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Introduction

For G a locally compact group, the connected component of the identity,
denoted by G◦, is a closed normal subgroup. We thereby obtain a short
exact sequence of topological groups

{1} → G◦ → G→ G/G◦ → {1}

where G/G◦ is the group of left cosets endowed with the quotient topology.
The group G◦ is a connected locally compact group, and the group of com-
ponents G/G◦ is a totally disconnected locally compact (t.d.l.c.) group. The
study of locally compact groups therefore in principle, although not always
in practice, reduces to studying connected locally compact groups and t.d.l.c.
groups.

Many deep, general results have been discovered for connected locally
compact groups over the last century. For instance, the connected locally
compact groups are inverse limits of Lie groups, by the celebrated solution to
Hilbert’s fifth problem. The t.d.l.c. groups, on the other hand, long resisted
a general theory. There were several early, promising results, the most com-
pelling due to D. van Dantzig and H. Abels, but these results largely failed
to ignite an active program of research. The indifference of the mathematical
community seems to have arose from an inability to find a coherent meta-
mathematical perspective via which to view the many disparate examples,
which include both the profinite groups and the discrete groups. The insight,
due to G. Willis [15], M. Burger and S. Mozes [4], and P.-E. Caprace and N.
Monod [5], giving rise to a general theory is to study the interactions between
algebraic, geometric, and topological structure. To put it another way, the
modern theory of t.d.l.c. groups views the t.d.l.c. groups as simultaneously
geometric groups and topological groups and investigates the connection be-
tween the geometric structure and topological structure. This perspective
gives the profinite groups and the discrete groups a special status as basic
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building blocks, since the profinite groups are trivial as geometric groups and
the discrete groups are trivial as topological groups.

This book covers what this author views as the central results in the
theory of t.d.l.c. groups. We aim to present in full and clear detail the basic
theorems and techniques a graduate student or researcher will need to study
t.d.l.c. groups.

Prerequisites. The reader should have the mathematical maturity of a first
or second year graduate student. We assume a working knowledge of ab-
stract algebra, point-set topology, and functional analysis. The ideal reader
will have taken graduate courses in abstract algebra, point-set topology, and
functional analysis.

A word on second countability

In this text, we assume our groups are second countable whenever convenient.
The theory of t.d.l.c. groups essentially reduces to studying second countable
groups, so little generality is lost.

In the setting of locally compact groups, second countability admits a
useful characterization.

Definition. A topological space is Polish if it is separable and admits a
complete metric which induces the topology.

Fact. The following are equivalent for a locally compact group G:

(1) G is Polish.

(2) G is second countable.

(3) G is metrizable and Kσ - i.e. has a countable exhaustion by compact
sets.

We may thus use the term “Polish” in place of “second countable” in the
setting of locally compact groups. We will do so, because we will from time
to time require results for Polish groups. (The class of Polish groups is a
natural family of topological groups which is often studied in descriptive set
theory and model theory.)
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Notations

A topological group is a group endowed with a topology such that the
group operations are continuous. All topological groups and spaces are taken
to be Hausdorff. Groups are typically written multiplicatively. We use “t.d.”,
“l.c.”, and “s.c.” for “totally disconnected”, “locally compact”, and “second
countable”, respectively.

For H a closed subgroup of a topological group G, G/H denotes the
space of left cosets, and H\G denotes the space of right cosets. We shall
primarily consider left coset spaces. All quotient spaces of cosets are given
the quotient topology. The center of G is denoted by Z(G). For any subset
K ⊆ G, CG(K) is the collection of elements of G that centralize every element
of K. We denote the collection of elements of G that normalize K by NG(K).
The topological closure of K in G is denoted by K. For A,B ⊆ G, we put

AB := {bab−1 | a ∈ A and b ∈ B} ,
[A,B] := 〈aba−1b−1 | a ∈ A and b ∈ B〉, and

An := {a1 . . . an | ai ∈ A}

For k ≥ 1, A×k denotes the k-th Cartesian power. For a, b ∈ G, [a, b] :=
aba−1b−1.

We denote a group G acting on a set X by G y X. Groups are always
taken to act on the left. For a subset F ⊆ X, we denote the pointwise
stabilizer of F in G by G(F ). The setwise stabilizer is denoted by G{F}.

We use the notation ∀∞ to stand for the phrase “for all but finitely many.”
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Chapter 1

Topological Structure

1.1 van Dantzig’s theorem

In a topological group, the topology is determined by a neighborhood basis at
the identity. Having a collection {Uα}α∈I of arbitrarily small neighborhoods
of the identity, we obtain a collection of arbitrarily small neighborhoods of
any other group element g by forming {gUα}α∈I . We thus obtain a basis

B := {gUα | g ∈ G and α ∈ I}

for the topology on G. We, somewhat abusively, call the collection {Uα}α∈I
a basis of identity neighborhoods for G.

The topology of a totally disconnected locally compact (t.d.l.c.) group
admits a well-behaved basis of identity neighborhoods; there is no need for
the Polish assumption here. Isolating this basis requires a couple of classical
results from point-set topology.

A topological space is totally disconnected if every connected subset
has at most one element. A space is zero dimensional if it admits a basis
of clopen sets; a clopen set is both closed and open. Zero dimensional
spaces are totally disconnected, but in general the converse does not hold.
For locally compact spaces, however, the converse does hold. This fact is
well-known, but let us give a proof, as the techniques are informative. Recall
that we take all topological spaces to be Hausdorff.

Lemma 1.1. Let X be a compact space.

1. If C and D are non-empty closed subsets such that C ∩ D = ∅, then
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there are disjoint open sets U and V such that C ⊆ U and D ⊆ V .
That is, X is a normal topological space.

2. If x ∈ X and A is the intersection of all clopen subsets of X containing
x, then A is connected.

Proof. For (1), let us first fix c ∈ C. Since X is Hausdorff, for each d ∈ D,
there are disjoint open sets Od and Pd such that c ∈ Od and d ∈ Pd. The set
D is compact, so there is a finite collection d1, . . . , dn of elements of D such
that D ⊆

⋃n
i=1 Pdi . We now see that Uc :=

⋂n
i=1 Odi and Vc :=

⋃n
i=1 Pdi are

disjoint open sets such that c ∈ Uc and D ⊆ Vc.
For each c ∈ C, the set Uc is an open set that contains c, and Vc is an

open set that is disjoint from Uc with D ⊆ Vc. As C is compact, there is a
finite collection c1, . . . , cm of elements of C such that C ⊆ U :=

⋃m
i=1 Uci . On

the other hand, D ⊆ Vci for each 1 ≤ i ≤ m, so D ⊆ V :=
⋂m
i=1 Vci . The sets

U and V satisfy the claim.

For (2), suppose that A = C∪D with C and D open in A and C∩D = ∅;
note that both C and D are closed in X. Applying part (1), we may find
disjoint open sets U and V of X such that C ⊆ U and D ⊆ V . Let {Cα |
α ∈ I} list the set of clopen sets of X that contain x. The intersection⋂

α∈I

Cα ∩ (X \ (U ∪ V ))

is empty, so there is some finite collection α1, . . . , αk in I such that H :=⋂n
i=1Cαi ⊆ U ∪ V . We may thus write H = H ∩ U ∪H ∩ V , and since H is

clopen, both H ∩U and H ∩V are clopen. The element x must be a member
of one of H ∩ U or H ∩ V ; without loss of generality, we assume x ∈ H ∩ U .
The set A is the intersection of all clopen sets that contain x, so A ⊆ H ∩U .
The set A is then disjoint from V which contains D, so D is empty. We
conclude that A is connected.

Lemma 1.2. A totally disconnected locally compact space X is zero dimen-
sional.

Proof. Say thatX is a totally disconnected locally compact space. LetO ⊆ G
be a compact neighborhood of x ∈ G and say that x ∈ U ⊆ O with U open
in G. The set O is a totally disconnected compact space under the subspace
topology. Letting {Ci}i∈I list clopen sets of O containing x, Lemma 1.1
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ensures that
⋂
i∈I Ci = {x}. The intersection

⋂
i∈I Ci ∩ (O \ U) is empty, so

there is i1, . . . , ik such that
⋂k
j=1Cij ⊆ U . The set

⋂k
j=1Cij is closed in O,

so it is closed in G. On the other hand,
⋂k
j=1 Cij is open in the subspace

topology on O, so there is V ⊆ G open such that V ∩O = V ∩U =
⋂k
j=1 Cij .

We conclude that
⋂k
j=1 Cij is clopen in X. Hence, X is zero dimensional.

That t.d.l.c. spaces are zero dimensional gives a canonical basis of identity
neighborhoods for a t.d.l.c. group.

Theorem 1.3 (van Dantzig). A t.d.l.c. group admits a basis at 1 of compact
open subgroups.

Proof. Let V be a neighborhood of 1 in G. By Lemma 1.2, G admits a basis
of clopen sets at 1. We may thus find U ⊆ V a compact open neighborhood
of 1; we may take U to be symmetric since the inversion map is continuous.

For each x ∈ U , there is an open set Wx containing 1 with xWx ⊆ U and
an open symmetric set Lx containing 1 with L2

x ⊆ Wx. The compactness
of U ensures that U ⊆ x1Lx1 ∪ · · · ∪ xkLxk for some x1, . . . , xk. Putting

L :=
⋂k
i=1 Lxi , we have

UL ⊆
k⋃
i=1

xiLxiL ⊆
k⋃
i=1

xiL
2
xi
⊆

k⋃
i=1

xiWxi ⊆ U

We conclude that UL ⊆ U .
Induction on n shows that Ln ⊆ U for all n ≥ 0: if Ln ⊆ U , then

Ln+1 = LnL ⊆ UL ⊆ U . The union W :=
⋃
n≥0 L

n is then contained in U .
Since L is symmetric, W is an open subgroup of the compact open set U .
As the compliment of W is open, W is indeed clopen, and therefore, W is a
compact open subgroup of G contained in V . The theorem now follows.

Any compact totally disconnected group is profinite; see the notes section
of this Chapter. As a consequence of van Dantzig’s theorem, we obtain the
following.

Corollary 1.4. A t.d.l.c. group admits a basis at 1 of open profinite sub-
groups.

Notation 1.5. For a t.d.l.c. group G, we denote the collection of compact
open subgroups by U(G).
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We are primarily interested in t.d.l.c. Polish groups. For such groups G,
the set U(G) is rather small.

Lemma 1.6. If G is a t.d.l.c. Polish group, then U(G) is countable.

Proof. Since G is second countable, we may fix a countable dense subset D
of G. Applying van Dantzig’s theorem, we may additionally fix a decreas-
ing sequence (Ui)i∈N of compact open subgroups giving a basis of identity
neighborhoods.

For V ∈ U(G), there is i such that Ui ≤ V . The subgroup V is compact,
so Ui is of finite index in V . We may then find coset representatives v1, . . . , vm
such that V =

⋃m
j=1 vjUi. For each vj, there is dj ∈ D for which dj ∈ vjUi,

since the set D is dense in G. Therefore, V =
⋃m
j=1 djUi. We conclude

that U(G) is contained in the collection of subgroups which are generated by
Ui ∪ F for some i ∈ N and finite F ⊆ D. Hence, U(G) is countable.

A striking feature of the topological structure of t.d.l.c. Polish groups is
that there are very few homeomorphism types of the underlying topological
space.

A topological space is called perfect if it has no isolated points. A
classical result of Brouwer shows that for a certain class of topological spaces
there is exactly one perfect space up to homeomorphism.

Fact 1.7 (Brouwer). Any two non-empty compact Polish spaces which are
perfect and zero dimensional are homeomorphic to each other.

The Cantor space, denoted by C, is thus the unique Polish space that is
compact, perfect, and totally disconnected. Brouwer’s theorem allows us to
identify exactly the homeomorphism types of t.d.l.c. Polish groups.

Theorem 1.8. For G a t.d.l.c. Polish group, one of the following hold:

1. G is homeomorphic to an at most countable discrete topological space.

2. G is homeomorphic to C.

3. G is homeomorphic to C × N with the product topology.

Proof. If the topology on G is discrete, then G is at most countable, since it
is Polish, so (1) holds. Let us suppose that G is non-discrete. If the topology
on G is compact, then G is perfect, compact, and totally disconnected; see
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Exercise 1.2. In this case, (2) holds. Let us then suppose that G is neither
discrete nor compact. Via Theorem 1.3, we obtain a compact open subgroup
U ≤ G. The group G is second countable, so we can fix coset representatives
(gi)i∈N such that G =

⊔
i∈N giU . For each i ∈ N, the coset giU is a perfect,

compact, and totally disconnected topological space. Fixing a homeomor-
phism φi : giU → C for each i ∈ N, one verifies the map φ : G → C × N by
φ(x) := (φi(x), i) when x ∈ giU is a homeomorphism. Hence, (3) holds.

Remark 1.9. Contrary to the setting of connected locally compact groups,
Theorem 1.8 shows that there is no hope of using primarily the topology to
investigate the structure of a t.d.l.c. Polish group. One must consider the
algebraic structure and, as will be introduced later, the geometric structure
in an essential way.

1.2 Isomorphism theorems

The usual isomorphism theorems for groups hold in the setting of l.c. groups
with slight modification. We state these results for t.d.l.c. Polish groups, but
they hold in somewhat more generality.

Our proofs require the classical Baire category theorem. Let X be a
Polish space and N ⊆ X. We say N is nowhere dense if N has empty
interior. We say M ⊆ X is meagre if M is a countable union of nowhere
dense sets.

Fact 1.10 (Baire Category Theorem). If X is a Polish space and U ⊆ X is
a non-empty open set, then U is non-meagre.

Recall that an epimorphism from a group G to a group H is a surjective
homomorphism.

Theorem 1.11 (First isomorphism theorem). Suppose that G and H are
t.d.l.c. Polish groups with φ : G → H a continuous epimorphism. Then φ
is an open map. Further, the induced map φ̃ : G/ ker(φ) → H given by
g ker(φ) 7→ φ(g) is an isomorphism of topological groups.

Proof. Suppose that B ⊆ G is open and fix x ∈ B. We may find U ∈ U(G)
such that xU ⊆ B. If φ(U) is open, then φ(xU) = φ(x)φ(U) ⊆ φ(B) is open.
The map φ is thus open if φ(U) is open for every U ∈ U(G).
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Fix U ∈ U(G). As G is second countable, we may find (gi)i∈N a countable
set of left coset representatives for U in G. Hence,

H =
⋃
i∈N

φ(giU) =
⋃
i∈N

φ(gi)φ(U).

The subgroup U is compact, so φ(giU) is closed. The Baire category theorem
then implies that φ(gi)φ(U) is non-meagre for some i. Multiplication by φ(gi)
is a homeomorphism of G, so φ(U) is non-meagre. The group φ(U) thus has
a non-empty interior, and it follows that φ(U) is open in H.

For the second claim, it suffices to show φ̃ is continuous since φ̃ is bijective
and our previous discussion insures it is an open map. Taking O ⊆ H open,
φ−1(O) is open, since φ is continuous. Letting π : G → G/ ker(φ) be the
usual projection, the map π is a an open map. We conclude that

π(φ−1(O)) = φ̃−1(O)

is open in G/ ker(φ). Hence, φ̃ is continuous.

Corollary 1.12. Suppose that G is a t.d.l.c. Polish group. If ψ : G → G
is a continuous group isomorphism, then ψ is an automorphism of G as a
topological group. That is, ψ−1 is continuous.

Theorem 1.13 (Second isomorphism theorem). Suppose that G is a t.d.l.c.
Polish group, A ≤ G is a closed subgroup, and H E G is a closed normal
subgroup. If AH is closed, then AH/A ' A/A ∩H as topological groups.

Proof. Give AH and A the subspace topology and let ι : A → AH be the
obvious inclusion. The map ι is continuous. Letting π : AH → AH/H be
the projection x 7→ xH, the map π is a continuous epimorphism between
t.d.l.c. Polish groups, so the composition π ◦ ι : A→ AH/H is a continuous
epimorphism. The first isomorphism theorem now implies A/A∩H ' AH/H
as topological groups.

In the second isomorphism theorem, AH must be closed to apply the
first isomorphism theorem. If AH is not closed, then AH/H is not a locally
compact group, so the first isomorphism theorem does not apply.

Theorem 1.14 (Third isomorphism theorem). Suppose that G and H are
t.d.l.c. Polish groups with φ : G→ H a continuous epimorphism. If N E H
is a closed normal subgroup, then G/φ−1(N), H/N , and

(G/ ker(φ)) /
(
φ−1(N)/ ker(φ)

)
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are all isomorphic as topological groups.

Proof. Let π : H → H/N be the usual projection; note that π is open and
continuous. Applying the first isomorphism theorem to π ◦ φ : G → H/N ,
we deduce that G/φ−1(N) ' H/N as topological groups.

Applying the first isomorphism theorem to φ : G→ H, the induced map
φ̃ : G/ ker(φ)→ H is an isomorphism of topological groups. The composition
π ◦ φ̃ is thus a continuous epimorphism with ker(π ◦ φ̃) = φ−1(N)/ ker(φ).
We conclude that

(G/ ker(φ)) /
(
φ−1(N)/ ker(φ)

)
' H/N

as topological groups.

Let us close this subsection with a useful characterization of continuous
homomorphisms. Recall that a function f : X → Y between topological
spaces is continuous at x ∈ X if for every open neighborhood V of f(x)
there is an open neighborhood U of x such that f(U) ⊆ V . One can then
define a function to be continuous if it is continuous at every point. In the
setting of topological groups, one only needs to only check continuity at 1.

Proposition 1.15. Suppose that G and H are topological groups with φ :
G→ H a continuous homomorphism. Then φ is continuous if and only if φ
is continuous at 1.

Proof. The forward implication is immediate. Conversely, suppose φ is con-
tinuous at 1, fix g ∈ G, and let V be an open neighborhood of φ(g) in H.
The translate φ(g−1)V is then an open neighborhood of 1, so we may find U
an open set containing 1 such that φ(U) ≤ φ(g−1)V . The set gU is an open
neighborhood of g, and moreover,

φ(gU) ≤ φ(g)φ(g−1)V ≤ V.

We conclude that φ is continuous at every g ∈ G, so φ is continuous.

1.3 Locally finite graphs

Automorphism groups of locally finite connected graphs give a large and
natural family of examples of t.d.l.c. groups. These examples furthermore
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give insight into the topological structure of t.d.l.c. groups, and in Chapter 3,
we shall see that these examples are indeed integral to the theory of t.d.l.c.
groups. We here carefully define this family and prove show they are indeed
t.d.l.c. groups.

Definition 1.16. A graph Γ is a pair (V Γ, EΓ) where V Γ is a set and EΓ
is a collection of distinct pairs of elements from V Γ. We call V Γ the set of
vertices of Γ and EΓ the set of edges of Γ.

Remark 1.17. One may alternatively consider, as logicians often do, EΓ as
a relation on V Γ. We discourage this perspective, because we shall later, in
Chapter 4, need to modify our definition of a graph to allow for multiple edges
and loops. This modification will be a natural extension of the definition
given here.

For a vertex v, we define E(v) to be the collection of edges e such that
v ∈ e. A graph is locally finite if |E(v)| <∞ for every v ∈ V Γ. A path p
is a sequence of vertices v1, . . . , vn such that {vi, vi+1} ∈ EΓ for each i < n.
The length of p, denoted by l(p), is n− 1. The length counts the number of
edges used in the path. (Think about why we do not define the length to be
the number of vertices in a path.) A least length path between two vertices
is called a geodesic.

We say that a graph is connected if there is a path between any two
vertices. Connected graphs are metric spaces under the graph metric: The
graph metric on a connected graph Γ is

dΓ(v, u) := min {l(p) | p is a path connecting v to u} .

For v ∈ V Γ and k ≥ 1, the k-ball around v is defined to be Bk(v) := {w ∈
V Γ | dΓ(v, w) ≤ k} and the k-sphere is defined to be Sk(v) := {w ∈ V Γ |
dΓ(v, w) = k}. When we wish to emphasize the graph in which we are taking
Bk(v) and Sk(v), we write BΓ

k (v) and SΓ
k (v).

For graphs Γ and ∆, a graph isomorphism is a bijection ψ : V Γ→ V∆
such that {g(v), g(w)} ∈ E∆ if and only if {v, w} ∈ EΓ. An automorphism
of a graph Γ is an isomorphism ψ : Γ→ Γ. The collection of automorphisms
forms a group, and it is denoted by Aut(Γ). When Γ is a connected graph,
the automorphism group is the same as the isometry group of Γ, when Γ is
regarded as a metric space under the graph metric.
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The group Aut(Γ) admits a natural topology, which we shall see makes
it into a topological group. For finite tuples a := (a1, . . . , an) and b :=
(b1, . . . , bn) of vertices, define

Σa,b := {g ∈ Aut(Γ) | g(ai) = bi for 1 ≤ i ≤ n}.

