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We use the convention that automorphisms must preserve vertex
labels.



Recall from the last talk

Let A be an n× n adjacency matrix with m non-zero entries. Then
there are m types of quasi-label-regular rooted trees that obey this
adjacency matrix except at the root which is missing a single
neighbour.

We can create a m ×m matrix M which describes what rooted
trees remain after removing the root of each type of rooted tree.

The directed graph associated with this matrix is X (M).



Recall from long ago?

The automorphism group of a rooted tree, T , where each vertex
has the same number of children, say d , is an iterated wreath
product.

Aut(T ) ∼= Aut(T ) o Sd , where Sd is the symmetry group on the d
children,

and so Aut(T ) ∼= . . . o Sd o Sd = o∞i=1Sd .

Also, Aut(T ) is transitive on the boundary of T , ΩT .



In this talk

Let i \ j be a rooted tree with adjacency matrix A. We investigate:

I When is Aut(i \ j) trivial?

I When is Aut(i \ j) an infinitely iterated wreath product of
finite groups?

I When Aut(i \ j) isn’t an infinitely iterated wreath product of
finite groups, how many other Aut groups of rooted trees do
we need in order to describe Aut(i \ j)?



Trivial automorphism group

If the children of every vertex have a different label then nothing
can be permuted!
Aut(i \ j) = {1} for all i \ j ∈ PA.

A =

1 1 1
1 1 1
1 1 1

 ,M =



0 0 0 1 0 0 1 0 0

1 0 0 0 0 0 1 0 0

1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 1 0

0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1

0 0 1 0 0 0 0 0 1

0 0 1 0 0 1 0 0 0





X (M)

vf
1 \ 1

vf1 \ 2

vf1 \ 3

vf
2 \ 1

vf
2 \ 2

vf2 \ 4
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vf
3 \ 2

vf3 \ 3



A rooted tree has trivial automorphism group when A is binary (0s
and 1s only) or A only contains 0s, 1s, and 2s, but whenever there
is a 2 in a row it is the only non-zero entry in that row.

e.g. A =


0 2 0 0
1 1 1 1
0 1 0 1
0 1 1 1





Non-trivial automorphism group

If there are i , j , k such that aij = 2 and aik > 0 for k 6= j , or, there
is an entry say aij ≥ 3 then the automorphism group of each
rooted tree present in A is non-trivial.

Note: this is still true when A is not well mixed since i \ k and j \ i
must be in the sink.



Transitive?

Aut(i \ j) is not necessarily transitive on ΩT .

Since we have to fix the root, an automorphism of i \ j can only
map e1 ∈ ΩT to e2 ∈ ΩT if there are rays r1 ∈ [e1], r2 ∈ [e2] that
both start at the root and have the same labels as each other
along the entire ray. r1 ∩ r2 could be just the root, a finite path or
infinite (if e1 = e2).

Note, the condition that the rays start at the root is necessary.

If we followed these rays on X (M) they would start at the root and
have the same trajectory forever (if we count multiple edges as
single weighted edges).



One level at a time

We can describe the automorphism group of a rooted tree of type
i \ j in terms of the children of the root and the rooted trees
identified with those children:

Aut(i\j) =


Aut(j \ i) o Saij−1 ×

∏
aik>0,k 6=j

Aut(k \ i) o Saik if aij ≥ 2∏
aik>0,k 6=j

Aut(k \ i) o Saik if aij = 1.

WM For well-mixed A: The automorphism group of each rooted
tree is built out of the m automorphism groups.

NWM For not well-mixed A: The automorphism group of each
rooted tree of source type is built out of the m automorphism
groups. The automorphism group of each rooted tree of sink
type is built out of the m

2 automorphism groups of the sink
type trees.
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Good wreath?

If i \ j has a finite fundamental domain/block/region (that
preserves ‘root-end’ orientation), then we can describe Aut(i \ j) as
an iterated wreath product of a finite permutation group. Do all
quasi-label-regular rooted trees have a finite fundamental domain?

For a given A, are there some rooted trees where this is possible
and others where it isn’t?

For a given A, is there some minimal subset of trees B ⊂ PA, such
that the automorphism group of every rooted tree in PA can be
written in terms of the automorphism groups of the trees in B?
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All with finite fundamental domain

A = ( 0 3
4 0 )

All cycles in X (M) go through all vertices.

