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Part I: Cocycles on trees

Ph.D. Thesis and on going work
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Motivations: Cohomology of Groups

Let (V, π) be a linear representation of a group G:

g 7→ π(g) homomorphism into GL(V )

I The cohomology groups are important invariants of G:

H∗(G,V ), ∗ = 0, 1, 2, . . .

Cohomolgy may computed with the standard cochain complex C∗(G,V )
of all maps

f : Gn = G× · · · ×G→ V,

together with the operator d : Cn(G,V )→ Cn+1(G,V ):

(df)(g0, . . . , gn) =
∑
i

(−1)if(g0, . . . , ĝi, . . . , gn).

Naturally, d2 = 0.
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Motivations: Cohomology of Groups

We use the homogeneous complex:

Definition (Cocycles and coboundaries)

I n-cochain: f : Gn+1 → V with

f(gg0, . . . , ggn) = π(g)f(g0, . . . , gn) (homogeneity).

I n-cocycle is an n-cochain f : Gn+1 → V satisfying:

I df = 0,
I f(gg0, . . . , ggn) = π(g)f(g0, . . . , gn).

I n-coboundary is f = dc where c is an (n− 1)-cochain.

Hn(G,V ) =
{n− cocycles}

{n− coboundaries}
.
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Motivations: Cohomology of Groups

Let (V, π) be a unitary representation of a locally compact group G:

〈π(g)v, π(g)v′〉 = 〈v, v′〉.

We may ask cochains to be continuous:

I H1
c(G,V ) classifies the affine isometric actions of G on V with linear

part π up to conjugation by a translation.

Or impose a growth condition on the function

(g0, . . . , gn) 7→ ‖f(g0, . . . , gn)‖V

to obtain other cohomology theories:

I A uniform bound defines bounded cohomology H∗b(G,V )
(Gromov, Burger–Monod).

I A polynomial bound with respect to distances d(gi, gj) defines
polynomially bounded cohomology PH∗(G,V ) for G compactly
generated. (Connes–Moscovici, Ogle).
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(Polynomially) Bounded Cohomology

Bounded cohomology:

I (Johnson) Amenability of G is characterized by vanishing of
H∗b(G,V ) for a suitable family of coefficients V .

I (Gersten, Mineyev) Gromov hyperbolicity of G is characterized by
H2

b(G,V )→ H2(G,V ) being injective for a suitable family of
coefficients V .

I (Brooks) dimR H2
b(F2, V ) =∞.

I Generally hard to compute. (No example of a countable group
where H∗b(G,R) is known and non trivial.)

Polynomially bounded cohomology:

I (Connes–Moscovici) Novikov conjecture for hyperbolic groups.

I Ogle–Ji–Ramsey extended notion of B-bounded cohomology.

I Hard to compute and few examples.
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Goal

Let G be an almost-simple p-adic algebraic group, say SLn+1(Qp), and
V = St its Steinberg representation.

I V = St is irreducible, unitary, and Hn(G,St) 6= 0.

I In fact, Casselman showed Hn(G,St) = C.

I In 2003, Klingler built a natural volume cocycle volG whose class
generates Hn(G,St) = C.

Goal: Is Klingler volume cocycle volG polynomially bounded?

Problem (Monod, 2006)
‘Quasify Klingler volume cocycle in order to obtain new cohomology
classes with polynomial bounds in an appropriate coefficient module.’

8 / 25



Thibaut Dumont University of Jyväskylä 20.11.2018

Outline

Question: Is volG polynomially bounded with respect to a suitable
distance on G?

I volG is constructed geometrically in the Euclidean building X
associated to G, called the Bruhat-Tits building of G. In fact volG
is derived from a volume cocycle volX defined on X.

I When G = SL2(Qp), the building X is the (p+ 1)-regular tree Tp+1

and volX = B is the Busemann cocycle:

B(x, y)(ξ) = lim
z→ξ

d(y, z)− d(x, z)

The volume cocycle of G is then

volG(g0, g1) = B(g0x, g1x)

for some origin x ∈ X.
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Outline

General strategy:

1. volX : X × · · · ×X → St exists for (many) Euclidean buildings X.

2. volG is obtained from volX by translating the arguments of volX .

3. G is very close to X from a metric point of view.

“We may forget about G and work with X.”

The geometry of the Euclidean buildings X is rich and hopefully
sufficient to compute the norm of volX .

Blackboard: The space V = St and the norm ‖ · ‖St are particularly
delicate to compute in general: it uses a Poisson type transform
introduced by [Klingler 2004] . But the geometric nature of volX gives
the intuition of a polynomial bound.
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Results

Let X = Tq+1 be a (q+ 1)-regular thick tree with the graph metric d and
visual boundary ∂X. Let B : X ×X → St denote the Busemann cocycle.

Theorem (D. 2016)
There are constants L,K > 0 satisfying:

4d(x0, x1) ≤ ‖B(x0, x1)‖2St ≤ L · d(x0, x1) +K

Independently and in a more general setting:

Theorem (Gournay–Jolissaint, 2015)
There are constants A,B > 0 satisfying:

‖B(x0, x1)‖2St = A · d(x0, x1) +B · (q−d(x0,x1) − 1),

The method of Gournay-Jolissaint uses a discrete Laplacian and harmonic
analysis on regular trees.
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Results

Let X = Tq0+1,q1+1 be a semi-homogeneous tree and B : X ×X → St
the Busemann cocycle.

Theorem (Gournay–Jolissaint, D. 2018)
There are constants L,K > 0 satisfying:

‖B(x0, x1)‖2St ≤ L · d(x0, x1) +K

This gives a higher rank result for product of semi-homogeneous trees.