The collection B of sets Σa,b as a and b run over finite sequences of vertices
forms a basis for a topology on Aut(Γ). The topology generated by B is
called the pointwise convergence topology (exercise 1.23 motivates this
terminology ). The pointwise convergence topology is sometimes called the
permutation topology.

Proposition 1.18. Let Γ be a graph. Equipped with the pointwise conver-
gence topology, Aut(Γ) is a topological group.

Proof. We must show that composition and inversion are continuous under
the pointwise convergence topology. For inversion, take a basic open set
Σa,b. The preimage of Σa,b under the inversion map is Σb,a, hence inversion
is continuous.

Let m : G × G → G be the multiplication map. Fix a basic open set
Σa,b with a = (a1, . . . , an) and b = (b1, . . . , bn). Fix (h, g) ∈ m−1(Σa,b). We
may find a tuple c = (c1, . . . , cn) such that g(ai) = ci, and since hg ∈ Σa,b,
it must be the case that h(ci) = bi. The open set Σc,b × Σa,c is then an
open set containing (h, g), and it is contained in m−1(Σa,b). Hence, m is
continuous.

Remark 1.19. We shall always assume the automorphism group of a graph
is equipped with pointwise convergence topology.

From the definition of the pointwise convergence topology, we immedi-
ately deduce the following.

Proposition 1.20. Let Γ be a graph. If Γ is countable, then the pointwise
convergence topology on Aut(Γ) is second countable.

For Γ a graph, set G := Aut(Γ) and for F ⊆ V Γ finite, define G(F ) to be
the pointwise stabilizer of the set F in G. The set G(F ) is a basic open set,
and

F := {G(F ) | F ⊆ V Γ with |F | <∞}
is a basis at the identity. The sets G(F ) are subgroups, so F in fact is a basis
of clopen subgroups. Since a basis for the topology on Aut(Γ) is given by
cosets of the elements of F , we have proved the following proposition.
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Proposition 1.21. Let Γ be a graph. The pointwise convergence topology on
Aut(Γ) is zero dimensional. In particular, the pointwise convergence topology
is totally disconnected.

To isolate the desired family of t.d.l.c. Polish groups, we require a notion
of a Cauchy sequence in a topological group. While topological groups do
not have a metric in general, there is nonetheless a notion of “close together”
since we can consider the “difference” of two group elements.

Definition 1.22. Let G be a topological group and B a basis of identity
neighborhoods. A sequence (gi)i∈N of elements of G is a Cauchy sequence
if for every B ∈ B there is N ∈ N such that g−1

i gj ∈ B and gjg
−1
i ∈ B for all

i, j ≥ N .

The reader should work Exercise 1.7, which verifies that the definition of
a Cauchy sequence does not depend on the choice of B.

Lemma 1.23. Let Γ be a graph. If (gi)i∈N is a Cauchy sequence in Aut(Γ),
then there is g ∈ Aut(Γ) such that (gi)i∈N converges to g.

Proof. For v ∈ V Γ, fix Nv ≥ 1 such that g−1
i gj(v) = v and gig

−1
j (v) = v for

all i, j ≥ Nv. We may find such an Nv since (gi)i∈N is a Cauchy sequence.
Define a function g : V Γ→ V Γ by g(v) := gNv(v).

We first argue that g is a permutation of V Γ. Suppose that g(v) = g(w).
Thus, gNv(v) = gNw(w). Taking M := max{Nv, Nw}, we see that gM(v) =
gNv(v) and gM(w) = gNw(w). It is then the case that gM(v) = gM(w), and
since gM is a bijection, v = w. Hence, g is injective.

To see that g is surjective, take w ∈ V Γ. Observe that gig
−1
j (w) = w for

all i, j ≥ Nw and set v := g−1
j (w) for some fixed j > Nw. Taking M greater

than both Nv and Nw, we have that gM(v) = gNv(v) = g(v). On the other
hand, that M ≥ Nw ensures that gM(v) = gMg

−1
j (w) = w. We conclude that

g(v) = w, and thus, g is bijective.
We finally argue that g respects the graph structure. Fix {v, w} a distinct

pair of vertices. Taking M greater than both Nv and Nw. We see that g(v) =
gNv(v) = gM(v) and g(w) = gNw(w) = gM(w). Since gM preserves the graph
structure, we conclude that {v, w} ∈ EΓ if and only if {g(v), g(w)} ∈ EΓ.
Hence, g ∈ Aut(Γ).

We leave that gi → g as an exercise.

Theorem 1.24. Let Γ be a graph. If Γ is locally finite and connected, then
Aut(Γ) is a t.d.l.c. Polish group.
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Proof. Set G := Aut(Γ), fix a vertex v ∈ V Γ, and take the vertex stabilizer
G(v). For each k ≥ 1, set Sk := Sk(v), where Sk(v) is the k-sphere around
v. Since Γ is locally finite, it follows by induction on k that Sk is finite for
every k ≥ 1.

The group G(v) acts on each Sk as a permutation, so we obtain a family
of homomorphisms φk : G → Sym(Sk). Define Φ : G(v) →

∏
k≥1 Sym(Sk)

by Φ(g) := (φk(g))k≥1. The map Φ is a homomorphism, since each φk is
a homomorphism. As Γ is connected, V Γ = {v} ∪

⋃
k≥1 Sk, so Φ is also

injective.
We next argue that Φ is continuous. In view of Proposition 1.15, it suffices

to check that Φ is continuous at 1. Setting L :=
∏

k≥1 Sym(Sk), a basis at 1
for L is given by the subgroups

∆n := {(ri)i≥1 ∈ L | ri = 1 for all i ≤ n}.

Fix n ≥ 1. The pointwise stabilizer G(
⋃n
i=1 Si)

is an open subgroup of G(v),
and Φ(U) ≤ ∆n. The map Φ is thus continuous at 1, so Φ is continuous.

Take A ⊆ G(v) a closed set and suppose that (Φ(ai))i∈N with ai ∈ A is a
convergent sequence in L. The sequence (Φ(ai))i∈N is a Cauchy sequence in L,
so for every ∆n, there is N such that Φ(a−1

i aj) ∈ ∆n and Φ(aja
−1
i ) ∈ ∆n for

any i, j ≥ N . The elements aja
−1
i and a−1

i aj therefore fix Bn(v) pointwise for
all i, j ≥ N . As the collection of pointwise stabilizers {G(Bn(v)) | n ≥ 1} form
a basis at 1, we deduce that (ai)i∈N is a Cauchy sequence in G(v). Lemma 1.23
now supplies a ∈ G such that ai → a. As A is closed, we indeed have that
a ∈ A. Since Φ is continuous, we infer that Φ(a) = limi Φ(ai), so Φ(A) is
closed. The homomorphism Φ is thus a closed map and so a topological
group isomorphism.

The pointwise stabilizer G(v) is isomorphic to a closed subgroup of L, so
G(v) is compact. The group G is thus locally compact. Propositions 1.21 and
1.20 now ensure that G is a t.d.l.c. Polish group.

It is a notoriously difficult problem to determine if the automorphism
group of a locally finite connected graph is non-discrete. However, there are
many cases where the geometry of the graph allows us to argue that the
automorphism group is non-discrete. A large source of such examples are
given by locally finite trees. A tree is a connected graph such that there are
no cycles. A cycle is a path p1, . . . , pn with n > 1 such that pi = pj if and
only if {i, j} = {1, n}. It is easy to produce many examples of locally finite
trees with non-discrete automorphism groups; see Exercise 1.24.
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1.4 The wreath product

Suppose G and H are groups and G acts on H by automorphisms. For a
group acting on a second group, we denote the action of g ∈ G on h ∈ H
by g.h; for a group action G y X with X a set or topological space, we
denote the action by g(x). By classical results in abstract group theory, the
Cartesian product H ×G becomes a group under the multiplication

(h1, g1) ◦ (h2, g2) := (h1 ◦ (g1.h2), g1 ◦ g2)

and inversion

(h, g)−1 := (g−1.h−1, g−1).

We wish to make H o G into a topological group when both G and H are
topological groups. To do so, we need a notion of continuity for a group
action.

Definition 1.25. Suppose G is a topological group with an action on a
topological space X. We say that the action is continuous if the action
map α : G×X → X defined by (g, x) 7→ g(x) is continuous.

Continuous actions allow us to topologize a semi-direct product of topo-
logical groups.

Definition 1.26. Suppose that G and H are topological groups and G acts
continuously on H by topological group automorphisms. The semi-direct
product is the usual semi-direct product group HoG arising from the action
of G on H that is further equipped with the product topology.

Our proof of the next proposition implicitly uses the following basic fact
from point-set topology: A function f : Z → X × Y is continuous if and
only if the composition πi ◦ f is continuous for each i ∈ {0, 1}, where πi is
the projection onto the i-th coordinate.

Proposition 1.27. Suppose that G and H are topological groups and G
acts continuously on H by topological group automorphisms. The semi-direct
product H oG is then a topological group. If additionally both G and H are
Polish groups or t.d.l.c. groups, then HoG is also a Polish group or a t.d.l.c.
group, respectively.
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Proof. We argue that multiplication is continuous; that inversion is contin-
uous follows similarly. Say that m : (H o G)2 → H o G is the multi-
plication map. Recalling that (H o G)2 = H × G × H × G, we see that
m((h1, g1, h2, g2)) = (h1 ◦ (g1.h2), g1 ◦ g2). We now decompose m into contin-
uous maps. Let m1 : H ×G×H ×G→ H ×G×H ×G by

m1((h1, g1, h2, g2)) := (h1, g1, g1.h2, g2).

Since the action is continuous, the function m1 is continuous. Let m2 :
H ×G×H ×G→ H ×G×H ×G by

m2((h1, g1, h2, g2)) := (h1, g1, h2, g1 ◦ g2).

Since multiplication is continuous, m2 is again a continuous map. The last
continuous function needed is m3 : H ×G×H ×G→ H ×G by

m3((h1, g1, h2, g2)) := (h1 ◦ h2, g2).

We now see that m3 ◦m2 ◦m1 = m, so m is continuous, as desired.
The additional claims are immediate since the classes of Polish spaces

and t.d.l.c. spaces are closed under finite direct products.

Building a wreath product requires a notion of infinite direct product or
sum. What we shall in fact obtain is a notion of a product that sits between
the direct sum and the direct product.

Notation 1.28. We use the notation ∀∞ to stand for the phrase “for all but
finitely many.”

Definition 1.29. Let (Gx)x∈X be a family of t.d.l.c. groups and (Ux)x∈X a
sequence such that Ux ∈ U(Gx) for each x ∈ X. The restricted direct
product of (Gx)x∈X over (Ux)x∈X is defined to be{

f : X →
⋃
x∈X

Gx | ∀x ∈ X f(x) ∈ Gx and ∀∞x ∈ X f(x) ∈ Ux

}
.

and denoted by
⊕

x∈X (Gx, Ux).

The set
⊕

x∈X(Gx, Ux) is a group under pointwise multiplication. The
group

⊕
x∈X (Gx, Ux) is further admits a topology generated by the basis B

consisting all sets of the form
∏

x∈X Ox such that Ox is open in Gx for all x
and Ox = Ux for all but finitely many x. We call the topology generated by B
the restricted product topology. We shall always consider

⊕
x∈X (Gx, Ux)

to be equipped with the restricted product topology.
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Lemma 1.30. Let (Gx)x∈X be a family of t.d.l.c. groups and (Ux)x∈X a
sequence such that Ux ∈ U(Gx) for each x ∈ X. Equipping

⊕
x∈X (Gx, Ux)

with the restricted product topology, the following hold:

(1)
⊕

x∈X (Gx, Ux) is a t.d.l.c. group.

(2)
∏

x∈X Ux is a compact open subgroup of
⊕

x∈X (Gx, Ux).

(3) If X is countable and Gx is a t.d.l.c. Polish group for each x ∈ X, then⊕
x∈X (Gx, Ux) is a t.d.l.c. Polish group.

Proof. See Exercise 1.19.

The restricted direct product depends on the choice of the Ux. For in-
stance, let (Fi)i∈Z list copies of a non-trivial finite group F . We now see⊕

i∈Z

(Fi, {1}) =
⊕
i∈Z

Fi and
⊕
i∈Z

(Fi, Fi) =
∏
i∈Z

Fi.

This in particular shows the dependence of the product on the choice of the
compact open subgroups: we obtain a discrete group on one hand and a
compact group on the other! We can in fact do even better. Put

Ui :=

{
Fi, if i ≤ 0

{1}, otherwise.

It is easy to verify
⊕

i∈Z (Fi, Ui) is non-compact and non-discrete but locally
compact.

Proposition 1.31. Suppose that G is a t.d.l.c. group, U ∈ U(G), and A is
a discrete topological space. Let (Ga)a∈A and (Ua)a∈A list copies of G and U ,
respectively. If H is a t.d.l.c. group with a continuous action on A, then the
action of H on

⊕
a∈A(Ga, Ua) defined by h.f(a) := f(h−1.a) is a continuous

action by topological group automorphisms

Proof. Let α : H ×
⊕

a∈A(Ga, Ua)→
⊕

a∈A(Ga, Ua) be the action map. It is
easy to see the action is by group automorphisms. Fix W ⊆

⊕
a∈A(Ga, Ua)

a basic open set. There is then a finite set A0 ⊆ A such that

W =
∏
a∈A0

Ya ×
∏

a∈A\A0

Ua.
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By possibly reducing the size of W , we may assume that Ya = gaWa where
ga ∈ Ga and Wa is an open subgroup of Ua.

Fix (h, f) ∈ α−1(W ). Set V :=
⋂
a∈A0

Wa, B := h−1.A0, and L :=
V B ×

∏
a∈A\B Ua. Set O := H(A0) and note that O is an open subgroup of

H because A0 is finite and H acts on A continuously. We now consider the
open set Oh× fL. Take (oh, fl) ∈ Oh× fl. For a ∈ A0,

(oh).(fl)(a) = f(h−1o−1.a)l(h−1o−1.a) = f(h−1.a)l(h−1.a).

The element f(h−1.a) is in gaWa and l(h−1.a) is an element of V ≤ Wa. We
conclude that f(h−1.a)l(h−1.a) ∈ gaWa.

For a /∈ A0, f(h−1o−1.a) ∈ Ua, since o−1.a /∈ A0. On the other hand,
l(h−1.a) is always in Ua, so we conclude that (oh).(fl)(a) ∈ Ua. Therefore,
(oh).(fl) ∈ W , so α is continuous.

Definition 1.32. The action given in Proposition 1.31 is called the shift
action of H on

⊕
a∈A(Ga, Ua).

The shift action allows us to form the semi-direct product
⊕

a∈A(Ga, Ua)o
H, thereby recovering a notion of wreath product.

Definition 1.33. Suppose that G and H are t.d.l.c. groups, U is a compact
open subgroup of G, and A is a discrete topological space on which H acts
continuously. Letting (Ga)a∈A and (Ua)a∈A list copies of G and U , respec-
tively, the wreath product of G and H with respect to U and A is defined
to be

G oU (H,A) :=
⊕
a∈A

(Ga, Ua) oH

where H y
⊕

a∈A (Ga, Ua) by shift.

Proposition 1.34. Suppose that G and H are t.d.l.c. groups, U is a com-
pact open subgroup of G, and A is a discrete topological space on which H
acts continuously. Then the wreath product G oU (H,A) enjoys the following
properties:

1. G oU (H,A) is a t.d.l.c. group.

2. If in addition G and H are Polish and A is countable, then G oU (H,A)
is a t.d.l.c. Polish group.
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Proof. By definition, G oU (H,A) :=
⊕

a∈A (Ga, Ua) o H. The group H is
assumed to be a t.d.l.c. group, and Lemma 1.30 ensures that

⊕
a∈A (Ga, Ua)

is a t.d.l.c. groups. Appealing to Proposition 1.31, the action of H on⊕
a∈A(Ga, Ua) is furthermore continuous, so by Proposition 1.27, we con-

clude that G oU (H,A) is a t.d.l.c. group, verifying (1).

For (2), we see by Lemma 1.30 that
⊕

a∈A(Ga, Ua) is a t.d.l.c. Polish
group. Proposition 1.27 then implies that G oU (H,A) is also a t.d.l.c. Polish
group.

In the setting of topological groups, there is a natural analogue of fi-
nite generation. The analogous statements for finitely generated groups and
wreath products hold for compactly generated t.d.l.c. groups and wreath
products.

Definition 1.35. A topological group G is compactly generated if there
is a compact set K such that 〈K〉 = G.

Proposition 1.36. Suppose G and H are t.d.l.c. groups, U is a compact
open subgroup of G, and A is a discrete topological space on which H acts
continuously. If G and H are compactly generated and H has finitely many
orbits on A, then G oU (H,A) is compactly generated.

Proof. - to add

Notes

Theorem 1.8 is particularly striking if one is accustomed to connected Lie
groups. Information about to topology of a connected Lie group often gives
deep insight into the structure of the group. For instance, two compact
connected simple Lie groups are isomorphic as Lie groups if and only if they
have the same homotopy type (see [2, Theorem 9.3]).

For an excellent discussion and proof of the Baire category theorem as
well as a proof of Brouwer’s theorem, the reader is directed to [10]. For the
statements of the isomorphism theorems in full generality, we refer the reader
to [9].
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1.5 Exercises

Topological groups

Exercise 1.1. Let G be a group with normal subgroups L and K. Show if
L ∩K = {1}, then L and K centralize each other.

Exercise 1.2. Let G be a non-discrete topological group. Show G is perfect
as a topological space.

Exercise 1.3. Suppose that G is a topological group and V is an open
neighborhood of g. Show there is an open set W containing 1 such that
WgW ⊆ V .

Exercise 1.4. Let G be a topological group and H ≤ G a subgroup with
non-empty interior. Show H is open and closed in G.

Exercise 1.5. Suppose that G is topological group and H E G is not closed.
Show H is normal subgroup of G.

Exercise 1.6. Suppose that G and H are topological groups and φ : G→ H
is a homomorphism. Show that φ is continuous if and only if φ is continuous
at some g ∈ G.

Exercise 1.7. Show the definition of a Cauchy sequence does not depend
on the choice of a basis of identity neighborhoods.

Exercise 1.8. Let G be a topological group and suppose (gi)i∈N is a conver-
gent sequence. Show (gi)i∈N is a Cauchy sequence.

Locally compact groups

Exercise 1.9. Let G be a non-compact and non-discrete t.d.l.c. Polish group.
Fix compact open subgroup U ≤ G, coset representatives (gi)i∈N such that
G =

⊔
i∈N giU , and a homeomorphism φi : giU → C for each i ∈ N, where C

is the Cantor set. Verify the map φ : G→ C × N by φ(x) := (φi(x), i) when
x ∈ giU is a homeomorphism.

Exercise 1.10. Let G be a locally compact group. Show the connected
component of the identity is a closed normal subgroup of G.
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Exercise 1.11. Let G be a compact t.d.l.c. group. Show G admits a basis
at 1 of compact open normal subgroups and each of these subgroups is of
finite index in G.

Exercise 1.12. Suppose that G is a t.d.l.c. group with K ≤ G a compact
subgroup. Show there is a compact open subgroup U of G containing K.

Exercise 1.13. Suppose that G is a t.d.l.c. group and K E G is such that K
and G/K are compact. Show G is compact. This shows the class of profinite
groups is closed under group extension.

Exercise 1.14. Suppose that G is a t.d.l.c. Polish group, K ⊆ G is compact,
and C ⊆ G is closed. Show KC is a closed subset of G.

Exercise 1.15. Suppose G is a t.d.l.c. Polish group and U ∈ U(G). Show if
K ⊆ G, then K ∩ U = K ∩ U .

Exercise 1.16. Suppose G is a t.d.l.c. Polish group, H ≤ G, and U ∈ U(G).
Show if H ∩ U is closed in G, then H is closed in G.

Exercise 1.17. Suppose (Gi)i∈N is a countable increasing union of t.d.l.c.
Polish groups such that Gi ≤o Gi+1 for each i. Define a collection τ of subsets
of
⋃
i∈NGi by A ∈ τ if and only if A ∩ Gi is open in Gi for all i ∈ N. Show

τ is a topology on
⋃
i∈I Gi and verify

⋃
i∈NGi is a t.d.l.c. Polish group under

this topology. We call τ the inductive limit topology.

