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What is symmetry?

Symmetry occurs when
I one part of a structure looks like another,
I or there is a repeating pattern,
I or when one part is interchangeable with another.



Symmetry can be

– visual

– auditory

– tactile

– mathematical x + y + z + xyz



Symmetry occurs

– in nature

– in art

– and/or both x =
−b±
√

b2−4ac
2a



What is the mathematics of symmetry?

Symmetry occurs when
I one part of a structure looks like another,
I or there is a repeating pattern,
I or when one part is interchangeable with another.

Transformations of the structure which leave it looking
unchanged form a group under composition.
The size of a structure is measured by assigning a number to it.
Its symmetry is gauged by finding the group of transformations
preserving its structure.
Different classes of groups account for symmetries of different
types of structures.



Continuous symmetry

Smooth structures may have symmetry groups which allow one
point to be moved continuously to another.

Figure: The group of rotations and reflections of the sphere is O(3)



Discrete symmetry
Seventeen types of wallpaper symmetry



Symmetry of relational structures

0-dimensional structures: simple graphs Γ = (V (Γ),E(Γ))

Symmetries: graph automorphisms

G = Aut(Γ) denotes the automorphism group. The permutation
topology T on G has the base

N :=

{
N(g; F ) | g ∈ G, F ⊂

finite
V (Γ)

}
with N(g; F ) := {h ∈ G | h.v = g.v , ∀v ∈ F}.

(G,T) is a topological group.



Automorphisms of locally finite graphs

Suppose that Γ is locally finite and connected . Then Gv is
open for each v ∈ V (Γ) and is compact because

Gv ≤
closed

∏
n≥0

Sym(B(v ,n)).

Hence G = Aut(Γ) is locally compact.

In fact, Gv is either finite or homeomorphic to the Cantor set.
Hence G is totally disconnected.

If Γ is also vertex-transitive , then G is compactly generated.



Automorphisms of locally finite graphs

Examples

I Let Γ = Z d , the d-dimensional integer lattice. Then Gv is
finite and G is discrete for each d ≥ 1.

I Let Γ = Tq+1, the regular tree in which each vertex has
valency q + 1. There are three types of automorphism:

I elliptic v I inversion v1 v2

I hyperbolic
v−1 v0 v1 v2

When q ≥ 2, Gv is infinite and G non-discrete.

Scale



Totally disconnected locally compact groups

Theorem
Every totally disconnected, locally compact topological space is
0-dimensional.

Theorem (van Dantzig, 1930s)
Let G be a t.d.l.c. group and O be a neighbourhood of the
identity. Then there is a compact, open subgroup U ⊆ O.

Corollary
Every compact t.d. group is profinite, i.e., is a projective limit of
finite groups.
Conversely, every profinite group is compact and t.d.



Cayley-Abels graphs

Definition
Let G be a t.d.l.c. group and let U ≤

cpt, open
G. Suppose that

G = 〈X 〉 with X compact, X−1 = X and X = UXU and put

V = G/U and E = {(gU,gxU) | g ∈ G, x ∈ X , gxU 6= gU} .

Then Γ(G; X ,U) := Γ(V ,E) is a Cayley-Abels graph for G.

Theorem
The Cayley-Abels graph Γ(G; X ,U) is locally finite and G y Γ
by graph automorphisms. The homomorphism G→ Aut(Γ) has
closed image and compact kernel.



Four themes of research

Interrelated themes and approaches to the research.

Abstract structure T.d.l.c. groups compared through
homomorphisms and decompositions. Special
subgroups.

Geometry Actions of t.d.l.c. groups on graphs and
more general structures elucidate the global
structure of the groups.

Local structure Locally profinite properties may distinguish
different t.d.l.c. groups. Commensurated
subgroups.

Computation Methods for computation and linear
representations of t.d.l.c. groups.



Constructing groups
The following constructions illustrate and motivate definitions
and results to follow.

Examples

I Let F be a finite group. For each N ∈ Z, put

GN =
{

g ∈ FZ | gn = 1 if n < N
}
.

Then GN is profinite and GN ≤
open

GM if M ≤ N.

