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The Atiyah-Singer Index Theorem
In the 1960s, Sir Michael Atiyah and Isadore Singer proved
what was to become one of the most important and widely
applied theorems in 20th century mathematics and continues to
have significant impact to this day, namely the

Atiyah-Singer Index Theorem.

The laws of nature are often expressed in terms of (partial)
differential equations, which if elliptic, have an

index = (# of solutions) — (# of constraints imposed).
The Atiyah-Singer Index Theorem gives a striking calculation of
this index in terms of geometry and topology.



Abel Prize awarded by the Norwegian king (2004)

Atiyah-Singer were awarded the prestigious Abel Prize in 2004.



50th birthday of the Atiyah-Singer Index Theorem,
. 1963 ) 2013

Michael F. Atiyah, Isadore M. Singer,

The index of elliptic operators on compact manifolds.

Bulletin of the American Mathematical Society 69 (1963) 422–433.



Dirac operators

Paul Dirac was one of the founders of quantum mechanics,
and was awarded the Nobel Prize in Physics in 1933.

p
�1~�µ@µ = mc 

Dirac defined an operator 6@ on Rn that solved the square root

problem for the Laplacian on Rn, that is, 6@2 = �.
The construction was novel as it used Clifford algebras and

spinors in an essential way.



Dirac operators
More precisely, if {�j}n

j=1 denote Clifford multiplication by an
orthonormal basis of Rn, then the Clifford algebra relations are
�j�k + �k�j = 2�ij . When n = 2, these are Pauli matrices;
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It turns out that this operator plays a fundamental role in
quantum mechanics, and is known as the Dirac operator.
By construction,

6@2 = �.Id.



The Index Theorem for Dirac operators
Atiyah & Singer extended the definition of the Dirac operator,
6@+ to any compact spin manifold Z of even dimension.
On such a manifold, there are half spinor bundles S±.
Locally, the Dirac operator is constructed similar to the case on
Euclidean space,

6@ =
nX

j=1

�jrej
.

where r is the induced Levi-Civita connection on S±. Then

6@+ : C
1(Z ,S+) ! C

1(Z ,S�)

This operator has the property that

6@2 = �+
R

4

where � is the spinor Laplacian and R is the scalar curvature.



The Index Theorem for Dirac operators

This operator is elliptic, and Atiyah-Singer gave a striking
computation of the analytic index,

Indexa( 6@+) = dim(nullspace6@+)� dim(nullspace6@�)

=

Z

Z

bA(Z ) 2 Z

where RHS is the A-hat genus of the manifold Z . In terms of
the Riemannian curvature ⌦Z of Z ,

bA(Z ) =

vuutdet

 
1

4⇡⌦Z

sinh( 1
4⇡⌦Z )

!



Examples of the Atiyah-Singer Index Theorem

Consider the simplest case of the circle S1. Let

L
2(S1) =

(
X

n2Z
ane

2⇡in✓
���
X

n2Z
|an|2 < 1

)

denote the Hilbert space of square integrable functions on S1.

Consider the closed subspace of L2(S1)

H(S1) =

8
<

:
X

n�0

ane
2⇡in✓

���
X

n�0

|an|2 < 1

9
=

;

and let
P : L

2(S1) ! H(S1)

denote the orthogonal projection.



Examples of the Atiyah-Singer Index Theorem

Let f : S1 ! C be a continuous function and denote by Mf the
operator on L2(S1) given by multiplication by f .

Mf is a bounded operator, bounded by ||f ||1 = supremum|f (✓)|.

Consider the operator Tf : H(S1) ! H(S1) given by the
composition

Tf = P � Mf

Tf is a bounded operator, bounded by ||f ||1.

It turns out that Tf has an index (i.e. is Fredholm) whenever f is
nowhere zero, i.e.

f : S
1 ! C \ {0}



Examples of the Atiyah-Singer Index Theorem

On the other hand, given a continuous map f : S1 ! C \ {0}, it
has a winding number or degree, w(f ) which intuitively is the
number of times the map winds around the circle.

