1(G) of subgroups of

Aut(Tn+1) with property Rn+1(G). The software package MAGMA has been

used to calculate En+1(G) for every G with property Rn where p = 2 and

n ≤ 4. The results of these calculations are summarised in Appendix B.

Ideally we would like to have a systematic description of En+1(G) for an

arbitrary G but this is difficult to do in general. Section 5.3 covers some

special cases where a clear pattern does emerge.

Even though we might not be able to construct the entire set En+1(G)

in general, there are ways to construct at least one element of En+1(G)

for an arbitrary G. Two such constructions, motivated by the results of

calculations for small n, are described in detail in Chapters 6 and 7. Iterating

such a construction produces a sequence of groups (Gn)∞n=1 where each Gn

has property Rn(Gn−1). Then Theorem 2.32 tells us that the inverse limit

lim←−Gn has property R.

The structure of groups with property R as inverse limits of groups with

property Rn suggests a natural way to turn the family of groups with prop-

erty R into a topological space — in fact, a metric space — by identifying

it with the boundary of a rooted tree. This tree, which we shall call T, and

the resulting metric space, which we shall call S, is described in Section 5.4.

The points in our space S are actually conjugacy classes of groups with
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property R, for the reasons discussed in Section 3.2. We will show that S is

totally disconnected and compact, like Aut(T ). However, unlike Aut(T ), S

appears to have isolated points, so it is not homeomorphic to a Cantor set.

Despite this additional complexity, we will prove that there exists a count-

able, dense subset of S. One such subset consists of the maximal groups

that we will meet in Chapter 6.

For Sections 5.2 and 5.3, we fix p = 2 so that T is the rooted binary

tree.

5.2. Levels 2 and 3 on the binary tree

Let us start with the simplest case n = 1. Here we are simply looking

for subgroups G of Aut(T1) which are transitive on L1. The reason for this

is that Aut(T0) is trivial so the self-similarity condition in property R1 is

trivially satisfied. Since L1 contains only two vertices, Aut(T1) is a group of

order 2 so transitivity forces G to be equal to Aut(T1). This greatly simplifies

matters, since for p > 2 there would be more than one possibility on level

1, corresponding to all the transitive subgroups of Sym(p).

Now let n = 2. We are looking for subgroups G ≤ Aut(T2) with property

R2(Aut(T1)). Since Aut(T1) is transitive on L1 we need only check that

ψ2(G) = ϕ2(G) = Aut(T1). Obviously G = Aut(T2) is one such group, so

let us now assume that G 6= Aut(T2). Note that |Aut(T2)| = 222−1 = 8 and

Proposition 3.19 tells us that |G| ≥ 2 |Aut(T1)| = 4 so we must have |G| = 4.

Let us enumerate the 8 elements of Aut(T2) using the notation from

Section 2.3. We will use σ to denote the transposition (0 1) in Sym(2),

which is the only nontrivial element of Aut(T1). Thus:

Aut(T2) = {e, (e, σ), (σ, e), (σ, σ), σ(e, e), σ(e, σ), σ(σ, e), σ(σ, σ)} .

If G is cyclic then it must be generated by the automorphism a = σ(e, σ),

since a and a−1 are the only order 4 elements of Aut(T2). This is precisely

the group that arises from the action of Z2 restricted to T2 which we have

seen in Example 4.1; let us call this group Z (this is a Fraktur ‘Z’ which

reminds us of Z2). If G is not cyclic then it does not contain a or a−1. The

orbit-stabiliser theorem tells us that |stG(0)| = 2 so there are two elements

of G that do not fix the vertex 0. They must therefore be σ(e, e) and σ(σ, σ),

both of which have order 2, and thus these two elements generate G. This

group is the one that arises from the action of F2[[t]] on T2 which was seen

in Example 4.2; call this group L (to remind us of ‘Laurent series over F2’).

In summary, there are only three potential groups with property R2:
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• Z := 〈σ(e, σ)〉 = {e, (σ, σ), σ(e, σ), σ(σ, e)};
• L := 〈σ(e, e), σ(σ, σ)〉 = {e, (σ, σ), σ(e, e), σ(σ, σ)};
• Aut(T2).

Observe that stZ(0) = stL(0) = {e, (σ, σ)} so ψ2(stZ(0)) = ψ2(stL(0)) =

Aut(T1). Clearly ϕ2(Z) = ϕ2(L) = Aut(T1) as well, so both groups have

property R2(Aut(T1)). We therefore conclude:

Proposition 5.1. If G ≤ Aut(T ) has property R then G[2] is equal to

either Z, L or Aut(T2).

Proof. Suppose that G has propertyR. Then G[n] has propertyRn for

all n. Since G is transitive on L1 we must have G[1] = Aut(T1), so G[2] has

property R2(Aut(T1)) and the result follows from the above discussion. A

Unfortunately this means that we are yet to discover any sign of new

examples beyond those in Chapter 4. Let us move down to level 3 and

consider the subgroups G ≤ Aut(T3) with property R3. We will split these

groups into three cases according to the three possibilities for G[2]. Since

|Aut(T3)| = 223−1 = 128, it would be tedious to enumerate all the possible

groups as we did above. Instead, we have used MAGMA; see Appendix A for

details of the algorithm.

The issue of conjugacy now arises (see Section 3.2), for we now have

subgroups which are not normal in Aut(T3). In total we find, up to conju-

gacy, 2 groups with property R3(Z), 4 groups with property R3(L), and 9

groups with property R3(Aut(T2)), for a total of 15 groups with property

R3. These are enumerated in Appendix B.

In each of the three cases G[2] = Z, L, Aut(T2), we immediately notice

that there is (for an appropriate choice of conjugacy class representatives)

one group satisfying R3(G[2]) which contains all the others. The subgroup

lattices for the three families of groups are shown in Figure 5.1.

The three examples from level 2 extend to level 3: the action of Z2 on T3

is the minimal subgroup with property R3(Z), and the action of F2[[t]] on T3

is one of the minimal subgroups with property R3(L). Obviously Aut(T3) is

the maximal subgroup with property R3(Aut(T2)).

Several other familiar examples can be identified among these groups.

The direct product (as per Example 4.3) Z2×Z2 of two copies of the 2-adic

integers acts on T3 as one of the three minimal groups below L. On T2 it is

simply equal to L, which is isomorphic to C2×C2. The group generated by

the actions of Z2 and F2[[t]] on T3 has property R3(Aut(T2)) and appears in
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Figure 5.1. Subgroup lattices for groups with property R3

the lattice as the index 2 subgroup of Aut(T3) with three descendants. Some

known self-similar groups (at least, their actions on T3) turn up in the lattice

below Aut(T2). The Basilica group (see [GŻ02] or [DDMN10]) appears as

one of the minimal subgroups with index 2 in Aut(T3), the infinite dihedral

group D∞ (see [Šun07, Example 1] or [BGN03]) appears as one of the

minimal subgroups of index 8, and the lamplighter group (see [GŻ01] and

Example 7.6) appears as the minimal subgroup of index 4. The Grigorchuk

group (see Example 7.12) acts on T3 as the full group Aut(T3), but it appears

in the lattice of groups with property R4(Aut(T3)) (see Figure 5.2) as one

of the minimal subgroups of index 8 in Aut(T4).

5.3. Going deeper: observed patterns, results and conjectures

The above patterns provide a taste of what happens in general as we

increase the depth of the tree. In this section we will formulate some detailed

conjectures about how these groups behave at arbitrary depth, and the

consequences for groups acting on the infinite tree T with property R.

Let us first set up some convenient notation.

Definition 5.2. Let G ≤ Aut(Tn) be a group with property Rn. Define,

for each m > n,

Em(G) = {H ≤ Aut(Tm) : H has property Rm and H[n] = G}.

Also define

E(G) = {G̃ ≤ Aut(T ) : G̃ has property R and G̃[n] = G}.

We will usually consider the quotients of Em(G) and E(G) by the equiva-

lence relation of conjugacy. Diagrams such as those in Figure 5.1 will always

depict conjugacy classes rather than individual groups; one conjugacy class

will be depicted as being included in another if the inclusion holds for at
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least one representative of each class. Alternatively, the nodes in the dia-

gram may be viewed as groups where one representative has been judiciously

chosen from each conjugacy class.

The results shown in Figure 5.1, along with further calculations, suggest

that for any G with property Rn, the set En+1(G) contains a maximal group

which is unique up to conjugacy. This turns out to be true (for arbitrary p,

not just p = 2) and the construction of this maximal group is the subject of

Chapter 6.

Another feature of Figure 5.1 is that in each subgroup lattice, each group

is an index 2 subgroup of its immediate parent in the lattice. Since Aut(Tn)

is a 2-group for all n, we know from Proposition 3.28 that this will always

occur.

The patterns in Figure 5.1 can be generalised for n > 3. First, we

generalise the three groups with property R2. Obviously the group Aut(T2)

generalises to Aut(Tn). The groups Z and L generalise as follows:

Definition 5.3. For n ≥ 2, define the following subgroups of Aut(Tn):

• Zn := G[n] where G is the action of Z2 on T from Example 4.1.

Note that Z2 is just the group Z we defined earlier.

• Ln := G[n] where G is the action of F2[[t]] on T from Example 4.2.

Again L2 = L.

We saw in Examples 4.1 and 4.2 that Zn is cyclic of order 2n and Ln is

isomorphic to a direct product of n copies of the group of order 2, so it also

has order 2n. Note that these groups are abelian. It follows from Propo-

sition 3.19 that 2n is the minimum possible size for a group with property

Rn. Consequently these groups, along with Aut(Tn), may be viewed as the

extreme cases (in terms of group order) among the groups with property

Rn.

What can be said about the subgroup lattices of En+1(Zn), En+1(Ln)

and En+1(Aut(Tn)) for arbitrary n? It turns out that they resemble Figure

5.1 very closely. Figure 5.2 shows these lattices (up to conjugacy) for n = 3.

We immediately see that the lattice of E4(Z3) is the same as E3(Z), and

E4(L3) differs from E3(L) only in that there is one more group. Further

calculations reveal that this pattern continues for larger n. The lattice of

En+1(Zn) is always the same; it consists of a maximal group and an index

2 subgroup which is just Zn+1. The lattice of En+1(Ln) always consists of a

maximal group and n+ 1 subgroups of index 2, one of which is Ln+1.
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Figure 5.2. Subgroup lattices for groups with property R4

below Z3, L3 and Aut(T3).

The picture below Aut(Tn) is much more complicated, but it is already

possible to see similarities between the cases n = 2 and n = 3. Based on the

patterns seen so far, we make the following conjecture. Further calculations

confirm this result up to at least n = 6.

Conjecture 5.4. For n ≥ 2, the subgroup lattice (up to conjugacy) of

En+1(Aut(Tn)) has the following structure:

Layer 1: Aut(Tn+1), which has order 22n+1−1;

Layer 2: 2n subgroups of index 2 in Aut(Tn+1);

Layer 3: 2n−1(2n−1−1) subgroups of index 4 in Aut(Tn+1) — half of the

groups in Layer 2 each contain 2n−1 − 1 of these subgroups;

Layer 4: 22n−3 subgroups of index 8 in Aut(Tn+1) — 2n−2 of the groups

in Layer 3, each of which is contained in a different Layer 2

group, each contain 2n−1 of these subgroups.