Define G =
⋃

N∈Z GN .
Then G is a t.d.l.c. group and GN /G for each N.

I Define the shift, α ∈ Aut(G), by α(g)n = gn+1.
Then G oα Z is a t.d.l.c. group which has no compact open
normal subgroups.

Scale



Construction of t.d.l.c. groups from basic cases

Definition (P. Wesolek)
The class of elementary groups is the smallest class E of
t.d.l.c.s.c. groups closed under the operations illustrated in the
Example: contains all profinite and discrete groups, increasing
unions; extensions; (plus) subgroups and quotients.

Wesolek defines a decomposition rank of G: a countable
ordinal that measures the number of steps needed to build G
from the basic ingredients of profinite and discrete groups.

Examples
Compactly generated (virtually) topologically simple
t.d.l.c. groups, such as Aut(Tq+1) and PSLn(Qp), are not
elementary.



Deconstruction into normal subgroups and quotients

If a group G has a normal subgroup N, then G factors into N
and the quotient group G/N. In classes of groups such as finite
groups and Lie groups, N and G/N are smaller and repeated
factoring terminates after a finite number of steps. Groups
which cannot be factored are called simple.

That is not the case for t.d.l.c. groups. However . . .

Theorem
Let G be a compactly generated t.d.l.c. group.
(P.-E. Caprace, N. Monod) Either: G has an infinite discrete

quotient; or G has a co-compact normal subgroup
having a finite number of non-compact simple
quotients.

(C. Reid, P. Wesolek) G admits an essentially chief series.



The scale and special subgroups

Definition
The scale of an endomorphism α : G→ G is the positive
integer

s(α) = min
{

[α(U) : α(U) ∩ U] | U ≤
cpt, open

G
}
.

U is minimising if the minimum is attained at U.

General t.d.l.c. groups are far from being Lie groups but:
I the scale of α can play the role of eigenvalues in the

adjoint representation of a Lie group
I minimising subgroups correspond to canonical forms in

many examples.



The structure of minimising subgroups

Theorem
Let α ∈ End(G) and U ≤ G be compact and open. Define

U+ = {u ∈ U | ∃(un)n≥0 ⊂ U with u0 = u and α(un+1) = un}
U− = {u ∈ U | αn(u) ∈ U for all n ≥ 0} .

Then U is minimising for α if and only if
TA U = U+U− and
TB U−− :=

⋃
n≥0 α

−n(U−) is closed.

Definition
A compact open subgroup satisfying TA and TB is tidy for α.



The scale and tidy subgroups

Examples

I The shift automorphism has:
s(α) = |F |, U = G0, U+ = G0 and U− = U−− = {1};
s(α−1) = 1, U = G0, U+ = {1}, U− = G0 and U−− = G.

I G = Aut(Tq+1), the inner automorphism αg has:
g elliptic s(αg) = 1, U = Gv = U+ = U−;
g inversion s(αg) = 1, U = Gv1 ∩Gv2 = U+ = U−; and
g hyperbolic s(αg) = qs, U = Gv0 ∩Gv1 , U+ =

⋂∞
n=0 Gvn

U− =
⋂1

n=−∞Gvn .
I G = PSLn(Qp), α is conjugation by diag(1,p . . . ,pn−1) has:

s(α) = p(n3−n)/6, U is the Iwahori subgroup, U+ is the
subgroup of upper triangular matrices, U− the subgroup of
lower triangular matrices.



Special subgroups

I Suppose that G is a t.d.l.c. group, that x ∈ G and that V is
tidy for x . Then V++ o 〈x〉 is a closed subgroup of G.
These subgroups are analogues of (ax + b)-groups in Lie
groups.

I The contraction subgroup for α ∈ Aut(G) is
con(α) = {x ∈ G | αn(x)→ 1 as n→∞}.
(Glöckner & W.) Structure of con(α) when closed.

I nub(α) =
⋂
{V tidy for α}. con(α) is closed if and only if

nub(α) is trivial.
I Analogues of parabolic and Levi subgroups.



Flatness

Definition
Let G be a t.d.l.c. group. The subgroup H ≤ Aut(G) is flat if
there is U ≤

cpt open
G that is tidy for every α ∈ H.