It is defined purely topologically as follows. The homomorphism
induced on fundamental groups

f⇤ : Z ⇠= ⇡1(S
1) ! ⇡1(C \ {0}) ⇠= Z

can be identified uniquely by an integer, defined to be w(f ).

Then the index theorem for the circle is

Toeplitz Index Theorem

index(Tf ) = �w(f )



Examples of the Atiyah-Singer Index Theorem
Now consider the case of a compact Riemann surface ⌃.
The de Rham operator d : ⌦j(⌃) ! ⌦j+1(⌃) for j = 0, 1 and its
adjoint d⇤ : ⌦j+1(⌃) ! ⌦j(⌃)

Then
d + d

⇤ : ⌦0(⌃)� ⌦2(⌃) ! ⌦1(⌃)

has an index, and the index theorem is

Gauss Bonnet theorem

index(d + d
⇤) = 2 � 2g = �(⌃) =

1
2⇡

Z

⌃
R dvol

where g is the genus and �(⌃) is the Euler characteristic of ⌃.

A rather simple consequence is the classification (or listing) of
all 2-dimensional oriented surfaces, up to continuous
deformation



Curvature of space

Curvature can be illustrated in the following slides.

Amongst these, positive curvature is probably most important,
being intimately related to mass in General Relativity.



Positive Curvature



Negative Curvature



Saddle Curvature



Application of Atiyah-Singer index theorem
First application (of curvature)

The first application of the index theorem is a purely
mathematical result that is a direct consequence of it, but may
be somewhat surprising if seen for the first time.
Suppose we start off with the flat plane,



Rigidity of scalar curvature

and ask ourselves if it is possible to perturb the metric inside a
disk in the plane such that the curvature is positive?



Rigidity of scalar curvature

The striking answer to this question is no! Any perturbation of
the metric inside a disc has to be flat everywhere!
This property is called the rigidity of scalar curvature.



Rigidity of scalar curvature

The proof is a consequence of the Gauss Bonnet Theorem.
Namely, graft this disk onto a large enough torus and get a
contradiction using the Gauss Bonnet Theorem in genus 1.

0 = �(S1 ⇥ S
1) =

1
2⇡

Z

S1⇥S1
R dvol > 0

The rigidity of scalar curvature continues to be true for higher
dimensional Euclidean spaces. However, one now has to use
more sophisticated index theorems to conclude. This result is
due to Gromov-Lawson (1981) via the families index theorem
method, and to Schoen-Yau (1979) for dimensions  7 via
minimal surfaces.



Exotic spheres

You can get any n-sphere by taking two n-dimensional balls
and gluing them together along their boundary using some
orientation-preserving diffeomorphism

f : S
n�1 ! S

n�1.

Orientation-preserving diffeomorphisms like this form a group
called Diff+(Sn�1). Using the above trick, it turns out that the
group of smooth structures on the n-sphere is isomorphic to the
group of connected components of Diff+(Sn�1),

⇡0(Diff+(S
n�1)).



Exotic spheres



Exotic spheres

Smooth Poinjcaré Conjecture:

Every topological sphere is diffeomorphic to the standard
sphere Sn.

The exotic spheres are counterexamples to this conjecture.

The first known and lowest dimensional exotic spheres are in
dimension 7. In the late 1950s, Milnor defined an invariant,
which now can be rephrased in terms of Atiyah-Singer index
theory invariants, and showed that there were 28 seven
dimensional spheres that were not diffeomorphic to each other.



