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In the first talk we will introduce two notions of computable
presentation of a t.d.l.c. group, and show their equivalence. The
first notion relies on standard notions of computability in the un-
countable setting. The second notion restricts computation to a
countable structure of approximations of the elements, the “meet
groupoid” of compact open cosets. Based on this, I obtain various
examples of computably t.d.l.c. groups, such as Aut(Td) and some
algebraic groups over the field of p-adic numbers. The first talk
also outlines the computability theoretic notions that are needed.

In the second talk we show that given a computable presen-
tation of a t.d.l.c. group, the modular function and the Cayley-
Abels graphs (in the compactly generated case) are computable.
We discuss the open question whether the scale function can be
non-computable. We will give a criterion based on meet groupoids
when the computable presentation is unique up to computable iso-
morphism. We explain why the class of computably t.d.l.c. groups
is closed under most of the constructions studied by Wesolek [24,
Thm. 1.3].

We thank Stephan Tornier for helpful conversations on t.d.l.c.
groups, and for providing references.
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1. Introduction

The talks are centred on the following questions.

(a) How can one define a computable presentation of a t.d.l.c. group?
Which t.d.l.c. groups have such a presentation?

(b) Given a computable presentation of a t.d.l.c. group, are objects
such as the rational valued Haar measures, the modular func-
tion, or the scale function computable?

(c) Do constructions that lead from t.d.l.c. groups to new t.d.l.c.
groups have algorithmic versions?

(d) When is a computable presentation of a t.d.l.c. group unique
up to computable isomorphism?

1.1. Background on t.d.l.c. groups. Van Dantzig [23] showed that
each t.d.l.c. group has a neighbourhood basis of the identity consisting
of compact open subgroups. With Question (a) in mind, we discuss six
well-known examples of t.d.l.c. groups, and indicate a compact open
subgroup when it is not obvious. We will return to them repeatedly
during the course of the paper.

(i) All countable discrete groups are t.d.l.c.
(ii) All profinite groups are t.d.l.c.

(iii) (Qp,+), the additive group of p-adic numbers for a prime p
is an example of a t.d.l.c. group that is in neither of the two
classes above. The additive group Zp of p-adic integers forms a
compact open subgroup.

(iv) The semidirect product Z nQp corresponding to the automor-
phism x 7→ px on Qp, and Zp is a compact open subgroup.

(v) Algebraic groups over local fields, such as SLn(Qp) for n ≥ 2,
are t.d.l.c. Here SLn(Zp) is a compact open subgroup.

(vi) Given a connected countable undirected graph such that each
vertex has finite degree, its automorphism group is t.d.l.c. The
stabiliser of any vertex forms a compact open subgroup.

By convention, all t.d.l.c. groups will be infinite.

1.2. Computable structures: the countable case. Towards defin-
ing computable presentations, we first recall the definition of a com-
putable function on N, slightly adapted to our purposes in that we
allow the domain to be any computable set.

Definition 1.1. Given a set S ⊆ Nk, where k ≥ 1, a function f : S →
N is called computable if there is a Turing machine that on inputs
n1, . . . , nk decides whether the tuple of inputs (n1, . . . , nk) is in S, and
if so outputs f(n1, . . . , nk).

One version of the Church-Turing thesis states that computability
in this sense is the same as being computable by some algorithm.

A structure in the model theoretic sense consists of a nonempty set
D, called the domain, with relations and functions defined on it. The
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following definition was first formulated in the 1960s by Mal’cev and
Rabin independently.

Definition 1.2. A computable structure is a structure such that the
domain is a computable set D ⊆ N, and the functions and relations
of the structure are computable. A countable structure S is called
computably presentable if some computable structure W is isomorphic
to it. In this context we call W a computable copy of S.

Example 1.3. For each k ≥ 1, the group GLk(Q) is computably pre-
sentable. To obtain a computable copy, one fixes an algorithmic en-
coding of the rational k× k matrices by natural numbers, and lets the
domain D be the computable set of numbers that encode a matrix with
nonzero determinant. Since the encoding is algorithmic, the domain
and the matrix operations are computable.

1.3. Computable structures: the uncountable case. In the field
of computable analysis (for detail see e.g. Pauly [18] or Schröder [21]),
to define computability for an uncountable structure, one begins by
representing all the elements by “names”, which are infinite objects
simple enough to be accessible to computation of oracle Turing ma-
chines. Names usually are elements of the set [T ] of paths on some
computable subtree T of N∗ (the tree of strings with natural number
entries). For instance, a standard name of a real number r is a path
coding a sequence of rationals 〈qn〉n∈N such that |qn − qn+1| ≤ 2−n and
limn qn = r.

Via Turing machines with tapes that hold the input, one can define
computability of functions and relations on [T ]. One requires that the
functions and relations of the uncountable structure are computable
on the names. This defines computability on spaces relevant to com-
putable analysis; for instance, one can define that a function on R is
computable. Since each totally disconnected Polish space is homeomor-
phic to [T ] for some subtree T of N∗, there is no need to distinguish
between names and objects in our setting. An ad hoc way to define
computability often works for particular classes of uncountable struc-
tures: impose algorithmic constraints on the definition of the class.

An example is the definition of when a profinite group G is com-
putable due to Smith [22] and la Roche [10]: G = lim←−i(Ai, ψi) for a com-

putable diagram (Ai, ψi)i∈N of finite groups and epimorphisms ψi : Ai →
Ai−1 (i > 0).

We now discuss the questions posed at the beginning in more detail.

1.4. Computable presentations of t.d.l.c. groups. We aim at a
robust definition of the class of t.d.l.c. groups with a computable pre-
sentation. We want this class to have good algorithmic closure proper-
ties, and also ask that our definition extend the existing definitions for
discrete, and for profinite groups. We provide two types of computable
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presentations, which will turn out to be equivalent: a t.d.l.c. group has
a computable presentation of one type iff it has one of the other type.

Computable Baire presentations. One asks that the domain of G is
what we call an effectively σ-compact subtree of N∗ (the tree of strings
with natural number entries), and the operations are computable in
the sense of oracle Turing machines. Baire presentations appear to
be the simplest and most elegant notion of computable presentation
for general totally disconnected Polish groups. However, computable
Baire presentations are hard to study because the domain is usually
uncountable.

Computable presentations via a meet groupoid. We introduce an
algebraic structure W(G) on the countable set of compact open cosets
in G, together with ∅. This structure is a partially ordered groupoid,
with the usual set inclusion, and multiplication of a left coset of a
subgroup U with a right coset of U (which is a coset). The intersection
of two compact open cosets is such a coset itself, unless it is empty, so
we have a meet semilattice. A computable presentation of G via meet
groupoids is a computable copy of the meet groupoid of G such that the
index function on compact open subgroups, namely U, V 7→ |U : U∩V |,
is also computable.

1.5. Which t.d.l.c. groups G have computable presentations?
Discrete groups, as well as profinite groups, have a computable presen-
tation as t.d.l.c. groups if and only if they have one in the previously
established sense from the 1960s and 1980s, reviewed in Section 1.2
above. We provide numerous examples of computable presentations
for t.d.l.c. groups outside these two classes. For (Qp,+) we use meet
groupoid presentations. For Aut(Td) and SLn(Qp) we use Baire presen-
tations.

It can be difficult to determine whether a particular t.d.l.c. group has
a computable presentation. Nonetheless, our thesis is that all “natural”
groups that are considered in the field of t.d.l.c. groups have computable
presentations. An interesting testing ground for this thesis is given by
Neretin’s groups Nd of almost automorphisms of Td, for d ≥ 3; see for
instance [6].

1.6. Associated computable objects. Recall that to a t.d.l.c. group
G we associate its meet groupoid W(G), an algebraic structure on its
compact open cosets. If G is given by a computable Baire presenta-
tion, then we construct a copy W of the meet groupoid W(G) that is
computable in a strong sense, essentially including the condition that
some (and hence any) rational valued Haar measure on G is computable
when restricted to a function W → R. We will show in Corollary 5.9
that the left, and hence also the right, action of G onW is computable.
We conclude that the modular function on G is computable. If G is
compactly generated, for each Cayley-Abels graph one can determine
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a computable copy, and any two copies of this type are computably
quasi-isometric (Theorem 6.2). Intuitively, this means that the large-
scale structure of G is a computable invariant.