Exercise 1.18. Let (Ga)a∈A be a sequence of t.d.l.c. groups and let Ua ≤
Ga be a compact open subgroup. Show that collection B of subsets of⊕

a∈A (Ga, Ua) of the form
∏

a∈AOa such that Oa is open in Ga for all a and
Oa = Ua for all but finitely many a is a basis for a topology on

⊕
a∈A(Ga, Ua).

Exercise 1.19. Prove Lemma 1.30.

Exercise 1.20. Suppose that G is a t.d.l.c. group with a continuous action
on a countable set X. Show A ⊆ G is relatively compact - i.e., A is compact
- if and only if for all x ∈ X the set A.x := {a.x | a ∈ A} is finite.

Graphs

Exercise 1.21. Let Γ be a graph and for any finite tuples a := (a1, . . . , an)
and b := (b1, . . . , bn) of vertices, define

Σa,b := {g ∈ Aut(Γ) | g(ai) = bi for 1 ≤ i ≤ n}.
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Show the collection B of the sets Σa,b as a and b range over finite tuples of
vertices is a basis for a topology on Aut(Γ).

Exercise 1.22. Let Γ be a locally finite connected graph and fix v ∈ V Γ.
For k ≥ 1, show Bk(v) := {w ∈ V Γ | dΓ(v, w) ≤ k} is finite.

Exercise 1.23. Let Γ be a graph and and (gi)i∈N be a sequence of elements
from Aut(Γ). Show (gi)i∈N converges to some g ∈ Aut(Γ) if and only if for
every finite set F ⊂ V Γ there is N such that gi(x) = g(x) for all x ∈ F and
all i ≥ N .

Exercise 1.24. For n ≥ 3, let Tn be the tree such that deg(v) = n for every
v ∈ V T ; we call Tn the n-regular tree. Show Aut(Tn) is non-discrete.
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Chapter 2

Haar Measure

The primary goal of this chapter is to establish the existence and uniqueness
of a canonical measure on a t.d.l.c. Polish group, called the Haar measure.
The Haar measure is a powerful tool, which allows the techniques from func-
tional analysis to be applied to the study of t.d.l.c. Polish groups.

2.1 Functional analysis

Let us begin by recalling the basics of functional analysis; we shall restrict our
discussion to Polish spaces. For X a Polish space, the collection of continuous
functions f : X → C is denoted by C(X). The set C(X) is a vector space
under pointwise addition and scalar multiplication. The support of f ∈
C(X) is supp(f) := {x ∈ X | f(x) 6= 0}. A function f ∈ C(X) is compactly
supported if supp(f) is compact. We denote the set of compactly supported
functions in C(X) by Cc(X). A function f ∈ C(X) is said to be positive if
f(X) ⊆ R≥0. The collection of all positive functions in Cc(X) is denoted by
C+
c (X).

We can equip Cc(X) with the following norm:

‖f‖ := max{|f(x)| | x ∈ X}.

This norm is called the uniform norm on Cc(X). It induces a metric d
on Cc(X) defined by d(f, g) := ‖f − g‖. The metric topology on Cc(X)
turns Cc(X) into a topological vector space. That is to say, the vector space
operations are continuous in this topology; see Exercise 2.5. We call this

27
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topology the uniform topology, and we shall always take Cc(X) to be
equipped with this topology.

When considering a Polish group G, the group G has a left and a right
action on Cc(G). The left action is given by Lg(f)(x) := f(g−1x), and
the right action is given by Rg(f)(x) := f(xg). One verifies if fi ∈ Cc(G)
converges to some f ∈ Cc(G), then Lg(fi)→ Lg(f) and Rg(fi)→ Rg(f) for
any g ∈ G; see Exercise 2.6.

A linear functional on Cc(X) is a linear function Φ : Cc(X) → C. A
functional is positive if the positive functions are taken to non-negative real
numbers. Positive linear functionals are always continuous; see Exercise 2.7.
If X is additionally compact, a functional Φ is called normalized if Φ(1X) =
1, where 1X is the indicator function for X.

For a Polish groupG, a linear functional Φ is left-invariant if Φ(Lg(f)) =
Φ(f) for all f ∈ Cc(G) and g ∈ G, and it is right-invariant if Φ(Rg(f)) =
Φ(f) for all f ∈ Cc(G) and g ∈ G.

For X a Polish space, a sigma algebra is a collection S of subsets of X
such that S contains the empty set and is closed under taking complements,
countable unions, and countable intersections. The Borel sigma algebra
of X is the smallest sigma algebra that contains the open sets of X. The
Borel sigma algebra is denoted by B(X) or just B when the space X is clear
from context.

A measure µ defined on a Polish space X is called a Borel measure if µ
is defined on a sigma algebra C that contains the Borel sigma algebra of X.
In practice, the sigma algebra C is typically the sigma algebra generated by
B along with all null sets; a null set is a subset of a Borel set with measure
zero. A Borel measure is said to be locally finite if for every x ∈ X there
is a neighborhood U of x with finite measure. A probability measure is a
measure such that the measure of the entire space is 1.

The measures we construct on t.d.l.c. Polish groups shall have two im-
portant properties.

Definition 2.1. A locally finite Borel measure µ on a Polish space X is
called an outer Radon measure if the following hold:

(i) (Outer regularity) For all A ∈ B(X),

µ(A) = inf{µ(U) | U ⊇ A is open}.

(ii) (Inner regularity) For all A ∈ B(X) such that µ(A) <∞,

µ(A) = sup{µ(K) | K ⊆ A is compact}.
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Outer Radon measures have good approximation properties. The measure
of a set can be approximated from above by open sets and from below by
compact sets.

Definition 2.2. A Borel measure µ on a Polish group G is left-invariant
if µ(gA) = µ(A) for all Borel sets A ⊆ G and g ∈ G. We say the measure is
right-invariant if µ(Ag) = µ(A) for all Borel sets A ⊆ G and g ∈ G.

For a locally compact Polish space X, linear functionals on Cc(X) relate
to measures on X by the classical Riesz’s representation theorem. We shall
only use the compact case, so we accordingly adapt the statement.

Fact 2.3 (Riesz’s representation theorem). Let X be a compact Polish space.
If Φ : C(X) → C is a normalized positive linear functional, there exists a
unique outer Radon probability measure µ such that

Φ(f) =

∫
X

fdµ

for every f ∈ C(X).

2.2 Existence

Definition 2.4. For G a t.d.l.c. Polish group, a left Haar measure on G
is a non-zero left-invariant outer Radon measure on G. The integral with
respect to a left Haar measure is called the left Haar integral.

This section establishes the existence of left Haar measures.

Theorem 2.5 (Haar). Every t.d.l.c. Polish group admits a left Haar measure.

We will first prove Theorem 2.5 for compact t.d.l.c. Polish groups and
then upgrade to the t.d.l.c. Polish case.

Remark 2.6. The proofs of this section can be adapted to produce a non-
zero right-invariant outer Radon measure on G, which is called a right Haar
measure. We stress that in general one cannot produce a non-zero outer
Radon measure that is simultaneously left and right invariant.
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2.2.1 The compact case

For the compact case of Theorem 2.5, we obtain a rather stronger result; the
reader is encouraged to identify the salient feature of compact t.d.l.c. groups
which allows for this stronger result.

Theorem 2.7. Every compact t.d.l.c. Polish group admits an outer Radon
probability measure that is both left and right invariant.

Our proof relies on the following technical lemma, Lemma 2.8. Let us for
the moment assume Lemma 2.8 and prove Theorem 2.7.

Lemma 2.8. For G a compact t.d.l.c. Polish group, there is a normalized
positive linear functional Φ on C(G) such that Φ(Lg(f)) = Φ(f) = Φ(Rg(f))
for all g ∈ G and f ∈ C(G).

Proof of Theorem 2.7. Let Φ be the normalized positive linear functional
given by Lemma 2.8. Via Riesz’s representation theorem, Φ defines an outer
Radon probability measure µ on G. We argue that this measure is both left
and right invariant.

As the proofs are the same, we argue that µ(gA) = µ(A) for all g ∈ G and
A ⊆ G Borel. Let us assume first that A is compact. Since the topology for
G is given by cosets of clopen subgroups and A is compact, for any open set
O with A ⊆ O, there is a clopen set O′ such that A ⊆ O′ ⊆ O. In particular,
µ(O′) ≤ µ(O). The outer regularity of µ now ensures that

µ(A) = inf{µ(O) | A ⊆ O with O clopen}.

For any clopen set O ⊆ G, the indicator function 1O is an element of
C(G). The left invariance of Φ ensures that

µ(O) =

∫
G

Lg(1O)dµ =

∫
G

1gOdµ = µ(gO).

Since {gO | A ⊂ O and O clopen} is exactly the collection of clopen sets
containing gA, we deduce that

µ(A) = inf{µ(O) | A ⊆ O with O clopen}
= inf{µ(gO) | A ⊆ O with O clopen}
= inf{µ(W ) | gA ⊆ W with W clopen}
= µ(gA).
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Hence, µ(A) = µ(gA), so µ(A) = µ(gA) for any g ∈ G and A ⊆ G compact.
Let us now consider an arbitrary Borel set A of G. By inner regularity,

µ(A) = sup{µ(K) | K ⊆ A with K compact}.

Since {gK | K ⊆ A with K compact} is exactly the collection of compact
sets contained in gA, we conclude that

µ(A) = sup{µ(K) | K ⊆ A with K compact}
= sup{µ(gK) | K ⊆ A with K compact}
= sup{µ(W ) | W ⊆ gA with W compact}
= µ(gA).

Hence, µ(A) = µ(gA) for any g ∈ G and A ⊆ G Borel. The measure µ thus
satisfies Theorem 2.7.

We now set about proving Lemma 2.8.

Remark 2.9. The strategy for our proof of Lemma 2.8 is to build the desired
functional Φ via approximations. We will define a sequence of subspaces
Fn ⊆ C(G) and a sequence of functionals ϕn : Fn → C which approximate
the desired behavior of Φ. We will then argue that these functionals cohere
to give Φ.

Fix G a compact t.d.l.c. Polish group. In view of Exercise 1.11, G admits
a basis at 1 of compact open normal subgroups, so we may fix (Gn)n∈N an
⊆-decreasing basis at 1 of compact open normal subgroups of G. For each
n ∈ N, let Fn be the following subspace of C(G):

Fn := {f ∈ C(G) | ∀x ∈ G and g ∈ Gn f(xg) = f(x)}.

The set Fn is the vector space of all continuous functions from G to C which
are right Gn-invariant.

The subspaces Fn are setwise stabilized by G under both the left and the
right actions. That is to say, Rg(Fn) = Fn = Lg(Fn) for all g ∈ G. We
verify the former equality, as the latter is similar but easier. Take f ∈ Fn
and g ∈ G and suppose that x−1y ∈ Gn. We have Rg(f)(x) = f(xg) and
Rg(f)(y) = f(yg). Additionally, (xg)−1yg = g−1x−1yg. The element x−1y
is in Gn, and since Gn is a normal subgroup, we infer that g−1x−1yg ∈ Gn.
Therefore, f(xg) = f(yg), andRg(f) ∈ Fn. It now follows thatRg(Fn) = Fn.
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Fixing left coset representatives b1, . . . , br forGn inG, we obtain a positive
linear functional ϕn on Fn defined by

ϕn(f) :=
r∑
i=1

f(bi)

|G : Gn|
.

We stress that ϕn is independent of our choice of coset representatives. We
argue that ϕn is invariant under the left and right actions of G.

Lemma 2.10. For any f ∈ Fn and g ∈ G, ϕn(Lg(f)) = ϕn(f) = ϕn(Rg(f)).

Proof. We only establish ϕn(f) = ϕn(Rg(f)); the other equality is similar
but easier. Let b1, . . . , br list coset representatives of Gn in G. Fix g ∈ G
and consider the set biGng. Since Gn is normal, we have bigg

−1Gng = bigGn.
There is thus some j such that biGng = bjGn. We conclude there is a
permutation σ of {1, . . . , r} such that biGng = bσ(i)Gn. Hence, big = bσ(i)ui
for some u ∈ Gn. We now see that

ϕn(Rg(f)) =
∑r

i=1
f(big)
|G:Gn|

=
∑r

i=1

f(bσ(i)u)

|G:Gn|

=
∑r

i=1

f(bσ(i))

|G:Gn|
= ϕ(f),

where the penultimate line follows since f is constant on cosets of Gn.

Our next lemma shows the sequence (ϕn)n∈N has a coherence property.

Lemma 2.11. For every n ≤ m, the vector space Fn is a subspace of Fm,
and ϕn is the restriction of ϕm to Fn.

Proof. Take f ∈ Fn. For any x ∈ G and g ∈ Gn, we have f(x) = f(xg). On
the other hand, Gn ≥ Gm, so a fortiori, f(x) = f(xg) for any x ∈ G and
g ∈ Gm. Hence, f ∈ Fm, and we deduce that Fn ≤ Fm.

Let us now verify that ϕm �Fn= ϕn. We see that

|G : Gn||Gn : Gm| = |G : Gm|,

so
|Gn : Gm|
|G : Gm|

=
1

|G : Gn|
.
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Setting k := |Gn : Gm| and r := |G : Gn|, let a1, . . . , ak be left coset repre-
sentatives for Gm in Gn and let b1, . . . , br be left coset representatives for Gn

in G. Fixing f ∈ Fn,

ϕm(f) =
r∑
i=1

k∑
j=1

f(biaj)

|G : Gm|
.

The function f is constant on biGn, so

ϕm(f) =
r∑
i=1

f(bia1)k

|G : Gm|
=

r∑
i=1

f(bi)

|G : Gn|

Hence, ϕm(f) = ϕn(f).

We now argue the subspaces Fn essentially exhaust C(G). Let F+
n be the

positive functions in Fn.

Lemma 2.12. The union
⋃
n∈NFn is dense in C(G), and

⋃
n∈NF+

n is dense
in C(G)+.

Proof. Fix ε > 0 and f ∈ C(G). For every x ∈ G, the continuity of f
ensures that there is an element Gi of our basis at the identity of G such that
diam(f(xGi)) < ε. Since G is compact and zero dimensional, we may find
x1, . . . , xp elements of G and natural numbers n1, . . . , np such that (xiGni)

p
i=1

is a covering of G by disjoint open sets.

Fix N ∈ N such that

GN ≤
p⋂
i=1

Gni ,

and fix rx ∈ f(xGN) for each left GN -coset xGN . We define f̃ ∈ FN by
f̃(x) := rx; that is, f̃ is the function that takes value rx for any y ∈ xGN .
For x ∈ G, x ∈ xiGni for some 1 ≤ i ≤ p, so xGni = xiGni . We infer that
f(x) ∈ f(xiGni). On the other hand, xGN is a subset of xiGni , as GN ≤ Gni ,
so f̃(x) = rx ∈ f(xiGni). We now see that |rx − f(x)| < ε. Therefore,
‖f̃ − f‖ < ε, and we conclude that

⋃
n∈NFn is dense in C(G).

The second claim follows since if f positive, we can pick rx ≥ 0 for each
coset xGN ∈ G/GN .
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In view of Lemma 2.11, ϕn(f) = ϕm(f) whenever f ∈ Fn ∩Fm. We may
thus define a linear functional ϕ on F :=

⋃
n∈NFn by ϕ(f) := ϕn(f) for

f ∈ Fn. The linear functional ϕ is positive and normalized, and Lemma 2.12
tells us the domain of ϕ is dense in C(X). We now argue that we may
extend ϕ to C(X). To avoid appealing to unproven facts about positive linear
functionals, we verify that ϕ carries Cauchy sequences to Cauchy sequences.

Lemma 2.13. If (fi)i∈N is a Cauchy sequence in C(X) with fi ∈ F for all
i ∈ N, then (ϕ(fi))i∈N is a Cauchy sequence in C.

Proof. Fix ε > 0 and let N be such that ‖fi − fj‖ < ε for all i, j ≥ N . Fix
i, j ≥ N and let k be such that fi, fj ∈ Fk. Letting b1, . . . , bm list left coset
representatives for Gk in G,

|ϕ(fi)− ϕ(fj)| = |ϕk(fi)− ϕk(fj)|
= |

∑m
l=1

fi(bl)−fj(bl)
|G:Gk|

|
≤

∑m
l=1

|fi(bl)−fj(bl)|
|G:Gk|

<
∑m

l=1
ε

|G:Gk|
= ε.

We conclude that (ϕ(fi))i∈N is a Cauchy sequence in C.

Lemma 2.13 allows us to extend ϕ to a linear functional Φ on C(G). For
f ∈ F , we define Φ(f) := φ(f). For f ∈ C(G)\F , let (fi)i∈N be a sequence of
functions from F that converges to f ; Lemma 2.12 supplies these. We define
Φ(f) := limi∈N ϕ(fi). The latter limit exists by Lemma 2.13. The reader is
encouraged to verify that this definition does not depend on the choice of the
sequence (fi)i∈N; see Exercise 2.1.

We now argue that Φ satisfies Lemma 2.8. It is immediate that Φ is
normalized since 1X ∈ F . To see that Φ is positive, let f ∈ C(G) be a
positive function. By Lemma 2.12, there is a sequence of positive functions
(fi)i∈N with fi ∈ F for all i which converges to f , so

Φ(f) = lim
i∈N

ϕ(fi) = lim
i∈N

ϕi(fi) ≥ 0.

The functional Φ is thus also positive.
Finally, let us verify that Φ is invariant under the left and right actions

of G. Take g ∈ G and f ∈ C(X). If f ∈ F , then

Φ(Lg(f)) = ϕ(Lg(f)) = ϕ(f) = ϕ(Rg(f)) = Φ(Rg(f))
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by Lemma 2.10. Suppose that f ∈ C(X) \ F and fix fi → f a convergent
sequence such that fi ∈ F for all i. Recall that Lg(fi)→ Lg(f) and Rg(fi)→
Rg(f). Applying the definition of Φ and Lemma 2.10, we deduce that

Φ(Lg(f)) = lim
i∈N

ϕ(Lg(fi)) = lim
i∈N

ϕ(fi) = lim
i∈N

ϕ(Rg(fi)) = Φ(Rg(f)),

hence Φ(Lg(f)) = Φ(f) = Φ(Rg(f)).

2.2.2 The general case

The general case now follows by a clever trick, which allows one to glue
together measures.

Lemma 2.14. Suppose that X is a Polish space and X =
⊔∞
i=1 Ui with each

Ui a clopen subset of X. If each Ui admits an outer Radon probability measure
νi, then the function µ : B → [0,∞] by

µ(B) :=
∞∑
i=1

νi(B ∩ Ui),

is a non-trivial outer Radon measure on X.

Proof. That µ is a measure, we leave to the reader (Exercise 2.4). To see
that µ is locally finite, for any x ∈ X, there is Ui such that x ∈ Ui. Hence,
µ(Ui) = νi(Ui) = 1, so µ is locally finite.

Fix B ∈ B. Outer regularity is immediate from the definition of µ if
µ(B) =∞. Let us suppose that µ(B) <∞ and fix ε > 0. For each i ≥ 1, the
outer regularity of νi supplies an open set Wi ⊆ Ui such that B∩Ui ⊆ Wi and
νi(Wi)− νi(B ∩Ui) < ε

2i
. The set W :=

⋃∞
i=1Wi is open in X. Furthermore,

µ(W ) =
∑∞

i=1 νi(Wi)
<

∑∞
i=1

(
νi(B ∩ Ui) + ε

2i

)
= µ(B) + ε.

Since B ⊆ W , we deduce that |µ(W ) − µ(B)| < ε. The measure µ is thus
outer regular.

For inner regularity, we may assume µ(B) < ∞. Fix ε > 0. Since the
series

∑∞
i=1 νi(B ∩ Ui) converges, we may find N such that

∑∞
i=N+1 νi(B ∩

Ui) <
ε
2
. For each 1 ≤ i ≤ N , we may find a compact set Ki ≤ B ∩ Ui
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such that νi(B ∩ Ui) − µi(Ki) <
ε

2N
, by the inner regularity of νi. The set

K :=
⋃N
i=1Ki is compact in X. Furthermore,

µ(B) =
∑∞

i=1 νi(B ∩ Ui)
<

(∑N
i=1 νi(Ki) + ε

2N

)
+
∑∞

i=N+1 νi(B ∩ Ui)
= µ(W ) + ε.

Since K ⊆ B, we deduce that |µ(B) − µ(K)| < ε. The measure µ is thus
inner regular.

