
Computably t.d.l.c. groups

André Nies

Joint work with Alexander Melnikov

Conference on computational aspects of t.d.l.c. groups,

Newcastle, Australia, October 2022

1 / 62

The main questions

(A) How can one define a computable presentation of a t.d.l.c.

group? Which t.d.l.c. groups have such a presentation?

(B) Given a computable presentation of a t.d.l.c. group, are

objects such as the rational valued Haar measures, the

modular function, or the scale function computable?

(C) Do constructions that lead from t.d.l.c. groups to new t.d.l.c.

groups have algorithmic versions?

(D) When is a computable presentation of a t.d.l.c. group unique

up to computable isomorphism?

2 / 62

Talk 1 mainly addresses Question A

We will introduce two notions of computable presentation of a

t.d.l.c. group G, and show their equivalence.

The first notion relies on standard notions of computability in the

uncountable setting.

The second notion restricts computation to a countable structure

of approximations of the elements, the “meet groupoid” of compact

open cosets.

Based on these, we obtain various examples of computably t.d.l.c.

groups.

The first talk also outlines some computability theoretic notions

needed.

3 / 62

Talk 2 mainly addresses Question B-D

We show that given a computable presentation of a t.d.l.c.

group G, the modular function and the Cayley-Abels graphs

(in the compactly generated case) are computable.

We discuss algorithmic properties of the scale function on G, but

leave open whether it can be non-computable.

We explain why the class of computably t.d.l.c. groups is closed

under most of the constructions studied by Wesolek (2015).

We will give a criterion based on meet groupoids when the

computable presentation is unique up to computable isomorphism.

4 / 62

Examples of computably t.d.l.c. groups

All computable profinite groups and all computable discrete

groups

(Qp,+), the additive group of p-adic numbers for a prime p

The semidirect product Z nQp where g ∈ Z acts as x 7→ xp

on Qp

The groups SLn(Qp) for n ≥ 2

Aut(Td), the automorphisms of a homogeneous undirected tree

of degree d.

By convention, all t.d.l.c. groups will be separable and infinite.

5 / 62

Computable functions
Picture of a Turing machine with one tape:

finite
control

...
tape

read-write head

1 0 0 11 1

Definition

Given a set S ⊆ Nk, where k ≥ 1, a function f : S → N is called

computable if there is a Turing machine that on inputs n1, . . . , nk
decides whether the tuple of inputs (n1, . . . , nk) is in S, and if so

outputs f(n1, . . . , nk).

One version of the Church-Turing thesis states that computability

in this sense is the same as being computable by some algorithm.
6 / 62

Computable structures: the countable case

A structure in the model theoretic sense consists of a nonempty

set D, called the domain, with relations and functions defined on it.

Definition (Mal’cev and Rabin independently, 1960s)

A computable structure is a structure such that the domain is

a computable set D ⊆ N, and the functions and relations of

the structure are computable.

A countable structure S is called computably presentable if

some computable structure W is isomorphic to it. In this

context we call W a computable copy of S.

7 / 62

Example

For each k ≥ 1, the group GLk(Q) is computably presentable.

To obtain a computable copy:

fix an algorithmic encoding of the rational k × k matrices by

natural numbers

let the domain D be the computable set of numbers that

encode a matrix with nonzero determinant.

The matrix operations are computable.

8 / 62

Computable structures: the uncountable case

computable analysis represent all the elements by “names”

Let N∗ denote the tree of strings with natural number entries.

Names usually are elements of the set [T] of paths on some

computable subtree T of N∗.
For instance, as a name for a real number r, take a path

coding a sequence of rationals 〈qn〉n∈N such that

∀n |qn − qn+1| ≤ 2−n and limn qn = r.

Such names are directly accessible to computation of Turing

machines with tapes that hold the infinite inputs.

One can now define computability of functions and relations

on [T]: one requires that they are computable on the names.

E.g. exp: R→ R is computable.

9 / 62

Ad hoc ways to define computability for some

uncountable structures

The following sometimes works for particular classes of

uncountable structures: impose algorithmic constraints on the

definition of the class.

An example is the definition of when a profinite group G is

computable, due to Smith and la Roche (two papers from 1981):

G = lim←−i(Ai, ψi)

for a computable diagram (Ai, ψi)i∈N of finite groups and

epimorphisms ψi : Ai → Ai−1 (i > 0).