This yields a total of 1 + 2n−1(1 + 3 · 2n−2) conjugacy classes of groups with

property Rn+1(Aut(Tn)).

Another significant feature of these subgroup lattices involves the num-

ber of generators of each group. Let us use the notation ]G to denote the

minimum size of a generating set of a group G. Based on all the lattices

that have been calculated, the following result appears to hold in general:

Conjecture 5.5. Suppose that G ≤ Aut(Tn) has property Rn(H) for

some H ≤ Aut(Tn−1) and that ]G = ]H. Then G is a minimal element of

En(H); that is, no proper subgroups of G have property Rn(H).

One may naturally ask about the converse of Conjecture 5.5: if G is

minimal in En(H) then does it follow that ]G = ]H? A counterexample

shows the answer to be no in general: when H = Ln−1 we have ]H =
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n − 1. The group G = Ln belongs to En(H) and is minimal (since it has

the minimum possible order, 2n) but ]G = n. However, this is the only

counterexample among all the lattices that have been calculated. Thus we

claim:

Conjecture 5.6. Suppose that G ≤ Aut(Tn) has property Rn(H) for

some H ≤ Aut(Tn−1), where H is not conjugate to Ln−1, and suppose that

G is minimal in En(H). Then ]G = ]H.

Calculations have shown that if a counterexample to either Conjecture

5.5 or Conjecture 5.6 exists then n cannot be less than 6.

5.4. The topological space S of groups with property R

For this section, we relax our condition that p = 2 and let p be a fixed

but arbitrary integer ≥ 2. For each n ≥ 1 let Rn be the set of all groups

with property Rn. Define

R :=
∞⋃
n=1

Rn.

Rn is finite for each n because Aut(Tn) is finite, hence R is countable. Define

a relation ∼ on R, where G1 ∼ G2 iff G1 and G2 belong to the same Rn

and they are conjugate in Aut(Tn). It is clear that ∼ is an equivalence

relation. Since ∼ can be restricted to each Rn, the set of equivalence classes

R/∼ is just the union
⋃∞
n=1(Rn/∼). We will use the notation [G] for the

equivalence class of G with respect to ∼. In other words, if G is a group in

Rn then [G] is the set of all groups with property Rn that are conjugate to

G in Aut(Tn). Note that [G] is not the full conjugacy class of G in Aut(Tn)

because it excludes groups that do not have property Rn.

We will use the maps ϕn to endow R/∼ with the structure of a rooted

tree, which we will call T, defined as follows. For each n ≥ 1, define the

nth level of T to be the set Rn/∼. That is, the vertices on level n are the

conjugacy classes of groups with property Rn. Also define the root of T to

be the trivial group Aut(T0) (recall that T0 is simply the root of T ). Define

the edge relation on T by defining the parent of a vertex [G] on level n of T

to be the vertex [ϕn(G)] on level n− 1.

Let us check that the parent of each vertex is well-defined; in other

words, that it does not depend on the choice of conjugacy class representa-

tive. Suppose that G and G′ both have property Rn and that [G] = [G′].

Then there exists x ∈ Aut(Tn) such that x−1Gx = G′. Therefore ϕn(G)
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and ϕn(G′) have property Rn−1 and ϕn(x)−1ϕn(G)ϕn(x) = ϕn(G′), hence

[ϕn(G)] = [ϕn(G′)] as desired.

Note that each vertex on level 1 of T is connected to the root, since

ϕ1(G) is trivial for all subgroups G of Aut(T1). Each vertex on level n for

n > 1 is connected to its parent on level n−1, so it follows that every vertex

of T is connected to the root and thus T is connected. It contains no cycles

since each vertex on level n for n ≥ 1 is adjacent only to vertices on level

n − 1 and level n + 1. Thus, to form a cycle, there would have to exist a

vertex on level n for some n that is adjacent to two distinct vertices on level

n− 1. This is impossible since the parent of each vertex is uniquely defined.

Therefore T is indeed a tree. It is locally finite since Rn is finite for each n.

The tree T for p = 2 has been calculated explicitly using MAGMA down

to level 6 for most branches; the main obstacle to further calculations is the

inefficiency of testing conjugacy in Aut(Tn). We have already seen in Section

5.2 the 3 vertices (i.e. conjugacy classes of groups) on level 2 of T and the

15 vertices on level 3. There are 118 vertices on level 4 and 2207 vertices on

level 5. See Appendix B for more details of these groups.

The idea now is to identify the ends of T with the conjugacy classes

of groups with property R. Recall that, since T is a rooted tree, the ends

of T are in one-to-one correspondence with the singly infinite paths in T

descending from the root. Thus we may consider ∂T to be the set of these

paths, and it will be convenient to do so without further comment from now

on.

We need some more notation. Let R∞ be the set of subgroups of Aut(T )

with property R and let ∼ be the conjugacy relation on R∞. As above, the

equivalence class of G ∈ R∞ with respect to ∼ will be denoted [G].

Definition 5.7. Define S to be the quotient R∞/∼. In other words,

S is the set of conjugacy classes of groups with property R.

Proposition 5.8. There is a bijection between S and ∂T.

Proof. Let G ∈ R∞. For each n ≥ 1 the restriction G[n] has property

Rn(G[n−1]), so the sequence
(
[G[n]]

)∞
n=0

is a path descending from the root

in T. Thus we may define the map

θ : S −→ ∂T

[G] 7−→
(
[G[n]]

)∞
n=0

.
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We claim that θ is the required bijection. First we must check that θ does

not depend on the choice of conjugacy class representatives. Suppose that

G and G′ have property R and [G] = [G′]. Then there exists x ∈ Aut(T )

such that x−1Gx = G′, which implies that x−1
[n]G[n]x[n] = G′[n] for all n. Thus

[G[n]] = [G′[n]] for all n and θ is well-defined.

To show that θ is injective, suppose that θ([G]) = θ([G′]) for some G

and G′ in R∞. Then [G[n]] = [G′[n]] for all n, hence G[n] is conjugate to

G′[n] for all n. It follows from Proposition 3.6 that G is conjugate to G′, so

[G] = [G′] and θ is injective.

To show that θ is surjective, let ω = ([Gn])∞n=0 be a path descending from

the root in T. By definition of T, we may assume without loss of generality

that ϕn(Gn) = Gn−1 for all n ≥ 1. This means that Gn has property

Rn(Gn−1) for all n ≥ 1. Now we invoke Theorem 2.32: let G = lim←−Gn.

Then G has property R and G[n] = Gn for all n, so θ([G]) = ([Gn])∞n=0 = ω.

Since ω was arbitrary, this proves that θ is surjective and we are done. A

In summary, the map θ simply identifies — up to conjugacy — an end

of T with the inverse limit of a sequence of groups representing the vertices

along the corresponding path.

There is a natural way to define a metric on ∂T. The above bijection

will then induce a corresponding metric on S, turning it into a compact,

totally disconnected metric space. In order to define this metric we need to

set up some notation. Let ω = (ωn)∞n=0 and $ = ($n)∞n=0 be ends of T.

These two paths both begin at the root of T so ω0 = $0. If ω 6= $ then the

two paths diverge at some point and do not reconnect because T is a tree.

Define

`(ω,$) = sup{n : ωn = $n}

which is finite if ω 6= $.

Proposition 5.9. Define the function d : ∂T× ∂T −→ R as follows:

d(ω,$) =

2−`(ω,$) if ω 6= $

0 if ω = $.

Then d is a metric (in fact, an ultrametric) on ∂T.

Proof. Clearly d(ω,$) ≥ 0 for all ω,$ ∈ ∂T and d(ω,$) = 0 if and

only if ω = $. Symmetry of d follows from symmetry of `. It remains to

prove the ultrametric inequality, namely d(ω,$) ≤ max{d(ω, η), d($, η)}
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for all ω,$, η ∈ ∂T. This is trivial if any two of the three ends are equal, so

suppose they are all distinct. Then the inequality is equivalent to

(5.1) `(ω,$) ≥ min{`(ω, η), `($, η)}.

If `(ω,$) ≥ `(ω, η) then we are done. Suppose that `(ω,$) < `(ω, η).

Let (ωn)∞n=0, ($n)∞n=0, and (ηn)∞n=0 be the corresponding paths in T. For

convenience, let n = `(ω,$). Then ωn = $n. In fact, we have $n =

ωn = ηn since n < `(ω, η). This inequality is strict, so n + 1 ≤ `(ω, η).

Therefore ωn+1 = ηn+1, but ωn+1 6= $n+1 since `(ω,$) = n, which means

$n+1 6= ηn+1. Putting this together with the fact that $n = ηn we conclude

that `($, η) = n. This yields equality in (5.1) which suffices to complete the

proof. A

Proposition 5.10. The metric space (∂T, d) is compact and totally dis-

connected.

Proof. First we will make the proof easier by giving an alternative

characterisation of the topology on (∂T, d).

For each n ≥ 0, denote level n of T by T[n]. Then for each n ≥ 1 there

is a surjective map χn : T[n] → T[n−1] which maps each vertex to its parent.

Putting the discrete topology on each level, we can think of ∂T as the inverse

limit of the topological spaces T[n] with respect to the maps χn. Denote the

resulting topology by τ ; it is the coarsest topology such that each of the

projection maps χ̃n : ∂T → T[n] is continuous. To make this explicit, let

ω = (ωn)∞n=0 ∈ ∂T. Then χ̃n(ω) = ωn for each n. A base for the topology

τ consists of sets of the form χ̃−1
n (U) where U is any subset of T[n]. Note

that χ̃−1
n (U) is just the set of all paths descending from the root which pass

through a vertex in U. By [RZ10, Theorem 1.1.12], the topological space

(∂T, τ) is compact and totally disconnected.

We claim that τ is precisely the topology τd induced by the metric d.

Consider an open ball B(ω, r) in (∂T, d), where ω ∈ ∂T and r > 0. Since

d only takes values of the form 2−n or 0, it suffices to consider r = 2−n for

some nonnegative integer n. It is easy to verify that

(5.2) B(ω, 2−n) = {($n)∞n=0 ∈ ∂T : $n+1 = ωn+1}

where the n+1 is to ensure that the inequality d(ω,$) < 2−n is strict. This

set is precisely χ̃−1
n+1(ωn+1) ∈ τ . Since every open set in (∂T, d) is a union

of open balls, we conclude that τd ⊆ τ .
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Conversely, consider the open set χ̃−1
n (U) ∈ τ where U is a subset of

T[n]. Now χ̃−1
n (U) =

⋃
u∈U χ̃

−1
n (u) and (5.2) implies that each χ̃−1

n (u) is

equal to B(ω, 2−(n−1)) for any ω ∈ χ−1
n (u). Thus, as a union of open balls,

χ̃−1
n (U) ∈ τd. Every open set in τ is a union of these χ̃−1

n (U) so we conclude

that τ ⊆ τd. Hence τ = τd as claimed. A

Since the map θ defined in the proof of Proposition 5.8 is a bijection

between S and ∂T, we may use the existing metric on ∂T to induce a

metric on S. Define the function δ : S×S −→ R by:

(5.3) δ
(
[G], [G′]

)
= d

(
θ ([G]) , θ

(
[G′]

))
.