For topological spaces X and Y , a function f : X → Y is Borel mea-
surable if f−1(O) is in the Borel sigma algebra of X for any O open in Y . If
X is additionally equipped with a Borel measure µ, then the push forward
measure on Y via f , denoted by f∗µ, is defined by

f∗µ(A) := µ(f−1(A)).

If f is a homeomorphism and µ is an outer Radon measure, then f∗µ is also
an outer Radon measure.

We are now prepared to prove the desired theorem.

Theorem 2.15 (Haar). Every t.d.l.c. Polish group admits a left Haar mea-
sure.

Proof. Let G be a t.d.l.c. Polish group and fix a compact open subgroup U
of G. If U is of finite index in G, then G is a compact t.d.l.c. Polish group,
so Theorem 2.7 supplies a left Haar measure on G. We thus suppose that U
is of infinite index. Take (gi)i∈N a sequence of left coset representatives such
that G =

⊔
i∈N giU .

Since U is a compact t.d.l.c. Polish group, Theorem 2.7 supplies a outer
Radon probability measure ν on U which is both left and right invariant.
Equip each giU with the pushforward measure νi := gi∗ν. That is to say, for
B ⊆ giU Borel,

νi(B) = ν(g−1
i (B)).

The measure νi is an outer Radon measure on giU , since gi : U → giU is a
homeomorphism.

Applying Lemma 2.14, we obtain a non-trivial outer Radon measure µ
on G such that for B ⊆ G Borel,

µ(B) :=
∑
i∈N

νi(B ∩ giU).
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Unpacking the definitions reveals that

µ(B) =
∑
i∈N

ν(g−1
i (B ∩ giU)) =

∑
i∈N

ν(g−1
i (B) ∩ U).

We now argue that µ is left-invariant. For g ∈ G, there is a permutation
σ of N such that ggiU = gσ(i)U , so in particular, ggi = gσ(i)u for some u ∈ U .
The element g−1

σ(i)ggi is thus in U . For all Borel B ⊆ X, we now see that

µ(g−1(B)) =
∑

i∈N ν((ggi)
−1(B) ∩ U)

=
∑

i∈N ν
(
g−1
σ(i)ggi ((ggi)

−1(B) ∩ U)
)

=
∑

i∈N ν(g−1
σ(i)(B) ∩ U)

= µ(B).

The second line follows from the left U -invariance of ν. We conclude that µ
is left-invariant.

The measure µ is thus a left Haar measure on G.

2.3 Uniqueness

The Haar measure enjoys a strong uniqueness property, which we will now
prove.

Theorem 2.16 (Haar). A left Haar measure on a t.d.l.c. Polish group is
unique up to constant multiplies. That is to say, for any two left Haar mea-
sures µ1 and µ2, there is a non-zero real number c such that µ1 = cµ2.

We argue that the Haar integral, and therefore the left Haar measure, is
unique up to constant multiples. Several preliminary results are required.

Lemma 2.17. Let µ be a left Haar measure on a t.d.l.c. Polish group G.
Then

(1) Every non-empty open set has strictly positive (possibly infinite) measure.

(2) Every compact set has finite measure.

(3) Every continuous positive function f : G→ R with
∫
G
fdµ = 0 vanishes

identically.
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Proof. Exercise 2.14

For a measure space (X,µ), the collection of integrable functions f : X →
C is denoted by L1(X,µ). When the space X is clear from context, we simply
write L1(µ).

Lemma 2.18. Let µ be a left Haar measure on a t.d.l.c. Polish group G.
For any g ∈ G and f ∈ L1(µ),∫

G

Lg(f)dµ =

∫
G

fdµ.

Proof. Exercise 2.15.

We in fact only use Lemma 2.18 for f ∈ Cc(G), and this case follows
by approximating a given f ∈ Cc(G) by functions constant on left cosets of
some compact open subgroup.

Lemma 2.19. For G a t.d.l.c. Polish group, any function f ∈ Cc(G) is
uniformly continuous. That is to say, for every ε > 0, there is U ∈ U(G)
such that if x−1y ∈ U or yx−1 ∈ U , then |f(x)− f(y)| < ε.

Proof. Fix ε > 0. We will find U ∈ U(G) such that if x−1y ∈ U , then
|f(x) − f(y)| < ε; the other case is similar. One then simply intersects the
compact open subgroups obtained in each argument to find a compact open
subgroup that satisfies the lemma.

Fix f ∈ Cc(G), let U ∈ U(G), and let K := supp(f). For each x ∈
G, there is a compact open subgroup Vx ≤ U such that if y ∈ xVx, then
|f(x) − v(y)| < ε

2
. Since KU is compact, there are x1, . . . , xn such that

KU = x1Vx1 ∪ · · · ∪ xnVxn . We claim W :=
⋂n
i=1 Vxi satisfies the lemma.

Suppose x−1y ∈ W . If x /∈ KU , then y /∈ K, so f(x) = f(y) = 0. The
desired inequality clearly holds in this case. Suppose x ∈ KU ; say x ∈ xiVxi .
It is then the case that y ∈ xiVxi , so

|f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(xi)− f(y)| < ε

2
+
ε

2
.

proving the lemma.

Lemma 2.20. Let µ be a left Haar measure on G. For f ∈ Cc(G), the
function Ψf : G→ C defined by

s 7→
∫
G

f(xs)dµ(x)

is continuous.



2.3. UNIQUENESS 39

Proof. Let us first show that Ψf is continuous at 1 for every f ∈ Cc(G). That
is, for every ε > 0 there is U ∈ U(G) such that∣∣∣∣∫

G

f(xs)− f(x)dµ(x)

∣∣∣∣ < ε

for every s ∈ U .
Let K := supp(f), fix ε > 0, and take V ∈ U(G). For s ∈ V , we

see supp(Rs(f)) ⊆ KV , and in view of Lemma 2.17, we observe that 0 <
µ(KV ) < ∞. Lemma 2.19 now supplies a compact open subgroup W ≤ V
such that for all s ∈ W

|f(xs)− f(x)| < ε

µ(KV )
.

Therefore,∣∣∣∣∫
G

f(xs)− f(x)dµ(x)

∣∣∣∣ ≤ ∫
KV

|f(xs)− f(x)|dµ(x) ≤ ε

µ(KV )
µ(KV ).

verifying that Ψf is continuous at 1.
Fixing f ∈ Cc(G), we argue that Ψf is in fact continuous. Take O open

in C and fix r in Ψ−1
f (O). The function Rr(f) is again an element of Cc(G)

and ΨRr(f)(1) ∈ O. The preimage (ΨRr(f))
−1(O) thereby contains an open

set L containing 1 such that ΨRr(f)(L) ⊆ O. For any zr ∈ Lr,

Ψf (zr) =

∫
G

f(xzr)dµ(x) =

∫
G

Rr(f(xz))dµ(x) = ΨRr(f)(z),

so Ψf (Lr) ⊆ O, verifying that Ψf is continuous.

Our proof also requires the classical Fubini–Tonelli theorem. A measure
space (X,µ) is called sigma finite if X =

⋃
n∈NWn such that each Wn is

measurable with µ(Wn) < ∞. It is an easy exercise to see that any Haar
measure is sigma finite (Exercise 2.12).

Fact 2.21 (Fubini–Tonelli). Suppose that (X,µ) and (Y, ν) are sigma finite
measure spaces and take f ∈ L1(µ × ν), the space of integrable functions
f : X × Y → C where X × Y is equipped with the product measure. Then,∫

X×Y f(x, y)d(µ× ν) =
∫
X

(∫
Y
f(x, y)dν(y)

)
dµ(x)

=
∫
Y

(∫
X
f(x, y)dµ(x)

)
dν(y).



40 CHAPTER 2. HAAR MEASURE

Proof of Theorem 2.16. Suppose ν and µ are two left Haar measures on G.
For f ∈ Cc(G) with Iµ(f) :=

∫
G
fdµ 6= 0, set

Df (s) :=
1

Iµ(f)

∫
G

f(ts)dν(t).

By Lemma 2.20, Df (s) is a continuous function of s
Take g ∈ Cc(G). Via the Fubini–Tonelli theorem,

Iµ(f)Iν(g) =

∫
G

(∫
G

f(s)g(t)dν(t)

)
dµ(s).

Lemma 2.18 ensures that∫
G

∫
G
f(s)g(t)dν(t)dµ(s) =

∫
G

∫
G
Ls(f(s)g(t))dν(t)dµ(s)

=
∫
G

∫
G
f(s)g(s−1t)dν(t)dµ(s)

A second application of the Fubini–Tonelli theorem yields

=

∫
G

∫
G

f(s)g(s−1t)dν(t)dµ(s) =

∫
G

(∫
G

f(s)g(s−1t)dµ(s)

)
dν(t),

and appealing again to invariance,∫
G

∫
G
f(s)g(s−1t)dµ(s)dν(t) =

∫
G

∫
G
Lt−1(f(s)g(s−1t))dµ(s)dν(t)

=
∫
G

∫
G
f(ts)g(s−1)dν(t)dµ(s)

= Iµ(f)
∫
G
Df (s)g(s−1)dµ(s).

We have now demonstrated that

Iµ(f)Iν(g) = Iµ(f)

∫
G

Df (s)g(s−1)dµ(s),

and as Iµ(f) 6= 0, Iν(g) =
∫
G
Df (s)g(s−1)dµ(s).

For any other function f ′ ∈ Cc(G) with Iµ(f ′) 6= 0, it is thus the case
that ∫

G

(Df (s)−Df ′(s)) g(s−1)dµ(s) = 0.

As this equality holds for any g ∈ Cc(G), let us replace g with

g̃(s) := |g(s)|2(Df (s−1)−Df ′(s−1)),
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where (Df (s−1)−Df ′(s−1)) denotes the complex conjugate. Observe that
g̃ ∈ Cc(G), via Lemma 2.20. We now see that

0 =

∫
G

(Df (s)−Df ′(s)) g̃(s−1)dµ(s) =

∫
G

|Df (s)−Df ′(s)|2|g(s−1)|2dµ(s).

In view of Lemma 2.17, (Df (s) − Df ′(s))g(s−1) = 0 for all s. Since g(x) is
arbitrary, Df (s) = D′f (s) for all f and f ′ in Cc(G) with non-zero integral, so
Df (s) ≡ D for some constant D independent of f .

Recalling the definition of Df (s), we see that

D = Df (s) =
1

Iµ(f)

∫
G

f(ts)dν(t).

Taking s = 1, we deduce that

DIµ(f) =

∫
G

f(t)dν(t) = Iν(f).

Hence, Dµ = ν verifying that the Haar measure is unique up to constant
multiples.

2.4 The modular function

Let G be a t.d.l.c. Polish group with left Haar measure µ and x ∈ G. We
may produce a new left Haar measure µx by defining µx(A) := µ(Ax). The
uniqueness of the Haar measure implies there is ∆(x) > 0 such that µx =
∆(x)µ.

Definition 2.22. The map ∆ : G → R>0 defined above is called the mod-
ular function for G. If ∆ ≡ 1, then G is said to be unimodular.

A priori, it may seem the modular function depends on the choice of Haar
measure µ, but this is not the case.

Lemma 2.23. Let G be a t.d.l.c. Polish group and µ1 and µ2 be left Haar
measures on G. Taking ∆1 and ∆2 to be the modular functions defined in
terms of µ1 and µ2, respectively, ∆1 = ∆2.
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Proof. Since the Haar measure is unique up to constant multiples, there is
a positive real number D such that µ1 = Dµ2. For all x ∈ G and A ⊆ G
measurable, we have

Dµ2(Ax) = µ1(Ax) = ∆1(x)µ1(A) = ∆1(x)Dµ2(A).

Hence, µ2(Ax) = ∆1(x)µ2(A) for all x ∈ G and A ⊆ G measurable, so
∆2 = ∆1.

The modular function is additionally a continuous homomorphism.

Proposition 2.24. For G a t.d.l.c. Polish group, the modular function ∆ :
G→ R>0 is a continuous group homomorphism.

Proof. We first argue ∆ is a group homomorphism. Fixing U ∈ U(G), x, y ∈
G, and µ a left Haar measure,

∆(xy)µ(U) = µ(Uxy)
= ∆(y)µ(Ux)
= ∆(x)∆(y)µ(U).

Since 0 < µ(U) <∞, ∆(xy) = ∆(x)∆(y) verifying that ∆ is a group homo-
morphism.

To see that ∆ is continuous, we have only to check continuity at 1, since
∆ is a group homomorphism. Fix W a compact open subgroup. By the
uniqueness of Haar measure, µ restricted to W is a Haar measure on W .
Theorem 2.7 therefore implies that µ(Aw) = µ(A) for all measurable A ⊆ W
and w ∈ w. Hence, ∆(w) = 1 for all w ∈ W , so ∆ is continuous at 1.

For G a t.d.l.c. Polish group and H ≤ G a closed subgroup, the left Haar
measure µH on H and the left Haar measure µG on G are often very different.
For instance, unless H is open in G, µG(H) = 0; see Exercise 2.18. The
respective modular functions can also differ. We shall write ∆H to denote
the modular function of H and ∆G to denote that of G.

2.5 Quotient integral formula

Given a t.d.l.c. Polish group G and a closed subgroup H ≤ G, one obtains a
locally compact space G/H on which G acts continuously by left multiplica-
tion. Under mild conditions on G and H, G/H furthermore admits an outer
Radon measure that is invariant under the action of G.
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Definition 2.25. Suppose that G is a group acting on a measure space
(X,µ). We say that µ is invariant under the action of G if µ(A) = µ(g(A))
for all g ∈ G and measurable A ⊆ X.

Theorem 2.26 (Quotient integral formula). For G a t.d.l.c. Polish group
and H ≤ G a closed subgroup, G/H admits an invariant non-zero outer
Radon measure ν if and only if ∆G �H= ∆H . If the equivalent conditions
hold, then the following additionally hold:

(1) The measure ν is unique up to constant multiples.

(2) Given µG and µH left Haar measures on G and H respective, there is a
unique choice for ν such that for every f ∈ Cc(G),∫

G

f(x)dµG(x) =

∫
G/H

∫
H

f(xh)dµH(h)dν(x).

This relationship is called the quotient integral formula.

Proof. to be added

2.6 Lattices

Definition 2.27. For G a t.d.l.c. Polish group and Γ a discrete subgroup, we
say that Γ is a lattice if G/Γ admits an invariant outer Radon probability
measure.

Proposition 2.28. Let Γ be a discrete subgroup of a t.d.l.c. Polish group G.

1. If Γ is cococompact in G, then Γ is a lattice.

2. If Γ is a lattice, then G is unimodular.

Proof. to be added

Definition 2.29. For G a Polish group and H a closed subgroup of G, we
say that Ω ⊆ G is a fundamental domain for H in G if |Ω ∩ gH| = 1 for
all g ∈ G. Alternatively, Ω contains exactly one element of each left coset of
H in G.

Lemma 2.30. For G a t.d.l.c. Polish group, if Γ ≤ G is discrete, then there
exists a Borel fundamental domain for Γ in G.
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Theorem 2.31. Let G be a t.d.l.c. Polish group with Γ ≤ G a discrete
subgroup.

(1) If Γ is a lattice in G, then every Borel fundamental domain for Γ has
finite Haar measure.

(2) If G is unimodular and there exists a Borel fundamental domain for Γ
in G with finite Haar measure, then Γ is a lattice in G.

Proof. to be added

Notes

For a thorough treatment of measure theory as well as the proof of the Riesz
representation theorem, we direct the reader to [8].

The existence proof for the Haar measure was explained to us by F. Le
Mâıtre; we thank Le Mâıtre for his elegant contribution. Our approach to
the uniqness of Haar measure and the quotient integral formula follows that
of A. Deitmar and S. Echterhoff in [7]. The existence and uniqueness results
for left or right Haar measure indeed hold for any locally compact group.
The interested reader is directed to [7] or [9].

A more in depth discussion of lattices may be found in cite [3, Appendix
B].

2.7 Exercises

Topology and measure theory

Exercise 2.1. Let X and Y be metric spaces with Y a compete metric
space. Suppose that Z ⊆ X is dense and f : Z → Y is such that for any
Cauchy sequence (xn)n∈N in X, the image (f(xn))n∈N is a Cauchy sequence
in Y . Show there is a unique continuous function f̃ : X → Y such that the
restriction of f̃ to Z is f .

Exercise 2.2. Suppose that X and Y are Polish spaces with f : X → Y a
Borel measurable function. Show f−1(A) is Borel for any Borel set A of Y .

Exercise 2.3. Let X and Y be topological spaces with f : X → Y a home-
omorphism. Show that if X is equipped with an outer Radon measure µ,
then f∗µ is an outer Radon measure on Y .
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Exercise 2.4. Verify the function µ defined in Lemma 2.14 is indeed a mea-
sure.

Exercise 2.5. Let X be a Polish space and equip Cc(X) with the norm
topology. Show Cc(X) is a topological vector space. That is, show the
vector space operations are continuous with respect to the norm topology.

Exercise 2.6. For G a Polish group, suppose that fi ∈ Cc(G) converges
to some f ∈ Cc(G) in the uniform topology. Show Lg(fi) → Lg(f) and
Rg(fi)→ Rg(f) for any g ∈ G.

Exercise 2.7. Let X be a Polish space and Φ be a positive linear functional
on Cc(X). Show Φ is continuous.

Haar measure

Exercise 2.8. Let G be a t.d.l.c. Polish group and g ∈ Cc(G). Show there
is h ∈ C+

c (G) such that h ≡ 1 on supp(g).

Exercise 2.9. Let G be a t.d.l.c. Polish group. Show that if G admits a
Haar measure that is both left and right invariant, then every Haar measure
is both left and right invariant.

Exercise 2.10. Let G be a t.d.l.c. Polish group. Show that if G is abelian
or compact, then ∆ ≡ 1.

Exercise 2.11. Let G be a t.d.l.c. Polish group. Show G has finite Haar
measure if and only if G is compact.

Exercise 2.12. Show any Haar measure is sigma finite.

Exercise 2.13. Let G be a profinite Polish group and H Eo G. Show

F := {f : G→ C | f is continuous andf(x) = f(xh) for all h ∈ H}

is isomorphic as a vector space to L := {f : G/H → C}.

Exercise 2.14. Prove Lemma 2.17.

Exercise 2.15. Let G be a t.d.l.c. Polish group and µ the left Haar measure
on G. For g ∈ G and f ∈ L1(G), show the following:



46 CHAPTER 2. HAAR MEASURE

(a) Rg(f) and Lg(f) are elements of L1(G).

(b)
∫
G
Rg(f(x))dµ(x) = ∆(g−1)

∫
G
f(x)dµ(x) where ∆ is the modular func-

tion.

(c)
∫
G
Lg(f(x))dµ(x) =

∫
G
f(x)dµ(x). This shows the left Haar integral is

left-invariant as a linear operator on L1(G). In particular, the left Haar
integral is a left-invariant linear operator on Cc(G).

Hint: First consider simple functions and then approximate.

Exercise 2.16. Let G be a t.d.l.c. Polish group with left Haar measure µ.
Show the following are equivalent:

(1) There is x ∈ G such that µ({x}) > 0.

(2) The set {1} has positive measure.

(3) The Haar measure is a multiple of counting measure.

(4) G is a discrete group.

Exercise 2.17. Let G be a t.d.l.c. Polish group with left Haar measure µ.
Show the modular function ∆ only takes rational values. Argue further that
G/ ker(∆) is a discrete abelian group.

Exercise 2.18 (weil). Let G be a t.d.l.c. Polish group with left Haar measure
µ. Show if A ⊆ G is measurable with µ(A) > 0, then AA−1 contains a
neighborhood of 1. Use this to prove that if H ≤ G is a subgroup with
positive measure, then H is open.

HINT: use inner and outer regularity.

Lattices

Exercise 2.19. Let Γ be a cocompact lattice in a t.d.l.c. Polish group G.
Show Γ ∩ CG(γ) is a lattice in CG(γ) for any γ ∈ Γ.



Chapter 3

Geometric Structure

For G a finitely generated group with X a finite symmetric generating set
for G, the Cayley graph for G with respect to X, denoted by Cay(G,X),
is defined as follows: V Cay(G,X) := G and

ECay(G,X) := {{g, gx} | g ∈ G and x ∈ X \ {1}} .

It is easy to see that Cay(G,X) is a locally finite connected graph on which G
acts vertex transitively and freely. What is more striking is that Cay(G,X)
is unique up to quasi-isometry ; we will define and explore this notion of
equivalence below. The uniqueness of Cay(G,X) up to quasi-isometry allows
one to produce new group invariants that are geometric and therefore allows
one to study a group as a geometric object.