Aut(1 \ 2) ∼= Aut(1 \ 2) o S3 o S2 ∼= . . . o S3 o S2 o S3 o S2
Aut(2 \ 1) ∼= Aut(2 \ 1) o S2 o S3 ∼= . . . o S2 o S3 o S2 o S3
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Finite fundamental domain

A = ( 2 1
2 1 )

Note there is a loop on 1 \ 1. There are no 1 \ 1-avoiding cycles
(but there are cycles that avoid 1 \ 2, 2 \ 1 or 2 \ 2).

Aut(∂FFD) ∼= {1} × S2 × (S2 o S2),
Aut(1\1) ∼= . . .o∂FFDAut(∂FFD) ∼= (. . .o∂FFD(1\1){1}×S2×(S2oS2))
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Infinite fundamental domain - infinite number of escapees -
lucky

A = ( 2 1
2 1 )

Fundamental domain is infinite with an infinite number of
annoying rays. However, we can describe 2 \ 2 in terms four 1 \ 1s
and an S2 o S2, and luckily 1 \ 1 has a finite fundamental domain.
Aut(2 \ 2) ∼= (. . . o∂FFD(1\1) {1} × S2 × (S2 o S2)) o S2 o S2



Infinite fundamental domain - 2 escapees - lucky

A = ( 2 1
2 1 )

There is a trajectory that starts at 1 \ 2 and never returns which
has weight 2. The cycle part has weight 1. 2 annoying ends.
Aut(1\2) ∼= Aut(1\1) oS2 ∼= (. . . o∂FFD(1\1) {1}×S2× (S2 oS2)) oS2
(from earlier)



Infinite fundamental domain - 6 escapees - lucky

A = ( 2 1
2 1 )

There are two trajectories that start at 2 \ 1 and never return. One
has weight two and the other has weight 4. The cycle part has
weight 1. 6 annoying ends.



Infinite fundamental domain - 6 escapees - lucky

A = ( 2 1
2 1 )

Aut(2 \ 1) ∼= o∂IFD(S2 × (S2 o S2))?
Aut(2 \ 1) ∼= Aut(1 \ 1) o (s2 × (S2 o S2)) ∼=
(. . . o∂FFD(1\1) {1} × S2 × (S2 o S2)) o (S2 × (S2 o S2))



Infinite fundamental domain- 2 escapees - lucky

A = ( 1 2
1 1 )

There is one trajectory that starts at 1 \ 1 and never returns. It has
weight 2. The cycle part has weight 1. 2 annoying ends.
Aut(1 \ 1) ∼= (Aut(1 \ 1)×{1}) oS2 ∼= . . . (S2×{1}) o (S2×{1}) oS2
or Aut(1 \ 1) ∼= Aut(1 \ 2) o S2 ∼= (. . . o∂FFD(1\2) (S2 × {1})) o S2



Infinite fundamental domain - 2 escapees - unlucky

A =

(
0 2 1 1
2 0 0 0
2 0 0 0
2 0 0 0

)

Two trajectories from 1 \ 2 with weight 1 that never return. 2
annoying ends which can’t be permuted.



Infinite fundamental domain - 2 escapees - unlucky

A =

(
0 2 1 1
2 0 0 0
2 0 0 0
2 0 0 0

)

No single vertex removal destroys all cycles in X (M). Would need
to remove e.g. 1 \ 2 and 1 \ 3 and say
Aut(1 \ 2) ∼= Aut(1 \ 2)×Aut(1 \ 3)× (Aut(1 \ 2) oS2)×Aut(1 \ 3),
Aut(1 \ 3) ∼= (Aut(1 \ 2) o S2)× (Aut(1 \ 2) o S2)× Aut(1 \ 3).



Infinite fundamental domain - infinite number of escapees

A = ( 2 2
1 2 )

Note there are loops on 1 \ 1 and 2 \ 2. One of the basic
1 \ 1-avoiding cycles has a weight of 2 and so there are an infinite
number of annoying ends. Would need to remove 1 \ 1 and 2 \ 2.
Aut(1 \ 1) ∼= Aut(1 \ 1)× (Aut(2 \ 2) o S2 o S2)
Aut(2 \ 2) ∼= (Aut(1 \ 1) o S2)× (Aut(2 \ 2) o S2)× (Aut(1 \ 1) o
S2)× (Aut(2 \ 2) o S2)× Aut(2 \ 2)



Other examples?

Can you have an infinite number of escapees per fundamental
domain but none can be permuted? - I don’t think so.

Can we have only one escapee per fundamental domain? - I don’t
think so.



Finite fundamental domain (i \ j in terms of i \ j) iff all infinite
paths in X (M) starting at i \ j revisit i \ j iff (when ‖A‖∞ > 2)
i \ j is almost isomorphic to the forest of some number of i \ js.