In other words, we define the metric on S so as to make θ a bijective isometry

from S to ∂T. Then Propositions 5.9 and 5.10 immediately carry over, via

the isometry θ−1, to S:

Corollary 5.11. (S, δ) is a compact, totally disconnected metric space.

Following the proof of Proposition 5.10, the open balls in (S, δ) are:

B([G], 2−n) =
{

[G′] ∈ S : [G′[n+1]] = [G[n+1]]
}
.

In other words, an open ball in S is the set of all conjugacy classes of groups

with property R which agree (up to conjugacy) on Tn for some n. Note that

the set E(G) defined at the start of Section 5.3, where G is a group with

property Rn for some n, is always an open ball in S.

Recall that a topological space is said to be perfect if it contains no

isolated points; equivalently, every point is a limit point. That is, every

neighbourhood of any point x in the space contains a point distinct from x.

It is known that every compact, totally disconnected, perfect metric space

is homeomorphic to the Cantor set [HY61, Corollary 2-98]. We should

therefore check to see if S is perfect or not. Surprisingly, perhaps, the

answer appears to be no:

Conjecture 5.12. S contains isolated points.

The justification for this conjecture will be given shortly, after we have

examined the topologically finitely generated groups in S.

It would have been convenient to invoke [Mun00, Theorem 27.7] to

prove that S is uncountable. Unfortunately this does not work, due to the

(probable) failure of S to be perfect. However, we can prove that S does

have a countable, dense subset. Recall that such spaces are called separable.
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Proposition 5.13. S is separable.

Proof. Because of (5.3), it suffices to prove that ∂T is separable. First

we need to establish the following result:

Lemma 5.14. Suppose that there exists a function f : T −→ ∂T such that

for each vertex v ∈ T, the path descending from the root that corresponds to

f(v) passes through v. Then the image of f is countable and dense in ∂T.

Proof. Let f be such a function. The tree T has countably many ver-

tices since R is countable. Thus the image of f is also countable.

Now fix ω ∈ ∂T and let (ωn)∞n=0 be the corresponding path descending

from the root. We claim that ω = limn→∞ f(ωn). Indeed, for each n, our

assumption implies that the path corresponding to f(ωn) passes through ωn.

Therefore d(ω, f(ωn)) ≤ 2−n for all n. These distances converge to 0 as

n → ∞ and the claim follows. Thus every ω ∈ ∂T is a limit point of the

image of f, which means that the image of f is dense in ∂T as required. A

To prove Proposition 5.13, we will exhibit a function f that satisfies the

hypotheses of Lemma 5.14. Fix n ≥ 1 and let v be a vertex on level n of

T. Then v is a conjugacy class of groups with property Rn. Define f(v)

as follows. Let Ĝ be any subgroup of Aut(T ) with property R such that

Ĝ[n] = G for some G ∈ v. Such a Ĝ always exists; for example, following

Section 6.3, we may define Ĝ =M∞(G) where G is any group in v that has

sufficient rigid automorphisms (and the existence of such a G follows from

Proposition 3.10). Now [Ĝ] ∈ S, so let us define

f(v) = θ([Ĝ])

which belongs to ∂T. It follows from the definition of θ that the path

corresponding to f(v) passes through v. Doing this for all v ∈ T yields

a function f with the required properties, and applying Lemma 5.14 to f

completes the proof. A

Let us return to the question of isolated points in S. In order for a point

[G] ∈ S to be isolated, there must exist r > 0 such that B([G], r) = {[G]}.
Because of the definition of the metric on S, it suffices to consider r = 2−n

for integers n ≥ 0.

Fix an integer n ≥ 0 and fix a group G with property R. There is an

easier way to visualise the open ball B([G], 2−n) in S: it consists of the

conjugacy classes whose members all agree with G[n+1] (up to conjugacy)

on Aut(Tn+1).
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Proposition 5.15. Let n ≥ 0 and suppose that G has property R. Then

B([G], 2−n) = {[H] ∈ S : H[n+1] ∼ G[n+1]}.

Proof. Follows from (5.2) and the fact that θ is an isometry between

S and ∂T. A

We immediately derive the following characterisation of isolated points

in S:

Corollary 5.16. The following are equivalent:

(a) [G] is isolated in S;

(b) There exists n ≥ 1 such that if [H] ∈ S and H[n] ∼ G[n] then

[H] = [G].

In other words, [G] is isolated in S if and only if G is the only group

(up to conjugacy) with property R that extends G[n] to T . Using the nota-

tion from earlier, this is equivalent to saying that every group in E(G[n]) is

conjugate to G.

Recall Conjecture 5.5, which says that if G has property Rn(H) and

]G = ]H then G is minimal (with respect to inclusion) among all groups

with property Rn(H). This has consequences for topologically finitely gen-

erated subgroups of Aut(T ) with property R. We say topologically finitely

generated (that is, the closure of a finitely generated group) because it is

impossible for a finitely generated subgroup of Aut(T ) to have property

R. This is a consequence of the fact that all finitely generated groups are

countable, but all groups with property R are uncountable since they are

transitive on the uncountable set ∂T .

Proposition 5.17. Suppose that Conjecture 5.5 holds, and suppose that

G is a topologically finitely generated group with property R. Then there

exists n ≥ 1 such that G is a minimal element of E(G[n]).

Proof. If G is topologically finitely generated then G = H for some

finitely generated group H such that H[n] = G[n] for all n. Since H is

finitely generated, there exists N such that ]H[n] = ]H for all n ≥ N , and

hence ]G[n+1] = ]G[n] for all n ≥ N . Then Conjecture 5.5 implies that

G[n+1] is minimal in En+1(G[n]) for all n ≥ N . It follows that G is minimal

in E(G[N ]) as required. A

We are now in a position to justify Conjecture 5.12. Again we need to

use a result from Chapter 6 regarding the maximal group M∞(G), which

we also invoked in the proof of Proposition 5.13.



66 5. THE FAMILY OF GROUPS WITH PROPERTY R

Proposition 5.18. Suppose that Conjecture 5.5 holds. Suppose that G

is a topologically finitely generated group with property R, and that G is a

maximal element of E(G[n]) for some n ≥ 1. Then [G] is isolated in S.

Proof. Let G be as stated. By Proposition 5.17, there exists n ≥ 1

such that G is minimal in E(G[n]). Since G is also maximal in E(G[n]),

it follows from Theorem 6.3(e) that G is conjugate to the maximal group

M∞(G[n]) and furthermore (since G is minimal) that every group in E(G[n])

is conjugate to G. Then [G] is isolated in S by Corollary 5.16. A

Thus, Conjecture 5.12 follows from Conjecture 5.5 provided that we can

find a maximal group G that is topologically finitely generated. Indeed, one

such example is the Grigorchuk group which is discussed later in Example

7.12. Such groups appear to be very rare, based on calculations so far. This

makes intuitive sense because there is tension between the two conditions

on such a group; being maximal makes G “large” and being topologically

finitely generated tends to make G “small”. Finding more groups with these

properties — possibly along the lines of the “Grigorchuk-type” spinal groups

in [Šun07] — would be an interesting direction for future work.



CHAPTER 6

Maximal groups

6.1. Introduction

This chapter introduces a construction — anticipated in Chapter 5 —

which takes a group G with property Rn and produces a group, which we

will call M(G), with property Rn+1(G). This group M(G) turns out to be

maximal among groups with property Rn+1(G), and is in fact a maximum

up to conjugacy. In Section 6.3 we iterate this construction and invoke The-

orem 2.32 to produce a group M∞(G) with property R which agrees with

G on Tn. The maximality properties ofM(G) carry through toM∞(G). In

Section 6.4 we prove that each groupM∞(G) is a finitely constrained group

defined by a set of forbidden patterns of size n, namely the complement of

G in Aut(Tn).

Two purposes are served by the construction of M(G). Firstly, when

searching for groups with property Rn+1(G), it means we can restrict our

attention to subgroups of M(G) rather than the (often) much larger group

Aut(Tn+1). Secondly, and more fundamentally, it guarantees that there al-

ways exists at least one group (up to conjugacy) with property Rn+1(G).

Then, by iterating the construction to produce the groupM∞(G), we guar-

antee that every group with property Rn can be extended (up to conjugacy)

to a group with property R.

Recall that we already used this fact to prove Proposition 5.13, where

we found a countable dense subset of the family S of conjugacy classes of

groups with property R. This means that every group with property R can

be approximated, in the sense of the metric we defined on S, by groups of

the form M∞(G).

6.2. The finite maximal group M(G)

Let G be a subgroup of Aut(Tn) with property Rn for some n ≥ 2. We

will need to use the restriction of G to Tn−1 in the construction, so let us be

more specific and say that G has property Rn(H) where H ≤ Aut(Tn−1).

67
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Assume further (without loss of generality, following Proposition 3.10) that

G contains sufficient rigid automorphisms.

Definition 6.1. Let G be as above. Define:

M(G) := {x ∈ Aut(Tn+1) : ϕn+1(x) ∈ G and x|v ∈ G for all v ∈ L1}.

The following theorem proves that M(G) has the desired properties.

Theorem 6.2. Define M(G) as above. Then:

(a) M(G) has property Rn+1(G);

(b) M(G) has sufficient rigid automorphisms;

(c) |M(G)| = |G| |kerG(ϕn)|p = |G|p+1/|H|p;
(d) If G′ ≤ G then M(G′) ≤ M(G), with equality if and only if G′ =

G. In particular, M(G) = Aut(Tn+1) if and only if G = Aut(Tn);

(e) Every subgroup of Aut(Tn+1) with property Rn+1(G) is conjugate

to a subgroup of M(G).

Proof. (a) First we must show that M(G) is a group. It is nonempty

since it contains the identity. Suppose that x, y ∈ M(G). We must show

that xy−1 ∈ M(G). We have ϕn+1(xy−1) = ϕn+1(x)ϕn+1(y)−1 ∈ G since

ϕn+1(x) ∈ G and ϕn+1(y) ∈ G and G is a group. Now fix v ∈ L1. Then

(xy−1)|v = x|y−1(v)(y|y−1(v))
−1, which is in G since x|y−1(v) and y|y−1(v) are

in G. Hence xy−1 ∈M(G) and so M(G) is a group.

Now let us show that ϕn+1(M(G)) = ψn+1(stM(G)(0)) = G. The defi-

nition of M(G) immediately implies that ϕn+1(M(G)) ⊆ G. It also follows

that ψn+1(stM(G)(0)) ⊆ G since ψn+1(g) = g|0 ∈ G for all g ∈ stM(G)(0). It

remains to show the reverse inclusions.

To show that ϕn+1(M(G)) ⊇ G, fix g ∈ G. We must find x ∈ M(G)

such that ϕn+1(x) = g. By the hypotheses on G and Proposition 3.11,

g|v ∈ H for all v ∈ L1. For each v ∈ L1 let xv be an element of G such

that ϕn(xv) = g|v (such an element exists because ϕn(G) = H). Now define

x ∈ Aut(Tn+1) by x(v) = g(v) and x|v = xv for all v ∈ L1. It follows that

ϕn+1(x) = g and x ∈M(G) as required.