Studying the geometric properties of finitely generated groups has been
fruitful, so one naturally wishes to cast t.d.l.c. groups as geometric objects.
We will see that the compact open subgroups given by van Dantzig’s theo-
rem allow us to generalize the Cayley graph to compactly generated t.d.l.c.
groups.

3.1 The Cayley–Abels graph

Definition 3.1. For a t.d.l.c. group G, a locally finite connected graph Γ
on which G acts vertex transitively with compact open vertex stabilizers is
called a Cayley–Abels graph for G.

Immediately, we see that the existence of a Cayley–Abels graph ensures
compact generation.

47
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Proposition 3.2. If a t.d.l.c. group admits a Cayley–Abels graph, then it is
compactly generated.

Proof. Let G be a t.d.l.c. group with a Cayley–Abels graph Γ. Fix v ∈ V Γ
and let G(v) denote the stabilizer of the vertex v in G. The subgroup G(v) is
compact and open by the definition of a Cayley–Abels graph.

Since Γ is locally finite andG acts vertex transitively, there are g1, . . . , gn ∈
G such that

{g1.(v), . . . , gn(v)}

lists the neighbors of v. Let F := 〈g1, . . . , gn〉. We now argue by induction
on dΓ(v, w) for the claim that there is γ ∈ F such that γ(v) = w.

The base case, dΓ(v, w) = 0, is obvious. Suppose the hypothesis holds up
to k and dΓ(v, w) = k+ 1. Let v, u1, . . . , uk, w be a geodesic from v to w. By
the induction hypothesis, uk = γ(v) for some γ ∈ F . Therefore, γ−1(uk) = v,
and γ−1(w) = gi(v) for some 1 ≤ i ≤ n. We conclude γgi(v) = w verifying
the induction hypothesis.

For all g ∈ G there is γ ∈ F such that g(v) = γ(v), so γ−1g ∈ G(v).
We conclude that G = FG(v), so G = 〈g1, . . . , gn, G(v)〉 and is compactly
generated.

Much less obviously, every compactly generated t.d.l.c. group admits a
Cayley–Abels graph. Our preliminary lemma isolates the one ball of such a
graph.

Lemma 3.3. Suppose that G is a compactly generated t.d.l.c. group, X is a
compact generating set, and U ∈ U(G). Then the following hold:

(1) There is a finite symmetric set A ⊆ G containing 1 such that X ⊆ AU
and UAU = AU .

(2) For any finite symmetric set A containing 1 with X ⊆ AU and UAU =
AU , it is the case that G = 〈A〉U .

Proof. Since {xU | x ∈ X} is an open cover of X, we may find B a finite
symmetric set containing 1 such that X ⊆ BU . On the other hand, UB is a
compact set, so there is a finite symmetric set A containing 1 such that B ⊆
A ⊆ UBU and UB ⊆ AU . We conclude that UAU = UBU ⊆ AUU = AU ,
so UAU = AU , verifying the first claim.
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For the second claim, let us argue by induction on n that (UAU)n = AnU
for all n ≥ 1. The base case is given by our hypotheses. Supposing that
(UAU)n = AnU , we see that

(UAU)n+1 = (UAU)nUAU = AnUUAU = AnUAU = An+1U,

completing the induction. Since UAU contains X and is symmetric, it now
follows that

G = 〈UAU〉 =
⋃
n≥1

(UAU)n =
⋃
n≥1

AnU = 〈A〉U.

Remark 3.4. The factorization produced in Lemma 3.3 need not have any
algebraic content. The group G need not be an amalgamated free product
or semidirect product of 〈A〉 and U .

Lemma 3.3 suggests a construction of a Cayley–Abels graph. The ver-
tices ought to be left cosets of U , and the set AU , where A is as found in
Lemma 3.3, of left cosets of U forms the one ball around coset U . Our next
theorem fills in the details of this intuition; the reader is encouraged to com-
pare the construction of the Cayley–Abels graph below with the construction
of the classical Cayley graph discussed above.

Theorem 3.5 (Abels). For G a compactly generated t.d.l.c. group and U a
compact open subgroup of G, there is a Cayley-Abels graph Γ for G such that
V Γ = G/U . In particular, there is v ∈ V Γ such that G(v) = U .

Proof. Applying Lemma 3.3, there is a finite symmetric set A which contains
1 such that UAU = AU and G = 〈A〉U . We define the graph Γ by V Γ :=
G/U and

EΓ := {{gU, gaU} | g ∈ G and a ∈ A \ {1}} .

We argue Γ satisfies the theorem. It is clear that G acts vertex transi-
tively on Γ with compact open vertex stabilizers; the vertex stabilizers are
conjugates of U . It remains to show that Γ is connected and locally finite.
For connectivity, take gU ∈ V Γ. Lemma 3.3 ensures that G = 〈A〉U , so we
may write g = a1...anu for a1, . . . , an elements of A and u ∈ U . Thus,

U, a1U, a1a2U, . . . , gU

is a path in Γ connecting U to gU . We deduce that Γ is connected.
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For local finiteness, it suffices to show B1(U) = {aU | a ∈ A} = AU ,
since G acts on Γ vertex transitively. If {kU, kaU} is an edge in Γ with U as
an end point, then either k ∈ U or kaU = U . In the former case,

kaU ∈ UAU = AU.

For the latter, k = ua−1 for some u ∈ U , so kU = ua−1U . We conclude that
kU ∈ UAU = AU , since A is symmetric. In either case, the edge {kU, kaU}
is of the form {U, a′U} for some a′ ∈ A. Hence, B1(U) = AU . We conclude
that Γ is locally finite.

Corollary 3.6 (Abels). A t.d.l.c. group admits a Cayley–Abels graph if and
only if it is compactly generated.

Proof. The forward implication is given by Proposition 3.2. The reverse is
given by Theorem 3.5.

Remark 3.7. As soon as a compactly generated t.d.l.c. group is non-discrete,
the action on a Cayley–Abels graph is never free. That is to say, the action
always has non-trivial vertex stabilizers. We shall see that these large, but
compact stabilizers play an important role in the structure of compactly
generated t.d.l.c. groups.

For the moment, let us denote the graph built in the proof of Theorem 3.5
by ΓA,U . That is, U is a compact open subgroup of G and A is a finite
symmetric set such that AU is a generating set for G and UAU = AU . The
graph ΓA,U is then defined by V ΓA,U := G/U and

EΓA,U := {{gU, gaU} | g ∈ G and a ∈ A \ {1}} .

Our next lemmas show that every Cayley-Abels graph is of the form ΓA,U
for some finite symmetric A and compact open subgroup U .

Lemma 3.8. Suppose that G is a compactly generated t.d.l.c. group and Γ
is a Cayley-Abels graph for G. Fix v ∈ V Γ, set U := G(v), and let B ⊆ G
be finite containing 1 such that B(v) = B1(v). Setting A := B ∪ B−1, the
following hold:

(1) A(v) = B1(v);

(2) UAU = AU ; and
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(3) G = 〈A〉U .

Proof. For any b ∈ B, the edge {b(v), v} is an edge of Γ. Therefore, {v, b−1(v)}
is an edge in Γ, so b−1(v) ∈ B1(v). We conclude that A(v) = B1(v), verifying
(1).

Taking a ∈ A, the vertex a(v) is a member of B1(v), and as U is the
stabilizer of v, ua is also a member of B1(v). Thus, ua(v) = a′(v) for some
a′ ∈ A, so uaU = a′U . We deduce that UAU = AU , verifying (2).

The proof of Proposition 3.2 shows that AU is a generating set for G.
Applying Lemma 3.3, we obtain (3).

Lemma 3.8 shows that for A and U as above, we may form the Cayley–
Abels graph ΓA,U . The next lemma shows this is precisely the same graph
we started with.

Lemma 3.9. Suppose that G is a compactly generated t.d.l.c. group and Γ is
a Cayley-Abels graph for G. Fix v ∈ V Γ, set U := G(v), let B ⊆ G be finite
containing 1 such that B(v) = B1(v), and put A := B ∪ B−1. Then there is
a G-equivariant graph isomorphism ψ : Γ→ ΓA,U .

Proof. In view of Lemma 3.8, we may form the graph ΓA,U .
For each w ∈ V Γ, fix gw ∈ G such that gw(v) = w. We obtain a bijection

ψ : Γ→ ΓA,U by w 7→ gwU . The reader verifies that ψ(g(w)) = gψ(w) for all
g ∈ G and w ∈ V Γ; that is, the map ψ is G-equivariant.

Let {gw(v), gu(v)} ∈ EΓ; the case that {gw(v), gu(v)} /∈ EΓ is similar.
We see that {v, g−1

w gu(v)} ∈ EΓ, so g−1
w gu = bu for some b ∈ B and u ∈ U .

Hence, {gwU, guU} = {guU, gubU}, so {gwU, guU} ∈ EΓA,U . We conclude
that ψ is such that {v, w} ∈ EΓ if and only if {ψ(v), ψ(w)} ∈ ΓA,U , so ψ is
a graph isomorphism.

In view of Lemma 3.9, the notation ΓA,U is superfluous, so we discard it.

3.2 Cayley-Abels representations

Given a compactly generated t.d.l.c. group G and a Cayley–Abels graph Γ,
we obtain a representation ψ : G → Aut(Γ) induced from the action of G
on Γ. This representation is called the Cayley-Abels representation of
G. Recalling that Aut(Γ) is a t.d.l.c. group in its own right, one naturally
wishes to understand this representation better.
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An important concept here, and generally in the study of locally compact
groups, is that of a cocompact subgroup.

Lemma 3.10. For G a topological group with H a closed subgroup, the space
of left cosets G/H is compact if and only if the space of right cosets H\G is
compact.

Proof. Exercise 3.2

Definition 3.11. For G a topological group with H a closed subgroup of G,
we say that H is cocompact in G if the quotient space G/H, equivalently
H\G, equipped with the quotient topology is compact.

Cayley–Abels graphs allow us to easily identify cocompact subgroups.

Lemma 3.12. Let G be a compactly generated t.d.l.c. group, H be a closed
subgroup of G, and Γ be a Cayley–Abels graph for G. Then H is cocompact
in G if and only if H has finitely many orbits on V Γ.

Proof. Suppose first that H is cocompact in G. The space of right cosets
H\G is then compact. Fix w ∈ V Γ and let U := G(w). The collection
{HgU | g ∈ G} forms an open cover of H\G, so there is a finite subcover.
We may thus find X := g1U ∪ · · ·∪ gnU such that HX = G. The action of G
on V Γ is transitive, so G(w) = V Γ. Hence, HX(w) = ∪ni=1H(gi(w)) = V Γ.
We infer that H has finitely many orbits on V Γ.

Conversely, suppose that H has finitely many orbits on V Γ. Let v1, . . . , vn
be representatives for the orbits of H on V Γ, fix w ∈ V Γ, and fix g1, . . . , gn
in G such that gi(w) = vi for 1 ≤ i ≤ n. For g ∈ G, the vertex g(w) is in
some orbit of H, so there is h ∈ H such that hg(w) = vi for some 1 ≤ i ≤ n.
Thus g−1

i hg ∈ G(w). Setting F := {g1, . . . , gn}, it follows that G = HFG(w).
As FG(v) is compact, the set of right cosets H\G is compact. Hence, H is
cocompact in G.

We are now prepared to give some insight into the representation induced
by a Cayley–Abels graph.

Theorem 3.13. Let G be a compactly generated t.d.l.c. group and Γ a
Cayley–Abels graph for G. Then the induced homomorphism ψ : G→ Aut(Γ)
is a continuous and closed map, ψ(G) is cocompact in Aut(Γ), and ker(ψ) is
compact.
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Proof. Set H := Aut(Γ). Since ψ is a homomorphism, it suffices to show that
ψ is continuous at 1. A basis at the identity in H consists of pointwise vertex
stabilizers H(F ) where F is a finite set of vertices. We see that ψ−1(H(F )) =
G(F ), and as vertex stabilizers in G are open in G, we conclude that G(F ) is
open. Hence, ψ is continuous.

To see that ψ is closed, fix A ⊆ G closed and say that ψ(ai) → h ∈ H.
Fixing w ∈ V Γ, there is N such that ψ(a−1

i )ψ(aj) ∈ H(w) for all i, j ≥ N ,
so a−1

i aj ∈ G(w) for all i, j ≥ N . Fix i ≥ N . As G(w) is compact and
a−1
i aj ∈ G(w) for all j ≥ N , there is a convergent subsequence a−1

i ajk → b,
and it follows that the subsequence ajk converges to some a ∈ A. As ψ is
continuous, we deduce that ψ(a) = h, so ψ is a closed map.

The image ψ(G) is now a closed subgroup of H that acts vertex transi-
tively on V Γ. Applying Lemma 3.12, we conclude that ψ(G) is cocompact
in H. The final claim is immediate since vertex stabilizers are compact.

Remark 3.14. Theorem 3.13 shows that compactly generated t.d.l.c. groups
are very close to being Polish groups. Every compactly generated t.d.l.c.
group is compact-by-Polish. This observation shows our restriction to t.d.l.c.
Polish groups loses little generality.

Let us note a further observation on cocompact subgroups; the proof
illustrates a useful technique for manipulating Cayley–Abels graphs.

Proposition 3.15. For G a compactly generated t.d.l.c. group, if H is a
closed and cocompact subgroup of G, then H is compactly generated.

Proof. Fix Γ a Cayley–Abels graph for G. In view of Lemma 3.12, the
subgroup H has finitely many orbits on V Γ. Let v1, . . . , vn list representatives
of the orbits of H on V Γ. If H acts transitively on V Γ, then Γ is a Cayley–
Abels graph for H, so H is compactly generated by Proposition 3.2. We thus
suppose that H is intransitive and define m := diam({v1, . . . , vn}). Note that
m ≥ 1.

Letting O be the orbit of v1 under the action of H, we argue that for any
two r, s ∈ O, there is a sequence of vertices r := u1, . . . , un =: s in O such
that dΓ(ui, ui+1) ≤ 2m + 1. Let r = w1, . . . , wn = s be a path from r to s.
We argue by induction on i < n that we can find vertices u1, . . . , ui in O such
that r = u1, dΓ(uj, uj+1) ≤ 2m+ 1 for j < i, and d(ui, wi+1) ≤ m+ 1.

For the base case, i = 1, we simply set u1 = w1. Suppose we have found
u1, . . . , ui. If wi+1 ∈ O, then we set ui+1 = wi+1, and we are done. Let us
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assume that wi+1 /∈ O, so in particular, i + 1 < n. Suppose that wi+1 is in
the orbit of vk for some k 6= 1. Let h ∈ H be such that h(vk) = wi+1 and
set ui+1 := h(v1). Clearly, ui+1 ∈ O. Furthermore, d(ui+1, wi+1) ≤ m, so we
deduce that

d(ui, ui+1) ≤ d(ui, wi+1) + d(wi+1, ui+1) ≤ m+ 1 +m = 2m+ 1.

Finally,

d(ui+1, wi+2) ≤ d(ui+1, wi+1) + d(wi+1, wi+2) ≤ m+ 1,

completing the induction.
We now build a new graph ∆ as follows: V∆ = V Γ and

E∆ := {{v, w} | 1 ≤ dΓ(v, w) ≤ 2m+ 1} .

The graph ∆ is again a Cayley–Abels graph for G; see Exercise 3.5. The
sequence of vertices we found in our work above is a path in ∆. The orbit of
v1 under the action of H on ∆, which we denoted by O, is thus connected.
We now define a graph Φ by V Φ := O and

EΦ := {{v, w} | v, w ∈ O and {v, w} ∈ E∆}

It follows that Φ is a Cayley-Abels graph for H, hence H is compactly gen-
erated by Proposition 3.2.

Let us pause to observe a technical permanence property of Cayley-Abels
graphs, which we will make use of in the next section. Let G be a group
acting on a set X. A G-congruence σ for a group G acting on a set X is an
equivalence relation ∼σ on X such that x ∼σ y if and only if g(x) ∼σ g(y) for
all g ∈ G and x, y ∈ X. The equivalence classes of σ are called the blocks of
imprimitivity of σ; we often call the classes “blocks” for brevity. If x ∈ X,
the block containing x is denoted by xσ.

Suppose G y Γ with Γ a connected graph and σ a G-congruence on Γ.
We define the quotient graph Γ/σ by setting

V Γ/σ := {P | P is a block of σ},

and

EΓ/σ := {{vσ, wσ} | ∃v′, w′ ∈ vσ {v, w} ∈ EΓ and vσ 6= wσ}.

The action of G on Γ descends to an action on Γ/σ by g(vσ) := (g(v))σ, and
this action is by graph automorphism. Additionally, Γ/σ is connected. See
Exercise 3.3.
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Lemma 3.16. Let G be a t.d.l.c. Polish group and Γ be a Cayley–Abels
graph for G. If σ is a G-congruence on Γ with finite blocks, then Γ/σ is a
Cayley–Abels graph for G.

Proof. The group G acts on Γ/σ vertex transitively, and since each block is
finite, Γ/σ is locally finite. It remains to show the stabilizer of a vertex is
compact and open.

Take vσ ∈ V Γ/σ and say that vσ = {v0, . . . , vn}. As G(v0,...,vn) ≤ G(vσ), we
deduce thatG(vσ) is open. SinceGy Γ transitively, vσ = {v, g1(v), . . . , gn(v)}
for some g1, . . . , gn in G. We infer that G(vσ)(v) ⊆ {v, g1(v), . . . , gn(v)}, so

G(vσ) ⊆ G(v) ∪ g1G(v) ∪ · · · ∪ gnG(v).

The group G(vσ) is thus also compact.

3.3 Uniqueness

The Cayley-Abels graph is unique up to a natural notion of equivalence. In
the study of metric spaces, and in particular connected graphs, the notion
of isometry is often too restrictive of an equivalence. There is, however, a
useful weakening which captures the “large scale structure.”

Definition 3.17. Let X and Y be metric spaces with metrics dX and dY ,
respectively. A map φ : X → Y is a quasi-isometry if there exist real
numbers k ≥ 1 and c ≥ 0 for which the following hold:

1. For all x, x′ ∈ X,

1

k
dX(x, x′)− c ≤ dY (φ(x), φ(x′)) ≤ kdX(x, x′) + c, and

2. for all y ∈ Y , there is x ∈ X such that dY (y, φ(x)) ≤ c

If there is a quasi-isometry between X and Y , we say they are quasi-
isometric and write X 'qi Y .

Quasi-isometries preserve the large scale structure of a metric space while
allowing for bounded distortion on small scales. While not immediately obvi-
ous from the definition, the relation 'qi is an equivalence relation on metric
spaces; see Exercise 3.1.
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Theorem 3.18. The Cayley–Abels graph for a compactly generated t.d.l.c.
group is unique up to quasi-isometry.

Proof. Let Γ and ∆ be two Cayley–Abels graphs for a compactly generated
t.d.l.c. group G. Fix r ∈ V Γ and s ∈ V∆ and set U := G(r) and V := G(s).
Lemma 3.8 supplies finite symmetric sets AU and AV each containing 1 such
that AU(r) = BΓ

1 (r) and AV (s) = B∆
1 (s). Lemma 3.8 further ensures that

G = 〈AU〉U and G = 〈AV 〉V .
Suppose first that U = V . Recalling that every vertex u ∈ V Γ is of the

form g(r) for some g ∈ G, we define ψ : V Γ→ V∆ by g(r) 7→ g(s). This map
is well-defined since U = V . For each a ∈ AU , let wav = a be an expression
of a in the factorization G = 〈AV 〉V , where wa ∈ 〈AV 〉 and v ∈ V . Take
c > max{|wa| | a ∈ AU} where |wa| is the word length in the generating set
AV .

For g, h ∈ G, write g−1h = a1 . . . anu where ai ∈ AU and u ∈ U = V . We
now see

d∆(ψ(g(r)), ψ(h(r))) = d∆(g(s), h(s))
= d∆(s, g−1h(s))
= d∆(s, a1 . . . an(s)).

We may write a1 . . . anv = wa1v1 . . . wanvn. Since V (AV )nV = (AV )nV by
Lemma 3.8, we may move the vi terms past the waj terms without changing
the word length of the waj terms; we will in general obtain a new word,
however. We thus have

dV (s, a1 . . . an(s)) = dV (s, w′a1 . . . w
′
an(s)) ≤ cn = cdΓ(g(r), h(r)).