Assertions that the scale function is computable have been made for
particular t.d.l.c. groups in works such as Glöckner [4] and Willis [27,
Section 6]; see the survey Willis [28]. In these particular cases, it
was generally clear what it means that one can compute the scale s(g):
provide an algorithm that shows it. One has to declare what kind input
the algorithm takes; necessarily it has to be some approximation to g,
as g ranges over a potentially uncountable domain. Our new framework
allows us to give a precise meaning to the question whether the scale
function is computable for a particular computable presentation of a
t.d.l.c. group, thus also allowing for a precise negative answer. This
appears reminiscent of the answer to Hilbert’s 10th problem, which
asked for an algorithm that decides whether a multivariate polynomial
over Z has a zero. Only after a precise notion of computable function
was introduced in the 1930s, it became possible to assert rigorously
that no such algorithm exists; the final negative answer was given in
1970 by Y. Matyasevich [12] (also see [13]). We leave the following
open; see further discussion below.

Question 1.4. Given a computable presentation of a t.d.l.c. group G,
is the scale function computable for this presentation?

If the answer is in the negative, one can further ask whether for some
computably presented G, the scale is non-computable for each of its
computable presentations.

1.7. Algorithmic versions of constructions that lead from t.d.l.c.
groups to new t.d.l.c. groups. Section 7 shows that the class of
computably t.d.l.c. groups is closed under suitable algorithmic versions
of many constructions that have been studied in the theory of t.d.l.c.
groups. In particular, the constructions (1), (2), (3) and (6) described
in Wesolek [24, Thm. 1.3] can be phrased algorithmically in such a
way that they stay within the class of computably t.d.l.c. groups; this
provides further evidence that our class is robust. These constructions
are suitable versions, in our algorithmic topological setting, of

• passing to closed subgroups,
• taking group extensions via continuous actions,
• forming “local” direct products, and
• taking quotients by closed normal subgroups

(see [24, Section 2] for detail on these constructions). The algorithmic
version of taking quotients (Theorem 7.5) is the most demanding; it
uses extra insights from the proofs that the various forms of computable
presentation are equivalent.
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1.8. When is a computable presentation unique? Viewing a com-
putable Baire presentation as a description, we are interested in the
question whether such a description is unique, in the sense that be-
tween any two of them there is a computable isomorphism. Adapting
terminology for countable structures going back to Mal’cev, we will
call such a group autostable. If a t.d.l.c. group is autostable, then
computation in the group can be seen as independent of its particu-
lar description. Criterion 8.2 reduces the problem of whether a t.d.l.c.
group is autostable to the countable setting of meet groupoids.

2. Computability on paths of rooted trees

2.1. Computably σ-compact subtrees of N∗.
Notation 2.1. Let N∗ denote the set of strings with natural numbers
as entries. We use letters σ, τ, ρ etc. for elements of N∗. The set N∗
can be seen as a directed tree: the empty string is the root, and the
successor relation is given by appending a number at the end of a
string. We write σ � τ to denote that σ is an initial segment of τ , and
σ ≺ τ to denote that σ is a proper initial segment. We can also identify
finite strings of length n+1 with partial functions N→ N having finite
support {0, . . . , n}. We then write τi instead of τ(i). By max(τ) we
denote max{τi : i ≤ n}. Let h : N∗ → N be the canonical encoding
given by h(w) =

∏
i<|w| p

wi+1
i , where pi is the i-th prime number.

Definition 2.2 (Strong indices for finite sets of strings). For a finite
set u ⊆ N∗ let nu =

∑
η∈u 2h(η); one says that nu is the strong index

for u.

We will usually identify a finite subset of N∗ with its strong index.
Unless otherwise mentioned, by a (directed) tree we mean a nonempty
subset T of N∗ such that σ ∈ T and ρ ≺ σ implies ρ ∈ T . By [T ]
one denotes the set of paths of a tree T . Our trees usually have no
leaves, so [T ] is a closed set in Baire space NN equipped with the usual
product topology. Note that [T ] is compact if and only if each level of
T is finite, in other words T is finitely branching. For σ ∈ T let

[σ]T = {X ∈ [T ] : σ ≺ X}.
That is, [σ]T is the cone of paths on T that extend σ.

Definition 2.3 (computably σ-compact trees). Let T be a computable
subtree of N∗ without leaves such that only the root can have infinitely
many successors. We say that T is computably σ-compact, or c.s.c. for
short, if there is a computable binary function H such that, if ρ ∈ T is
a nonempty string, then ρ(i) ≤ H(ρ(0), i) for each i < |ρ|.

Given such a tree T , the compact open subsets of [T ] can be algo-
rithmically encoded by natural numbers. The notation below will be
used throughout.
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Definition 2.4 (Code numbers for compact open sets). Let T be a
c.s.c. tree. For a finite set u ⊆ T − {∅}, let

Ku =
⋃
η∈u[η]T ,

(note that this set is compact). By a code number for a compact open
set K ⊆ [T ] we mean the strong index for a finite set u of strings such
that K = Ku.

Such a code number is not unique (unless K is empty). So we will
need to distinguish between the actual compact open set, and any of
its code numbers. So one can decide, given u ∈ N as an input, whether
u is a code number. Clearly, each compact open subset of [T ] is of the
form Ku for some u.

The following lemma shows that the basic set-theoretic relations and
operations are decidable for sets of the form Ku, similar to the case of
finite subsets of N.

Lemma 2.5. Let T be a c.s.c. tree. Given code numbers u,w,

(i) one can compute code numbers for Ku ∪ Kw and Ku ∩ Kw;
(ii) one can decide whether Ku ⊆ Kw. In particular, one can, given

a code number u ∈ N, compute the minimal code number u∗ ∈
N such that Ku∗ = Ku.

Proof. (i) The case of union is trivial. For the intersection operation,
it suffices to consider the case that u and w are singletons. For strings
α, β ∈ T , one has [α]T ∩[β]T = ∅ if α, β are incompatbile, and otherwise
[α]T ∩ [β]T = [γ]T where γ is the longest common initial segment of
α, β.
(ii) Let H be a computable binary function as in Definition 2.3. It
suffices to consider the case that u is a singleton. Suppose that α ∈
T −{∅}. The algorithm to decide whether [α]T ⊆ Kw is as follows. Let
N be the maximum length of a string in w. Answer “yes” if for each
β � α of length N such that β(k) ≤ H(α, k) for each k < N , there is
γ ∈ w such that γ � β. Otherwise, answer “no”. �

Definition 2.6. Given a c.s.c. tree T , let ET denote the set of minimal
code numbers for compact open subsets of [T ]. By the foregoing lemma,
ET is decidable.

2.2. Computable functions on the set of paths of computable
trees. Most of the content of this subsection can either be seen as a
special case of known results in abstract computable topology, or can
be derived from such results.

Let T be a computable subtree of N∗ without leaves. To define that
a function which takes arguments from the potentially uncountable
domain [T ] is computable, one descends to the countable domain of
strings on T , where the usual computability notions work. The first
definition, Def. 2.7 below, will apply when we show in Corollary 6.1
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that the modular function on a computable presentation of a t.d.l.c.
group is computable.

Definition 2.7. (1) A function Φ : [T ] × N → N is computable if
there is an oracle Turing machine as follows. Given f ∈ [T ] and
w ∈ N, when it has the list of the values f(0), f(1), f(2), . . .
written on the oracle tape, with sufficiently many queries of the
type “what is f(q)?” it can determine the value Φ(f, w).

(2) A function Φ: [T ]→ [N∗] is computable if and only if the func-

tion Φ̃ : [T ]×N→ N given by Φ̃(g, n) = Φ(g)(n) is computable.
(3) Similarly, one defines that Φ: [T ] × [S] → [N∗] is computable,

using a TM with two oracle tapes.

Example 2.8. Let T = N∗. The function Φ(f, n) =
∑n

i=0 f(i) is
computable. The oracle TM with f written on the oracle tape queries
the values of f(i) for i = 0, . . . , n one by one and adds them.

Note that in general our functions will only be defined on [T ], not
on all of [N∗]. Thus, the oracle TM will only return an answer if the
oracle f is in [T ].

For proofs of the following see [15, Section 6].

Lemma 2.9. Suppose that K and S are computable trees without
leaves. Suppose further that there is a computable function H such
that σ(i) < H(i) for each σ ∈ K and i < |σ|. Let Φ: [K] → [S] be
computable via an oracle TM M .

(i) There is a computable function γ as follows: in a computation
of Φ(f, n), M only needs queries up to γ(n).

(ii) If Φ is a bijection then Φ−1 is computable, via a partial com-
putable function that is obtained uniformly in K,H, S and PΦ.

Intuitively, the function g in (i) computes the “δ” in the definition
of uniform continuity from the “ε”: if δ = 1/n we have ε = 1/g(n).