10 / 62

Computable presentations of t.d.l.c. groups

We aim at a robust definition of the class of t.d.l.c. groups

with a computable presentation.

We ask that our definition extend the existing definitions for

discrete, and for profinite groups.

We want this class to have good algorithmic closure properties.

We provide two types of computable presentations, which will turn

out to be equivalent in the sense that from a presentation of one

type one can construct a presentation of the other type.

11 / 62

1. Computable Baire presentations

Each totally disconnected Polish space is homeomorphic to the set

of paths [T] for some subtree T of N∗ (the tree of strings with

natural number entries). So there is no need to distinguish between

names and objects in our setting.

For a computable Baire presentation,

the domain of G equals [T] for what we call an effectively

σ-compact subtree of N∗

the operations are computable in the sense of Turing machines

holding the infinite inputs on tapes of which the content keeps

unchanged during the computation.

12 / 62

2. Computable presentations via a meet groupoid

We introduce an algebraic structure W(G) on the countable

set of compact open cosets in G, together with ∅.
This structure is a partially ordered groupoid, with the usual

set inclusion, and multiplication of a left coset of a subgroup

U with a right coset of U (which is a coset).

The intersection of two compact open cosets is such a coset

itself, unless it is empty, so we have a meet semilattice.

A computable presentation of G via meet groupoids is a

computable copy of the meet groupoid of G such that the index

function on compact open subgroups, namely U, V 7→ |U : U ∩ V |,
is also computable.

13 / 62

Section 2:

Computability on paths of rooted trees

14 / 62

Strings of natural numbers

Let N∗ denote the set of strings with natural numbers as

entries. We use letters σ, τ, ρ etc. for elements of N∗.

The set N∗ can be seen as a directed tree:

the empty string is the root, and

the successor relation is given by appending a number at the

end of a string.

σ � τ denotes that σ is an initial segment of τ .

can identify finite strings of length n with partial functions on

N having domain {0, . . . , n− 1}.

15 / 62

Some notation for rooted trees

By a (directed) tree we mean a nonempty subset T of N∗ such

that σ ∈ T and ρ ≺ σ implies ρ ∈ T .

By [T] one denotes the set of paths of a tree T .

If T has no leaves, [T] is a closed set in Baire space NN

equipped with the usual product topology.

For σ ∈ T let

[σ]T = {X ∈ [T] : σ ≺ X}.
That is, [σ]T is the cone of paths on T that extend σ.

16 / 62

Computable functions on [T]
Let T ⊆ N∗ be a computable rooted tree without leaves.

Definition

A function Φ : [T]×N→ N is computable if there is a Turing

machine that when it has the list of the values

f(0), f(1), f(2), . . . written on the read-only tape and w on

some other tape, it can determine the value Φ(f, w).

A function Φ: [T]→ [N∗] is computable if the function

Φ̃ : [T]× N→ N given by Φ̃(g, n) = Φ(g)(n) is computable.

In a similar way, define that Φ: [T]× [S]→ [N∗] is

computable, using a TM with two read-only tapes.

17 / 62

Example

Let T = N∗. The function Φ : [T]× N→ N with

Φ(f, w) =
∑w

i=0 f(i) is computable.

Proof.

The oracle TM with f written on the read-only tape queries the

values of f(i) for i = 0, . . . , w one by one and adds them up.

Fact

Φ is computable ⇒ Φ is continuous.

So e.g. the function f 7→ min(rangef) is not computable.

18 / 62

(2.3) Computably σ-compact (c.s.c.) trees

Definition (computably σ-compact trees)

Let T be a computable subtree of N∗ without leaves such that

only the root can have infinitely many successors.

We say that T is computably σ-compact, or c.s.c. for short, if

there is a computable binary function H such that, if ρ ∈ T is

a nonempty string, then

ρ(i) ≤ H(ρ(0), i) for each i < |ρ|.

19 / 62

Section 3:

Defining computably t.d.l.c. groups

via Baire presentations

20 / 62

Computable Baire presentation

Definition (3.1)

A computable Baire presentation is a t.d.l.c. group of the form

H = ([T],Mult, Inv) where

1 T is computably σ-compact as defined in 2.3;

2 Mult : [T]× [T]→ [T] and Inv : [T]→ [T] are computable.

We say that a t.d.l.c. group G is computably t.d.l.c. (via a Baire

presentation) if G ∼= H for such a group H.