To show that ψn+1(stM(G)(0)) ⊇ G, again fix g ∈ G. We must find

x ∈ stM(G)(0) such that ψn+1(x) = g. Since G has property Rn(H) we

have ϕn(g) ∈ H, so there is y ∈ stG(0) such that ψn(y) = ϕn(g). By the

hypotheses on G and Proposition 3.11, y|v ∈ H for all v ∈ L1. For each

v ∈ L1 with v 6= 0, let xv be an element of G such that ϕn(xv) = y|v
(such an element exists because ϕn(G) = H). Let x0 = g and observe that
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ϕn(x0) = ψn(y) = y|0, so we have ϕn(xv) = y|v for all v ∈ L1. Now define

x ∈ Aut(Tn+1) by x(v) = y(v) and x|v = xv for all v ∈ L1. Then x ∈ st(0)

since y ∈ st(0), and ψn+1(x) = x|0 = g. In addition, ϕn+1(x) = y ∈ G so

x ∈M(G) as required.

Finally, M(G) is transitive on L1 since G is assumed to be transitive

on L1 and we have just shown that ϕn+1(M(G)) = G. This completes the

proof that M(G) has property Rn+1(G).

(b) We have already assumed that G has sufficient rigid automorphisms.

By Lemma 3.8 it suffices to show that M(G) contains a (v, v + 1)-rigid

automorphism for each v ∈ {0, 1, . . . , p− 2}.
Fix v ∈ {0, 1, . . . , p− 2}. Then there exists g ∈ G that is (v, v+ 1)-rigid,

i.e. g(v) = v + 1 and g|v = e. Define an automorphism h ∈ Aut(Tn+1) as

follows. Let h[1] = g[1], so h(w) = g(w) for all w ∈ L1. Then for each w ∈ L1

let h|w be any element of G such that ϕn(h|w) = g|w. Such an element exists

because g|w ∈ H for all w ∈ L1 by our assumptions on G and Proposition

3.11, and ϕn(G) = H. In the case w = v, g|v = e so we choose h|v = e to

ensure that h is (v, v+ 1)-rigid. Then by construction we have ϕn+1(h) = g,

and h|w ∈ G for all w ∈ L1, so h ∈ M(G) as required. Since this works for

each v, we are done.

(c) The second equality follows from the fact that |G| = |H| |kerG(ϕn)|
(see Proposition 3.19(a)). For the first equality, we use Proposisiton 3.19(a)

again to obtain:

(6.1) |M(G)| = |G|
∣∣kerM(G)(ϕn+1)

∣∣ .
Consider x ∈ kerM(G)(ϕn+1). Since ϕn+1(x) = e we have ϕn(x|v) = e for

all v ∈ L1, and since x ∈ M(G) we also have x|v ∈ G for all v ∈ L1.

Therefore x|v ∈ kerG(ϕn) for all v ∈ L1, which yields the decomposition x =

(x0, . . . , xp−1) where each xi ∈ kerG(ϕn). Furthermore, it is easy to verify

from the definition that every element of Aut(Tn+1) of this form belongs to

M(G). It follows that
∣∣kerM(G)(ϕn+1)

∣∣ = |kerG(ϕn)|p which, combined with

(6.1), completes the proof.

(d) The inequality is immediate from the definition, since membership

in G′ implies membership in G. It follows from part (c) that equality is only

possible if G′ = G. It is also clear from the definition that M(Aut(Tn)) =

Aut(Tn+1). If M(G) = Aut(Tn+1) then by part (a), G = ϕn+1(M(G)) =

ϕn+1(Aut(Tn+1)) = Aut(Tn).

(e) Suppose that M ≤ Aut(Tn+1) has property Rn+1(G). By Proposi-

tions 3.9 and 3.11, there exists a group M ′ conjugate to M such that M ′



70 6. MAXIMAL GROUPS

has property Rn+1(G) and x|v ∈ G for all x ∈M ′ and all v ∈ L1. Since M ′

has property Rn+1(G), we also have ϕn+1(x) ∈ G for all x ∈M ′. Therefore

M ′ ⊆M(G) as required. A

6.3. The infinite maximal group M∞(G)

We will now see how to iterate the construction in Section 6.2 to produce

a subgroup of Aut(T ) with property R. Let G be as above. Define the

sequence of groups {Mm(G)}∞m=0 as follows:

M0(G) = G; Mm(G) =M(Mm−1(G)) for m ≥ 1.

We must be careful here: our definition of M(G) assumes that G has suf-

ficient rigid automorphisms. Theorem 6.2(b) ensures that this holds for

M(G) as well, so our definition makes sense. By Theorem 6.2(a), Mm(G)

has property Rn+m(Mm−1(G)) for all m ≥ 1, so by Remark 2.33 we may

define the inverse limit of this sequence of groups as in Theorem 2.32, and

it acts on the infinite rooted tree T . Let

M∞(G) = lim←−M
m(G)

be this projective limit. We can extend the results of Theorem 6.2 (except,

obviously, for the formula for the size of M(G)) to analogous results about

M∞(G).

Theorem 6.3. Let G be a group with property Rn that has sufficient

rigid automorphisms. Then:

(a) M∞(G) has property R;

(b) M∞(G)[n] = G;

(c) M∞(G) is self-replicating; that is, stM∞(G)(v)|v =M∞(G) for all

v ∈ T ;

(d) If G′ ≤ G then M∞(G′) ≤ M∞(G), with equality if and only if

G′ = G. In particular, M∞(G) = Aut(T ) if and only if G =

Aut(Tn);

(e) If G̃ ≤ Aut(T ) has property R and G̃[n] = G, then G̃ is conjugate

to a subgroup of M∞(G).

Proof. (a) Follows from Theorem 2.32.

(b) Also follows from Theorem 2.32.

(c) By Corollary 3.17 and part (a), it suffices to show that M∞(G) is

self-similar; in other words, that stM∞(G)(v)|v ⊆ M∞(G) for all v ∈ T .

Fix v ∈ T and let g ∈ M∞(G) such that g(v) = v. We must show that
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g|v ∈ M∞(G). It follows from the definition of M∞(G) and Proposition

2.30 (along with Remark 2.33) that

M∞(G) = lim←−M
m(G) = {g ∈ Aut(T ) : g[n+m] ∈Mm(G) for all m ≥ 0}.

Thus, we need to show that (g|v)[n+m] ∈Mm(G) for all m ≥ 0. Fix m ≥ 0.

Assume for the moment that v ∈ L1. Then

(6.2) (g|v)[n+m] = g[n+m+1]|v.

Since g ∈ M∞(G), we know that g[n+m+1] ∈ Mm+1(G). Now by induc-

tion and Theorem 6.2(b), Mm+1(G) has sufficient rigid automorphisms, so

g[n+m+1]|v ∈ Mm(G) by Proposition 3.11. Then (g|v)[n+m] ∈ Mm(G) by

(6.2), which is what we wanted to show. Since this holds for all m ≥ 0,

we have shown that g|v ∈ M∞(G). So far, we have only shown this for all

v ∈ L1, but the same induction argument from the proof of Proposition 3.13

extends this to all v ∈ T and we are done.

(d) Suppose G′ ≤ G. By induction using Theorem 6.2(d) we have

Mm(G′) ≤ Mm(G) for all m ≥ 0. The first assertion now follows from

Proposition 2.31(d).

For the ‘if’ direction of the final assertion, induction using Theorem

6.2(d) yields Mm(Aut(Tn)) = Aut(Tn+m) for all m and n. Therefore

M∞(Aut(Tn)) = lim←−Aut(Tn+m) = Aut(T ),

and the other direction now follows from part (a) since Aut(T )[n] = Aut(Tn).

(e) Since G̃ has property R, Theorem 2.32 implies that G̃ = lim←− G̃[m].

Note that G̃[m] has property Rm(G̃[m−1]) for all m ≥ 1; in particular, G̃[n+1]

has property Rn+1(G) (since G̃[n] = G) and so by Theorem 6.2(e), G̃[n+1]

is conjugate to a subgroup of M(G). We will prove by induction that for

each m > n, G̃[m] is conjugate to a subgroup of Mm−n(G). Suppose this

claim holds for some m > n. Then, since G̃[m+1] has property Rm+1(G̃[m])

and Mm+1−n(G) = M(Mm−n(G)), Theorem 6.2(e) implies that G̃[m+1] is

conjugate to a subgroup of Mm+1−n(G), completing the inductive step. It

now follows from Proposition 3.6 that this conjugacy holds in the inverse

limit as well, hence G̃ is conjugate to a subgroup ofM∞(G) as required. A

6.4. Finitely constrained groups

It turns out that all of the maximal groups M∞(G) belong to a class

of groups known as finitely constrained groups. These groups were origi-

nally defined by Grigorchuk [Gri05, Definition 7.1] as groups of finite type,
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by analogy with subshifts of finite type in symbolic dynamics. The name

finitely constrained groups has been preferred more recently, for example in

[Šun07, Definition 5] and [Šun11, Definition 3]. In terms of our notation,

the definition is as follows:

Definition 6.4. Let F be any subset of Aut(Tn) for some n ≥ 1. We

call F a set of forbidden patterns of size n. Define

FC(F) = {g ∈ Aut(T ) : (g|v)[n] /∈ F for all v ∈ T}.

When FC(F) is a subgroup of Aut(T ) we call it the finitely constrained group

defined by the set of forbidden patterns F . Note that F is finite since it is

contained in Aut(Tn).

For our purposes, F will always be the complement of a subgroup of

Aut(Tn) with property Rn. In this situation FC(F) will always be a group:

Proposition 6.5. Let F be the complement of a subgroup of Aut(Tn).

Then FC(F) is a subgroup of Aut(T ).

Proof. Let G be a subgroup of Aut(Tn) and let F = Aut(Tn) \ G. It

is immediate from the definition that e ∈ FC(F) since e /∈ F . Suppose that

g, h ∈ FC(F). Then:((
g−1h

)
|v
)

[n]
=
(
g−1|h(v)h|v

)
[n]

=
((
g|g−1h(v)

)
[n]

)−1
(h|v)[n] .(6.3)

By our assumptions on g and h, both
(
g|g−1h(v)

)
[n]

and (h|v)[n] belong to

G, and hence so does (6.3) since G is a group. Therefore by definition

g−1h ∈ FC(F) which completes the proof. A

It now follows from [Šun07, Theorem 3] that in this case FC(F) is always

a closed, self-similar subgroup of Aut(T ).

Fix n ≥ 2, let G be a subgroup of Aut(Tn) with property Rn, and let F
be the complement of G in Aut(Tn). We aim to show thatM∞(G) = FC(F).

To do this, first observe that we can restate the definition of FC(F) in an

obvious way:

(6.4) FC(F) = {g ∈ Aut(T ) : (g|v)[n] ∈ G for all v ∈ T}.

We will show that this group is equal toM∞(G) in two stages; first we will

provide a similar characterisation for the finite groups Mm(G), and then

use the inverse limit to pass to M∞(G).
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Proposition 6.6. Let n, G and F be as above. Then:

(a) Mm(G) = {g ∈ Aut(Tn+m) : (g|v)[n] ∈ G for all v ∈ Tm} for all

m ≥ 1;

(b) M∞(G) = FC(F).

Proof. (a) By induction. Let us start with the base step, m = 1.

When v is the root of T1 the restriction g|v is just g, so (g|v)[n] = ϕn+1(g).