Lemma 2.10. Let T, S be c.s.c. trees. Suppose a function Φ: [T ] →
[S] is computable via a partial computable function PΦ. Given code
numbers u,w, one can decide whether Φ(KTu ) ⊆ KSw.

To prove Example 3.2 below, we will need a criterion on whether,
given a computable subtree S of a c.s.c. tree T (where S potentially
has leaves), the maximally pruned subtree of S with the same set of
paths is computable.

Proposition 2.11. Let T be a c.s.c. tree. Let S be a computable subtree
of T , and suppose that there is a uniformly computable dense sequence

(fi)i∈N in [S]. Then the tree S̃ = {σ : [σ]S 6= ∅} is decidable. (It follows

that S̃ is c.s.c. Of course, [S̃] = [S].)

Proof. Given a string σ ∈ T , if σ = ∅ then σ ∈ S̃. Assuming σ 6= ∅,
we can compute the least t ∈ N such that σ ≺ ft, or ρ 6∈ S for each
ρ ∈ T of length t such that ρ � σ; the latter condition can be decided
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by the hypothesis that T is c.s.c. Clearly σ ∈ S̃ iff the former condition
holds. �

3. Defining computably t.d.l.c. groups via Baire
presentations

Each totally disconnected Polish space X is homeomorphic to [T ] for
some tree T ⊆ N∗; see [7, I.7.8]. Clearly X is locally compact iff for each
f ∈ [T ] there is an n such that the tree above f �n is finitely branching;
we can then assume that only the root can be infinitely branching.
This suggests to work, in the algorithmic setting, with a domain of the
presentation that has the form [T ] for a computably σ-compact tree T ,
and require that the group operations on [T ] be computable according
to Definition 2.7. The same approach would work for other types of
algebraic structure defined on [T ] for a computably σ-compact tree T ,
e.g. computably t.d.l.c. rings.

Definition 3.1. A computable Baire presentation is a topological group
of the form H = ([T ],Mult, Inv) such that

(1) T is computably σ-compact as defined in 2.3;
(2) Mult : [T ]× [T ]→ [T ] and Inv : [T ]→ [T ] are computable.

We say that a t.d.l.c. group G is computably t.d.l.c. (via a Baire pre-
sentation) if G ∼= H for such a group H.

Example 3.2. Let p be a prime, and let n ≥ 2. Let Qp denote the
rings of p-adic numbers. (i) The t.d.l.c. ring Qp has a computable Baire
presentation. (ii) The t.d.l.c. group SLn(Qp) has a computable Baire
presentation.

Proof. (i) Let Q be the tree of strings σ ∈ N∗ such that all entries,
except possibly the first, are among {0, . . . , p−1}, and r0 6� σ for each
r > 0. We think of a string rσ ∈ Q as denoting the rational p−rnσ ∈
Z[1/p], where nσ is the number which has σ as a p-ary expansion,
written in reverse order:

nσ =
∑

i<|σ| p
iσ(i).

We allow the case that σ ends in 0. The condition that r0 6� σ for each
r > 0 says that p does not divide nσ.

For instance, let p = 3; then

(3, 1, 0, 2) denotes the rational 3−3 · (1 + 2 · 9) = 19/27.

For the addition operation, consider an oracle Turing machine with
two oracle tapes starting with notations rσ and sτ of numbers p−rm
and p−sn. Say r ≤ s. Then p−rm+p−sn = p−s(ps−rm+n). Clearly the
machine can output a string denoting p−rm + p−sn. To continue the
example above, if the machine sees tapes starting with (3, 1, 0, 2) and
(4, 1, 2, 0, 0), it will internally replace the first string by (4, 0, 1, 0, 2),
and then keep the leading 4 and carry out the addition modulo 34 of
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the numbers 57 and 10 with base 3 expansions (0, 1, 0, 2) and (1, 2, 0, 0)
respectively, resulting in (4, 1, 0, 1, 2). (This corresponds to 19/27 +
10/81 = 67/81.)

A similar argument works for multiplication. It is important that we
allow improper expansions i.e. strings ending in zeros as in the example
above, so that the operation of the machines is monotonic.

(ii) We now provide a computable Baire presentation ([T ],Mult, Inv)
of SLn(Qp). Let T be the computable tree that is an n2-fold “power”
of Q. More precisely, T = {σ : ∀i < n2 [σi ∈ Q]}, where σi is the
string of entries of σ in positions of the form kn2 + i for some k, i ∈
N. Note that T itself is not c.s.c. as nodes up to level n2 − 1 are
infinitely branching. However, we can assume it is by skipping the
levels 1, . . . , n2 − 1. Clearly, [T ] can be naturally identified with the
matrix algebra Mn(Qp). By the computability of the ring operations
on Qp as verified above, the matrix product is computable as a function
[T ]× [T ]→ [T ], and the function det : [T ]→ [Q] is computable.

Basic computability theory shows that for any c.s.c. trees T and R,
any computable path f of R, and any computable function Φ: [T ] →
[R], there is a computable subtree S of T such that [S] equals the
pre-image Φ−1(f). Applying this to the function det : [T ] → [Q] and
the path f = 01000 . . . that denotes 1 ∈ Qp, we obtain a computable
subtree S of T such that [S] can be identified with SLn(Qp). Note that
S could have dead ends. We fix this next:

It is well-known that SLn(Z[1/p]) is dense in SLn(Qp). This is a
special case of strong approximation for algebraic groups (see [19, Ch.
7]), but can also be seen in an elementary way using Gaussian elimi-
nation. The paths on S corresponding to matrices in SLn(Z[1/p]) are
precisely the ones that are 0 from some point on. Clearly there is a
computable listing (fi) of these paths. So by Proposition 2.11 we can

replace S by a c.s.c. tree S̃ such that [S̃] = [S].

To obtain a computable Baire presentation based on S̃, note that

matrix multiplication on [S̃] is computable as the restriction of matrix
multiplication on [T ]. To define the matrix inversion operation Inv, we
use the fact that the inverse of a matrix with determinant 1 equals its
adjugate matrix; the latter can be obtained by computing determinants
on minors. �

4. Defining computably t.d.l.c. groups via meet groupoids

This section provides the detail for the second type (Type M) of
computable presentations of t.d.l.c. groups described in Section 1.4.

4.1. The meet groupoid of a t.d.l.c. group. Intuitively, the notion
of a groupoid generalizes the notion of a group by allowing that the
binary operation is partial. A groupoid is given by a domain W on
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which a unary operation (.)−1 and a partial binary operation, denoted
by “·”, are defined. These operations satisfy the following conditions:

(a) associativity in the sense that (A · B) · C = A · (B · C), with
either both sides or no side defined (and so the parentheses can
be omitted);

(b) A · A−1 and A−1 · A are always defined;
(c) if A ·B is defined then A ·B ·B−1 = A and A−1 · A ·B = B.

It follows from (c) that a groupoid satisfies the left and right cancella-
tion laws. One says that an element U ∈ W is idempotent if U ·U = U .
Clearly this implies that U = U · U−1 = U−1 · U and so U = U−1 by
cancellation. Conversely, by (c) every element of the form A · A−1 or
A−1 · A is idempotent.

Definition 4.1. A meet groupoid is a groupoid (W , ·, (.)−1) that is also
a meet semilattice (W ,∩, ∅) of which ∅ is the least element. Writing
A ⊆ B ⇔ A ∩ B = A and letting the operation · have preference over
∩, it satisfies the conditions

(d) ∅−1 = ∅ = ∅ ·∅, and ∅ ·A and A · ∅ are undefined for each A 6= ∅,
(e) if U, V are idempotents such that U, V 6= ∅, then U ∩ V 6= ∅,
(f) A ⊆ B ⇔ A−1 ⊆ B−1, and
(g) if Ai ·Bi are defined (i = 0, 1) and A0∩A1 6= ∅ 6= B0∩B1, then

(A0 ∩ A1) · (B0 ∩B1) = A0 ·B0 ∩ A1 ·B1.

From (g) it follows and that the groupoid operations are monotonic: if
Ai · Bi are defined (i = 0, 1) and A0 ⊆ A1, B0 ⊆ B1, then A0 · B0 ⊆
A1 · B1. Also, if U and V are idempotent, then so is U ∩ V (this can
also be verified on the basis of (a)-(f) alone).

For meet groupoids W0,W1, a bijection h : W0 → W1 is an iso-
morphism if it preserves the three operations. Given a meet groupoid
W , the letters A,B,C will range over general elements of W , and the
letters U, V,W will range over idempotents of W .

We use set theoretic notation for the meet semilattice because for the
motivating examples of meet groupoids the intersection symbol means
the usual. Note that the intersection of two cosets is empty, or again a
coset.