Such a definitions works for t.d.l.c. algebraic structures in general.

21 / 62

Dependency of definitions

Computable tree T ⊆ N∗ with no leaves

ss
**

c.s.c. tree T

**

comp. functions on [T]

uu

computable Baire presentation of G

22 / 62

The ring Qp has a computable Baire presentation
Let Q be the tree of strings σ ∈ N∗ such that

all entries, except possibly the first, are among {0, . . . , p− 1},
r0 6� σ for each r > 0.

A string rσ ∈ Q denotes the rational p−rnσ ∈ Z[1/p], where nσ is

the number which has σ as a p-ary expansion, written in reverse

order:

nσ =
∑

i<|σ| p
iσ(i).

For instance, let p = 3; then

(3, 1, 0, 2) denotes the rational 3−3 · (1 + 2 · 9) = 19/27.

We allow the case that σ ends in 0. The condition that r0 6� σ for

each r > 0 says that p does not divide nσ.
23 / 62

Addition and multiplication on Qp are

computable

For the addition operation, consider an oracle Turing machine

with two oracle tapes starting with notations rσ and sτ of

numbers p−rm and p−sn, where |σ|+ r − s = |τ |.
Then p−rm+ p−sn = p−s(ps−rm+ n).

The machine can output a string denoting p−rm+ p−sn.

A similar argument works for multiplication.

24 / 62

Given a computable subtree S of a c.s.c. tree T , when can we get

rid of the leaves but keep the same paths?

Proposition (3.2)

Let T be a c.s.c. tree. Let S be a computable subtree of T .

Suppose that there is a uniformly computable dense sequence

(fi)i∈N in [S].

Then the tree S̃ = {σ : [σ]S 6= ∅} is decidable.

It follows that S̃ is c.s.c. Of course, [S̃] = [S].

25 / 62

Computable Baire presentation of SLn(Qp)
The presentation is based on the computable tree

T = {σ : ∀i < n2 [σi ∈ Q]},
where σi is the string of entries of σ in positions of the form

kn2 + i for some k ∈ N.

The determinant function [T]→ Qp is computable.

It is easy to show that there is a computable subtree S of T

such that paths on S denote matrices with determinant 1.

SLn(Z[1/p]) is dense in SLn(Qp).

The paths on S corresponding to matrices in SLn(Z[1/p]) are

precisely the ones that are 0 from some point on. Clearly there is a

computable listing (fi)i∈N of these paths.

So we can use Prop 3.2 to get rid of the leaves, and so to turn S

into a computably σ-compact tree S̃ with [S̃] = [S]. 26 / 62

Section 4:

Defining computably t.d.l.c. groups

via meet groupoids

27 / 62

Axioms for groupoids
Intuitively, the notion of a groupoid generalizes the notion of a

group by allowing that the binary operation is partial. A groupoid

is given by a domain W on which a unary operation (.)−1 and a

partial binary operation, denoted by “·”, are defined. These

operations satisfy the following conditions:

(a) associativity in the sense that (A ·B) · C = A · (B · C), with

either both sides or no side defined (and so the parentheses

can be omitted);

(b) A · A−1 and A−1 · A are always defined;

(c) if A ·B is defined then A ·B ·B−1 = A and A−1 · A ·B = B.

Category view: a groupoid is a small category in which each

morphism has an inverse.

A : U → V means that U, V are idempotent, and A = UA = AV .
28 / 62

Axioms for meet groupoids
Definition

A meet groupoid is a groupoid (W , ·, (.)−1) that is also a meet

semilattice (W ,∩, ∅) of which ∅ is the least element.

Writing A ⊆ B ⇐⇒ A ∩B = A,it satisfies the conditions

(d) ∅−1 = ∅ = ∅ · ∅, and ∅ · A and A · ∅ are undefined for each

A 6= ∅,
(e) if U, V are idempotents such that U, V 6= ∅, then U ∩ V 6= ∅,
(f) A ⊆ B ⇐⇒ A−1 ⊆ B−1, and

(g) if Ai ·Bi are defined (i = 0, 1) and A0 ∩ A1 6= ∅ 6= B0 ∩B1,

then

(A0 ∩ A1) · (B0 ∩B1) = A0 ·B0 ∩ A1 ·B1.