Corollary (D. 2018)
Let X be a direct product of n ≥ 2 semi-homogeneous trees and let volX
denote the volume cocycle of Klingler. There is a polynomial P of degree
n satisfying:

‖ volX(x0, . . . , xn)‖2St ≤ P (d(xi, xj)),

for all x0, . . . , xn ∈ X.
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Part II: Translation-Like Actions on LC-groups

Joint work in progress with Thibault Pillon, KU Leuven.
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(Discrete) Groups

Problem (Burnside)
Does an infinite group necessarily contain Z as a subgroup?

No. [Golod-Shafarevich 1964]

Problem (vN-Day)
Does a non-amenable group necessarily contain F2 as a subgroup?

No. [O’shanskii 1980] Tarski monsters: infinite torsion 2-generated
non-amenable.

However, there are relaxed solutions using translation-like actions:

I Geometric vN-Day: [Whyte 1999]

I Geometric Burnside: [Seward 2014]
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(Discrete) Tranlsation-Like Actions

Definition (Wobbling or Piecewise Translation)
A self bijection ϕ of a group G is piecewise translation or wobbling if
there is a finite subset T such that ϕ(x) ∈ xT for all x ∈ G.

The group of wobbling bijections is denoted W (G).

Definition (TL-action)
A translation-like action of a group Γ (e.g. Z or F2) on a group G is a
homomorphism Γ→ W (G) such that Γ acts freely on G:

∀w ∈ Γ, (ϕw(x) = x =⇒ w = e).

(No fixed point for any w 6= e.)
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(Discrete) Groups

Let G be a finitely generated group with a left-invariant word metric d
given by a Cayley graph X.

I Each left translation is an isometry for (X, d) = (G, d).

I Each right translation is at bounded distance from the identity:

d(x, xg) = `(x−1xg) = `(g), uniformly bounded in x.

W (G) is exactly the group of bijection at bounded distance from the
identity.

Theorem (Whyte, 1999)
A finitely generated group is non-amenable if and only if it admits a
translation-like action of the free group F2.

Theorem (Seward, 2014)
A finitely generated group is infinite if and only if it admits a
translation-like action of Z.
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LC-Groups

The next definition is due to F.M. Schneider [2017].

Definition (Clopen Piecewise Translation)
Let G be a locally compact group. A self bijection ϕ of G is clopen
piecewise translation if there exists a finite subset T such that:

I ϕ(x) ∈ xT for all x ∈ G,

I Pt = {x | ϕ(x) = xt} is clopen for all t ∈ T .

The group of clopen piecewise translation bijections is denoted C (G).

Definition (Clopen TL-action)
A clopen translation-like action of a group Γ (e.g. Z or F2) on a
group G is a homomorphism Γ→ C (G) such that Γ acts freely on G
with a measurable (strict) fundamental domain.
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LC-Groups

Morally:

I Translation-like actions generalize the existence of certain subgroups:
e.g. Z, F2, etc.

I Clopen translation-like actions generalizes the existence of certain
discrete subgroups.

In a connected LC-group, a clopen piecewise translation is just a right
translation.
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LC-Groups

Theorem (Schneider, 2017)
A locally compact group is (topologically) non-amenable if and only if it
admits a clopen translation-like action of F2.

Theorem (D.-Pillon, 2018)
A compactly generated, locally compact group is non-compact if and
only if it admits a clopen translation-like action of Z.

Both rely on the connected case:

Theorem (Rickert, 1967)
A(n almost)-connected LC-group is (topologically) non-amenable if and
only if it has a discrete subgroup isomorphic to F2.

Theorem (?)
A(n almost)-connected CGLC-group is non-compact if and only if it has a
discrete subgroup isomorphic to Z.

[Gaillard/Karai mathoverflow]
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Proof:

Let G be a CGLC-group. Since any ϕ ∈ C (G) preserves a right Haar
measure µ:

Z y G clopen TL-action =⇒ µ(G) =∞ ⇐⇒ G non-compact.

The converse is the interesting part. Suppose G non-compact. If we get
a discrete Z, we may reduce the structure of G.

I We may assume G is unimodular, otherwise it has a discrete Z.

I The connected case implies G has a discrete Z or a compact open
subgroup. Thus assume G has a Cayley-Abels graph X.

I If X has finitely many ends (1 or 2), Seward’s theorem implies that
Z y X translation-like. We can lift the action thanks to
unimodularity.

I If X has infinitely many ends, by Stalling’s Theorem for LC-group
[Abels, Cornulier], G has a discrete F2, hence a discrete Z.
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An Obstruction: Local Ellipticity

Given a clopen piecewise translation ϕ ∈ C (G) on a LC-group G.

I The orbits of ϕ are contained in the left cosets of a finitely
generated subgroup 〈T 〉.

Definition (Platonov 1966)
An LC-group G is locally elliptic if every compact subset is contained in
a compact subgroup of G.

For G discrete, we say locally finite: every finitely generated subgroup is
finite. There exist infinite locally finite groups (Hall’s universal group).

I For CGLC-group, locally ellipticity ⇐⇒ compact.

I For σ-compact LC-group, G locally elliptic ⇐⇒ asdim(G, d) = 0,
for some adapted pseudo-metric, [Cornulier–de la Harpe].

I As Schneider observes, for a (discrete) group G:
∃Z y G TL ⇐⇒ G not locally finite ⇐⇒ asdim(G) > 0.

I For general LC-groups, we don’t know at the moment.
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An Obstruction: Local Ellipticity

We are left with the questions:

I Are there LC-groups that admits no clopen translation-like actions of
Z? (Necessarily non-discrete.)

I Locally elliptic?

I TDLC?
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Thank you!
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