Definition 4.2. Let G be a t.d.l.c. group. We define a meet groupoid
W(G). Its domain consists of the compact open cosets in G (i.e., cosets
of compact open subgroups of G), as well as the empty set. We define
A · B to be the usual product AB in case that A = B = ∅, or A is a
left coset of a subgroup V and B is a right coset of V ; otherwise A ·B
is undefined.

Fact 4.3. W(G) is a meet groupoid with the groupoid operations · and
A→ A−1, and the usual intersection operation ∩.

We will use the usual group theoretic terminology for elements of an
abstract meet groupoid W . If U is an idempotent of W we call U a
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subgroup, if AU = A we call A a left coset of U , and if UB = B we
call B a right coset of U . Based on the axioms, one can verify that if
U ⊆ V for subgroups U, V , then the map A 7→ A−1 induces a bijection
between the left cosets and the right cosets of U contained in V .

We note that W(G) satisfies the axioms of inductive groupoids defined in
Lawson [11, page 109]. See [2, Section 4] for more on an axiomatic approach
to meet groupoids.

Remark 4.4. It is well-known [5] that one can view groupoids as small
categories in which every morphism has an inverse. The elements of the
groupoid are the morphisms of the category. The idempotent morphisms
correspond to the objects of the category. One has A : U → V where U =
A · A−1 and V = A−1 · A. Thus, in W(G), A : U → V means that A is a
right coset of U and a left coset of V .

The idea to study appropriate Polish groups via an algebraic structure on

their open cosets is due to Katrin Tent, and first appeared in [8]. This idea

was further elaborated in a paper by Nies, Schlicht and Tent on the com-

plexity of the isomorphism problem for oligomorphic groups [17]. There,

approximation structures are used that are given by the ternary relation

“AB ⊆ C”, where A,B,C are certain open cosets. They are called “coarse

groups”. In the present work, it will be important that we have explicit

access to the combination of the groupoid and the meet semilattice struc-

tures (which coarse groups don’t provide). Coarse groups are too “coarse”

an algebraic structure to analyse algorithmic aspects of t.d.l.c. groups.

4.2. Second definition of computably t.d.l.c. groups.

Definition 4.5. A meet groupoid W is called Haar computable if

(a) its domain is a computable subset D of N;
(b) the groupoid and meet operations are computable in the sense

of Definition 1.1; in particular, the relation {〈x, y〉 : x, y ∈ S ∧
x · y is defined} is computable;

(c) the partial function with domain contained in D×D sending a
pair of subgroups U, V ∈ W to |U : U ∩ V | is computable.

Here |U : U∩V | is defined abstractly as the number of left, or equiva-
lently right, cosets of the nonzero idempotent U ∩V contained in U ; we
require implicitly that this number is always finite. Note that by (b),
the partial order induced by the meet semilattice structure of W is
computable. Also, (b) implies that being a subgroup is decidable when
viewed as a property of elements of the domain S; this is used in (c).
The condition (c) corresponds to the computable bound H required in
Definition 2.3. For ease of reading we will say that n ∈ D denotes a
coset A, rather than saying that n “is” a coset.

Definition 4.6 (Computably t.d.l.c. groups via meet groupoids). Let
G be a t.d.l.c. group. We say that G is computably t.d.l.c. via a meet
groupoid if W(G) has a Haar computable copy W . In this context, we
callW a computable presentation of G (in the sense of meet groupoids).
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Remark 4.7. In this setting, Condition (c) of Definition 4.5 is equiv-
alent to saying that every Haar measure µ on G that assigns a rational
number to some compact open subgroup (and hence is rational-valued)
is computable onW , in the sense that the function assigning to a com-
pact open coset A the rational µ(A) is computable. Consider left Haar
measures, say. First suppose that (c) holds. Given A, compute the
subgroup V such that A = A · V , i.e., A is a left coset of V . Compute
W = U ∩ V . We have µ(A) = µ(V ) = µ(U) · |V : W |/|U : W |.

Conversely, if the Haar measure is computable on W , then (c) holds
because |U : V | = µ(U)/µ(V ).

For discrete groups, the condition (c) can be dropped, as the proof
of the following shows.

Example 4.8. A discrete group G is computably t.d.l.c. via a meet
groupoid ⇔ G has a computable copy in the usual sense of Defini-
tion 1.2.

Proof. For the implication ⇐, we may assume that G itself is com-
putable; in particular, we may assume that its domain is a computable
subset of N. Each compact coset in G is finite, and hence can be repre-
sented by a strong index for a finite set of natural numbers. Since the
group operations are computable on the domain, this implies that the
meet groupoid of G has a computable copy. It is then trivially Haar
computable.

For the implication ⇒, let W be a Haar computable copy of W(G).
Since G is discrete, W contains a least subgroup U . The set of left
cosets of U is computable, and forms a group with the groupoid and
inverse operations. This yields the required computable copy of G. �

By Qp we denote the additive group of the p-adics. By the usual
definition of semidirect products ([20, p. 27]), Z n Qp is the group
defined on the Cartesian product Z × Qp via the binary operation
〈z1, α1〉 · 〈z2, α2〉 = 〈z1 + z2, p

z2α1 + α2〉. This turns Z n Qp into a
topological group with the product topology.

Example 4.9. For any prime p, the additive group Qp and the group
Z nQp are computably t.d.l.c. via a meet groupoid.

Proof. We begin with the additive group Qp. Note that its open proper
subgroups are of the form Ur := prZp for some r ∈ Z. Let Cp∞ denote
the Prüfer group Z[1/p]/Z, where Z[1/p] = {zp−k : z ∈ Z ∧ k ∈ N}.
For each r there is a canonical epimorphism πr : Qp → Cp∞ with kernel
Ur: if α =

∑∞
i=−n sip

i where 0 ≤ si < p, n ∈ N, we have

πr(α) = Z +
∑r−1

i=−n sip
i−r;

here an empty sum is interpreted as 0. (Informally, πr(α) is obtained
by taking the “tail” of α from the position r − 1 onwards to the last
position, and shifting it in order to represent an element of Cp∞ .) So
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each compact open coset in Qp can be uniquely written in the form
Dr,a = π−1

r (a) for some r ∈ Z and a ∈ Cp∞ . The domain S ⊆ N of
the Haar computable copy W of W(Qp) consists of natural numbers
canonically encoding such pairs 〈r, a〉. They will be identified with the
cosets they denote.

The groupoid operations are computable because we have D−1
r,a =

Dr,−a, and Dr,a ·Ds,b = Dr,a+b if r = s, and undefined otherwise. It is
easy to check that Dr,a ⊆ Ds,b iff r ≥ s and pr−sa = b. So the inclusion
relation is decidable. We have Dr,a ∩Ds,b = ∅ unless one of the sets is
contained in the other, so the meet operation is computable. Finally,
for r ≤ s, we have |Ur : Us| = ps−r which is computable.

Next, let G = ZnQp; we build a Haar computable copy V ofW(G).
We will extend the listing (Dr,a)r∈Z,a∈Cp∞ of compact open cosets in Qp

given above. For each compact open subgroup of G, the projection onto
Z is compact open, and hence the trivial group. So the only compact
open subgroups of G are of the form Ur. Let g ∈ G be the generator of
Z such that g−1αg = pα for each α ∈ Qp (where Z and Qp are thought
of as canonically embedded into G). Each compact open coset of G has
a unique form gzDr,a for some z ∈ Z. Formally speaking, the domain
of the computable copy of W(G) consists of natural numbers encoding
the triples 〈z, r, a〉 corresponding to such cosets; as before they will be
identified with the cosets they denote.

To show that the groupoid and meet operations are computable,
note that we have gDr,a = Dr−1,ag for each r ∈ Z, a ∈ Cp∞ , and hence
gzDr,a = Dr−z,ag

z for each z ∈ Z. Given two cosets gvDr,a and gwDs,b =
Ds−w,bg

w, their composition is defined iff r = s− w, in which case the
result is gv+wDs,a+b. The inverse of gzDr,a is Dr,−ag

−z = g−zDr−z,−a.
To decide the inclusion relation, note that we have gzDr,a ⊆ gwDs,b iff

z = w and Dr,a ⊆ Ds,b, and otherwise, they are disjoint. Using this one
can show that the meet operation is computable (by an argument that
works in any computable meet groupoid V): if A0, A1 ∈ V , Ai : Ui → Vi,
and A0, A1 are not disjoint, then A0∩A1 is the unique C ∈ V such that
C : U0 ∩U1 → V0 ∩V1 and C ⊆ A0, A1. Since W satisfies Condition (c)
in Definition 4.5, and V has no subgroups beyond the ones present in
W , we conclude that V is Haar computable. �

5. Equivalence of the two types of computable
presentations

We show that a t.d.l.c. group G has a computable presentation in
the sense of Def. 3.1 iff G has a computable presentation in the sense
of Def. 4.6.