On the other hand, for each b ∈ AV , let wbu = b be an expression of b
in the factorization G = 〈AU〉U . Take c′ > max{|wb| | b ∈ AV }. As in the
previous paragraph, it follows that

dΓ(g(r), h(r)) ≤ c′d∆(ψ(g(r)), ψ(h(r)))

for any g(r), h(r) ∈ V Γ. Putting k := max{c, c′}, we have

1

k
dΓ(g(r), h(r)) ≤ d∆(ψ(g(r)), ψ(h(r))) ≤ kdΓ(g(r), h(r)),

and since ψ is onto, we conclude that Γ and ∆ are quasi-isometric.
We now suppose U ≤ V . Define an equivalence relation σ on V Γ by

g(r) ∼σ h(r) if and only if h−1g ∈ V . We see σ is indeed a G-congruence on
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V Γ. Additionally, since |V : U | <∞, the blocks are finite. Via Lemma 3.16,
Γ/σ is a Cayley–Abels graph, and the stabilizer of rσ is V . In view of the
previous case, Γ/σ 'qi ∆. It thus suffices to show Γ/σ is quasi-isometric to
Γ.

Fix {hi(r) | i ∈ N}, equivalence class representatives for V Γ/σ and let c be
strictly greater than the diameter of a (any) block of σ. Define φ : Γ/σ → Γ
by φ(hi(r)

σ) 7→ hi(r). We outright have

dΓ/σ

(
hi(r)

σ, hj(r)
σ
)
≤ dΓ

(
φ(hi(r)

σ), φ(hj(r)
σ)
)
.

On the other hand, let vσ1 , . . . , v
σ
n be a geodesic from hi(r)

σ to hj(r)
σ in

Γ/σ. We may find u+
i ∈ vσi for 1 ≤ i < n and u−j ∈ vσj for 1 < j ≤ n such

that {u+
k , u

−
k+1} ∈ EΓ for 1 ≤ k < n. We now have

dΓ(hi(r), hj(r)) ≤ dΓ(hi(r), u
+
1 )+dΓ(u+

1 , u
−
2 )+dΓ(u−2 , u

+
2 )+· · ·+dΓ(u−n , hj(r)).

Since the blocks have diameter strictly less than c,

dΓ(u+
i , u

−
i+1) + dΓ(u+

i+1, u
−
i+1) ≤ c.

Therefore,

dΓ(hi(r), hj(s)) ≤ dΓ(hi(r), u
+
1 ) + c(n− 2) + dΓ(u+

n−1, u
−
n ) + dΓ(u−n , hj(r))

≤ 2c+ c(n− 2) ≤ 2cn.

We conclude

1

2c
dΓ/σ (hi(r)

σ, hj(r)
σ) ≤ dΓ (φ(hi(r)

σ), ψ(hi(r)
σ)) ≤ 2cdΓ/σ (hi(r)

σ, hj(r)
σ) .

Since every g(r) ∈ V Γ lies in some block, there is i such that dΓ(g(r), hi(r)) ≤
2c. Therefore, φ is a quasi-isometry.

The general case is now in hand: Suppose Γ and ∆ are Cayley–Abels
graphs for G. We may find Φ a Cayley–Abels graph for G on coset space
G/U ∩ V by Theorem 3.5. By case two above, Γ and ∆ are quasi-isometric
to Φ, and therefore, they are quasi-isometric to each other.

In view of Theorem 3.18, the quasi-isometry type of a Cayley–Abels graph
of a compactly generated t.d.l.c. Polish group is an invariant of the group.
We thus say t.d.l.c. Polish groups G and H are quasi-isometric if some
(any) Cayley–Abels graph for G and H are quasi-isometric.

Proposition 3.19. Let G be a compactly generated t.d.l.c. group. If H is a
closed and cocompact subgroup of G, then H is quasi-isometric to G.

Proof. Exercise 3.6
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3.4 Compact presentation

In the study of finitely generated groups, finitely presented groups are of
particular importance. It turns out that the notion of finite presentation
generalizes to the t.d.l.c. setting.

Generalizing to the t.d.l.c. setting requires isolating a metric notion of
compact presentability. For ease of discourse, we define these notions for
connected graphs, but they hold in much greater generality. Let Γ be a
connected graph and c > 0. A sequence of vertices (v1, . . . vn) is called a
c-path if dΓ(vi, vi+1) ≤ c for all 1 ≤ i < n. A c-path is called a c-loop based
at x if v1 = x = vn. Two c-loops at x are c-elementarily homotopic if one
loop can be obtained from the other by removing one vertex. For γ a c-loop
based at x, we say γ is c-contractible if there is a sequence of c-loops based
at x γ = γ1, . . . , γn such that γi is c-elementarily homotopic to γi+1 for all
1 ≤ i < n, and γn is the trivial loop (x).

Definition 3.20. For Γ a connected graph, we say that Γ is coarsely simply
connected if for all sufficiently large c and all x ∈ V Γ, there is c′ ≥ c such
that every c-loop based at x is c′-contractible.

Proposition 3.21. Let Γ and ∆ be connected graphs that are quasi-isometric.
Then, Γ is coarsely simply connected if and only if ∆ is coarsely simply con-
nected.

Proof. to add

We now isolate the notion of compact presentation.

Definition 3.22. A compactly generated t.d.l.c. Polish group is said to be
compactly presented if some (all) Cayley–Abels graphs are coarsely simply
connected.

Our definition may seem somewhat opaque, but the next theorem shows
that compact presentation does indeed generalized finite presentation for
discrete groups.

Theorem 3.23. For G a compactly generated t.d.l.c. group, the following
are equivalent:

(1) G is compactly presented.
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(2) There is a presentation 〈S|R〉 of G as an abstract group such that S is
compact in G and there is a bound on the length of the relators in R.

Proof. to add

The usual permanence properties for finitely presented groups addition-
ally extend to the setting of compactly presented t.d.l.c. groups. A normal
subgroup N of a topological group G is compactly generated as a normal sub-
group of G if there is a compact set K ⊆ N such that N = 〈gKg−1 | g ∈ G〉.

Theorem 3.24. Suppose {1} → K → G → Q → {1} is a short exact
sequence of t.d.l.c. groups.

(1) If G is compactly presented and K is compactly generated as a normal
subgroup of G, then Q is compactly presented.

(2) If G is compactly generated and Q is compactly presented, then K is
compactly generated as a normal subgroup.

(3) If K and Q are compactly presented, then G is compactly presented.

Proof. to add

Notes

The notion of a Cayley–Abels graph first appeared in the work of H. Abels [1]
in the early 1970s. The work of Abels, however, takes a somewhat technical
approach via compactifications. There were several refinements of Abels’
works in the intervening years, which eventually led to the approach given
here. The approach given here should likely be attributed to B. Krön and R.
Möller [11].

In several works, the Cayley–Abels graph is called the rough Cayley graph.
The term “Cayley–Abels graphs” seems to be the accepted nomenclature.

The reader interested in a more general and deeper discussion of the
geometric aspects of locally compact groups should consult [6]. The reader
will find there, in particular, a general discussion of coarsely simply connected
metric spaces.
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3.5 Exercises

Exercise 3.1. Show the relation of quasi-isometry is an equivalence relation
on the class of metric spaces.

Exercise 3.2. Prove Lemma 3.10

Exercise 3.3. Let G be a group acting on a connected graph Γ. Show that
if σ is a G-congruence on Γ, then Γ/σ is connected and G acts on Γ/σ by
graph automorphisms.

Exercise 3.4. Let G be a compactly generated t.d.l.c. group and Γ a be
Cayley–Abels graph for G. Fix o ∈ V Γ and define

Vn := {g ∈ G | dΓ(o, go) ≤ n}.

For each n ≥ 1, show g ∈ V n if and only if dΓ(o, go) ≤ n. Show further V1 is
compact and a generating set for G.

Exercise 3.5. Let Γ be a vertex transitive, connected, and locally finite
graph. Fix n ≥ 1 and define the graph Γn by V Γn := V Γ and

EΓn := {{v, w} | 1 ≤ dΓ(v, w) ≤ n} .

(a) Show Γn is quasi-isometric to Γ.

(b) Show if Γ is also a Cayley–Abels graph for a t.d.l.c. group G, then Γn is
a Cayley–Abels graph for G.

Exercise 3.6. Prove Proposition 3.19

Exercise 3.7. Suppose G is a compactly generated t.d.l.c. Polish group,
H E G is a closed normal subgroup, and Γ is a Cayley–Abels graph for G.
Show the following:

(a) The orbits of H on Γ form a G-congruence, denoted by σ.

(b) Γ/σ is locally finite and deg(Γ/σ) ≤ deg(Γ).

Exercise 3.8. Suppose G is compactly generated and H is a dense subset of
G. Show for all U ∈ U(G), there is a finite set F ⊆ H such that G = 〈F 〉U .
Conclude that for every dense subgroup H of G and Cayley–Abels graph Γ
of G, there is a finitely generated subgroup K ≤ H that acts transitively on
Γ.
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Exercise 3.9. ForG a t.d.l.c. group, defineB(G) := {g ∈ G | gG is compact},
where gG is the conjugacy class of g in G.

(a) Show B(G) is a characteristic subgroup of G - i.e. B(G) is preserved by
every topological group automorphism of G, so in particular it is normal.

(b) Suppose that G is compactly generated and fix Γ a Cayley–Abels graph
for G. Show

B(G) = {g ∈ G | ∃N ∀v ∈ V Γ dΓ(v, g(v)) ≤ N}.

(c) Show that if g ∈ B(G) is such that 〈g〉 is compact, then 〈gG〉 is compact.

(d) (Challenge) Exhibit an example showing B(G) need not be closed for
non-compactly generated t.d.l.c. groups. (We shall see in Exercise 4.16
that B(G) is closed for compactly generated G.)
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Chapter 4

Essentially Chief Series

A basic concept in (finite) group theory is that of a chief factor.

Definition 4.1. A normal factor of a (topological) group G is a quotient
K/L such that K and L are distinct (closed) normal subgroups of G with
L < K. We say that K/L is a (topological) chief factor of G if there is no
(closed) normal subgroup M of G such that L < M < K.

In finite group theory, chief factors play an essential role in the classical
structure theory.

Fact 4.2. Every finite group F admits a finite series {1} = F0 < F1 <
. . . Fn = F of normal subgroups of F such that each normal factor Fi/Fi−1

is a chief factor.

The series given in the above fact is called a chief series. Such a series
additionally enjoys a uniqueness property.

Fact 4.3 (Jordan–Hölder). The chief factors appearing in a chief series of
a finite group are unique up to permutation and isomorphism.

In this chapter, we will see that compactly generated t.d.l.c. groups admit
a close analogue of the chief series which additionally enjoys a uniqueness
property.

63



64 CHAPTER 4. ESSENTIALLY CHIEF SERIES

4.1 Graphs revisited

4.1.1 A new definition

Our results here require a more technical, but more powerful, notion of a
graph. This additional complication is necessary for the desired results to
ensure the degree of a graph behaves well under quotients. The notion of a
graph given here seems to be the metamathematically “correct” notion of a
graph, in this author’s opinion.

Definition 4.4. A graph Γ = (V Γ, EΓ, o, r) consists of a set V Γ called the
vertices, a set EΓ called the edges, a map o : EΓ→ V Γ assigning to each
edge an initial vertex, and a bijection r : EΓ→ EΓ, denoted by e 7→ e and
called edge reversal, such that r2 = id.

Given a classical graph, i.e. a graph as defined in Chapter 1, we produce
a graph in the sense above by replacing each unordered edge {v, w} by the
ordered pairs (v, w) and (w, v). The initial vertex map o is defined to be the
projection on the first coordinate, and the edge reversal map sends (v, w) to
(w, v).

Convention. For the remainder of this chapter, the term “graph” shall refer
to Definition 4.4.

Remark 4.5. We may see classical graphs as graphs in our sense here. Our
new definition, however, allows for much more exotic graphs. For example,
our new definition of a graph allows for graphs with loops and multiple edges
between two vertices.

The terminal vertex of an edge is defined to be t(e) := o(e). A loop is
an edge e such that o(e) = t(e). For e a loop, we allow both e = e and e 6= e
as possibilities. For a vertex v ∈ V Γ, we define

E(v) := {e ∈ EΓ | o(e) = v} = o−1(v);

the set E(v) is sometimes called the star at v. The degree of v is deg(v) :=
|E(v)|, and the graph Γ is locally finite if every vertex has finite degree.
The degree of the graph is defined to be

deg(Γ) := sup
v∈V Γ

deg(v).
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The graph is simple if the map E → V × V defined by e 7→ (o(e), t(e)) is
injective and no edge is a loop.

A path p is a sequence of edges e1, . . . , en such that t(ei) = o(ei+1) for
each i < n. The length of the path p, denoted by l(p), is the number of
edges n. We say that p is a path from vertex v to vertex w if o(e1) = v and
t(en) = w. A least length path between two vertices is called a geodesic. We
say that a graph is connected if there is a path between any two vertices.

Connected graphs are metric spaces under the graph metric: the graph
metric on a connected graph Γ is

dΓ(v, u) :=

{
min {l(p) | p is a path connecting v to u} if v 6= u

0 if v = u
.

For v ∈ V Γ and k ≥ 1, the k-ball around v is defined to be Bk(v) := {w ∈
V Γ | dΓ(v, w) ≤ k} and the k-sphere is defined to be Sk(v) := {w ∈ V Γ |
dΓ(v, w) = k}.

An isomorphism α : Γ → ∆ between graphs is a pair (αV , αE) where
αV : V Γ → V∆ and αE : EΓ → E∆ are bijections such that αV (o(e)) =
o(αE(e)) and αE(e) = αE(e). We say that αV and αE respect the origin and
edge reversal maps. An automorphism of Γ is an isomorphism Γ → Γ. The
collection of automorphisms, denoted by Aut(Γ), forms a group under the
obvious definitions of composition and inversion:

(αV , αE) ◦ (βV , βE) := (αV ◦ βV , αE ◦ βE) and (αV , αE)−1 := (α−1
V , α−1

E ).

The automorphism group, Aut(Γ) acts faithfully on the disjoint union V Γt
EΓ. As we allow for multiple edges and loops, it can be the case that the
action of Aut(Γ) on V Γ is not faithful. For simple graphs, the edges are
completely determined by the initial and terminal vertices, so the map αE
is completely determined by αV . In general, however, this need not be the
case.

Remark 4.6. In practice, we often suppress that g ∈ Aut(Γ) is formally an
ordered pair. This usually amounts to simply writing g(o(e)) = o(g(e)) and
g(e) = g(e). The important bit here is that g ∈ Aut(Γ) acts on both V Γ and
EΓ and these actions respect the origin and reversal maps.

Just as in Chapter 1, we make Aut(Γ) into a topological group. For finite
tuples a := (a1, . . . , an) and b := (b1, . . . , bn) over V Γ ∪ EΓ, define

Σa,b := {g ∈ Aut(Γ) | g(ai) = bi for 1 ≤ i ≤ n}.
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The collection B of sets Σa,b as a and b run over finite sequences of elements
from V Γ ∪ EΓ forms a basis B for a topology on Aut(Γ). The topology
generated by B is called the pointwise convergence topology. We further
recover Theorem 1.24; the proof of which is the obvious adaptation of the
proof given for Theorem 1.24.

Theorem 4.7. Let Γ be a graph. If Γ is locally finite and connected, then
Aut(Γ) is a t.d.l.c. Polish group.

4.1.2 Quotient graphs

Quotient graphs play a central role in our proof of the existence of chief series.
Our more technical definition of a graph makes quotient graphs easier to
define and work with; in particular, we will be able to make useful statements
about the degree of quotient graphs.

Let G be a group acting on a graph Γ. For v ∈ V Γ and e ∈ EΓ, the orbits
of v and e under G are denoted by Gv and Ge, respectively. The quotient
graph induced by the action of G, denoted by Γ/G, is defined as follows: the
vertex set V (Γ/G) is the set of G-orbits on V and the edge set E(Γ/G) is the
set of G-orbits on E. The origin map õ : E(Γ/G) → E(Γ/G) is defined by
õ(Ge) := Go(e); this is well-defined since graph automorphisms send initial
vertices to initial vertices. The reversal r̃ : E(Γ/G) → E(Γ/G) is given by
Ge 7→ Ge; this map is also well-defined. We will abuse notation and write o
and r for õ and r̃.

There is a natural setting in which group actions descend to quotient
graphs. This requires an abstract fact from permutation group theory. Recall
from Chapter 1 that a G-congruence is a G-equivariant equivalence relation.

Lemma 4.8. If G is a group acting on a set X and N E G is a normal
subgroup, then the orbits of N on X form a G-congruence on X.

Proof. The orbit equivalence relation on X induced by N is given by v ∼ w
if and only if there is n ∈ N such that n(v) = w. Fix g ∈ G and suppose
v ∼ w. Letting n ∈ N be such that n(v) = w, we see that gn(v) = g(w),
so gng−1g(v) = g(w). As N is normal, we conclude that g(v) ∼ g(w). The
converse is immediate as we can act with g−1.

Lemma 4.9. Let G be a group acting on a graph Γ. If N is a normal
subgroup of G, then G acts on Γ/N by g(Nv) = Ng(v) and g(Ne) = Ng(e).
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Furthermore, the kernel of this action of G on Γ/N contains N , so the action
factors through G/N .

Proof. By Lemma 4.8, it follows that these actions are well-defined. One
easily verifies that these actions respect the origin and edge reversal maps,
so the action is indeed by graph automorphisms. That N acts trivially on
Γ/N is immediate.

Lemma 4.10. Let G be a group acting on a graph Γ with N a closed normal
subgroup of G and form the quotient graph Γ/N .

(1) For Nv ∈ V (Γ/N), the degree deg(Nv) equals the number of orbits of
N(v) on E(v).

(2) If deg(Γ) is finite, then deg(Γ/N) ≤ deg(Γ), with equality if and only if
there exists a vertex v ∈ V of maximal degree such that N(v) acts trivially
on E(v).

(3) For v ∈ V , the vertex stabilizer in G of Nv under the induced action
Gy Γ/N is NG(v).

Proof. For (1), let Ne be an edge of Γ/N such that o(Ne) = Nv. There then
exists v′ ∈ Nv and e′ ∈ Ne such that o(e′) = v′. Letting n ∈ N be such that
n(v′) = v, we have o(n(e′)) = v, so n(e′) ∈ E(v). All edges of Γ/N starting
at Nv are thus represented by edges of Γ starting at v. The set E(Nv) thus
equals {Ne | e ∈ E(v)}. Letting ∼ be the orbit equivalence relation of N(v)

acting on E(v), the map β : E(v)/ ∼→ E(Nv) by [e] 7→ Ne is easily verified
to be a well-defined bijection. Hence, deg(Nv) = |E(v)/ ∼ |.

For (2), claim (1) ensures deg(Nv) ≤ deg(v), and deg(Nv) = deg(v)
if and only if N(v) acts trivially on E(v). Since v ∈ V Γ is arbitrary, the
conclusions for the degree of Γ/N are clear.

For (3), let H be the vertex stabilizer of Nv in Γ/N . It follows that H
is simply the setwise stabilizer of Nv regarded as a subset of V Γ. In view
of Lemma 4.8, the set Nv is a block of imprimitivity for the action of G on
V Γ. We infer that G(v) ≤ H, so G(v) = H(v). That N is transitive on Nv
and N ≤ H now imply that NG(v) = H.

Our more technical notion of a graph ensures that Claim (1) of Lemma 4.10
holds. Let us consider an example which illustrates that this claim can fail
for classical graphs and that it gives important information about the group
acting on a given graph, which can be hidden in the classical setting.
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∆1 ∆2

Figure 4.1: The graphs ∆1 and ∆2

Example 4.11. Let Γc be the classical graph defined by V Γc := Z and

EΓc := {{i, i+ 1} | i ∈ Z} .

The group of integers Z and the infinite dihedral group D∞ act on Γc. (The
infinite dihedral group is Z o Z/2Z where Z/2Z acts by inversion. The
generator of Z/2Z acts on the graph Γc by reflection over 0.) We now compute
the quotient graphs Γc/Z and Γc/D∞. The vertex sets of both graphs consist
of exactly one vertex, and since loops are not allowed, the edge sets are empty.
The quotient graphs are thus the same, and we see no difference between Z
and D∞ from the perspective of the quotient graph.

Let us next consider the graph Γ = (V Γ, EΓ, o, r) where V Γ := Z,

EΓ := {(i, j) | i, j ∈ Z and |i− j| = 1} ,

the origin map is the projection onto the first coordinate, and edge reversal
sends (i, j) to (j, i).