(g) implies that if U and V are idempotent, then so is U ∩ V .
29 / 62

The meet groupoid of a t.d.l.c. group
Definition

Let G be a t.d.l.c. group. We define a meet groupoid W(G).

Its domain consists of the compact open cosets in G, as well as

the empty set.

We define A ·B to be the usual product AB in case that

A = B = ∅, or A is a left coset of a subgroup V and B is a

right coset of V ;

otherwise A ·B is undefined.

We will use the usual group theoretic terminology for elements of

an abstract meet groupoid W .

If U is an idempotent of W we call U a subgroup

if AU = A we call A a left coset of U

if UB = B we call B a right coset of U .
30 / 62

Where the approximation structures come from

The idea to study appropriate Polish groups via an algebraic

structure on their open cosets is due to Katrin Tent, and first

appeared in Kechris, N. and Tent, 2018. This idea was further

elaborated in a 2021 paper by Nies, Schlicht and Tent on the

complexity of the isomorphism problem for oligomorphic groups.

In both works, approximation structures are used that are given by

the ternary relation “AB ⊆ C”, where A,B,C are certain open

cosets. They are called “coarse groups”.

In the present work, it will be important that we have explicit

access to the combination of the groupoid and the meet semilattice

structures (which coarse groups don’t provide). Coarse groups are

too “coarse” an algebraic structure to analyse algorithmic aspects

of t.d.l.c. groups.

31 / 62

Computably t.d.l.c. groups via meet groupoids
A meet groupoid W is called Haar computable if

(a) its domain is a computable subset D of N;

(b) the groupoid and meet operations are computable; in

particular, the relation {〈x, y〉 : x, y ∈ S ∧ x · y is defined} is

computable;

(c) the partial function with domain contained in D ×D sending

a pair of subgroups U, V ∈ W to |U : U ∩ V | is computable.

Definition (Computably t.d.l.c. groups via meet groupoids)

Let G be a t.d.l.c. group. We say that G is computably t.d.l.c. via

a meet groupoid if W(G) has a Haar computable copy W .

Condition (c) is equivalent to saying that every Haar measure µ on

G that assigns a rational to some (and hence every) compact open

coset is computable on W . 32 / 62

Computably t.d.l.c. via meet groupoid

Example (4.9)

For any prime p, the additive group Qp and the group Z nQp are

computably t.d.l.c. via a meet groupoid.

Qp : proper open subgroups are of the form Ur := prZp for some r ∈ Z,

all compact. For each r there is a canonical epimorphism πr : Qp → Cp∞

with kernel Ur. So each compact open coset of Ur can be uniquely

written in the form Dr,a = π−1
r (a) for some a ∈ Cp∞ .

Z nQp : it has the same compact open subgroups as Qp.

We have Dr,a = g−zDr−z,ag
z for each z ∈ Z. So we have

Ar,z : Ur−z → Ur where Ar,z = gzUr. In particular A1,1 : U0 → U1.

For both groups, the groupoid operation and index function are

computable.
33 / 62

Section 5:

Equivalence

of the two types of computable presentations

34 / 62

Equivalence of computable presentations in the

sense of Def. 3.1 and Def. 4.6

Theorem

A group G is computably t.d.l.c. via a Baire presentation ⇐⇒
G is computably t.d.l.c. via a meet groupoid.

From a presentation of G of one type, one can uniformly obtain a

presentation of G of the other type.

First discuss ⇐, then ⇒.

Each time we need a few preliminaries.

35 / 62

For “⇐”: a computable presentation of the group

of permutations of N
For strings σ0, σ1 ∈ N∗ of the same length n, let σ0 ⊗ σ1 denote the

string τ of that length such that τ(k) = 〈σ0(k), σ1(k)〉 for each

k < n (where 〈., .〉 is a computable pairing function, such as

Cantor’s). Define a computable tree without leaves by

Tree(S∞) = {σ ⊗ τ : σ, τ ∈ N∗ ∧

σ, τ are 1-1 ∧ σ(τ(k)) = k ∧ τ(σ(i)) = i whenever defined}.

The paths of Tree(S∞) can be viewed as the permutations of N,

paired with their inverses:

[Tree(S∞)] = {f ⊗ f−1 : f is permutation of N}.

The group operations on Tree(S∞) are computable.
36 / 62

⇐: From meet groupoid to Baire presentation
Given: a Haar computable meet groupoid W with domain N such

that W(G) ∼=W . We can use this isomorphism to identify W(G)

and W .