We need some preliminaries. For strings σ0, σ1 ∈ N∗ of the same
length n, let σ0 ⊗ σ1 denote the string τ of that length such that
τ(k) = 〈σ0(k), σ1(k)〉 for each k < n (where 〈., .〉 is a computable
pairing function, such as Cantor’s).
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Lemma 5.1. Let G be computably t.d.l.c. via a computable Baire pre-
sentation ([T ],Mult, Inv). Recall the set ET of minimal code numbers
for compact open sets from Definition 2.6.
(i) There is a computable function I : ET → ET such that for each
u ∈ ET , one has KI(u) = (Ku)−1.
(ii) For u, v, w ∈ ET one can decide whether KuKv ⊆ Kw.

Proof. (i) By Lemma 2.10 one can decide whether Ku ⊆ (Kw)−1. The
equality Ku = (Kw)−1 is equivalent to Ku ⊆ (Kw)−1 ∧ Kw ⊆ (Ku)−1.
So one lets I(u) be the least index v such that this equality holds.

(ii) Let T̃ be the tree of initial segments of strings of the form σ0⊗ σ1,

where σ0, σ1 ∈ T have the same length. Then T̃ is a c.s.c. tree, [T̃ ]
is naturally homeomorphic to [T ] × [T ], and Mult can be seen as a

computable function [T̃ ]→ [T ]. Now one applies Lemma 2.10. �

We will also need a computable presentation of the topological group
of permutations of N based on a subtree of N∗. Define a computable
tree without leaves by

Tree(S∞) = {σ ⊗ τ : σ, τ ∈ N∗ ∧
σ, τ are 1-1 ∧ σ(τ(k)) = k ∧ τ(σ(i)) = i whenever defined}.

A string σ⊗ τ ∈ Tree(S∞) gives rise to a finite injection ασ⊗τ on N,
defined by

(1) ασ⊗τ (r) = s iff σ(r) = s ∨ τ(s) = r.

The paths of Tree(S∞) can be viewed as the permutations of N, paired
with their inverses:

[Tree(S∞)] = {f ⊗ f−1 : f is permutation of N}.
The group operations on Tree(S∞) are computable: we have

(f0 ⊗ f1)−1 = f1 ⊗ f0

(f0 ⊗ f1) · (g0 ⊗ g1) = (f0 ◦ g0)⊗ (g1 ◦ f1).

For a closed subgroup G̃ of S∞, we write

Tree(G̃) = {σ ∈ Tree(S∞) : [σ]Tree(S∞) ∩ G̃ 6= ∅}.
Note that this is a subtree of Tree(S∞) without leaves. We say that G̃

is computable if Tree(G̃) is computable.

Theorem 5.2.
A group G is computably t.d.l.c. via a Baire presentation (Def. 3.1) ⇔

G is computably t.d.l.c. via a meet groupoid (Def. 4.6).
From a presentation of G of one type, one can uniformly obtain a

presentation of G of the other type.

Proof. ⇐: (This is the harder implication - if you don’t want to read
it skip to Page 18.)
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We begin by defining an operator that, for Haar computable meet
groupoids, is dual to the operation of sending G to a computable copy
of W(G) obtained above.

Definition 5.3. Given a meet groupoid W with domain N, let G̃ =
Gcomp(W) be the closed subgroup of S∞ consisting of elements p that
preserve the meet operation of W , and satisfy p(A) · B = p(A · B)
whenever A ·B is defined.

Recall that the elements of S∞ are not actually permutations, but
paths on Tree(S∞) encoding pairs consisting of a permutation and

its inverse. However, if p ∈ Tree(G̃), and A ∈ W is denoted by i,
we will suggestively write p(A) for the element of W denoted by the
first component of the pair of natural numbers encoded by p(i). We
note that for each subgroup U ∈ W(G), the set B = p(U) satisfies
B · U = p(U) · U = p(U · U) = B, and hence is a left coset of U .
The following diagram displays the condition in the definition above in
category terms as a commutative diagram.

U A // V B // W

U ′

p(A)

44

p(A ·B)

22

Now suppose that W is as in Definition 4.6. Recall the convention
that all t.d.l.c. groups are infinite. So the domain of W equals N, and
there is an isomorphism of meet groupoids W → W(G), which below
we will use to identify W and W(G). Define a group homomorphism

Φ: G → G̃ by letting Φ(g) be the element of S∞ corresponding to
the left action of g, i.e. A 7→ gA where A ∈ W(G). Note that Φ is
injective because the compact open subgroups form a neighbourhood
basis of 1: if g 6= 1 then g 6∈ U for some compact open subgroup U , so
that Φ(g)(U) 6= U .

Claim 5.4. Φ: G ∼= G̃.

To show that Φ is onto, let p ∈ G̃. Since

{p(U) : U ∈ W(G) is a subgroup}

is a filter onW(G) containing a compact set, there is an element g in its
intersection. Then Φ(g) = p: recall that for each subgroup U ∈ W(G),
the set B = p(U) is a left coset of U , and hence equals gU . So, if A is
a right coset of U , then p(A) = p(U · A) = B · A = gA.

To show that Φ is continuous at 1 (and hence continuous), note that

a basis of neighbourhoods of the identity in G̃ is given by the open sets

{p ∈ G̃ : ∀i ≤ n [p(Ai) = Ai]},
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where A1, . . . , An ∈ W(G). Given such a set, suppose Ai is a right
coset of Ui, and let U =

⋂
Ui. If g ∈ U then gAi = Ai for each i.

The open mapping theorem for Hausdorff groups says that every
surjective continuous homomorphism from a σ-compact group (such as
a t.d.l.c. group with a countable basis of the topology) onto a Baire
group is open. So Φ is open. This verifies the claim.

Using the assumption thatW is Haar computable, we now show that

Tree(G̃) is c.s.c. as in Definition 2.3. The following claim will be used

to show that Tree(G̃) is computable.

Claim 5.5. A finite injection α on N can be extended to some p ∈ G̃
⇔ B · A−1 is defined whenever α(A) = B, and⋂

{B · A−1 : α(A) = B} 6= ∅.

For right to left, let g be an element of the intersection. Then gA =
B · A−1 · A = B = α(A) for each A ∈ dom(α).

For left to right, suppose p ∈ G̃ extends α. By Claim 5.4, there
is g ∈ G such that p = Φ(g). Then gA = p(A) = B for each A,B
such that α(A) = B. Such A,B are right cosets of the same subgroup.
Hence B · A−1 is defined, and clearly g is in the intersection. This
establishes the claim.

By (1),

S = {σ ⊗ τ : ασ⊗τ can be extended to some p ∈ G̃}

is a computable subtree of Tree(S∞) without leaves, and G̃ = [S].

Hence S = Tree(G̃).

Claim 5.7 below will verify that S = Tree(G̃) is a c.s.c. tree as defined
in 2.3. The following lemma does the main work. Informally it says

that given some subgroup U ∈ W , if one declares that p ∈ G̃ has a
value L ∈ W at U , then one can compute for any F ∈ W the finite set
of possible values of p at F .

Lemma 5.6 (Effectively finite suborbits). Suppose that U ∈ W is a
subgroup and L is a left coset of U . Let F ∈ W . One can uniformly in
U,L and F compute a strong index for the finite set L = {p(F ) : p ∈
[S] ∧ p(U) = L}.

To see this, first one computes V = F−1 ·F , so that F is a right coset
of the subgroup V . Next one computes k = |U : U ∩ V |, the number of
left cosets of U ∩ V in U . Note that

L0 = {p(U ∩ V ) : p ∈ [S] ∧ p(U) = L}

is the set of left cosets of U ∩ V contained in L. Clearly this set has
size k. By searchingW until all of its elements have appeared, one can
compute a strong index for this set. Next one computes a strong index
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for the set L1 of left cosets D of V such that C ⊆ D for some C ∈ L0

(this uses that given C one can compute D). Finally one outputs a
strong index for the set {D · F : D ∈ L1}, which equals L. This shows
the lemma.

We make the assumption that 0 denotes a subgroup U in W . This
does not affect the uniformity statement of the theorem: otherwise we
can search W for the least n such that n is a subgroup, and then work
with a new copy of W(G) where 0 and n are swapped.