Otherwise v ∈ L1 which means g|v ∈ Aut(Tn), so (g|v)[n] = g|v. Thus the

claim for m = 1 simply reduces to the definition of M(G).

Suppose that the claim is true for some m ≥ 1. Recall the definition:

Mm+1(G) = {g ∈ Aut(Tn+m+1) : ϕn+m+1(g) ∈Mm(G) and

g|v ∈Mm(G) for all v ∈ L1}.

We must show that this set is equal to

{g ∈ Aut(Tn+m+1) : (g|v)[n] ∈ G for all v ∈ Tm+1}.

To do this, we will show both inclusions separately.

⊆: Let g ∈Mm+1(G). We must show that (g|v)[n] ∈ G for all v ∈ Tm+1.

First suppose that v ∈ Lk for some k with 0 ≤ k ≤ m. Now

(g|v)[n] = (g[n+m]|v)[n] = (ϕn+m+1(g)|v)[n]

since g[n+m]|v ∈ Aut(Tn+m−k) and n+m−k ≥ n. But ϕn+m+1(g) ∈Mm(G),

so by the inductive hypothesis (g|v)[n] ∈ G as required. To handle the

case where v ∈ Lm+1, write v = uw where u ∈ L1 and w ∈ Lm. Now

g|u ∈ Mm(G) since u ∈ L1 so by the inductive hypothesis ((g|u)|w)[n] ∈ G.

But (g|u)|w = g|v since v = uw, so we are done.

⊇: Let g ∈ Aut(Tn+m+1) and suppose that (g|v)[n] ∈ G for all v ∈
Tm+1. We must show that g ∈ Mm+1(G); that is, we need to show that

ϕn+m+1(g) ∈Mm(G) and g|v ∈Mm(G) for all v ∈ L1.

For the first part, fix v ∈ Tm, so that v ∈ Lk where 0 ≤ k ≤ m. Observe

that ϕn+m+1(g)|v ∈ Aut(Tn+m−k) and n+m−k ≥ n, so (ϕn+m+1(g)|v)[n] =

(g|v)[n] ∈ G by our hypothesis on g. Since v ∈ Tm was arbitrary, it follows

from the inductive hypothesis that ϕn+m+1(g) ∈Mm(G).

Now let v ∈ L1 and consider g|v. Fix w ∈ Tm. Then vw ∈ Tm+1 and

((g|v)|w)[n] = (g|vw)[n] ∈ G by our hypothesis on g. This is true for all

w ∈ Tm, so by the inductive hypothesis g|v ∈ Mm(G). This completes the

proof that g ∈Mm+1(G).
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Both inclusions have now been proven so the inductive step is complete

and we are done.

(b) Recall (see the proof of Theorem 6.3(c) above) that

M∞(G) = {g ∈ Aut(T ) : g[n+m] ∈Mm(G) for all m ≥ 0}.

We will show that this is equal to FC(F) using (6.4). Again we will show

each inclusion separately.

⊆: Suppose that g ∈ M∞(G). Fix v ∈ T ; then v ∈ Lk for some k ≥ 0.

Observe that (g|v)[n] = (g[n+k]|v)[n] ∈ G by part (a), since g[n+k] ∈ Mk(G).

Since this is true for all v ∈ T , it follows from (6.4) that g ∈ FC(F).

⊇: Suppose that g ∈ FC(F). Then by (6.4), (g|v)[n] ∈ G for all v ∈ T .

We must show that g[n+m] ∈ Mm(G) for all m ≥ 0, which by part (a) is

equivalent to (g[n+m]|v)[n] ∈ G for all m ≥ 0 and all v ∈ Tm. Fix m ≥ 0 and

let v ∈ Tm, so v ∈ Lk where 0 ≤ k ≤ m. Since g[n+m]|v ∈ Aut(Tn+m−k) and

n+m−k ≥ n, we have (g[n+m]|v)[n] = ((g|v)[n+m−k])[n] = (g|v)[n] ∈ G. This

holds for all m ≥ 0 and v ∈ Tm so the proof is complete. A

Thus each maximal group M∞(G) is a finitely constrained group de-

fined by a set of forbidden patterns of size n, namely Aut(Tn) \ G. Since

M∞(G) always has property R by Theorem 6.3(a) and is self-replicating

by Theorem 6.3(c), we obtain the following result about finitely constrained

groups, which appears to be new:

Corollary 6.7. Let G be a group with property Rn that has sufficient

rigid automorphisms, and let F be the complement of G in Aut(Tn). Then

the finitely constrained group FC(F) is a self-replicating group with property

R.

The new part of this result is that for this particular F , the group

FC(F) is self-replicating; as stated above, it is already known that all finitely

constrained groups are self-similar.

6.5. Hausdorff dimension

SinceM∞(G) is a closed subgroup of Aut(T ), it has a well-defined Haus-

dorff dimension, as shown in [BS97]. For subgroups of the pro-p group

Autp(T ), this dimension can be taken relative to Autp(T ) rather than Aut(T )

as in [Šun07]. We can give a simple formula in both cases:
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Proposition 6.8. Let G and H be as above, so that G has property

Rn(H). Then the Hausdorff dimension of M∞(G) in Aut(T ) is

dimH(M∞(G)) = p1−n logp! |kerG(ϕn)|

= p1−n logp!
|G|
|H|

.

In addition, if G ≤ Autp(Tn), then M∞(G) ≤ Autp(T ) and its Hausdorff

dimension in Autp(T ) is

dimH(M∞(G)) = p1−n logp |kerG(ϕn)|

= p1−n logp
|G|
|H|

which is always rational.

Proof. The Hausdorff dimension is given by the formula from [BS97]:

dimH(M∞(G)) = lim inf
m→∞

log[M∞(G) : stM∞(G)(Lm)]

log[Aut(T ) : st(Lm)]

= lim inf
m→∞

log
∣∣∣M∞(G)[m]

∣∣∣
log
∣∣Aut(T )[m]

∣∣
= lim inf

m→∞

log |Mm(G)|
log |Aut(Tn+m)|

(replacing m with n+m)

= lim inf
m→∞

log |Mm(G)|
pn+m−1
p−1 log p!

by (2.17)

=
p− 1

log p!
lim inf
m→∞

log |Mm(G)|
pn+m − 1

,(6.5)

so it remains to find a formula for |Mm(G)|. Let am = |Mm(G)| for m ≥ 0.

We have a0 = |G| and a1 = |M(G)| = |G| |kerG(ϕn)|p by Theorem 6.2(c).

For m ≥ 2 we have the recurrence relation

am = |Mm(G)| =
∣∣Mm−1(G)

∣∣p+1

|Mm−2(G)|p
=
am−1

p+1

am−2
p
.

If we let bm = log am then we get the linear recurrence

bm = (p+ 1)bm−1 − pbm−2, m ≥ 2

with b0 = log |G| and b1 = log |G| + p log |kerG(ϕn)|. The characteristic

equation for this recurrence relation is

0 = λ2 − (p+ 1)λ+ p = (λ− p)(λ− 1)
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which has roots 1 and p, so the solution is bm = c0 + c1p
m for some con-

stants c0 and c1. Using the values of b0 and b1 we get c0 = log |G| −
p
p−1 log |kerG(ϕn)| and c1 = p

p−1 log |kerG(ϕn)|. This yields

bm = log |G|+ p(pm − 1)

p− 1
log |kerG(ϕn)|

and hence

|Mm(G)| = am = exp(bm) = |G| |kerG(ϕn)|
p(pm−1)

p−1 .

Substituting this back into (6.5) yields:

dimH(M∞(G)) =
p− 1

log p!
lim inf
m→∞

log |G|+ p(pm−1)
p−1 log |kerG(ϕn)|
pn+m − 1

=
p− 1

pn log p!
lim inf
m→∞

p(pm−1)
p−1 log |kerG(ϕn)|

pm − p−n

=
p log |kerG(ϕn)|

pn log p!
lim inf
m→∞

pm − 1

pm − p−n

=
log |kerG(ϕn)|
pn−1 log p!

· 1

= p1−n logp! |kerG(ϕn)|

as claimed. The second formula is obtained from Proposition 3.19(a).

The calculation is identical for the Hausdorff dimension in Autp(T ), ex-

cept that |Autp(Tn)| = p
pn−1
p−1 by (3.5), which has the sole effect of replacing

log p! with log p. The dimension is always rational in this case because G is

a p-group so |kerG(ϕn)| is a power of p. This completes the proof. A

Remark. This formula for the Hausdorff dimension of a finitely con-

strained group has been independently discovered for the special case p = 2

in [PŠ, Lemma 8].

Note that the Hausdorff dimension of M∞(G) depends only on two

quantities: the level n on which G acts and the size of kerG(ϕn), or equiva-

lently, the ratio of |G| to |H|, which can be viewed as the “expansion factor”

of G when moving from Tn−1 to Tn.

We can deduce from this formula that every maximal groupM∞(G) has

strictly positive Hausdorff dimension, and only Aut(T ) achieves the maxi-

mum possible dimension of 1. These are known results about finitely con-

strained groups; Theorem 4(a) from [Šun07] shows that dimH(M∞(G)) is

always positive — and rational in Autp(T ) — when G is a p-group.
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Proposition 6.9. Let G be a subgroup of Aut(Tn) with property Rn.

Then

(a) dimH(M∞(G)) > 0, and

(b) dimH(M∞(G)) = 1 if and only if G = Aut(Tn).

Proof. Part (a) is immediate, since kerG(ϕn) is always nontrivial by

Proposition 3.19(b).

By Proposition 6.3(d), M∞(Aut(Tn)) = Aut(T ), so the ‘if’ direction of

part (b) says that dimH(Aut(T )) = 1. This can be readily deduced from

the Hausdorff dimension formula. To prove the ‘only if’ direction, suppose

that dimH(M∞(G)) = 1. Then, by Proposition 6.8, logp!
|G|
|H| = pn−1 so

|G| = p!p
n−1 |H|, and hence |kerG(ϕn)| = p!p

n−1
by Proposition 3.19(a). We

will show that G = Aut(Tn).

Lemma 2.23 implies that G[k] has property Rk(G[k−1]) for 2 ≤ k ≤ n

(note that H = G[n−1]). Let Kk = kerG[k]
(ϕk) for 2 ≤ k ≤ n, and for

convenience let K1 = G[1] (this is consistent, based on the understanding

that level 0 is just the root so G[0] is trivial and ϕ1 is the trivial map).

Proposition 3.19(d) implies that |Kk| ≤ |Kk−1|p for each k, so:

(6.6) |Kn| ≤ |Kn−1|p ≤ |Kn−2|p
2

≤ · · · ≤ |K1|p
n−1

.

But |Kn| = |kerG(ϕn)| = p!p
n−1

, and |K1| ≤ |Aut(T1)| = p! so there must

be equality throughout (6.6) and |Kk| = p!p
k−1

for each k. Now
∣∣G[k]

∣∣ =

|Kk|
∣∣G[k−1]

∣∣ for each k by Proposition 3.19(a), hence:

|G| =
∣∣G[n]

∣∣
= |Kn| · · · |K2|

∣∣G[1]

∣∣
= |Kn| · · · |K2| |K1|

= p!(p
n−1+···+p+1)

= p!
pn−1
p−1

= |Aut(Tn)| .