Definition

Let G̃ = Gcomp(W) be the closed subgroup of S∞ consisting of

elements p that preserve the meet operation of W , and satisfy

p(A) ·B = p(A ·B) whenever A ·B is defined.

The following diagram displays the condition in the definition

above in category terms as a commutative diagram.

U A // V B //W

U ′

p(A)

44

p(A ·B)

11

37 / 62

1. G̃ = Gcomp(W) is isomorphic to G

Define a group homomorphism Φ: G→ G̃ by letting Φ(g) be the

element of S∞ corresponding to the left action of g, i.e.

Φ(g)(A) = gA

where A ∈ W(G) (identified with the computable copy W).

Claim

Φ: G ∼= G̃.

38 / 62

2: Tree(G̃) is c.s.c.
Using the assumption that W is Haar computable, we show that

Tree(G̃) is c.s.c. To show that Tree(G̃) is computable we use:

Claim

A finite injection α on N can be extended to some p ∈ G̃
⇐⇒ B · A−1 is defined whenever α(A) = B, and⋂
{B · A−1 : α(A) = B} 6= ∅.

To show that Tree(G̃) has the computable bound on branching:

Lemma (Effectively finite suborbits)

Suppose that U ∈ W is a subgroup and L is a left coset of U . Let

F ∈ W . One can uniformly in U,L and F compute a strong index

for the finite set L = {p(F) : p ∈ [S] ∧ p(U) = L}.
39 / 62

Theorem (Recall)

A group G is computably t.d.l.c. via a Baire presentation ⇐⇒
G is computably t.d.l.c. via a meet groupoid.

From a presentation of G of one type, one can uniformly obtain a

presentation of G of the other type.

Now discuss the implication ⇒.

We also need a few preliminaries.

40 / 62

Computing with compact open sets (1)
Let h : N∗ → N be the canonical encoding given by

h(w) =
∏

i<|w| p
wi+1
i , where pi is the i-th prime number.

Definition (Strong indices for finite sets of strings)

For a finite set u ⊆ N∗ let nu =
∑

η∈u 2h(η); one says that nu is the

strong index for u.

Definition (Code numbers for compact open sets)

Let T be a c.s.c. tree. For a finite set u ⊆ T − {∅}, let

Ku =
⋃
η∈u[η]T ,

(note that this set is compact). By a code number for a compact

open set K ⊆ [T] we mean the strong index for a finite set u ⊆ N∗

such that K = Ku.
41 / 62

Computing with compact open sets (2)
Inclusion, Boolean operations are decidable for the Ku
Lemma

Let T be a c.s.c. tree. Given code numbers u,w,

(i) one can compute code numbers for Ku ∪ Kw and Ku ∩ Kw;

(ii) one can decide whether Ku ⊆ Kw. In particular, one can,

given a code number u ∈ N, compute the minimal code

number u∗ ∈ N such that Ku∗ = Ku.

Definition

Given a c.s.c. tree T , let ET denote the set of minimal code

numbers for compact open subsets of [T]. By the foregoing lemma,

ET is decidable.

42 / 62

Computing with compact open sets (3)
Lemma

Let T, S be c.s.c. trees. Suppose a function Φ: [T]→ [S] is

computable via a partial computable function PΦ. Given code

numbers u,w, one can decide whether Φ(KTu) ⊆ KSw.

This is used to prove the following.

Lemma

Let G be computably t.d.l.c. via a computable Baire presentation

([T],Mult, Inv). Recall the set ET of minimal code numbers for

compact open sets from def:E.

(i) There is a computable function I : ET → ET such that for each

u ∈ ET , one has KI(u) = (Ku)−1.

(ii) For u, v, w ∈ ET one can decide whether KuKv ⊆ Kw.
43 / 62

“⇒”: From Baire presentation to meet groupoid

The set {u ∈ ET : Ku is a coset} can be obtained via an

existential quantification over a computable binary relation.

So there is a computable 1-1 function θ defined on N− {0}
such that the range of θ equals this set.

Define a meet groupoid W with domain N, thinking of n as

coding An = Kθ(n) for n > 0, and A0 = ∅.

Show the meet groupoid operations are computable.

For subgroups U, V ∈ W compute |U : U ∩ V | by finding in W
the distinct left cosets of U ∩ V contained in U with union U .