Claim 5.7. There is a computable binary function H such that, if
ρ ∈ S, then ρ(i) ≤ H(ρ(0), i) for each i < |ρ|.

Let F be the coset denoted by k. Let ρ(0) = 〈a0, a1〉 and let Lr be the
coset denoted by ar, r = 0, 1. Applying Lemma 5.6 to U,Lr, F , one
can compute H(σ, i) as the greatest pair 〈b0, b1〉 such that br denotes
an element of {p(F ) : p ∈ [S] ∧ p(U) = Lr} for r = 0, 1.

⇒: We build a Haar computable copy W of the meet groupoid W(G)
as in Definition 4.6. By Lemma 5.1, one can decide whether u ∈ ET
is the code number of a subgroup (Definition 2.4). Furthermore, one
can decide whether B = Kv is a left coset of a subgroup U = Ku: this
holds iff BU ⊆ B and BB−1 ⊆ U , and the latter two conditions are
decidable by Lemma 5.1. Similarly, one can decide whether B is a right
coset of U .

It follows that the set {u ∈ ET : Ku is a coset} can be obtained
via an existential quantification over a computable binary relation (in
other words, V is recursively enumerable). Hence, by a basic fact of
computability theory, there is computable 1-1 function θ defined on
an initial segment of N− {0} such that the range of θ equals this set.
Write An = Kθ(n) for n > 0, and A0 = ∅.

The domain of W is all of N. By Lemma 2.5 the intersection oper-
ation on W is computable, i.e., there is a computable binary function
c on N such that Ac(n,k) = An ∩ Ak. Next, given n, k ∈ N − {0} one
can decide whether An is a right coset of the same subgroup that Ak is
a left coset of. In that case, one can compute the number r such that
Ar = An · Ak: one uses that Ar is the unique coset C such that

(a) AnAk ⊆ C, and
(b) C is a right coset of the same subgroup that Ak is a right

coset of.

For subgroups U, V , one can compute |U : U ∩ V | by finding in W
further and further distinct left cosets of U ∩ V contained in U , until
their union reaches U . The latter condition is decidable. �

Definition 5.8. Given a computable Baire presentationG, byWcomp(G)
we denote the computable copy of W(G) with domain N obtained in
the proof above.
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Corollary 5.9. In this context, the left and right actions [T ]×N→ N,
given by (g, A) 7→ gA and (g, A) 7→ Ag, are computable.

Proof. For the left action, we use an oracle Turing machine that has
as an oracle a path g on [T ], and as an input an A ∈ W . If A is a left
coset of a subgroup V , it outputs the left coset B of V such that it can
find a string σ ≺ g with [σ]TA ⊆ B.

For the right action use that Ag = (g−1A−1)−1 and inversion is com-
putable both in G and in Wcomp(G). �

Recall from the introduction that Aut(Td) is the group of automor-
phism of the undirected tree Td where each vertex has degree d.

Example 5.10. Let d ≥ 3. The t.d.l.c. group G = Aut(Td) has a
computable Baire presentation.

Proof. Via an effective encoding of the vertices of Td by the natural
numbers, we can view G itself as a closed subgroup of S∞. A finite
injection α on Td can be extended to an automorphism of Td iff it
preserves distances, which is a decidable condition. Each η ∈ Tree(S∞)
corresponds to an injection on Td via (1). So we can decide whether
[η]Tree(G) = [η]Tree(S∞) ∩ G 6= ∅. Clearly [η]Tree(G) is compact for every
such nonempty string η.

To see that Tree(G) is c.s.c., note that if σ ∈ Tree(G) maps x ∈ Td
to y ∈ Td, then every extension η ∈ Tree(G) of σ maps elements in
Td at distance n from x to elements in Td at distance n from y, and
conversely. This yields a computable bound H(σ, i) as required in (3)
of Def. 2.3. �

6. Algorithmic properties of objects associated with a
t.d.l.c. group

6.1. The modular function is computable. In Subsection 1.6 we
discussed the modular function ∆: G → R+. As an application of
Corollary 5.9, we show that for any computable presentation, the mod-
ular function is computable.

Corollary 6.1. Let G be computably t.d.l.c. via a Baire presentation
([T ],Mult, Inv). Then the modular function ∆: [T ] → Q+ is com-
putable.

Proof. Let V ∈ W be any subgroup. Given g ∈ [T ], using Corollary 5.9
compute A = gV . Compute U ∈ W such that A is a right coset of U ,
and hence A = Ug. For any left Haar measure µ on G, we have

∆(g) = µ(A)/µ(U) = µ(V )/µ(U).

By Remark 4.7 we can choose µ computable; so this suffices to deter-
mine ∆(g). �



20 ANDRE NIES

6.2. Cayley-Abels graphs are computable. Let G be a t.d.l.c.
group that is compactly generated, i.e., algebraically generated by a
compact subset. Then there is a compact open subgroup U , and a
set S = {s1, . . . , sk} ⊆ G such that S = S−1 and U ∪ S algebraically
generates G. The Cayley-Abels graph

ΓS,U = (VS,U , ES,U)

of G is given as follows. The vertex set VS,U is the set L(U) of left
cosets of U , and the edge relation is

ES,U = {〈gU, gsU〉 : g ∈ G, s ∈ S}.
Some background and original references are given in Section 5 of [28].
For more detailed background see Part 4 of [25], or [9, Section 2]. If G is
discrete (and hence finitely generated), then ΓS,{1} is the usual Cayley
graph for the generating set S. Any two Cayley-Abels graphs of G is
are quasi-isometric. See [9, Def. 3] or [25] for the formal definition.

Theorem 6.2. Suppose that G is computably t.d.l.c. and compactly
generated.

(i) Each Cayley-Abels graph ΓS,U of G has a computable copy L.
(ii) If ΓT,V is another Cayley-Abels graph obtained as above, then

ΓS,U and ΓT,V are computably quasi-isometric.

Proof. (i) For the domain of the computable copy L, we take the com-
putable set of left cosets of U . We show that the edge relation is
first-order definable from the parameters in such a way that it can be
verified to be computable as well.

Let Vi = Ci · C−1
i so that Ci is a right coset of Vi. Let V = U ∩⋂

1≤i≤k Vi. To first-order define EΓ in W with the given parameters,
the idea is to replace the elements g in the definition of EΓ by left
cosets P of V , since they are sufficiently accurate approximations to g.
It is easy to verify that 〈A,B〉 ∈ EΓ ⇔

∃i ≤ k∃P ∈ L(V )∃Q ∈ L(Vi) [P ⊆ A ∧ P ⊆ Q ∧ B = Q · Ci],

where L(U) denotes the set of left cosets of a subgroup U : For the
implication “⇐”, let g ∈ P ; then we have A = gU and B = gsiU . For
the implication “⇒”, given A = gU and B = gsiU , let P ∈ L(V ) such
that g ∈ P .

We verify that the edge relation EΓ is computable. Since W is Haar
computable, by the usual enumeration argument we can obtain a strong
index for the set of left cosets of V contained in A. Given P in this set
and i ≤ k, the left coset Q = QP,i of Vi in the expression above is unique
and can be determined effectively. So we can test whether 〈A,B〉 ∈ EΓ

by trying all P and all i ≤ k and checking whether B = QP,i · Ci.
(ii) (Sketch) First suppose that V ⊆ U . There is a computable map
ψ : L(U) → L(V ) such that ψ(A) ⊆ A. The proof of [9, Thm. 2+]
shows that ψ : ΓS,U → ΓT,V is a quasi-isometry. In the general case, let
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R ⊆ G be a finite symmetric set such that (U ∩ V ) ∪ R algebraically
generates G. There are computable quasi-isometries φ : ΓS,U → ΓR,U∩V
and ψ : ΓT,V → ΓR,U∩V as above. There is a computable quasi-isometry
θ : ΓR,U∩V → ΓT,V : given a vertex y ∈ L(U ∩ V ), let x = θ(y) be a
vertex in L(V ) such that ψ(x) is at distance at most c from y, where
c is a constant for ψ as above. Then θ ◦ φ is a quasi-isometry as
required. �

6.3. Algorithmic properties of the scale function. The scale func-
tion s : G → N+ for a t.d.l.c. group G was introduced by Willis [26].
Recall that for a compact open subgroup V of G and an element g ∈ G
one defines m(g, V ) = |V g : V ∩ V g|, and

s(g) = min{m(g, V ) : V is a compact open subgroup}.
Willis proved that the scale function is continuous, where N+ carries
the discrete topology. He introduced the relation that a compact open
subgroup V is tidy for g, and showed that this condition is equivalent
to being minimizing for g in the sense that s(g) = m(g, V ). Möller
[16] used graph theoretic methods to show that V is minimizing for g
if and only if m(gk, V ) = m(g, V )k for each k ∈ N. He also derived the
“spectral radius formula”: for any compact open subgroup U , one has
s(g) = limkm(gk, U)1/k.

