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The shell lemma Applications

Let X be a locally compact Hausdorff topological space and
write CO(X ) for the set of compact open subsets of X .
Suppose that X is zero-dimensional, meaning that CO(X )
forms a base for the topology.

Let S ⊆ Homeo(X ), such that idX ∈ S, S = S−1 and
{sU | s ∈ S} is finite for every U ∈ CO(X ). Let Sn be the set of
products of at most n elements of S, and let G = S∞ = 〈S〉.

Fix some U ∈ CO(X ). Write U0 = U;

for n ∈ (0,+∞], Un =
⋂

g∈Sn gU.
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We think of U as partitioned into a ‘core’ U+∞ (compact, but not
necessarily open) and a sequence of ‘shells’ Wn := Un \ Un+1
indexed by the integers (each of which is compact and open).

Lemma

(i) There exists a ≥ 0 such that Ua = U∞ and Wm is
nonempty exactly when m ∈ [0,a).

(ii) Every G-orbit intersecting Un \ U+∞ also intersects Wm for
all m ∈ [0,n].

(iii) There is a G-orbit Gx that intersects all of the nonempty
shells.
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Proof

(i) Suppose for some a ≥ 0 that Wa = ∅, i.e. Ua = Ua+1, and
let m ≥ 0. Then

Ua+m =
⋂

g∈Sm

gUa =
⋂

g∈Sm

gUa+1 = Ua+m+1.

(ii) Let x ∈ Un \ U+∞. Then x ∈Wn′ for some n′ ≥ n, and
hence there exists g ∈ S such that gx 6∈ Un′ (otherwise we
would have x ∈ Un′+1), but gx ∈ Un′−1 (since x ∈ Un′).
Thus gx ∈Wn′−1. Repeat to get images of x in Wm for all
0 ≤ m ≤ n′.
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(iii) Define Pn = (
⋃

g∈Sn g−1Un) \ U1. Then Pn is a compact
subset of U. Let I be the set of n > 0 such that Wn 6= ∅.
Given part (ii) it is enough to show

⋂
n∈I Pn 6= ∅.

Suppose x ∈ Pn. Then ∃g ∈ S,h ∈ Sn−1 : ghx ∈ Un, so
hx ∈ Un−1 and hence x ∈ Pn−1. Thus (Pn)n∈I is a
descending sequence.

Suppose
⋂

n∈I Pn = ∅. Then by compactness Pn = ∅ for
some n ∈ I, that is, g−1Un ⊆ U1 for all g ∈ Sn. But then
Un ⊆

⋂
g∈Sn gU1 = Un+1, so Wn = ∅, contradicting the

choice of n.
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Alternative incarnation of (iii) (think of G = X acting by
conjugation on itself, and U a vertex stabilizer):

Lemma/Corollary
Let Γ be a connected locally finite graph and let G be a closed
vertex-transitive group of automorphisms of Γ. Then exactly
one of the following holds:

(i) There is a finite set v1, . . . , vn of vertices, such that⋂n
i=1 Gvi = {1}.

(ii) There is a horoball H in Γ, such that the pointwise fixator of
H in G is nontrivial.

Here we define a horoball to be a set of the form
{v ∈ V Γ : ∃n : d(v , vn) ≤ n}, where (vn)n≥0 is a set of vertices
forming a geodesic ray.
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Hypotheses: Let X be a locally compact zero-dimensional
space, S ⊆ Homeo(X ) such that S = S−1 and {sU | s ∈ S} is
finite for every U ∈ CO(X ), and G = 〈S〉.

Theorem (Auslander–Glasner–Weiss; R.)
Let U ∈ CO(X ) and write U+∞ =

⋂
g∈G gU. Then the following

are equivalent:
(i) Given x ∈ U and y ∈ U+∞ such that y ∈ Gx , then x ∈ Gy .
(ii) For all V ∈ CO(U), there is a finite subset F of G such that

V+∞ =
⋂

g∈F gV .
(iii) U+∞ is open and there is a G-invariant quotient map

φ : U+∞ → Y , such that G acts trivially on Y and minimally
on each fibre of φ.
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Distal action: if (gix ,giy)→ (z, z) as i →∞, then x = y .
In particular, if Gy is compact and y ∈ Gx , then Gx = Gy .