44 / 62

The actions are computable

Corollary (5.9, a corollary to “⇒” of the proof above)

As before, let W be a Haar computable copy of W(G) (with

domain N).

The left and right actions [T]× N→ N, given by

(g, A) 7→ gA and (g, A) 7→ Ag,

are computable.

45 / 62

Section 6:

Algorithmic properties of objects

associated with a t.d.l.c. group

46 / 62

The modular function is computable
Throughout, let G be computably t.d.l.c. via a Baire presentation

([T],Mult, Inv), and let W be the Haar computable copy of W(G).

Proposition

The modular function ∆: [T]→ Q+ is computable.

Proof.

Let V ∈ W be any subgroup. Given g ∈ [T], using Cor 5.9

compute A = gV . Compute U ∈ W such that A is a right coset of

U , and hence A = Ug. For any left Haar measure µ on G, we have

∆(g) = µ(A)/µ(U) = µ(V)/µ(U).

We can choose µ computable; so this yields ∆(g).

47 / 62

Cayley-Abels graphs are computable
If G is compactly generated, there is a compact open subgroup U , and a

set S = {s1, . . . , sk} ⊆ G such that S = S−1 and U ∪ S algebraically

generates G. The Cayley-Abels graph

ΓS,U = (VS,U , ES,U)

of G is given as follows. The vertex set VS,U is the set L(U) of left

cosets of U , and the edge relation is

ES,U = {〈gU, gsU〉 : g ∈ G, s ∈ S}.

Theorem

Suppose that G is computably t.d.l.c. and compactly generated.

(i) Each Cayley-Abels graph ΓS,U of G has a computable copy L.

(ii) Let ΓT,V be another Cayley-Abels graph. Any two computable

copies of ΓS,U and ΓT,V are computably quasi-isometric.
48 / 62

G = Aut(Td) has computable Baire presentation

May assume the domain of Td is N; so we can view Aut(Td) as

a closed subgroup of S∞.

A finite injection α on Td can be extended to an automorphism

of Td iff it preserves distances; this is a decidable condition.

Each η ∈ Tree(S∞) corresponds to an injection on Td. So we

can decide whether [η]Tree(G) = [η]Tree(S∞) ∩G 6= ∅.
Clearly [η]Tree(G) is compact for every such nonempty string η.

Tree(G) is c.s.c.: if η ∈ Tree(G), η(0) = 〈a, b〉 then for every

v ∈ dom(η), letting η(v) = 〈r, s〉,
dist(0, v) = dist(a, r) = dist(b, s).

This yields a computable function H with η(v) ≤ H(η(0), v)

as required.

49 / 62

Algorithmic properties of the scale function

For a compact open subgroup V of G and an element g ∈ G let

m(g, V) = |V g : V ∩ V g|.
Define the scale function [T]→ N by

s(g) = min{m(g, V) : V is a compact open subgroup}.

E.g., in Z nQp, where g ∈ Z acts as x→ xp, we have s(g) = 1,

s(g−1) = p.

Example (with Stephan Tornier)

For d ≥ 3, the scale function on Aut(Td) in the computable

presentation of Ex. 5.10 is computable.

50 / 62

The scale function on Aut(Td) is computable
An automorphism g of Td has exactly one of three types:

1 g fixes a vertex v: then s(g) = 1 because g preserves the

stabilizer of v, which is a compact open subgroup.

2 g inverts an edge: then s(g) = 1 because g preserves the

set-wise stabilizer of the set of endpoints of this edge.

3 g translates along an axis: then s(g) = (d− 1)` where ` is the

length of the translation.

The Turing machine, with g as an oracle, searches in parallel for

a witness to (1),

a witness to (2),

a sufficiently long piece of an axis as in (3) so that the shift

becomes “visible”.

It then outputs the corresponding value of the scale.
51 / 62

Basic algorithmic properties of the scale function
The following are immediate from Cor 5.9 (that the left and right

actions on the Haar computable meet groupoid W are computable):

(i) The function m : [T]×N→ N, m(g, V) = |V g : V ∩ V g| (defined

to be 0 if the second argument is not a subgroup) is computable.

(ii) The scale is computable if and only if one can algorithmically

decide whether a compact open subgroup V is mimimizing for g

(Fact 6.5).