The following example is well-known ([28, Example 2]); we include
it to show that our framework is adequate as a general background
for case-based approaches to computability for t.d.l.c. groups used in
earlier works.

Example 6.3 (with Stephan Tornier). For d ≥ 3, the scale function on
Aut(Td) in the computable presentation of Example 5.10 is computable.

Proof. An automorphism g of Td has exactly one of three types (see
[3]):

(1) g fixes a vertex v: then s(g) = 1 because g preserves the stabi-
lizer of v, which is a compact open subgroup.

(2) g inverts an edge: then s(g) = 1 because g preserves the set-wise
stabilizer of the set of endpoints of this edge.

(3) g translates along a geodesic (a subset of Td that is a homo-
geneous tree of degree 2): then s(g) = (d − 1)` where ` is the
length. To see this, for ` = 1 one uses as a minimizing sub-
group the compact open subgroup of automorphisms that fix
two given adjacent vertices on the axis. For ` > 1 one uses that
s(rk) = s(r)k for each k and r ∈ Aut(Td); see again [26].

The oracle Turing machine, with a path corresponding to g ∈ Aut(Td)
as an oracle, searches in parallel for a witness to (1), a witness to (2),
and a sufficiently long piece of the axis in (3) so that the shift becomes
“visible”. It then outputs the corresponding value of the scale. �
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For the rest of this section, fix a computable Baire presentation
([T ],Mult, Inv) of a t.d.l.c. group G as in Def. 3.1. Let W =Wcomp(G)
be the Haar computable copy of W(G) given by Definition 5.8. Recall
that the domain of W is N. Via W we can identify compact open
cosets of G with natural numbers. The following is immediate from
Corollary 5.9.

Fact 6.4. The function m : [T ]×N→ N (defined to be 0 if the second
argument is not a subgroup) is computable.

It is of interest to study whether the scale function, seen as a function
s : [T ]→ N, is computable in the sense of Definition 2.7. We note that
neither Möller’s spectral radius formula, nor the tidying procedure of
Willis (see again [28]) allow to compute the scale in our sense.

The scale is computable if and only if one can algorithmically decide
whether a subgroup is mimimizing:

Fact 6.5. The scale function on [T ] is computable ⇔ the following
function Φ is computable in the sense of Def. 2.7: if g ∈ [T ] and V
is a compact open subgroup of G, then Φ(g, V ) = 1 if V is minimizing
for g; otherwise Φ(g, V ) = 0.

Proof. ⇒: An oracle Turing machine with oracle g searches for the
first V that is minimizing for g, and outputs m(g, V ).
⇐: For oracle g, given input V check whether m(g, V ) = s(g). If so
output 1, otherwise 0. �

We next provide a fact restricting the complexity of the scale func-
tion. We say that a function Ψ : [T ] → N is computably approximable
from above if there is a computable function Θ : [T ]×N→ N such that
Θ(f, r) ≥ Θ(f, r + 1) for each f ∈ [T ], r ∈ N, and

Ψ(f) = k iff limr Θ(f, r) = k.

Fact 6.6. The scale function is computably approximable from above.

Proof. Let Θ(f, r) be the minimum value of m(f, s) over all s ≤ r. �

7. Closure properties of the class of computably t.d.l.c.
groups

All computable presentations in this section will be Baire presenta-
tions (see Definition 3.1), and we will usually view a t.d.l.c. group G
concretely as a computable Baire presentation. Extending the previ-
ous notation in the setting of closed subgroups of S∞, by Tree(G) we
denote the c.s.c. tree underlying this computable Baire presentation.
The following is immediate.

Fact 7.1 (Computable closed subgroups). Let G be a computably t.d.l.c.
group. Let H be a closed subgroup of G (so that Tree(H) is a subtree
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of Tree(G)). Then H is computably t.d.l.c. via the Baire presenta-
tion based on the Tree(H) (which is c.s.c.), with the operations of G
restricted to H.

For instance, consider the closed subgroups U(F ) of Aut(Td), where
d ≥ 3 and F is a subgroup of Sd, introduced by Burger and Mozes [1].
By Example 5.10 together with the preceding fact, each group U(F ) is
computably t.d.l.c.

For another example, consider the computable Baire presentation of
SL2(Qp) given by Example 3.2. Let S be the c.s.c. subtree of T whose

paths describe matrices of the form

(
r 0
0 s

)
(so that s = r−1). This

yields a computable Baire presentation of the group (Q∗p, ·).
Example 7.2. For each prime p and n ≥ 2, the group GLn(Qp) is
computably t.d.l.c.

Proof. We employ the embedding F : GLn(Qp) → SLn+1(Qp) which
extends a matrix A to the matrix B where the new row and new col-
umn vanish except for the diagonal element (which necessarily equals
(detA)−1). Clearly there is a c.s.c. subtree S of the c.s.c. subtree of
T in Example 3.2 for n + 1 such that [S] = range(F ). Now we apply
Fact 7.1. �

A further construction staying within the class of t.d.l.c. groups is
the semidirect product based on a continuous action. In the effective
setting, we use actions that are computable in the sense of Section 2.2.
For computable actions in the more general context of Polish groups
see [14].

Proposition 7.3 (Closure under computable semidirect products).
Let G,H be computably t.d.l.c. groups. Suppose Φ: G × H → H is a
computable function that specifies an action of G on H via topological
automorphisms. Then the topological semidirect product L = G nΦ H
is computably t.d.l.c.

Proof. Let T be the tree obtained by pairing corresponding components
of strings of the same length from the trees of G and H, i.e.

T = {σ ⊗ τ : σ ∈ Tree(G) ∧ τ ∈ Tree(H)}.
It is clear that T is a c.s.c. tree. Via the natural bijection

[T ]→ [Tree(G)]× [Tree(H)],

one can write elements of L in the form 〈g, h〉 where g ∈ [Tree(G)] and
h ∈ [Tree(H)].

By the standard definition of semidirect product ([20, p. 27]), writing
the operations for G and H in the usual group theoretic way, we have

Mult(〈g1, h1〉, 〈g2, h2〉) = 〈g1g2,Φ(g2, h1)h2〉
Inv(〈g, h〉) = 〈g−1, (Φ(g−1, h))−1〉.
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This shows that Mult and Inv are computable, and hence yields a com-
putable Baire presentation ([T ],Mult, Inv) for L. �

The next two closure properties are proved in the underlying paper
[15, Section 11]. For local direct products see Wesolek [24, Def. 2.3].

Proposition 7.4 (Prop 11.5 in [15]). Let (Gi)i∈N+ be computably t.d.l.c.
groups uniformly in i, and for each i let Ui be a compact open subgroup
of Gi, uniformly in i. Then G =

⊕
i∈N+(Gi, Ui) is computably t.d.l.c.

The hardest one is the closure under quotients by computable closed
normal subgroups.

Theorem 7.5 (Thm. 11.11 in [15]). Let G be computably t.d.l.c. Let
N be a closed normal subgroup of G such that Tree(N) is a computable
subtree of Tree(G). Then G/N is computably t.d.l.c.

Example 7.6. For each prime p and each n ≥ 2, the group PGLn(Qp)
is computably t.d.l.c.

Proof. In Example 7.2 we obtained a computable Baire presentation
(T,Mult, Inv) of GLn(Qp). In this presentation, the centreN of GLn(Qp)
is given by the diagonal (n+1)×(n+1) matrices such that the first n en-
tries of the diagonal agree. So clearly Tree(N) is a computable subtree
of the tree S in Example 7.2. Hence we can apply Theorem 7.5. �

8. Uniqueness of computable presentation

As discussed in Subsection 1.8, a countable structure is called au-
tostable if it has a computable copy, and all its computable copies are
computably isomorphic. We adapt this notion to the present setting.

Definition 8.1. A computably t.d.l.c. group G is called autostable
if for any two computable Baire presentations of G, based on trees
T, S ⊆ N∗, there is a computable group homeomorphism Ψ: [T ]→ [S].
Note that Ψ−1 is also computable by [15, Cor 9.3].

We now provide a criterion for autostability, and show its usefulness
through various examples.

Criterion 8.2. A computably t.d.l.c. group G is autostable ⇔ any
two Haar computable copies of its meet groupoid W(G) are computably
isomorphic.