Exotic spheres

dimension n smooth structures on the n-sphere
1 1
2 1
3 1
4 ??
5 1
6 1
7 Z/28

Table 1: Exotic spheres



Work with Melrose: pseudodifferential bundles

Work with Melrose: pseudodifferential bundles



Pseudodifferential operators and their symbols

Consider a differential operator P on an open set ⌦ ⇢ Rn of
order m with C1 coefficients,

P =
X

|↵|m

a↵(x)D
↵
x , a↵ 2 C

1(⌦)

The (full) symbol of P is

�(P)(x , ⇠) =
X

|↵|m

a↵(x)⇠
↵

and the principal symbol of P is

�m(P)(x , ⇠) =
X

|↵|=m

a↵(x)⇠
↵



Pseudodifferential operators and their symbols

Using the Fourier transform composed with the inverse Fourier
transform, one has the following oscillatory integral
representation, for u 2 C1

c (⌦)

Pu(x) = (2⇡)�n

Z Z
e

i(x�y).⇠�(P)(x , ⇠)u(y)dyd⇠.

A pseudodifferential operator P is also of this form, where
now the full symbol �(P)(x , ⇠), has an asymptotic expansion:

�(P)(x , ⇠) ⇠
1X

j=0

pm�j(x , ⇠).

Here each term pm�j(x , ⇠) 2 C1(⌦⇥Rn \ {0}) is homogenous,
pm�j(x , t⇠) = tm�j pm�j(x , ⇠) for t > 0 and pm�j(x , ⇠) 2 Sm�j(⌦).



Pseudodifferential operators and their symbols

The principal symbol of P is �m(P)(x , ⇠) = pm(x , ⇠) 2 Sm(⌦)

and the order of P is m. P is said to be elliptic if the principal
symbol �m(P)(x , ⇠) 6= 0 when ⇠ 6= 0.

The symbol algebra is graded, Sm(⌦).Sk (⌦) ⇢ Sm+k (⌦), but
the algebra of pseudodifferential operators is only filtered as it
turns out that  m(⌦)/ m�1(⌦) ⇠= Sm(⌦). The associated
graded algebra,

Gr( •(⌦)) = S
•(⌦).

It turns out that all this also makes sense for compact manifolds
Z and a vector bundle V over Z also and the notation is

 •(Z ,V )), S
•(T ⇤

Z ,⇡⇤EndV )

and once again one has, Gr( •(Z ,V )) = S•(T ⇤Z ,⇡⇤EndV ).



Atiyah-Singer index theorem: motivation

Atiyah and Singer generalized their famous index theorem to
families of elliptic operators as follows. First consider the case
of a smooth map X �!  Z(Z ,V ), giving rise to a smooth
family of pseudodifferential operators on Z parametrised by X .
This is generalised as follows.
Consider a fiber bundle of compact manifolds

Z // Y

�
✏✏

X .

and let V ! Y be a vector bundle on the total space.

Let  Z =  Z(Y/X ;V ) be the filtered algebra bundle over X ,
with typical fibre  Z(Yx ;V |Yx

) ⇠=  Z(Z ;V |Z ), x 2 X .



Atiyah-Singer index theorem: motivation

 Z(Z ;V |Z ) //  Z

✏✏
X .

Since the fibre bundle Y is locally trivial, Y

���
U

⇠= U ⇥ Z for
contractible open subsets U of X , we see that
 Z
���
U

⇠= U ⇥ Z(Z ;V |Z ) for contractible open subsets U of X ,

so that  Z is a locally trivial bundle. The structure group of  Z

is the same as the structure group of Y , namely the
diffeomorphism group Diff(Z ) or more accurately Aut(V

���
Z

).



Atiyah-Singer index theorem: motivation

If D is an elliptic section of the bundle  Z ! X , then Atiyah

and Singer showed that

index(D) 2 K
0(X )

is expressed in terms of the topology of Y ,V and symbol of D.

Melrose and I consider general filtered algebra bundles

 Z ! X with typical fibre  Z(Z ;V ), the filtered algebra of
classical pseudodifferential operators on Z acting on sections
of a vector bundle V ! Z .

If D is an elliptic section of  Z ! X , then it turns out that
• index(D) 2 K 0(X ; �( Z)), the twisted K-theory of X ,
• �( Z) 2 H3(X ;Z) is the Dixmier-Douady class,
a characteristic class of the bundle  Z.