Theorem

1. Every fin. gen. nilpotent subgroup of Aut(G) is flat.
2. Suppose that H ≤ Aut(G) is fin. gen. and flat. Let U be

tidy for H. Then H/NH(U) is free abelian and

U = U0U1 . . .Us,

with either α(Uj) ≤ Uj or α(Uj) ≥ Uj for every α ∈ H.

Example
Diagonal matrices induce a flat subgroup of Aut(PSLn(Qp)).



Can we do better than the Cayley-Abels graph?

The Cayley-Abels graph Γ(G; X ,U) is not unique, it varies with
the choice of X and U. It does not record precise information
about G.

The Tits building is a geometry that, for special cases such as
simple linear groups, records precise information about G.
For example, it is a simplicial complex and its simplices
correspond to the maximal open profinite subgroups of G.

Finding a canonical geometric representation for a general
simple group appears to be beyond reach but it might be
possible to do better if the group has rank greater than 1.

In the case of rank 1 linear groups, the Tits building is an infinite
tree. Tits also studied automorphism groups of trees and these
are sources of many rank 1 examples.



Automorphism groups of trees

Groups acting on trees are an essential part of the structure of
general t.d.l.c. groups.

Theorem (Tree Representation, Baumgartner & W.)
Let α ∈ Aut(G) and suppose that s(α) > 1.
Then V++ o 〈α〉 has a proper action on the tree Ts(α)+1 and this
action fixes an end of the tree.

The groups V++ o 〈α〉 acting on regular trees correspond to
self-similar groups acting on rooted trees, which are studied in
geometric group theory.
Current work aims to understand these groups.



Local structure

The theorem of van Dantzig ensures that every t.d.l.c. group
has a compact open subgroup.
Suppose that U,V are compact open subgroups of G. Then

[U : U ∩ V ] and [V : U ∩ V ] <∞,

that is, U and V are commensurable.
By local structure of G is meant properties of the
commensurability class of compact open subgroups of G.

Definition
A compact subgroup K ≤ G is locally normal if NG(K ) is open.
LN (G) denotes the set of commensurability classes of locally
normal subgroups of G.



The structure lattice

When G is a p-adic Lie group, locally normal subgroups of G
correspond to ideals in the Lie algebra of G.
In general, LN (G) is a modular lattice and is called the
structure lattice.

LN (G) may be used to distinguish different types of local
structure for topologically simple compactly generated
t.d.l.c. groups (P.-E. Caprace, C. Reid and W.).
There are possibly five different types but it is not known
whether all five types are populated.



The structure lattice

Two of the types of local structure of simple t.d.l.c. groups are:
locally decomposable, for example Aut(Tq+1); and
locally h.j.i., (i.e. LN (G) = {0,1}), for example PSL(n,Qp).

Theorem (P.-E. Caprace, C. Reid & W.)
Let G be a topologically simple t.d.l.c. group. Then
I G has finite local prime content, and all locally normal

subgroups have the same local prime content; and
I if G is locally decomposable, then it is not amenable.



Stretch target: Computing in t.d.l.c. groups

T.d.l.c. groups are topological groups and so computations are
only carried out up to approximation. One approach to a
‘classification’ might be to describe classes of groups to which
the same approximation methods apply.

I Computations in matrix groups can be done using abstract
algebra followed by approximating the matrix entries
e.g. p-adic numbers. (Numerical linear algebra.)

I Graph automorphisms are approximated by describing
their action on large finite sets. When can this be done
systematically? First step: describe large finite sets for
drawing algorithms.

I Concrete goal Develop algorithms which apply in large
classes of groups for computing the scale.



Linear representations of t.d.l.c. groups

The representation theory of linear groups over p-adic fields is
a significant area of research. Less is known about unitary
representations of other t.d.l.c. groups.

I Describe the unitary representations of V++ o 〈α〉.
How much information about G does C∗(G) remember?
Describe the Hecke algebra (G,V+).

I Structures important in the representation theory of p-adic
Lie groups have been abstracted in terms related to tidy
subgroups. Describe groups having these structures.
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