It follows that G = Aut(Tn) as required. A





CHAPTER 7

Automaton groups

7.1. Introduction

In Chapter 6 we described one way to extend any subgroup G of Aut(Tn)

with property Rn to a maximal subgroup M∞(G) of Aut(T ) with property

R. We also saw in Section 5.4 that these maximal groups form a countable

dense subset of all (conjugacy classes of) groups with property R.

We may ask if there are any other general constructions which will take

a subgroup G of Aut(Tn) with property Rn and extend it to a subgroup of

Aut(T ) with property R, such that the resulting group is non-maximal, or

even minimal. The purpose of this chapter is to describe one such construc-

tion (strictly speaking, a family of constructions) using finite automata.

Groups generated by automata, or automaton groups, have been studied

extensively (see [GNS00] for example) and provide a rich family of inter-

esting examples of self-similar groups. Unfortunately (for our purposes)

these groups are not always self-replicating. The class of spherically transi-

tive, self-replicating automaton groups does not appear to have been studied

specifically. Indeed, in general it can be extremely difficult to check whether

or not an automaton group is self-replicating. This means that although it

is easy to find examples and constructions of automaton groups in the liter-

ature, many of them are not directly useful to us. Still, plenty of interesting

and relevant examples have been studied, some of which we have already

seen such as the odometer (in Example 4.1), and other well-known groups

such as the lamplighter group [GŻ01], the first Grigorchuk group [Gri05],

and spinal groups similar to the Grigorchuk group [Šun07].

The important property of all the groups constructed in this chapter is

that they are topologically finitely generated ; that is, they are the topological

closure in Aut(T ) of a finitely generated group. Although the original aim

of this construction was to produce non-maximal groups, it can actually

produce M∞(G) if M∞(G) happens to be topologically finitely generated.

As we saw in Section 5.4, such cases appear to be very rare. The most

79
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well-known example of this type, the Grigorchuk group, will be discussed in

Example 7.16.

7.2. Preliminaries

We begin with some terminology and notation.

Definition 7.1. An automaton (strictly speaking, a synchronous trans-

ducer) is a quadruple A = (X, Q, τ, λ) where:

• X is a finite set of symbols called the alphabet ;

• Q is a set, called the set of states;

• τ : Q× X→ Q is the transition function;

• λ : Q× X→ X is the output function.

Following Section 2.3, we will always use the alphabet X = {0, 1, . . . , p− 1}.
An automaton is said to be finite if Q is finite. An automaton is invertible

if for each state q ∈ Q the corresponding output function λ(q,−) : X → X

is invertible (i.e. a permutation of X). The function λ(q,−) will be written

more concisely as λq. For our purposes we will only consider finite, invertible

automata.

We can represent an automaton by a labelled directed graph as follows.

The vertices are the states Q, with each q ∈ Q labelled by the corresponding

output permutation λq. There is a directed edge labelled a from q to q′ if

and only if τ(q, a) = q′. We refer to these as incoming edges (or incoming

transitions) to the state q′, or outgoing edges (transitions) from the state q.

Our examples here will focus on the case where p = 2, i.e. X = {0, 1},
although the results will apply to arbitrary p ≥ 2. For convenience we

will denote the only nontrivial permutation of {0, 1} by σ and the trivial

permutation by e.

σ e1 1

0

0

a b

Figure 7.1. A simple automaton with two states a and b

over the alphabet X = {0, 1}.

Example 7.2. Let p = 2 and Q = {a, b} with output permutations

λa = σ and λb = e, and transitions τ(a, 0) = b, τ(a, 1) = a, τ(b, 0) = a and

τ(b, 1) = b. The graph of this automaton is shown in Figure 7.1.
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The idea is that each state q of an invertible automaton represents an

automorphism of the tree T , which we may identify with X∗ as described

in Section 2.3 (X∗ =
⋃
n≥0 X

n where Xn is the set of words of length n over

X, previously referred to as Ln). We think of the automaton “reading” a

word v ∈ X∗ (representing a vertex v ∈ T ) one symbol at a time. If the

automaton is in the state q and reads the symbol w ∈ X then it “writes”

the symbol λ(q, w) and transitions into the state τ(q, w), ready to read the

next symbol. When the whole word v has been read, the word formed by

the written symbols represents q(v).

More formally, the transition and output functions can be extended by

induction to functions τ̃ : Q× X∗ → Q and λ̃ : Q× X∗ → X∗ as follows. For

all w ∈ X, define τ̃(q, w) = τ(q, w) and λ̃(q, w) = λ(q, w). For n ≥ 2 and

v = w1 · · ·wn ∈ Xn, define:

τ̃(q, w1 · · ·wn) = τ̃(τ(q, w1), w2 · · ·wn)

and λ̃(q, w1 · · ·wn) = λ(q, w1)λ̃(τ(q, w1), w2 · · ·wn).

For each q ∈ Q we will use the notation λ̃q when convenient, to denote the

function λ̃(q,−) : X∗ → X∗. The inductive formula for λ̃ above may then be

rewritten more concisely as:

λ̃q(w1 · · ·wn) = λq(w1)λ̃τ(q,w1)(w2 · · ·wn).

Example 7.3. Referring again to the automaton shown in Figure 7.1,

let us calculate λ̃a(001). Observing that λa = σ swaps the symbols 0 and 1,

and λb = e fixes both 0 and 1, we have:

λ̃a(001) = λ(a, 0)λ̃τ(a,0)(01)

= 1λ̃b(01)

= 1λb(0)λ̃τ(b,0)(1)

= 10λ̃a(1)

= 100.

It is clear from this calculation that each λ̃q preserves the length of words;

that is,
∣∣∣λ̃q(v)

∣∣∣ = |v| for all v ∈ X∗ and all q ∈ Q.

Proposition 7.4. If A is an invertible automaton, then for each state

q ∈ Q the function λ̃q : X∗ → X∗ is an automorphism of the rooted tree X∗.

Proof. We must show that each λ̃q preserves the edge relation in the

tree; that is, for all q ∈ Q, all v ∈ X∗ and all w ∈ X, λ̃q(vw) = λ̃q(v)w′ for
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some w′ ∈ X. We prove this by induction on |v|. For the base step, suppose

that |v| = 1, so that v ∈ X. Now for all q ∈ Q and all w ∈ X:

λ̃q(vw) = λq(v)λ̃τ(q,v)(w) = λ̃q(v)w′

where w′ = λτ(q,v)(w), as required. Note that λ̃q(v) = λq(v) since v ∈ X.

Now fix n ≥ 1 and suppose for all q ∈ Q, all v ∈ Xn and all w ∈ X, that

there exists w′ ∈ X such that λ̃q(vw) = λ̃q(v)w′. Fix v ∈ Xn+1, q ∈ Q and

w ∈ X. Write v = w1 · · ·wn+1. Then:

λ̃q(v) = λq(w1)λ̃τ(q,w1)(w2 · · ·wn+1)

and λ̃q(vw) = λq(w1)λ̃τ(q,w1)(w2 · · ·wn+1w).

Now w2 · · ·wn+1 ∈ Xn so, by the inductive hypothesis, there exists w′ ∈ X

such that λ̃τ(q,w1)(w2 · · ·wn+1w) = λ̃τ(q,w1)(w2 · · ·wn+1)w′, whence λ̃q(vw) =

λ̃q(v)w′ as required.

It remains to show that λ̃q is a bijection on X∗. This follows immediately

from the fact that A is invertible and so λq is a bijection for each q ∈ Q. A

We will abuse notation and use the same symbol to denote both a state

and its corresponding automorphism; so for q ∈ Q and v ∈ X∗ we simply

write q(v) instead of λ̃q(v). For instance, in Example 7.3 we can write

a(001) = 100.

A careful reading of the proof of Proposition 7.4 and the definitions in

Section 2.3, leads immediately to the following results:

Proposition 7.5. Let A be an invertible automaton, and let q be the

automorphism of X∗ corresponding to a state q ∈ Q. Then:

(a) The output permutation λq ∈ Sym(X) is the root permutation of q

(i.e. the action of q on level 1 of the tree);

(b) For each word v ∈ X∗, the automorphism τ(q, v) is equal to the

vertex restriction q|v;

(c) The wreath product decomposition (see (2.13)) of q is

q = λq (τ(q, 0), . . . , τ(q, p− 1)) .

The group of the invertible automaton A, denoted G(A), is defined to

be the subgroup of Aut(X∗) generated by the automorphisms corresponding

to the states of A. That is, G(A) = 〈q : q ∈ Q〉. Obviously G(A) is finitely

generated if A is finite. By Proposition 7.5(b) all vertex restrictions of the

generators of G(A) belong to G(A) and so it follows that G(A) is self-similar.
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Proposition 7.5(c) shows us how to read off a recursive decomposition of each

generator directly from the automaton.

Example 7.6. For the automaton in Figure 7.1, the recursive decompo-

sitions are a = σ(b, a) and b = (a, b). This group G(A) = 〈a, b〉 is actually

the lamplighter group (see [GŻ01]), isomorphic to (Z/2Z) o Z.

Example 7.7. Let A be the automaton in Figure 7.2. Notice that the

output permutation of b is trivial so b acts trivially on level 1. In fact,

the recursive decomposition b = (b, b) shows that b itself is trivial so that

G(A) = 〈a, b〉 = 〈a〉. Therefore a = σ(e, a) which, as we saw in Example 4.1,

generates the odometer group, isomorphic to Z; the closure of this group in

Aut(T ) is the action of Z2 on T .

σ e1 0, 1
0

a b

a = σ(b, a) b = (b, b)

Figure 7.2. The automaton generating the odometer group

for p = 2.

Although it is easy to show that any automaton group G(A) is self-

similar, it is much more difficult to determine whether or not it is self-

replicating. However we can give a sufficient condition that is not too oner-

ous to check:

Lemma 7.8. Let A be an invertible automaton. Suppose that for every

q ∈ Q there is q′ ∈ Q and w ∈ X such that τ(q′, w) = q and λ(q′, w) = w.

Then G(A) is self-replicating.

Proof. Immediate from the definitions and from Proposition 7.5. A

This condition can be weakened if we assume the existence of rigid au-

tomorphisms in G(A) (see Proposition 3.13):

Proposition 7.9. Let A be an invertible automaton. Suppose that for

each pair w,w′ ∈ X there exists g ∈ G(A) such that g(w) = w′ and g|w = e.

Suppose further that for every q ∈ Q there is q′ ∈ Q and w ∈ X such that

τ(q′, w) = q. Then G(A) is self-replicating.

Proof. Follows from Lemma 7.8 and Corollary 3.17. A
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In other words, a sufficient condition for an automaton group to be self-

replicating is that it must contain sufficient rigid automorphisms, and every

state of the automaton must have an incoming transition from another (not

necessarily different) state.

Example 7.10. The odometer group generated by the automaton shown

in Figure 7.2 is self-replicating. Indeed, a(0) = 1 and a|0 = b = e and hence

a−1(1) = 0 and a−1|1 = a|0 = e, so the group contains the required rigid

automorphisms. Finally τ(a, 0) = b and τ(a, 1) = a so Proposition 7.9

applies.

We can now proceed to our construction.

7.3. The automata AG

Let G be a subgroup of Aut(Tn) with property Rn. We would like to

define a finite automaton AG such that the closure of the corresponding

automaton group G(AG) has property R and agrees with G on Tn, i.e.