(iii) The scale function is computably approximable from above.

That is, there is a computable function Θ : [T]× N→ N such that

Θ(f, r) ≥ Θ(f, r + 1) for each f ∈ [T], r ∈ N, and

s(f) = limr Θ(f, r) (Fact 6.6).
52 / 62

An open question

Question

Given a computable presentation of a t.d.l.c. group G based on a

tree T , is the scale function s : [T]→ N computable ?

Willis’ tidying procedure, and Möller’s spectral radius formula

don’t answer this in the affirmative.

If the answer is in the negative, one can further ask whether

there is a computably presented G such that the scale is

non-computable for each of its computable presentations.

53 / 62

Section 7:

Closure properties

of the class of computably t.d.l.c. groups

54 / 62

The class of computably t.d.l.c. groups is closed under suitable

algorithmic versions of many constructions that have been studied

in the theory of t.d.l.c. groups: (1), (2), (3) and (6) described in

Thm 1.3. of Wesolek, Elementary t.d.l.c. groups (2015).

passing to closed subgroups,

taking group extensions via continuous actions,

forming “local” direct products, and

taking quotients by closed normal subgroups

The first three are reasonably straightforward. All computable

presentations will be Baire. By Tree(G) we denote the c.s.c. tree

underlying such a presentation of G.

55 / 62

Computable closed subgroups

Fact

Let G be a computably t.d.l.c. group. Let H be a closed subgroup

of G (so that Tree(H) is a subtree of Tree(G)). Then H is

computably t.d.l.c. via

the Baire presentation based on the Tree(H) (which is c.s.c.)

the operations of G restricted to H.

Example

Burger and Mozes studied the closed subgroups U(F) of Aut(Td),

where d ≥ 3 and F is a subgroup of Sd.

Using the computable presentation of Aut(Td) together with the

preceding fact, each group U(F) is computably t.d.l.c.

56 / 62

Computable semidirect products

Proposition

Let G,H be computably t.d.l.c. groups.

Suppose Φ: G×H → H is a computable function that

specifies an action of G on H via topological automorphisms.

Then the topological semidirect product L = GnΦ H is

computably t.d.l.c.

57 / 62

Local direct products
For local direct products see Wesolek 2015, Def. 2.3.

Proposition (Prop 11.5 in the paper with Melnikov)

Let (Gi)i∈N+ be computably t.d.l.c. groups uniformly in i, and

for each i let Ui be a compact open subgroup of Gi, uniformly

in i.

Then G =
⊕

i∈N+(Gi, Ui) is computably t.d.l.c.

Here the domain of G =
⊕

i∈N+(Gi, Ui) consists of the functions in

f ∈
∏

iGi such that f(i) ∈ Ui for sufficiently large i, and
∏

i Ui is a

compact open subgroup.

This result might be useful to show that the scale function can be

noncomputable.
58 / 62

Quotients by computable closed normal subgroups

Theorem (Thm. 11.11 in paper with Melnikov)

Let N be a closed normal subgroup of G such that Tree(N) is a

computable subtree of Tree(G). Then G/N is computably t.d.l.c.

59 / 62

An application of the theorem
Example (7.6)

For each prime p and each n ≥ 2, the group PGLn(Qp) is

computably t.d.l.c.

Proof.

In Example 7.2 we obtain a computable Baire presentation

(T,Mult, Inv) of GLn(Qp). We employ the closed embedding

F : GLn(Qp)→ SLn+1(Qp) which extends a matrix A to the matrix B

where the new row and new column vanish except for the diagonal

element (which necessarily equals (detA)−1).

In this presentation, the centre N of GLn(Qp) is given by the diagonal

(n+ 1)× (n+ 1) matrices such that the first n entries of the diagonal

agree. So clearly Tree(N) is a computable subtree of the tree in Ex.

7.2. 60 / 62

61 / 62

References:

Kechris, N. and Tent, The complexity of topological group isomorphism,

The Journal of Symbolic Logic, 83(3), 1190-1203. Arxiv: 1705.08081

Melnikov and N. Approximation groupoids. In preparation.

Lupini, Melnikov and N. Computable topological abelian groups.

Submitted. Arxiv: 2105.12897

N., Schlicht and Tent, Coarse groups, and the isomorphism problem for

oligomorphic groups. J. Math Logic, in press, Arxiv: 1903.08436.

62 / 62