We will only apply the implication “⇐”. However, the converse im-
plication is interesting on its own right because it shows that our notion
of autostability is independent of whether we use computable Baire
presentation, or computable presentations based on meet groupoids.

Proof. See [15], proof of Criterion 12.2. �

Theorem 8.3. The computably t.d.l.c. groups Qp and ZnQp are au-
tostable.
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Proof. In Example 4.9 we obtained a Haar computable copy W of the
meet groupoid W(Qp). Recall that the elements of W are given as
cosets Dr,a = π−1

r (a) where r ∈ Z, πr : Zp → Cp∞ is the canonical
projection with kernel Ur = prZp, and a ∈ Cp∞ .

By the criterion above, it suffices to show that any Haar computable

copy W̃ of W(Qp) is computably isomorphic to W . By hypothesis on

W̃ there is an isomorphism Γ: W → W̃ . Let Ũr = Γ(Ur) for r ∈ Z.

We will construct a computable isomorphism ∆: W → W̃ which agrees
with Γ on the set {Ur : r ∈ Z}. First we show that from r one can

compute the subgroup Ũr ∈ W̃ .

(a) If Ũr has been determined, r ≥ 0, compute Ũr+1 by searching

for the unique subgroup in W̃ that has index p in Ũr.

(b) If Ũr has been determined, r ≤ 0, compute Ũr−1 by searching

for the unique subgroup in W̃ such that Ũr has index p in it.

The shift homeomorphism S : Qp → Qp is defined by S(x) = px.
Note that B → S(B) is an automorphism of the meet groupoidW . Us-
ing the notation of Example 4.9 (recalled above), for each α ∈ Qp, r ∈
Z, one has πr+1(S(α)) = πr(α), and hence for each a ∈ Cp∞ ,

(2) S(Dr,a) = Dr+1,a.

We show that S is definable within W by an existential formula using
subgroups Ur as parameters. Recall that given a meet groupoid W , by
L(U) we denote the set of left cosets of a subgroup U . For D ∈ L(Ur)
we write Dk for D · . . . ·D (with k factors), noting that this is defined,
and in L(Ur).

Claim 8.4. Let B ∈ L(Ur) and C ∈ L(Ur+1). Then

C = S(B)⇔ ∃D ∈ L(Ur+1) [D ⊆ B ∧ Dp = C].

⇐: If x ∈ C then x = py for some y ∈ B, so x ∈ S(B). So C ⊆ S(B)
and hence C = S(B) given that S(B) ∈ L(Ur+1).
⇒: Let x ∈ C, so x = S(y) for some y ∈ B. Let y ∈ D where
D ∈ L(Ur+1). Then D ⊆ B. Since Dp ∩ C 6= ∅, these two (left) cosets
of Ur+1 coincide. This shows the claim.

We use this to show that the function S̃ = Γ ◦ S ◦Γ−1 defined on W̃
is computable. Since Γ(Ur) = Ũr, (r ∈ Z), S̃ satisfies the claim when

replacing the Ur by the Ũr. Since the meet groupoid W̃ is computable,

given B ∈ W̃ , one can search W̃ for a witness D ∈ L(Ũr+1) as on

the right hand side, and then output C = S̃(B). So the function S̃ is
computable.

We build the computable isomorphism ∆: W → W̃ in four phases.

The first three phases build a computable isomorphism L(U0)→ L(Ũ0),

where L(Ũ0) ⊆ W̃ denotes the group of left cosets of Ũ0. (This group is
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isomorphic to Cp∞ , so this amounts to defining a computable isomor-
phism between two computable copies of Cp∞ .) The last phase extends

this isomorphism to all of W , using that S̃ is an automorphism of W̃ .

For q ∈ Z[1/p] we write [q] = Z+q ∈ Cp∞ . We define D̃r,[q] = ∆(Dr,a)
for r ∈ Z, q ∈ Z[1/p]

(a) Let D̃0,[p−1] be an element of order p in L(Ũ0).

(b) Recursively, for m > 0 let D̃0,[p−m] be an element of order pm in

L(Ũ0) such that (D̃0,[p−m])
p = D̃0,[p−m+1].

(c) For a = [kp−m] where 0 ≤ k < pm and p does not divide k, let

D̃0,a = (D̃0,[p−m])
k.

(d) For r ∈ Z− {0} let D̃r,a = S̃r(D̃0,a).

One can easily verify that ∆: W → W̃ is computable and preserves the

meet groupoid operations. To verify that ∆ is onto, let B ∈ W̃ . We

have B ∈ L(Ũr) for some r. There is a least m such that B = (D̃r,[p−m])
k

for some k < pm. Then p does not divide k, so B = D̃r,[kp−m].

We next treat the case of G = ZnQp. Let V be the Haar computable

copy of W(G) obtained in Example 4.9, and let Ṽ be a further Haar
computable copy of W(G). Using the notation of Example 4.9, let

Ez,r,a = gzDr,a for each z, r ∈ Z, a ∈ Cp∞ .

We list some properties of these elements of V that will be needed
shortly. Note that we can view W as embedded into V by identify-
ing 〈r, a〉 with 〈0, r, a〉. Also note that Ez,r,a : Ur−z → Ur (using the
category notation discussed after Fact 4.3). Since Dr+1,a ⊆ Dr,pa, we
have

(3) Ez,r+1,a ⊆ Ez,r,pa.

Furthermore,

(4) Ez,r,0 = gzUr = Ur+zg
z = (g−zUr−z)

−1 = (E−z,r−z,0)−1.

By hypothesis on Ṽ , there is a meet groupoid isomorphism Γ: V →
Ṽ . Since G has no compact open subgroups besides the ones present

in W(Qp), the family (Ũr)r∈Z, where Ũr = Γ(Ur), is computable in

Ṽ by the same argument as before. The set of elements A of Ṽ that
are a left and a right coset of the same subgroup is computable by

checking whether A−1 · A = A · A−1. The operations of Ṽ induce a

Haar computable meet groupoid W̃ on this set. Clearly the restricted

map Γ = Γ | W is an isomorphism W → W̃ . So by the case of Qp,

there is a computable isomorphism ∆: W → W̃ .
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We will extend ∆ to a computable isomorphism ∆: V → Ṽ . The
following summarizes the setting:

V Γ,∆ // Ṽ

W

⊆

OO

Γ,∆
// W̃

⊆

OO

In five phases we define a computable family Ẽz,r,a (z, r ∈ Z, a ∈ Cp∞),

and then let ∆(Ez,r,a) = Ẽz,r,a. As before write D̃r,a = ∆(Dr,a).

(a) Let Ẽ0,r,a = D̃r,a. Choose F0 := Ẽ−1,0,0 : Ũ1 → Ũ0

(b) compute Fr := Ẽ−1,r,0 : Ur+1 → Ur by recursion on |r|, where

r ∈ Z, in such a way that F̃r+1 ⊆ F̃r for each r ∈ Z; this is

possible by (3) and since V ∼= Ṽ via Γ.

(c) For z < −1, compute Ẽz,r,0 : Ur−z → Ur as follows:

Ẽz,r,0 = Fr−z−1 · Fr−z−2 · . . . · Fr.
(d) For z > 0 let Ez,r,0 = (Ẽ−z,r−z,0)−1; this is enforced by (4).

(e) Let Ẽz,r,a = Ẽz,r,0 · D̃r,a.

One verifies that ∆ preserves the meet groupoid operations (we omit

the formal detail). To show that ∆ is onto, suppose that Ẽ ∈ V is

given. Then Ẽ = Γ(Ez,r,a) for some z, r, a. By (3) we may assume

that z < 0. Then Ez,r,0 =
∏−z

i=1 E−1,r−z−i,0 as above. So, writing Fs for

Ẽ−1,s,0, we have Γ(Ez,r,0) =
∏−z

i=1 Fr−z−iD̃r−z−i,ai for some ai ∈ Cp∞ .

Note that S̃(D) = F ·D ·F−1 for each D ∈ L(Ũr)∩W̃ and F : Ũr+1 →
Ũr. For, the analogous statement clearly holds in V ; then one uses

that S̃ = Γ ◦ S ◦ Γ−1, and that Γ: V → Ṽ is an isomorphism. Since

D̃r+1,a = S̃(D̃r,a), we may conclude that D̃r+1,a · F = F ·Dr,a for each
such F . We can use these “quasi-commutation relations” to simplify

the expression
∏−z

i=1 Fr−z−iD̃r−z−i,ai to Ẽz,r,0D̃r,b for some b ∈ Cp∞ .

Hence Ẽ = Ẽz,r,0D̃r,bD̃r,a. This shows that Ẽ is in the range of ∆, as
required. �
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