G(AG)[n] = G. We will say that such an automaton extends G to T .

It is necessary to take the closure of this group in Aut(T ) because G(AG)

is finitely generated when AG is finite and, as we saw at the end of Chapter

5, no finitely generated group can have propertyR. We must therefore make

do with topologically finitely generated groups.

The hard part will be to ensure that G(AG) is self-replicating. To this

end, following Proposition 3.10 we may assume without loss of generality

that G has sufficient rigid automorphisms; that is, for every pair of vertices

v, v′ ∈ L1 there exists g ∈ G such that g(v) = v′ and g|v = e. For conve-

nience, let H = ϕn(G) be the restriction of G to Tn−1, so that G satisfies

Rn(H). As above, we take the alphabet to be X = {0, 1, . . . , p− 1} where p

is the degree of T .

We must ask first of all what necessary conditions AG must satisfy. If

Q = {q1, . . . , qr} then in order to ensure that G(AG)[n] = G we must have〈
(q1)[n], . . . , (qr)[n]

〉
= G (where we are using qi to represent both the state

and its corresponding automorphism). The only other condition is that

G(AG) be self-replicating, which can be met by satisfying the hypotheses of

Proposition 7.9. This requires our assumption about the existence of rigid

automorphisms in G, and also an appropriate choice of generating set Q for

G. Let us see how this works in a couple of examples.
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Example 7.11. Let G be the subgroup of Aut(Tn) corresponding to the

action of Z2 on the binary tree. Then G is cyclic of order 2n, and as we

have seen it is equal to the odometer group restricted to Tn. This means

we already have a self-replicating automaton which extends G to T , namely

the one in Figure 7.2.

Example 7.12. The (closure of the) first Grigorchuk group Γ, whose

many interesting properties are described in [Gri05], acts on the binary

tree and is equal to M∞(G) for a certain subgroup G of Aut(T4) of order

212 that has property R4(Aut(T3)). There is a well-known automaton which

generates Γ and hence extends G to T . It is shown in Figure 7.3.

σ e

e

ee

a b

c

d

e
0, 1

0, 1

0

10

1

1

0

a = σ(e, e), e = (e, e)

b = (a, c), c = (a, d), d = (e, b)

Figure 7.3. The automaton generating the first Grigorchuk

group Γ.

This example demonstrates that finite automata are not guaranteed to

produce non-maximal groups. In fact, in this case, it is conjectured (see

the end of Section 5.4) that Γ is the only subgroup of Aut(T ) with property

R that agrees with G on T4. If this conjecture is true then all possible

automata AG from Theorem 7.13 would have G(AG) = Γ.

It has been verified with a computer search that any such group must

agree with Γ on T8, so if there exists an automaton AG such that G(AG) 6= Γ

then the difference is not visible until at least level 9. This seems highly

unlikely.

Of course, it is not enough to describe a few examples. We must pro-

vide a general construction which takes an arbitrary subgroup G ≤ Aut(Tn)

satisfying Rn and produces an automaton AG which extends G to T . As
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usual, because of Proposition 3.10, we will assume that G has sufficient rigid

automorphisms.

Theorem 7.13. Suppose that G ≤ Aut(Tn) has property Rn and has

sufficient rigid automorphisms. Then there exists a finite automaton AG
such that the group G(AG) has property R and agrees with G on Tn.

Proof. We can define AG as follows. We define the set of states Q to

be the elements of G. Note that G is finite so AG will be finite as well. The

output function λ : G× X→ X is defined by

λ(g, w) = g(w) for all g ∈ G and w ∈ X.

The notation g(w) makes sense because we identify X with level 1 of T . The

transition function τ : G×X→ G presents a difficulty. In light of Proposition

7.5 we would like to define something like τ(g, w) = g|w. However, this

will not work because g|w belongs to Aut(Tn−1) (in fact it belongs to H,

by Proposition 3.11) and not to G itself. Instead, we need to choose an

automorphism g′ ∈ G such that ϕn(g′) = g|w and then set τ(g, w) = g′.

Such a g′ is guaranteed to exist because G has propertyRn(H) and g|w ∈ H.

kerG(ϕn) g′ kerG(ϕn)

g kerG(ϕn)

τ(g, 0) τ(g, 1)

g
0 1

g|0 = e g|1 = ϕn(g′)

Figure 7.4. Choosing transitions: τ(g, w) can be any g′ ∈ G
such that ϕn(g′) = g|w. The set of such g′ is a coset of

kerG(ϕn) in G.

The problem with this definition of τ is that there could be more than

one choice for g′. Indeed, the set of possible g′ is a coset of ker(ϕn) in

G which by Proposition 3.19(a) has cardinality |G|
|H| ≥ p (see Figure 7.4).
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Unfortunately, there really is no way in general to systematically choose g′.

This means that AG will be one of a number of possible automata rather

than a single well-defined automaton. This freedom actually turns out to be

extemely useful, as we can use it to place further restrictions on the definition

of τ and guarantee that the automaton generates a self-replicating group.

Firstly, to take advantage of Proposition 7.9, we need to ensure that

sufficient rigid automorphisms exist in the automaton group. This is why

we assumed above that these automorphisms exist in G. Let v, w ∈ X and

suppose that g ∈ G is (v, w)-rigid, i.e. g(v) = w and g|v = e. The above

argument implies that τ(g, v) can be any g′ ∈ G such that ϕn(g′) = e, which

means g′ ∈ kerG(ϕn). In this case however, we need to set τ(g, v) = e

so that the corresponding automorphism g ∈ G(AG) is (v, w)-rigid as well.

Doing this for all rigid automorphisms in G guarantees that G(AG) contains

the required rigid automorphisms, thereby satisfying the first hypothesis of

Proposition 7.9.

Now, since we need τ(g, v) = e for some g and v, there needs to be a

state representing e in AG. The state q corresponding to e ∈ G need not be

trivial since we have only specified that τ(q, w) ∈ kerG(ϕn) for each w ∈ X;

this guarantees that q is trivial on level n but not necessarily on all of T .

The simplest solution is to set τ(q, w) = q for all w ∈ X, for then we have

the decomposition q = (q, . . . , q) which means that q is trivial. In terms of

the graph, this state will look like the one in Figure 7.5.

e

0, 1, . . . , p− 1

...

...
...

Figure 7.5. The trivial state in AG.

In order to satisfy the second hypothesis of Proposition 7.9 we need

to ensure that for every g ∈ G there exists h ∈ G and w ∈ X such that

τ(h,w) = g, i.e. every state should have at least one incoming transition.

For convenience let k = |G|
|H| = |kerG(ϕn)| and recall from Proposition

3.19(a) that k ≥ p (in fact p divides k). Now there are, in total, p |G|
edges in the graph of AG — one outgoing transition τ(g, w) from each state

g ∈ G for each w ∈ X — and there are k choices for each transition, within
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the appropriate coset of kerG(ϕn). There are |H| such cosets (by the first

isomorphism theorem, since ϕn(G) = H) so we expect, on average, p|G||H| = pk

incoming transitions into each kerG(ϕn)-coset. It turns out that this is not

just the average, it is the exact number:

Lemma 7.14. Let G, H and k be as above. Then for each h ∈ H there

exist exactly pk pairs (g, w) where g ∈ G and w ∈ X, such that g|w = h.

Proof. Fix h ∈ H. For each w,w′ ∈ X define

Sw,w′ = {g ∈ G : g(w) = w′ and g|w = h}.

Observe that, for a fixed w, Sw,w′ ∩ Sw,w′′ = ∅ when w′ 6= w′′. We claim

that
∣∣Sw,w′∣∣ = |Sw,w| for all w,w′ ∈ X. To see this, fix w and w′ and let

x be a (w,w′)-rigid automorphism in G; that is, x(w) = w′ and x|w = e.

Such an x exists by our assumptions on G. Then for each g ∈ Sw,w we have

(xg)(w) = x(w) = w′ and

(xg)|w = x|g(w)g|w = x|wh = h

so xg ∈ Sw,w′ . Conversely, by a similar caluclation, if g ∈ Sw,w′ then x−1g ∈
Sw,w. Thus, left multiplication by x is a bijection from Sw,w to Sw,w′ and

the claim is established.

The next claim is that |Sw,w| = |S0,0| for all w ∈ X. To prove this, fix

w ∈ X and let y be a (0, w)-rigid automorphism in G; that is, y(0) = w

and y|0 = e. Such a y exists by our assumptions on G. Note that y−1

is (w, 0)-rigid; that is, y−1(w) = 0 and y−1|w = e. Let g ∈ Sw,w. Then

(y−1gy)(0) = (y−1g)(w) = y−1(w) = 0 and

(y−1gy)|0 = (y−1g)|y(0)y|0 = (y−1g)|w = y−1|g(w)g|w = y−1|wh = h

so y−1gy ∈ S0,0. Similarly if g ∈ S0,0 then ygy−1 ∈ Sw,w so conjugation by

y is the required bijection between Sw,w and S0,0.

We now calculate |S0,0|. Since S0,0 ⊆ G0 we may write

S0,0 = {g ∈ G0 : g|0 = h} = {g ∈ G0 : ψn(g) = h}.

Therefore S0,0 is a coset of kerG0(ψn). Then by Proposition 3.19(a),

|S0,0| = |kerG0(ψn)| = 1

p
|kerG(ϕn)| = k

p
.

Now for each w ∈ X define

Tw = {g ∈ G : g|w = h}.



7.3. THE AUTOMATA AG 89

Note that Tw =
⋃
w′∈X Sw,w′ and this is a disjoint union. Since each

∣∣Sw,w′∣∣ =

|S0,0|, we obtain

|Tw| = |X| |S0,0| = p
k

p
= k.

It is important to note that the sets Tw are not necessarily disjoint, since a

single g ∈ G could have g|w = h = g|w′ for some w 6= w′.

Finally, the set of pairs (g, w) in the statement of the Lemma is equal to

U = {(g, w) ∈ G× X : g ∈ Tw} =
⋃
w∈X

Tw × {w}

and this is now a disjoint union due to the pairing of Tw with w. Since

|Tw × {w}| = |Tw| = k for all w ∈ X, we have |U | = |X| k = pk as required.

A

Returning to the proof of the Theorem, observe that in order to make

the construction work, all that matters is that for each state q at least one of

the pk incoming transitions into the coset q kerG(ϕn) is assigned to q. Since

there are only k states in each coset, this yields a large number of possibilities

(see Example 7.15). The important thing is that it can be done.

Let us clarify one remaining point. The existence of rigid automorphisms

makes the situation more complicated in the case of the coset kerG(ϕn)

itself. There are two potential problems: firstly, some of the pk incoming

transitions are τ(g, w) for an automorphism g which is rigid at w, so these

must be equal to the identity. Secondly, for the identity itself, we must

have τ(e, w) = e for all w ∈ X. We need to check that there are enough

incoming transitions left over so that each state q ∈ kerG(ϕn) can be equal

to at least one of them. It follows from Lemma 3.8 that we really only need

automorphisms that are (v, v + 1)-rigid for v = 0, 1, . . . , p − 2. This means

we only need to guarantee that p− 1 of the incoming transitions from rigid

automorphisms are equal to e. Taking into account the p transitions from e

to itself, there are pk− 2p+ 1 incoming transitions left over to assign to the

remaining k− 1 nontrivial states in kerG(ϕn). This suffices, since k ≥ p ≥ 2

and

(7.1) pk − 2p+ 1 = k − 1 + (p− 1)(k − 2) ≥ k − 1.