We compute the quotient graphs ∆1 := Γ/Z and ∆2 := Γ/D∞. The
vertex sets of both graphs consist of exactly one vertex since Z and D∞ both
act vertex transitively. The edge set E∆1 consists of two edges e := Z(0, 1)
and f := Z(1, 0) such that e = f . In particular, deg(∆1) = 2. On the other
hand, E∆2 is a singleton, since D∞ acts edge transitively, so deg(∆2) = 1.
See Figure 4.1. The quotient graphs, under our more technical notion of a
graph, now detect a difference between Z and D∞. In view of Claim (1)
of Lemma 4.10, the difference detected is exactly that D∞ has non-trivial
vertex stabilizers while Z does not.

Lemma 4.10 shows that the degree of the quotient graph Γ/N can either
become smaller or stay the same. It will be important to gain a deeper insight
into the case in which the degree does not decrease under taking a quotient.
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Definition 4.12. Given a group G acting on a graph Γ, we say that G acts
freely modulo kernel on Γ if the vertex stabilizer G(v) acts trivially on
both the vertices and the edges of Γ for all v ∈ V Γ.

Proposition 4.13. Let G be a group, N be a normal subgroup of G, and
Γ be a connected graph of finite degree on which G acts vertex-transitively.
Then, the following are equivalent:

(1) deg(Γ/N) = deg(Γ).

(2) For some v ∈ V Γ, N(v) acts trivially on E(v).

(3) For every v ∈ V Γ, N(v) acts trivially on E(v).

(4) N acts freely modulo kernel on Γ.

Proof. (1) ⇒ (2). Suppose that deg(Γ/N) = deg(Γ) and fix v ∈ V . Every
vertex of Γ/N and Γ has the same degree, since G acts vertex transitively on
Γ. Our assumption that deg(Γ/N) = deg(Γ) thus ensures that |E(Nv)| =
|E(v)|. In view of Lemma 4.10, we conclude that N(v) acts trivially on E(v).

(2) ⇒ (3). Suppose that N(v) acts trivially on E(v) and fix w ∈ V Γ.
Since G acts vertex transitively, we may find g ∈ G such that g(v) = w, and
one verifies that gN(v)g

−1 = N(w), using that N is normal in G. For e ∈ E(w)
and gng−1 ∈ gN(v)g

−1 = N(w), we see that g−1(e) ∈ E(v), so gng−1(e) = e.
Hence, N(w) acts trivially on E(w).

(3)⇒ (4). Say that N(w) acts trivially on E(w) for every w ∈ V Γ. Fixing
v ∈ V Γ, each g ∈ N(v) fixes t(e), so g fixes the one sphere around v. We
conclude that N(v) ≤ N(w) for each w ∈ S1(v). Inducting on the distance
dΓ(v, w), we deduce that N(v) ≤ N(w) for every w ∈ V Γ; that Γ is connected
gives us the metric dΓ. The vertex stabilizer N(v) thus acts trivially on V Γ.
For any e ∈ EΓ, the vertex stabilizer N(o(e)) fixes e, and as N(v) ≤ N(o(e)), we
conclude that N(v) fixes e. Hence, N(v) acts trivially on EΓ, so N acts freely
modulo kernel on Γ.

(4) ⇒ (1). Say that N acts freely modulo kernel on Γ. Fixing v ∈ V Γ,
the vertex stabilizer N(v) acts trivially on EΓ, so a fortiori, N(v) acts trivially
on E(v). Lemma 4.10 ensures that deg(Nv) = deg(v). Since G acts vertex
transitively, we deduce that deg(Γ/N) = deg(Γ).



70 CHAPTER 4. ESSENTIALLY CHIEF SERIES

4.2 Chain conditions

Given a group G acting on a graph Γ and N E G, Lemma 4.9 allows us to
produce from Γ a graph on which G/N acts. For G a compactly generated
t.d.l.c. group, Γ a Cayley–Abels graph for G and N E G closed, one hopes
that Γ/N is a Cayley–Abels graph for G/N . This is indeed the case.

Proposition 4.14. Let G be a compactly generated t.d.l.c. group with N a
closed normal subgroup of G. If Γ a Cayley–Abels graph for G, then Γ/N is
a Cayley–Abels graph for G/N .

Proof. As paths in Γ induce paths in Γ/N , the graph Γ/N is connected,
and G clearly acts vertex-transitively on Γ/N . Lemma 4.10 ensures that
deg(Γ/N) is also finite, so Γ/N is connected and locally finite. Applying
Lemma 4.10 a second time, we see that the vertex stabilizer of Nv in G/N
is G(v)N/N which is compact. The graph Γ/N is therefore a Cayley–Abels
graph for G/N .

A filtering family F in a partial order (P ,≤) is a subset of P such that
for any a, b ∈ F there is c ∈ F for which c ≤ a and c ≤ b. A directed
family D is a subset of P such that for any a, b ∈ D there is c ∈ D for which
a ≤ c and b ≤ c.

We here consider filtering families and directed families of closed normal
subgroups of a compactly generated t.d.l.c. group. For filtering or directed
families of subgroups, the partial order is always taken to be set inclusion.

Lemma 4.15. Let G be a compactly generated t.d.l.c. group and Γ be a
Cayley–Abels graph for G.

(1) For F a filtering family of closed normal subgroups of G and M :=
⋂
F ,

there exists N ∈ F such that deg(Γ/N) = deg(Γ/M).

(2) For D a directed family of closed normal subgroups of G and M := 〈D〉,
there exists N ∈ D such that deg(Γ/N) = deg(Γ/M).

Proof. Fix v ∈ V Γ and set X := E(v). The action of the stabilizer G(v) on
X induces a homomorphism α : G(v) → Sym(X). This map is additionally
continuous when Sym(X) is equipped with the discrete topology; see Exer-
cise 4.4. For N a closed normal subgroup of G, the image α(N(v)) =: αN is the
subgroup of Sym(X) induced by N(v) acting on X. In view of Lemma 4.10,
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if αN = αM for M E G, then deg(Γ/N) = deg(Γ/M). For a filtering or
directed family N ⊆ N (G), the family α(N ) := {αN | N ∈ N} is a fil-
tering or directed family of subgroups of Sym(X). That Sym(X) is a finite
group ensures that α(N ) is a finite family, so α(N ) admits a minimum or
maximum, according to whether N is filtering or directed.

Claim (2) is now immediate. The directed family α(D) admits a maximal
element αN . Recalling that α : G(v) → Sym(X) is continuous, α−1(αN)∩M is
closed, and it contains 〈D〉(v) which is dense in M(v). Hence, α−1(αN) = M(v),
and αM = αN . We conclude that deg(Γ/N) = deg(Γ/M).

For claim (1), an additional compactness argument is required. If G acts
freely modulo kernel on Γ, then members N and M of F also act freely
modulo kernel. The desired result then follows since deg(Γ/N) = deg(Γ) =
deg(Γ/M). Let us assume that G does not act freely modulo kernel, so G(v)

acts non-trivially on E(v) for any v ∈ V Γ, via Proposition 4.13.
Take α(N) ∈ α(F) to be the minimum. Given r ∈ α(N), let Y be the set

of elements of G(v) that do not induce the permutation r on X. If r 6= 1, then
plainly Y 6= G(v). If r = 1, then Y 6= G(v) since G(v) acts non-trivially on Γ.
The set Y is a proper open subset of G(v), and thus G(v) \ Y is a non-empty
compact set.

Letting K be a finite subset of F , the group K :=
⋂
F∈K F contains some

element N of F , so α(K) ≥ α(N). In particular, K(v) 6⊆ Y . The intersection⋂
F∈K

(F(v) ∩ (G(v) \ Y ))

is therefore non-empty, by compactness. Hence,

M(v) ∩ (G(v) \ Y ) =
⋂
F∈F

(F(v) ∩ (G(v) \ Y )) 6= ∅;

that is, some element of M(v) induces the permutation r on X. Since r ∈
α(N) is arbitrary, we conclude that α(M) = α(N), and so deg(Γ/N) =
deg(Γ/M).

In view of Proposition 4.13, the conclusion of claim (1) in Lemma 4.15
implies that the factor N/M is discrete from the point of view of the Cayley–
Abels graph.

Lemma 4.16. Let G be a compactly generated t.d.l.c. group with N a closed
normal subgroup of G. If there is a Cayley–Abels graph Γ for G such that
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deg(Γ/N) = deg(Γ), then there exists a compact normal subgroup L of G
acting trivially on Γ such that L is an open subgroup of N .

Proof. In view of Proposition 4.13, N acts freely modulo kernel on Γ. For U
the pointwise stabilizer of the star E(v) for some vertex v, the subgroup U
is a compact open subgroup of G, and its core K is the kernel of the action
of G on Γ. Since N acts freely modulo kernel, we deduce that N ∩ U ≤ K.
The group L := K ∩N now satisfies the lemma.

Combining Lemmas 4.15 and 4.16, we obtain a result that applies to com-
pactly generated t.d.l.c. groups without dependence on a choice of Cayley–
Abels graph.

Theorem 4.17. Let G be a compactly generated t.d.l.c. group.

(1) If F is a filtering family of closed normal subgroups of G, then there exists
N ∈ F and a closed normal subgroup K of G such that

⋂
F ≤ K ≤ N ,

K/
⋂
F is compact, and N/K is discrete.

(2) If D is a directed family of closed normal subgroups of G, then there exists
N ∈ D and a closed normal subgroup K of G such that N ≤ K ≤ 〈D〉,
K/N is compact, and 〈D〉/K is discrete.

Proof. Fix Γ a Cayley–Abels graph for G.

For (1), suppose that F is a filtering family of closed normal subgroups
of G and put M :=

⋂
F . Via Lemma 4.15, there is N ∈ F such that

deg(Γ/N) = deg(Γ/M). The graph Γ/M is a Cayley–Abels graph for G/M
by Proposition 4.14. Furthermore, deg((Γ/M)/(N/M)) = deg(Γ/N) =
deg(Γ/M); see Exercise 4.5. We may now apply Lemma 4.16 to N/M E
G/M . There is thus a closed K E G such that M ≤ K ≤ N , K/M is
compact, and N/K is discrete.

For (2), suppose that D is a directed family of closed normal subgroups of
G and put L := 〈D〉. Via Lemma 4.15, there is N ∈ D such that deg(Γ/L) =
deg(Γ/N). The argument now follows as in Claim (1). The quotient graph
Γ/N is a Cayley-Abels graph for the quotient group G/N . Furthermore,
deg((Γ/N)/(L/N)) = deg(Γ/L) = deg(Γ/N). Applying Lemma 4.16, we
obtain a closed K E G such that N ≤ K ≤ L, K/N is compact, and L/K is
discrete.
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4.3 Existence of essentially chief series

Definition 4.18. An essentially chief series for a topological group G is
a finite series

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

of closed normal subgroups such that each normal factor Gi+1/Gi is either
compact, discrete, or a chief factor of G.

We will see that any compactly generated t.d.l.c. group admits an es-
sentially chief series. In fact, any series of closed normal subgroups can be
refined to be an essentially chief series.

Lemma 4.19. Let G be a compactly generated t.d.l.c. group, H and L be
closed normal subgroups of G with H ≤ L, and Γ be a Cayley–Abels graph
for G. Then there exists a series

H =: C0 ≤ K0 ≤ D0 ≤ · · · ≤ Cn ≤ Kn ≤ Dn := L

of closed normal subgroups of G with n ≤ deg(Γ/H)− deg(Γ/L) such that

(1) for 0 ≤ l ≤ n, Kl/Cl is compact, and Dl/Kl is discrete; and

(2) for 1 ≤ l ≤ n, Cl/Dl−1 is a chief factor of G.

Proof. Set k := deg(Γ/H) and m := deg(Γ/L). By recursion on i, we build
a series of closed normal subgroups of G

H =: C0 ≤ K0 ≤ D0 ≤ · · · ≤ Ci ≤ Ki ≤ Di ≤ L

such that claims (1) and (2) hold for 0 ≤ l ≤ i and 1 ≤ l ≤ i, respectively,
and that there is i ≤ j ≤ k − m for which Di is maximal among normal
subgroups of G such that deg(Γ/Di) = k − j and Di ≤ L.

For i = 0, let L be the collection of closed normal subgroups R of G such
that H ≤ R ≤ L and deg(Γ/D0) = k. Via Lemma 4.15, chains in L admit
upper bounds, so Zorn’s lemma supplies D0 a maximal element of L. The
graph Γ/H is a Cayley–Abels graph for G/H with degree k, and

deg((Γ/H)/(D0/H)) = deg(Γ/D0) = k.

Applying Lemma 4.16, we obtain a closed K0 E G such that H ≤ K0 ≤ D0

with K0/H compact, open, and normal in D0/H. The groups C0 = H, K0,
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and D0 satisfy the requirements of our recursive construction when i = 0
with j = 0.

Suppose we have built our sequence up to i. By construction, there is
i ≤ j ≤ k−m such that Di is maximal with deg(Γ/Di) = k− j and Di ≤ L.
If j = k − m, then the maximality of Di implies Di = L, and we stop.
Else, let j′ > j be least such that there is M E G with deg(Γ/M) = k − j′
and Di ≤ M ≤ L. Zorn’s lemma in conjunction with Lemma 4.15 supply
Ci+1 E G minimal such that deg(Γ/Ci+1) = k − j′ and Di < Ci+1 ≤ L.

Consider a closed N E G with Di ≤ N < Ci+1. We have that

deg(Γ/N) = deg((Γ/Di)/(N/Di)),

so deg(Γ/N) ≤ deg(Γ/Di) = k − j, by Lemma 4.10. On the other hand,

deg(Γ/Ci+1) = deg((Γ/N)/(Ci+1/N)),

so k − j′ = deg(Γ/Ci+1) ≤ deg(Γ/N), by Lemma 4.10. Hence, k − j′ ≤
deg(Γ/N) ≤ k − j.

The minimality of Ci+1 implies that k − j′ < deg(Γ/N). On the other
hand, j′ > j is least such that there is M E G with deg(Γ/M) = k − j′ and
Di ≤ M ≤ L, so deg(Γ/N) = k − j. In view of the maximality of Di, we
deduce that Di = N . The factor Ci+1/Di is thus a chief factor of G.

Applying again Lemma 4.15, there is a closed Di+1 E G maximal such
that

deg(Γ/Di+1) = k − j′

and Ci+1 ≤ Di+1 ≤ L. Lemma 4.16 supplies a closed Ki+1 E G such that
Ci+1 ≤ Ki+1 ≤ Di+1 with Ki+1/Ci+1 compact and open in Di+1/Ci+1. This
completes the recursive construction.

Our recursive construction halts at some n ≤ k − m. At this stage,
Dn = L, verifying the theorem.

Lemma 4.19 allows us to refine a normal series factor by factor to produce
an essentially chief series. We can further bounded the length of this series
in terms of a group invariant.

Definition 4.20. If G is a compactly generated locally compact group, the
degree deg(G) of G is the smallest degree of a Cayley–Abels graph for G.
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Theorem 4.21 (Reid–W.). Suppose that G is a compactly generated t.d.l.c.
group. If (Gi)

m−1
i=1 is a finite ascending sequence of closed normal subgroups

of G, then there exists an essentially chief series for G

{1} = K0 ≤ K1 ≤ · · · ≤ Kl = G,

such that {G1, . . . , Gm−1} is a subset of {K0, . . . , Kl} and l ≤ 2m+3 deg(G).
Additionally, at most deg(G) of the factors Ki+1/Ki are neither compact nor
discrete.

Proof. Let us extend the series (Gi)
m−1
i=1 by G0 := {1} and Gm := G to obtain

the series

{1} =: G0 ≤ G1 ≤ · · · ≤ Gm−1 ≤ Gm := G.

Fix Γ a Cayley-Abels graph for G such that deg(G) = deg(Γ). For each
j ∈ {0, . . . ,m− 1}, we apply Lemma 4.19 to L := Gj+1 and H := Gj. This
produces the essentially chief series {1} = K0 ≤ K1 ≤ · · · ≤ Kl = G for G.
We now argue that l has the claimed bound.

For each 0 ≤ j ≤ m, put kj := deg(Γ/Gj). In view of Lemma 4.19,
the number of new normal subgroups added strictly between Gj and Gj+1

is at most 3(kj − kj+1) + 1, and at most kj − kj+1 of the factors are neither
compact nor discrete. The total number of terms in the essentially chief
series not including Gm is thus at most∑m−1

j=0 (3(kj − kj+1) + 2) = 2m+ 3(deg(Γ)− deg(Γ/G))

≤ 2m+ 3 deg(G),

and the total number of non-compact, non-discrete factors is at most

m−1∑
j=0

(kj − kj+1) ≤ deg(G).

It now follows that l ≤ 2m+ 3 deg(G).

Corollary 4.22 (Existence of essentially chief series). Every compactly gen-
erated t.d.l.c. group admits an essentially chief series.



76 CHAPTER 4. ESSENTIALLY CHIEF SERIES

4.4 Uniqueness of essentially chief series

The uniqueness result for essential chief series takes much more work than
the existence theorem, and it is, although not obviously, one of the deepest
results so far. The uniqueness property will allow us in Chapter ?? to make
striking general statements about normal subgroups of t.d.l.c. Polish groups
and in particular uncover the structure of chief factors.

Isomorphism is too restrictive of an equivalence for chief factors in Polish
groups. The problem with isomorphism arises from a subtlety in the second
isomorphism theorem. For G a Polish group and K and L closed normal
subgroups ofG, the second isomorphism theorem states thatKL/L ' K/K∩
L as abstract groups. This statement does not hold in a topological sense in
the setting of Polish or locally compact groups. The internal product KL is
not in general closed, so KL/L fails to be a Polish or locally compact group.
We develop a weaker notion of equivalence called association. The relation
of association “fixes” the second isomorphism theorem for Polish or locally
compact groups by relating K/K ∩L to KL/L, instead of relating K/K ∩L
to KL/L.

For G a group and K/L a normal factor of G, the centralizer of K/L
in G is defined to be

CG(K/L) := {g ∈ G | ∀k ∈ K [g, k] ∈ L}

where [g, k] is the commutator gkg−1k−1. Given a subgroup H of G, we put
CH(K/L) := CG(K/L) ∩H.

Definition 4.23. For a topological group G, closed normal factors K1/L1

and K2/L2 are associated if CG(K1/L1) = CG(K2/L2).

The association relation is clearly an equivalence relation on normal fac-
tors. There is furthermore a key refinement theorem, from which we deduce
our uniqueness result. The proof of this theorem is rather technical and
requires several new notions, so we delay the proof until the next section.

Theorem 4.24. Let G be a t.d.l.c. Polish group and K/L be a non-abelian
chief factor of G. If

{1} = G0 ≤ G1 ≤ · · · ≤ Gn = G

is a series of closed normal subgroups in G, then there is exactly one i ∈
{0, . . . , n− 1} for which there exist closed normal subgroups Gi ≤ B ≤ A ≤
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Gi+1 of G such that A/B is a non-abelian chief factor associated to K/L.
Specifically, this occurs for the least i ∈ {0, . . . , n − 1} such that Gi+1 6≤
CG(K/L).

Definition 4.25. For G a Polish group and K/L a chief factor of G, we say
that K/L is negligible if K/L is either abelian or associated to a compact
or discrete chief factor.

Negligible chief factors look compact or discrete from the point of view
of association, and in our uniqueness theorem, we must ignore these factors.
We shall see later that negligible chief factors are either close to compact or
close to discrete.

In contrast to the results about existence of chief series, we need not
assume that G is compactly generated for our uniqueness theorem, but we
do need to assume the group is Polish.

Theorem 4.26 (Reid–W.). Suppose that G is an t.d.l.c. Polish group and
that G has two essentially chief series (Ai)

m
i=0 and (Bj)

n
j=0. Define

I := {i ∈ {1, . . . ,m} | Ai/Ai−1 is a non-negligible chief factor of G}; and
J := {j ∈ {1, . . . , n} | Bj/Bj−1 is a non-negligible chief factor of G}.

Then there is a bijection f : I → J where f(i) is the unique element j ∈ J
such that Ai/Ai−1 is associated to Bj/Bj−1.

Proof. Theorem 4.24 provides a function f : I → {1, . . . , n} where f(i) is the
unique element of {1, . . . , n} such that Ai/Ai−1 is associated to a non-abelian
chief factor C/D such that Bf(i) ≤ D ≤ C ≤ Bf(i)−1.