In the well-mixed case, this means all cycles in X (M) pass through
i \ j . Delete the i \ j row and column from M (this is like deleting
the vertex i \ j from X (M)) and take higher and higher powers of
this modified matrix, M ′, if this converges to 0 (M ′ is nilpotent,
i.e. all eigenvalues are 0) then there are no i \ j-avoiding cycles in
X (M) and no annoying rays in i \ j and so there is a finite
fundamental domain of i \ j .

In not well-mixed case with ‖A‖∞ > 2, this means finite
fundamental domain iff i \ j is in the sink. In the case that
‖A‖∞ = 2 then i \ j always has finite fundamental domain (but we
aren’t interested since the aut group of i \ j will be trivial).



We can write Aut(i \ j) as a finite group wreath an infinitely
iterated wreath product of a different finite group when we can
write i \ j in terms of k \ l , that is, when i \ j is almost isomorphic
to a forest of some number of k \ l . This happens when all infinite
paths in X (M) starting at i \ j pass through k \ l (there are no
k \ l-avoiding paths). For the well-mixed case this means if k \ l
has a finite fundamental domain then Aut(i \ j) will be a finite
group (the automorphism group of the ‘cap’ of i \ j) wreath an
infinitely iterated wreath product of a different finite group
(Aut(k \ l)). For the not well-mixed case this means both are in
the sink (but then both have finite fundamental domain anyway).



A subgroup of Aut(Td ,r)?

Let the finite fundamental block of k \ l have d children. Imagine
shrinking each finite fundamental block into a single vertex, then
the tree k \ l would be a rooted tree Td where each vertex has d
children but only certain permutations of those children would be
possible (those that are allowed by the automorphism group of the
finite fundamental block). Therefore, Aut(k \ l) is related to a
subgroup of Aut(Td). Also, Aut(i \ j) is related to a subgroup of
Aut(Td ,r ) (the rooted tree, where the root has r children and every
other vertex has d children). What can be said when we don’t
have this?



Extreme examples

When there is only one cycle in X (M), all the cycles pass through
all the vertices and so every i \ j has a finite fundamental domain.

When Aii ≥ 2, i \ i in X (M) has a loop. And so every other tree
will fail to have a finite fundamental domain (i \ i may have one
though). If the main diagonal of A is filled with entries greater
than or equal to 2, then no rooted trees will have a finite
fundamental domain.



Level-homogeneous trees

Level-homogeneous trees are present in A iff there is a cycle of
level-homogeneous trees in X (M) that you get ‘stuck’ in. This is
only possible if either A is not well-mixed and this cycle is the sink,
or ‖A‖∞ = 2, or ‖A‖∞ is well mixed and there is only one cycle in
X (M):

These include the regular and semi-regular trees as well as trees
that look like these with subdivisions of edges done in a symmetric

fashion, e.g. A =

0 3 0
1 0 1
0 3 0

, but you could also split each edge

in a regular tree into 2k edges for any k ∈ N by adding 2k − 1
more vertices, so that labelling along these edges in symmetric
about the middle vertex.



Are there examples of every cycle passes through a certain vertex
in X (M) but more than one cycle exists?



To answer “For a given A, is there some set of trees B ( PA, such
that the automorphism group of every tree in PA can be written in
terms of the automorphism groups of the trees in B?”

Need to talk about the period of an irreducible matrix. m/p is the
size of each block, choose all vertices in any block and these will
destroy all cycles. This doesn’t help when M has period 1. What
else can be said?
To delete vertices, in general the question is NP-complete
https://en.wikipedia.org/wiki/Feedback_vertex_set

https://en.wikipedia.org/wiki/Feedback_vertex_set


A =

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

)
. To break all cycles you can delete

{1 \ 2, 3 \ 2, 1 \ 4, 3 \ 4}. The period here is 1 (primitive).



Normal Subgroups?

Subgroup that only permute children of a certain label or labels
(level at a time starting at the top)

Subgroups that only permute down to a certain level

Subgroups that only use certain subgroups of the symmetry group
for each label.

Level-stabilisers and rigid-stabilisers (could also have restricition on
permuting labels or subgroup of symmetry group of each label etc)



The automorphism group of a forest needs to account for
permuting trees of the same type.

If Fx is a forest with forest vector x then

Aut(Fx) ∼=
∏

{i\j∈PA: xi\j 6=0}

Aut(i \ j) o Sxi\j