Thus, Proposition 7.9 guarantees that the group G(AG) will be self-

replicating. It is clear from the construction that the restriction of G(AG)

to Tn is equal to G which means it is transitive on Ln. By Proposition

2.14 the closure G(AG) is transitive on ∂T and therefore has property R as

required. A



90 7. AUTOMATON GROUPS

Example 7.15. Let G be the subgroup of Aut(T2) corresponding to the

action of Z2 on the binary tree, as in Example 7.11 with n = 2. Let us

follow Theorem 7.13 to construct all possible AG.

First, some notation: as before, let p = 2, X = {0, 1} and let σ denote

the transposition (0 1). Define a ∈ Aut(T ) by the recursive decomposition

a = σ(e, a) and let an be the restriction of a to Tn for each n. Note that

a1 = σ and an = σ(e, an−1) for n ≥ 2. We saw in Example 4.1 that a

generates the odometer group and therefore an has order 2n and generates

the restriction of this group to Tn. In particular, G = 〈a2〉 = {e, a2, a
2
2, a

3
2}.

For convenience let b = a2. We have the decompositions b = σ(e, σ), b2 =

(σ, σ) and b3 = b−1 = σ(σ, e).

Following the construction specified above, let Q = G. We have λq = σ

for q = b and q = b3, and λq = e for q = e and q = b2. We also have τ(e, 0) =

τ(e, 1) = e. Since p = 2 we only need p− 1 = 1 rigid automorphism in our

group. Now b is (0, 1)-rigid in G, as can be seen from the decomposition

b = σ(e, σ). We insist, therefore, that τ(b, 0) = e. We are now free to choose

the other transitions, subject to the condition that each q ∈ Q is equal to

at least one of them.

In how many ways can this be done? Note that there are 5 transitions

still to choose, namely τ(b, 1), τ(b2, 0), τ(b2, 1), τ(b3, 0) and τ(b3, 1). The

subgroup K = kerG(ϕ2) has order 2; it is equal to {e, b2}, since ϕ2(e) =

ϕ2(b2) = e, and the only other coset is bK = {b, b3}, with ϕ2(b) = ϕ2(b3) =

σ. From the decompositions we can see that the transition τ(b3, 1) must

belong to K (since b3|1 = e) and the other four must all belong to bK (since

b|1 = b2|0 = b2|1 = b3|0 = σ). Since the transitions τ(b, 0), τ(e, 0) and

τ(e, 1) have already been assigned to the identity, we are forced to choose

τ(b3, 1) = b2; note that equality holds in (7.1) in this case because p = k = 2.

The other four transitions can be chosen freely from bK, provided each of

b and b3 is chosen at least once. This yields a total of 24 − 2 = 14 possible

AG.

Some of these automata are shown in Figure 7.6. Moving in a clockwise

direction from the top left in each diagram are the states corresponding to e,

b, b3 and b2 respectively. Note that these labels are purely formal; there is no

guarantee that the automorphism of T corresponding to b2 will be the square

of the automorphism of T corresponding to b. The construction of AG only

ensures that this relationship holds on T2, so that we get G(AG)[2] = G.
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Figure 7.6. Some possible AG.

Recall from Section 5.2 that there are two subgroups of Aut(T3) satisfying

R3(G), up to conjugacy, namelyM(G) of order 24 and the level 3 odometer

group which is cyclic of order 23. Both of these groups appears as G(AG)[3]

for someAG in Figure 7.6. Automata (a) and (b) both generateM(G) on T3,

although they generate different subgroups of Aut(T4); (a) generatesM2(G)

of order 28 and (b) generates an index 2 subgroup of M2(G). Automaton

(d) generates the odometer on T3 (but not on T4 where it is maximal of

order 25) and (c) generates a group which is conjugate to the odometer on

T3 (and is also conjugate to the odometer on T4 and T5, but not on T6 where

it has order 27).

Finally, it is known from [Šun11, Proposition 2] that the maximal group

M∞(G) in this example is not topologically finitely generated, so each of

the 14 possible AG must generate a group with property R distinct from

M∞(G).

Example 7.16. Let Γ be the Grigorchuk group and let G = Γ[4], as in

Example 7.12. The automaton in that example had only 5 states, whereas
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each of the AG constructed in the proof of Theorem 7.13 would have |G| =
212 = 4096 states. Note that K = kerG(ϕ4) has index 27 in G since G/K ∼=
ϕ4(G) = Γ[3] = Aut(T3), so the states of AG are partitioned into the 27

cosets of K, each containing |K| = 25 states. This means that the number

of possible AG is vast, in the vicinity of |K|2|G|−3 = 240945. Obviously it

would not be practical to describe them all explicitly!

As mentioned in Example 7.12, it is conjectured that all of these au-

tomata generate M∞(G) = Γ. This situation stands in stark contrast to

Example 7.15 where none of the AG generate M∞(G).

In general, except for very small groups, the construction of AG using

Q = G is rather unwieldy. Its purpose is simply to show that an automaton

extending G to T always exists. In practice one can usually find a much

smaller automaton to do the job, as we saw in Examples 7.11 and 7.12.

It would be worthwhile, as a future project, to modify the construction in

the proof of Theorem 7.13 and turn it into a more practical algorithm for

generating AG with a relatively small number of states.
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Algorithm to find groups with property Rn

This appendix describes the algorithm that was used to calculate all the

possible groups with property Rn(G) for a given group G with property

Rn−1. The diagrams in Chapter 5 are based on the data obtained using an

implementation of this algorithm in MAGMA.

The algorithm begins with the maximal group M(G), which can be

generated in a variety of ways using Definition 6.1. For example, one could

keep choosing random elements of M(G) until they generate a group of

the size given by Theorem 6.2(c). Having calculated M(G), the algorithm

proceeds by generating all the maximal subgroups ofM(G), and discarding

those that do not have property Rn(G). Then, for each remaining subgroup

H, the algorithm calculates the maximal subgroups of H, again discarding

those that do not have property Rn(G). Conjugates are removed at each

step. This process continues until no more subgroups with property Rn(G)

are found. Proposition 3.24 guarantees that the algorithm will find, up to

conjugacy, all subgroups of M(G) with property Rn(G).

The set of maximal subgroups of a group G can be calculated in MAGMA

with the command Subgroups(G : Al:="Maximal"). The built-in algo-

rithms for calculating maximal subgroups tend to be much more efficient

than those for generic subgroups, which is why the algorithm was designed

in this way.

A technicality should be noted here — the Subgroups command in MAGMA

actually returns a set of conjugacy class representatives for the subgroups

it finds. One may therefore ask: what happens if there is a subgroup H

with property Rn(G) but the command picks a conjugate of H that does

not have property Rn(G)?

This situation cannot occur when G is a p-group because all of its max-

imal subgroups are normal (by Lemma 3.26), and thus there will only be

one representative in each conjugacy class. Note that the conjugate removal

step would still still necessary in this case because subgroups that are not

93



94 A. ALGORITHM TO FIND GROUPS WITH PROPERTY RN

conjugate in G can still be conjugate in Aut(Tn). Most importantly, Propo-

sition 3.23 ensures that no generality is lost by restricting to p-groups for

p = 2, which was the focus of the calculations in Chapter 5.

The algorithm still works for non-p-groups, provided all maximal sub-

groups are checked and not just a set of conjugacy class representatives.

The efficiency of the algorithm would suffer as a result, particularly because

conjugacy testing can be computationally expensive in large groups.

Algorithm A.1 Finding all conjugacy classes of groups with property

Rn(G) for a given group G.

Input : A subgroup G of Aut(Tn−1) with property Rn−1

Output: A full set of conjugacy class representatives for the

subgroups of Aut(Tn) with property Rn(G)

1 allGroups ← {M(G)};
2 currentLayer ← {M(G)};
3 while currentLayer is nonempty do

4 newGroups ← {};
5 for currentGroup in currentLayer do

6 subgroups ← MaximalSubgroups (currentGroup);

7 for subgroup in subgroups do

8 if subgroup does not have property Rn(G) then

9 remove subgroup from subgroups;

10 end

11 end

12 newGroups ← newGroups ∪ subgroups;

13 end

14 RemoveConjugates (newGroups);

15 currentLayer ← newGroups;

16 allGroups ← allGroups ∪ newGroups;

17 end

18 return allGroups;
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Groups with property Rn for p = 2 and n ≤ 4

In this appendix we fix p = 2 so T is the binary tree. From Chapter 5,

in particular Proposition 5.1, we know that the only groups with property

R2 are the following:

• Z = 〈σ(e, σ)〉 = {e, (σ, σ), σ(e, σ), σ(σ, e)};
• L = 〈σ(e, e), σ(σ, σ)〉 = {e, (σ, σ), σ(e, e), σ(σ, σ)};
• Aut(T2).

Tables B.1, B.2 and B.3 list one representative from each conjugacy class

of groups with property R3, following Proposition 3.10 to choose represen-

tatives that contain sufficient rigid automorphisms. For clarity we split the

groups into the three cases enumerated above, according to G[2]. For each

group G with property R3 we also state the number of conjugacy classes of

groups with property R4(G) (in the |E4(G)| column).

Since p = 2, by Proposition 3.23 all these groups are 2-groups and hence

|G| is a power of 2. For simplicity we give log2 |G| rather than |G| in the

tables below. Recall that ]G means the (minimal) size of a generating set

for G.

We use σ to denote the element of Aut(Tn) (where n is clear from context)

that transposes the vertices 0 and 1 and σ|0 = σ|1 = e.

log2 |G| ]G generators |E4(G)| notes

4 2 σ(e, σ(e, σ)), (e, (σ, σ)) 4 M(Z)

3 1 σ(e, σ(e, σ)) 2 Z3

Table B.1. Groups below Z
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log2 |G| ]G generators |E4(G)| notes

4 3 σ, (σ, σ), (e, (σ, σ)) 18 M(L)

3 2 σ, (σ, σ(σ, σ)) 1

3 2 σ(e, (σ, σ)), (σ, σ) 3 abelian

3 3 σ, (σ, σ), ((σ, σ), (σ, σ)) 5 L3

Table B.2. Groups below L

log2 |G| ]G generators |E4(G)| notes

7 3 σ, (e, σ), (e, (e, σ)) 29 Aut(T3)

6 3 σ, (σ, σ), (e, σ(e, σ)) 9 〈Z3,L3〉
6 3 σ, (e, σ), ((e, σ), (e, σ)) 24

6 2 σ(e, (e, σ)), (e, σ(e, σ)) 1

6 2 σ(e, (e, σ)), (e, σ) 1 Basilica

5 3 σ(e, σ(e, σ)), ((e, σ), σ), (e, (σ, σ)) 6

5 2 σ, ((e, σ), σ(e, σ)) 11 Lamplighter

4 2 σ(e, σ(e, σ)), ((e, σ), σ) 1

4 2 σ(e, σ(e, σ)), ((σ, e), σ) 3 D∞

Table B.3. Groups below Aut(T2)
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