Corollary
Suppose that G acts distally on X and that every orbit has
compact closure. Then {gV | g ∈ G} is finite for every
V ∈ CO(X ). In particular, the action of G is equicontinuous.

(If X is the Cantor set, then G ≤ Homeo(X ) acts
equicontinuously if and only if there is a compatible G-invariant
metric on X , or equivalently X is the boundary of some locally
finite rooted tree on which G acts by automorphisms.)
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A locally compact group G is distal (as a topological group) if it
acts distally on itself by conjugation; equivalently, no conjugacy
class of G accumulates at the identity. For example: nilpotent
groups; discrete groups; compact groups; any residually distal
group is distal.
t.d.l.c. group = “totally disconnected locally compact group”.
T.d.l.c. groups are zero-dimensional; in fact the cosets of
compact open subgroups form a base for the topology (Van
Dantzig).

Corollary (Willis; Caprace–Monod; R.)
Let G be a compactly generated t.d.l.c. group. Then G is distal
if and only if the cosets of open normal subgroups of G form a
base for the topology.

Colin Reid University of Newcastle, Australia

Group actions on zero-dimensional spaces



The shell lemma Applications

A locally compact group G is distal (as a topological group) if it
acts distally on itself by conjugation; equivalently, no conjugacy
class of G accumulates at the identity. For example: nilpotent
groups; discrete groups; compact groups; any residually distal
group is distal.
t.d.l.c. group = “totally disconnected locally compact group”.
T.d.l.c. groups are zero-dimensional; in fact the cosets of
compact open subgroups form a base for the topology (Van
Dantzig).

Corollary (Willis; Caprace–Monod; R.)
Let G be a compactly generated t.d.l.c. group. Then G is distal
if and only if the cosets of open normal subgroups of G form a
base for the topology.

Colin Reid University of Newcastle, Australia

Group actions on zero-dimensional spaces



The shell lemma Applications

A locally compact group G is distal (as a topological group) if it
acts distally on itself by conjugation; equivalently, no conjugacy
class of G accumulates at the identity. For example: nilpotent
groups; discrete groups; compact groups; any residually distal
group is distal.
t.d.l.c. group = “totally disconnected locally compact group”.
T.d.l.c. groups are zero-dimensional; in fact the cosets of
compact open subgroups form a base for the topology (Van
Dantzig).

Corollary (Willis; Caprace–Monod; R.)
Let G be a compactly generated t.d.l.c. group. Then G is distal
if and only if the cosets of open normal subgroups of G form a
base for the topology.

Colin Reid University of Newcastle, Australia

Group actions on zero-dimensional spaces



The shell lemma Applications

Proposition (Caprace–Monod; R.–Wesolek)
Let G be a compactly generated t.d.l.c. group and let U be a
compact open subgroup of G.

(i) Let (Ki)i∈N be a sequence of closed normal subgroups
such that Ki → {1} as i →∞. Then for i large enough,
Ki ∩ U is normal in G.

(ii) Suppose that
⋂

g∈G gUg−1 = {1} and that G has no
nontrivial discrete normal subgroup. Then every nontrivial
closed normal subgroup of G contains a minimal one.
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Let G be a t.d.l.c. group and let H be a compactly generated
group of automorphisms of G. Write ResG(H) for the
intersection of all open H-invariant subgroups of G.

Theorem (R.)

(i) There is an H-invariant open subgroup of the form
V ResG(H) for some compact open subgroup V of G.
Moreover, ResG(H) is normal in V ResG(H).

(ii) There is no proper H-invariant open subgroup of ResG(H).
In particular, ResG(H) is discrete if and only if it is trivial.
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Let G be a group acting faithfully on a space X , and given
Y ⊆ X , write ristG(Y ) for the set of elements that fix X \ Y
pointwise. The action is micro-supported if ristG(Y ) 6= {1} for
every nonempty open Y .

Theorem (Caprace–R.–Willis)
Let G be a compactly generated t.d.l.c. group with faithful
continuous action by homeomorphisms on the Cantor set X .
Suppose that G has a compact open subgroup U, such that U
is micro-supported on X and

⋂
g∈G gUg−1 = {1}. Then there is

a partition of X into clopen sets B1, . . . ,Bn such that for every
A ∈ CO(X ) \ {∅}, there is g ∈ G and 1 ≤ i ≤ n such that
Bi ⊆ gA.
If G is topologically simple, then the action is also minimal, and
consequently G is not amenable.
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