If Bf(i)/Bf(i)−1 is compact, discrete, or abelian, C/Bf(i) is compact, dis-
crete or abelian, as each of these classes of groups is stable under taking closed
subgroups. Since these classes are also stable under quotients, C/D is either
compact, discrete, or abelian. The chief factor C/D is non-abelian, so it must
be the case that Bf(i)/Bf(i)−1 is non-abelian. On the other hand, Ai/Ai−1 is
associated to C/D, hence, C/D is neither compact nor discrete, since Ai/Ai−1

is non negligible. We thus deduce that Bf(i)/Bf(i)−1 is chief, so Ai/Ai−1 is
associated to Bf(i)/Bf(i)−1. Since association is an equivalence relation, we
conclude that Bf(i)/Bf(i)−1 is non-negligible, and therefore, f(i) ∈ J .

We thus have a well-defined function f : I → J . The same argument
with the roles of the series reversed produces a function f ′ : J → I such that
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Bj/Bj−1 is associated to Af ′(j)/Af ′(j)−1. Since each factor of the first series is
associated to at most one factor of the second by Theorem 4.24, we conclude
that f ′ is the inverse of f , hence f is a bijection.

Corollary 4.27 (Uniqueness of essentially chief series). The non-negligible
chief factors appearing in an essentially chief series of a compactly generated
t.d.l.c. Polish group are unique up to permutation and association.

4.5 The refinement theorem

4.5.1 Normal compressions

Definition 4.28. Let G and H be topological groups. A continuous homo-
morphism ψ : G → H is a normal compression if it is injective with a
dense and normal image. When the choice of ψ is unimportant, we say that
H is a normal compression of G.

Normal compressions arise naturally in the study of normal subgroups of
topological groups. Say that G is a topological group with K and L closed
normal subgroups of G. The map ψ : K/K ∩L→ KL/L by k(K ∩L) 7→ kL
is a continuous homomorphism with image KL/L. Hence, ψ is a normal
compression, and it is not onto as soon as KL is not closed in G.

Lemma 4.29. Let G and H be t.d.l.c. Polish groups with ψ : G → H a
normal compression. For any h ∈ H, the map φh : G→ G defined by

φh(g) := ψ−1(hψ(g)h−1)

is a topological group automorphism of G.

Proof. We leave it to the reader to verify that φh is an automorphism of G as
an abstract group; see Exercise 4.9. To show that φh is a topological group
automorphism, it suffices to argue that φh is continuous at 1.

Fixing U ⊆ G a compact open subgroup, we see

φ−1
h (U) = {g ∈ G | ψ−1(hψ(g)h−1) ∈ U}

= ψ−1(h−1ψ(U)h).

Since ψ is continuous, ψ(U) is compact and so closed. Thus, W := ψ−1(h−1ψ(U)h)
is a closed set.
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The set W is indeed a closed subgroup of G. Furthermore, U has count-
able index in G, so W also has countable index in G. Write G =

⋃
i∈N giW .

The Baire category theorem, Fact 1.10, implies that giW is non-meagre for
some i. As multiplication by gi is a homeomorphism of G, we infer that W
is non-meagre. The subgroup W is thus somewhere dense, so W has non-
empty interior, as it is closed. We conclude that W is open and that φh is
continuous.

In view of Lemma 4.29, there is a canonical action of H on G.

Definition 4.30. Suppose that G and H are t.d.l.c. Polish groups and ψ :
G → H is a normal compression. We call the action of H on G given by
h.g := φh(g) the ψ-equivariant action ofG onH. When clear from context,
we suppress “ψ.”

The name ψ-equivariant action is motivated by the following lemma.

Lemma 4.31. Suppose that G and H are t.d.l.c. Polish groups and ψ : G→
H is a normal compression. Letting H act on G by the ψ-equivariant action
and H act on itself by conjugation, the map ψ : G → H is H-equivariant.
That is to say, ψ(h.g) = hψ(g)h−1 for all h ∈ H and g ∈ G.

Proof. Exercise 4.12

We now argue that the ψ-equivariant action is continuous. This requires
a technical lemma.

Lemma 4.32. Let G and H be t.d.l.c. Polish groups with ψ : G → H a
normal compression. For U ∈ U(G) and g ∈ G, NH(ψ(gU)) is open in H.

Proof. We first argue that NH(ψ(U)) is open. The group G is second count-
able, soG has countably many compact open subgroups. Lemma 4.29 ensures
that h.U , where the action is the ψ-equivariant action, is also a compact open
subgroup for any h ∈ H. It now follows that StabH(U) has countable index
in H.

Take h ∈ StabH(U). For u ∈ ψ(U), we see that ψ−1(hψ(u)h−1) ∈ U .
Hence, hψ(u)h−1 ∈ ψ(U), so StabH(U) ≤ NH(ψ(U)). The group NH(ψ(U))
thus has countable index in H, and via the Baire category theorem, it follows
that NH(ψ(U)) is open in H.

Put L := NH(ψ(U)). Given a coset kU and l ∈ U ,

l.(kU) = ψ−1(lψ(k)ψ(U)l−1) = ψ−1(lψ(k)l−1ψ(U)) = k′U
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for some k′ ∈ G. We thus obtain an action of L on {kU | k ∈ G}. There are
only countably many left cosets kU of U in G, so StabL(gU) has countable
index in L.

As in the second paragraph, NL(ψ(gU)) has countable index in L and
is closed. Hence, NL(ψ(gU)) is open in L, and so, NH(ψ(gU)) is open in
H.

Proposition 4.33. If G and H are t.d.l.c. Polish groups and ψ : G→ H is
a normal compression, then the ψ-equivariant action is continuous.

Proof. Let α : H ×G→ G by (h, g) 7→ h.g be the action map. The topology
on G has a basis consisting of cosets of compact open subgroups. It thus
suffices to show α−1(kU) is open for any k ∈ G and U ∈ U(G).

Fix k ∈ G and U ∈ U(G) and let (h, g) ∈ α−1(kU). Lemma 4.29 ensures
the map ψh is continuous. There is then W ∈ U(G) such that h.(gW ) =
φh(gW ) ⊆ kU . Additionally, Lemma 4.32 tells us that L := NH(ψ(gW )) is
open.

We now consider the open neighborhood hL×gW of (h, g). For (hl, gw) ∈
hL× gW ,

α(hl, gw) = hl.gw = ψ−1(hlψ(g)ψ(w)l−1h−1)
= ψ−1(hψ(g)ψ(w′)h−1)
= h.(gw′).

The element h.(gw′) in kU , so α(hl, gw) ∈ kU . We conclude that α(hL ×
gW ) ⊆ kU , and thus α is continuous.

In view of Proposition 1.27, Proposition 4.33 allows us to conclude the
semidirect product G o H is a t.d.l.c. Polish group. To emphasize the ψ-
equivariant action, we denote this semidirect product by Goψ H. If O ≤ H
is a subgroup, we can form the semi-direct product GoψO by restricting the
action of H to O.

Our next theorem gives a natural factorization of a normal compression.

Theorem 4.34. Suppose that G and H are t.d.l.c. Polish groups and ψ :
G→ H is a normal compression. For U ≤ H an open subgroup, the following
hold:

(1) π : G oψ U → H via (g, u) 7→ ψ(g)u is a continuous surjective homo-
morphism with ker(π) = {(g−1, ψ(g)) | g ∈ ψ−1(U)};
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(2) ψ = π ◦ ι where ι : G→ Goψ U is the usual inclusion; and

(3) G oψ U = ι(G) ker(π), and the subgroups ι(G) and ker(π) are closed
normal subgroups of Goψ U with trivial intersection.

Proof. (1) The image of π is ψ(G)U . As ψ(G) is dense and U is an open
subgroup, it follows that ψ(G)U = H. Hence, π is surjective. By definition,

(g, u)(g′, u′) = (g · u.g′, uu′).

In view of Lemma 4.31, we see that

π(g · u.g′, uu′) = ψ(g · (u.g′))uu′ = ψ(g)uψ(g′)u−1uu′

= ψ(g)uψ(g′)u′

= π(g, u)π(g′, u′).

Hence, π is a homomorphism. To see that π is continuous, it suffices to check
that π is continuous at 1. Take V ≤ U a compact open subgroup of H. The
preimage π−1(V ) contains ψ−1(V ) × V which is an open neighborhood of
1. Hence, π is continuous at 1. Finally, an easy calculation shows ker(π) =
{(g−1, ψ(g)) | g ∈ ψ−1(U)}. Claim (1) is thus demonstrated.

Claim (2) is immediate.

(3) By Claim (1), ι(G) = {(g, 1) | g ∈ G} intersects ker(π) trivially, and
both ι(G) and ker(π) are closed normal subgroups. The product ι(G) ker(π)
is dense, since it is a subgroup containing the set {(1, h) | h ∈ ψ(G) ∩ U} ∪
ι(G). We have thus verified (3).

The factorization established in Theorem 4.34 allows us to make state-
ments about the relationship between normal subgroups of G and H, when
there is a normal compression ψ : G→ H. These results will be essential in
establishing the key refinement theorem.

Proposition 4.35. Let G and H be t.d.l.c. Polish groups, ψ : G → H be a
normal compression, and K be a closed normal subgroup of G.

(1) The image ψ(K) is a normal subgroup of H.

(2) If ψ(K) is also dense in H, then [G,G] ≤ K, and every closed normal
subgroup of K is normal in G.
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Proof. Form the semidirect product G oψ H, let ι : G → G oψ H be the
usual inclusion, and let π : GoψH → H be the map given in Theorem 4.34.

(1) The intersection ker(π) ∩ ι(G) is trivial, so ker(π) centralizes ι(G),
since each of the groups is normal in Goψ H. In particular, ker(π) normal-
izes ι(K). The normalizer NGoψH(K) therefore contains the dense subgroup
ι(G) ker(π). As ι(K) is a closed subgroup of G oψ H, we conclude that
ι(K) E G oψ H, since normalizers of closed subgroups are closed. Theo-
rem 4.34 now ensures that π(ι(K)) = ψ(K) is normal in H.

(2) Since π is a quotient map and ψ(K) = π(ι(K)) is dense in H, it
follows that ι(K) ker(π) is dense in G oψ H. Claim (1) implies that ι(K)
is a closed normal subgroup of G oψ H. The image of ker(π) is thus dense
under the usual projection χ : G oψ H → G oψ H/ι(K). On the other
hand, Theorem 4.34 ensures ι(G) and ker(π) commute, hence ι(G)/ι(K) has
dense centralizer in G oψ H/ι(K). The group ι(G)/ι(K) is then central in
GoψH/ι(K), so in particular, ι(G)/ι(K) is abelian. We conclude that G/K

is abelian and [G,G] ≤ K.
Let M be a closed normal subgroup of K. The map ψ �K : K → M is a

normal compression map. Applying part (1) to the compression map ψ �K ,
we see that ψ(M) is normal in H, so in particular ψ(M) is normal in ψ(G).
Since ψ is injective, M is in fact normal in G.

For G a topological group and A a group acting on G by automorphisms,
say that G is A-simple if A leaves no proper non-trivial closed normal sub-
group of G invariant. For example, G is {1}-simple if and only if G is
topologically simple.

Theorem 4.36. Suppose that G and H are non-abelian t.d.l.c. Polish groups
with ψ : G → H a normal compression and suppose that G and H admit
actions by topological group automorphisms of a (possibly trivial) group A
such that ψ is A-equivariant.

(1) If G is A-simple, then so is H/Z(H), and Z(H) is the unique largest
proper closed A-invariant normal subgroup of H.

(2) If H is A-simple, then so is [G,G], and [G,G] is the unique smallest
non-trivial closed A-invariant normal subgroup of G.

Proof. (1) Let L be a proper closed normal A-invariant subgroup of H.
Clearly, ψ(G) 6≤ L, so ψ−1(L) is a proper closed normal A-invariant sub-
group of G and hence is trivial. The subgroups ψ(G) and L are then normal
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subgroups ofH with trivial intersection, so ψ(G) and L commute. Since ψ(G)
is dense in H and centralizers are closed, L ≤ Z(H). In particular, H/Z(H)
does not have any proper non-trivial closed normal A-invariant subgroup,
and (1) follows.

(2) The subgroup L := [G,G] is preserved by every topological group
automorphism of G and hence is normal and A-invariant; note L 6= {1},
since G is not abelian. The image ψ(L) is therefore a non-trivial A-invariant
subgroup of H and hence is dense. Proposition 4.35 further implies any
closed A-invariant normal subgroup of L is normal in G.

Letting K be an arbitrary non-trivial closed A-invariant normal subgroup
of G, Proposition 4.35 ensures the group ψ(K) is normal in H. Since ψ is
A-equivariant, ψ(K) is indeed an A-invariant subgroup of H, so by the hy-
potheses on H, the subgroup ψ(K) is dense in H. Applying Proposition 4.35
again, we conclude that K ≥ L = [G,G]. The subgroup L is thus the
unique smallest non-trivial closed A-invariant normal subgroup of G, and (2)
follows.

4.5.2 The proof

Lemma 4.37. For K and L closed normal subgroups of a topological group
G, the map φ : K/(K ∩L)→ KL/L via k(K ∩L) 7→ kL is a G-equivariant
normal compression map, where G acts on each group by conjugation.

Proof. Exercise 4.13

Lemma 4.38. Let K1/L1 and K2/L2 be closed normal factors of a topological
group G and let G act on each factor by conjugation. If ψ : K1/L1 → K2/L2

is a G-equivariant normal compression, then CG(K2/L2) = CG(K1/L1).

Proof. Exercise 4.14.

Proof of Theorem 4.24. We leave the uniqueness of i to the reader in Exer-
cise 4.15.

For existence, let α : G → Aut(K/L) be the homomorphism induced
by the conjugation action of G on K/L. Since K/L is centerless, the nor-
mal subgroup Inn(K/L) is isomorphic as an abstract group to K/L. Every
non-trivial subgroup of α(G) normalized by Inn(K/L) also has non-trivial
intersection with Inn(K/L), since the centralizer of Inn(K/L) in α(G) is
trivial.
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Take i minimal such that Gi+1 6≤ CG(K/L). The group α(Gi+1) is then
non-trivial and normalized by Inn(K/L), so Inn(K/L) ∩ α(Gi+1) is non-
trivial. Set

B := CGi+1
(K/L), R := α−1 (Inn(K/L)) ∩Gi+1, and A := [R,K]B.

The groups A and B are closed normal subgroups of G such that Gi ≤ B ≤
A ≤ Gi+1.

Since Inn(K/L)∩α(Gi+1) is non-trivial, there are non-trivial inner auto-
morphisms of K/L induced by the action of R, so [R,K] 6≤ L. Since K/L is
a chief factor of G, it must be the case that K = [R,K]L. If A/B is abelian,
then [A,A] ≤ CG(K/L), so [[R,K], [R,K]] centralizes K/L. As K/L is topo-
logically perfect, it follows that K/L has a dense center, so K/L is abelian,
which is absurd. The closed normal factor A/B is thus non-abelian.

Set C := CG(K/L) and M := KC. We see that K ∩C = L since K/L is
centerless and that A∩C = B from the definition of B. As K = [R,K]L, it
is also the case that AL = KB, and thus,

M = KC = KBC = ALC = AC.

We are now in position to apply Lemma 4.37 and thereby obtainG-equivariant
normal compression maps ψ1 : K/L→M/C and ψ2 : A/B →M/C.

Lemma 4.31 implies that CG(M/C) = CG(K/L) = C, so M/C is center-
less. The factor K/L is chief, and thus, it has no proper G-invariant closed
normal subgroups. Theorem 4.36 ensures that M/C also has no G-invariant
closed normal subgroups; that is to say, M/C is a chief factor of G. Applying
Theorem 4.36 to ψ2, the group D := [A,A]B is such that D/B is the unique
smallest non-trivial closed G-invariant subgroup of A/B. In particular, D/B
is a chief factor of G.

The map ψ2 restricts to a G-equivariant compression from D/B to M/C,
so CG(D/B) = CG(M/C). Since M/C is non-abelian, D/B is also non-
abelian. We conclude that CG(D/B) = CG(K/L), and hence D/B is a
non-abelian chief factor of G associated to K/L with Gi+1 ≤ B < D ≤ Gi.
The proof is now complete.

Notes

The first hints of the essentially chief series seem to appear in the work
of V.I. Trofimov [14]. Moreover, in loc. cit., Trofimov makes the crucial
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observation that quotienting a Cayley–Abels graph by a normal subgroup
can only drop the degree. Independently and rather later, Burger–Mozes
analyze the normal subgroups of certain t.d.l.c. groups acting on trees in [4]
and in particular find minimal non-trivial closed normal subgroups. In [5],
Caprace–Monod push parts of the analysis of Burger–Mozes much further.
Finally, Reid and the author complete the story in [13].

Theorem 4.24 in fact holds for all Polish groups. We restrict our attention
to the case of t.d.l.c. Polish groups to avoid appealing to facts from descriptive
set theory. The interested reader can find the general statement and proof
of Theorem 4.24 in [12].

4.6 Exercises

Exercise 4.1. Verify that the origin map and the edge reversal maps are
well-defined in a quotient graph.

Exercise 4.2. Give a complete proof of Lemma 4.9.

Exercise 4.3. Show that the actions defined in Lemma 4.9 respect the origin
and edge reversal maps.

Exercise 4.4. Let Γ be a locally finite graph and G ≤ Aut(Γ) a closed
subgroup. Fix v ∈ V Γ and set X := E(v). Show the homomorphism α :
G(v) → Sym(X) induced by the action of G(v) on X is continuous when
Sym(X) is equipped with the discrete topology.

Exercise 4.5. Let G be a group acting on a graph Γ and suppose that
M ≤ N are normal subgroups of G. Show there is a G-equivariant graph
isomorphism between (Γ/M)/(M/N) and Γ/N .

Exercise 4.6. Suppose that K/L is closed normal factor of a topological
group G. Show [K/L,K/L] = [K,K]L/L.

Exercise 4.7. Let G be a topological group and K/L be a closed normal
factor of G. Suppose that D ⊆ G is such that DL/L is a dense subset of K/L.
Show that if g ∈ G is such that [g, d] ∈ L for all d ∈ D, then g ∈ CG(K/L).

Exercise 4.8. Let G be a group with K/L a closed normal factor of G. Tak-
ing π : G→ G/L to be the usual projection, show CG(K/L) = π−1(CG/L(K/L)).
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Exercise 4.9. Let G and H be groups with ψ : G→ H an injective homo-
morphism such that ψ(G) is normal in H. Show the map φh : G→ G defined
by φh(g) := ψ−1(hψ(g)h−1) is group automorphism of G for any h ∈ H.

Exercise 4.10. Let ψ : G → H be a normal compression of topological
groups. Verify that the ψ-equivariant action is a group action of G on H.

Exercise 4.11. Let G and H be t.d.l.c. Polish groups with ψ : G → H a
normal compression. Show every closed normal subgroup of G is invariant
under the ψ-equivariant action of H on G.

Exercise 4.12. Prove Lemma 4.31.

Exercise 4.13. Prove Lemma 4.37.

Exercise 4.14. Prove Lemma 4.38.

Exercise 4.15. Verify the uniqueness claim of Theorem 4.24.

Exercise 4.16 (Trofimov; Möller). For G a t.d.l.c. group, recall from Exer-
cise 3.9 that B(G) = {g ∈ G | gG is compact}, where gG is the conjugacy
class of g in G. Show B(G) is closed for G a compactly generated t.d.l.c.
group. HINT: Use Exercise 3.9 and Theorem 4.17.
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semi-direct product, 18
shift action, 21
sigma algebra, 28
star, 64

terminal vertex, 64
topological group, 5
totally disconnected, 7
tree, 17

n-regular, 25

unimodular, 41

vertices, 14

wreath product, 21

zero dimensional, 7



Bibliography

[1] Herbert Abels, Specker-Kompaktifizierungen von lokal kompakten topol-
ogischen Gruppen, Math. Z. 135 (1973/74), 325–361. MR 0344375

[2] Paul F. Baum and William Browder, The cohomology of quotients of
classical groups, Topology 3 (1965), 305–336. MR 0189063

[3] Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s prop-
erty (T), New Mathematical Monographs, vol. 11, Cambridge University
Press, Cambridge, 2008. MR 2415834

[4] Marc Burger and Shahar Mozes, Groups acting on trees: from local to
global structure, Inst. Hautes Études Sci. Publ. Math. (2000), no. 92,
113–150 (2001). MR 1839488 (2002i:20041)

[5] Pierre-Emmanuel Caprace and Nicolas Monod, Decomposing locally
compact groups into simple pieces, Math. Proc. Cambridge Philos. Soc.
150 (2011), no. 1, 97–128. MR 2739075 (2012d:22005)

[6] Yves Cornulier and Pierre de la Harpe, Metric geometry of locally com-
pact groups, EMS Tracts in Mathematics, vol. 25, European Mathemat-
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