Atiyah-Singer index theorem: motivation
The structure group of a filtered algebra bundle  Z ! X with
typical fibre  Z(Z ;V ) is equal to Aut( Z(Z ;V )), which clearly
contains Aut(V ), the group of all automorphisms of the vector
bundle V . The first goal is to identify this group, Aut( Z(Z ;V )).

Filtered algebra bundles  Z ! X with typical fibre  Z(Z ;V )

and Diff(Z ) as structure group, recover fibre bundles with
typical fibre Z and the setting of the Atiyah-Singer index
theorem for families. In this case, 0 = �( Z) 2 H3(X ;Z).

However it turns out that Aut( Z(Z ;V )) is much larger than
Diff(Z ), and our perspective leads naturally to a more general
"families" index theorem, as in general, there is no finite
dimensional fibre bundle Z ! Y

�! X as in case of the
Atiyah-Singer index theorem for families, and in general

0 6= �( Z) 2 H
3(X ;Z).



Fourier Integral operators (FIOs)

Generating functions for canonical transformations:

Let S : ⌦⇥Rn ! R be a smooth function in a neighbourhood of
(x0, ⇠0) 2 ⌦⇥ Rn such that @2S(x ,⇠)

@x@⇠ 6= 0.
Then �(y , ⇠) = (x , ⌘) defines a canonical transformation,
where y = @S(x ,⇠)

@⇠ and ⌘ = @S(x ,⇠)
@x

. That is

�⇤(!) = !

Here ! =
P

dpi ^ dqi is the canonical symplectic form on T ⇤Rn.
S is called the generating function for �. The converse is also
true, that every canonical transformation � has a local
generating function S.
S is homogeneous of degree 1 in ⇠ iff � is homogeneous in ⇠.
Ex: S(x , ⇠) = x .⇠. Then ⌘ = @S(x ,⇠)

@x
= ⇠, y = @S(x ,⇠)

@⇠ = x

therefore � = I.



Fourier Integral operators (FIOs)

Let S(x , ⇠) be a generating function as before, and p(x , ⇠) a
symbol of order m. Then the associated Fourier Integral
operator F of order m is

Fu(x) = (2⇡)�n

Z Z
e

i(S(x ,⇠)�y .⇠)
p(x , ⇠)u(y)dyd⇠.

and even more generally

(2⇡)�n

Z Z
e

i(�(x ,y ,⇠)
p(x , ⇠)u(y)dyd⇠.

is a Fourier integral operator, where � is a nondegenerate
phase function, homogeneous of degree 1 in ⇠.
Ex: If S(x , ⇠) = x .⇠, then we recover pseudodifferential
operators, i.e.  •(Z ) ⇢ F•(�)



FIOs

Let � : S⇤Z �! S⇤Z be a canonical transformation between
two compact manifolds, ie a contact diffeomorphism between
their cosphere bundles.

Let Fs(�) denote the linear space of Fourier integral operators
(FIOs) associated to � of complex order s.

(Schwartz kernels known as Lagrangian distributions wrt the
conic Lagrangian manifold associated to the graph of �)

So F 2 Fs(�) is a linear operator F : C1(Z ;V ) �! C1(Z ;V )

where V is a vector bundle over Z .



FIOs & automorphisms of pseudodifferential operators

One of our main results is an extension of the main theorem by
Duistermaat-Singer [DS] characterizing the automorphisms of
pseudodifferntial operators.

Theorem (V.M.-R.B. Melrose)
For a compact manifold Z and a vector bundle V over Z , every

linear order-preserving algebra isomorphism

 Z(Z ;V ) �!  Z(Z ;V ) is of the form

 Z(Z ;V ) 3 A �! FAF
�1 2  Z(Z ;V ) (1)

where F 2 Fs(�) for some canonical isomorphism � and some

complex order s 2 C, has inverse F�1 2 F�s(��1) and is

determined up to a non-vanishing multiplicative constant by the

algebra isomorphism.



Remarks/summary

- In other words,

Aut( Z(Z ;V )) = PGL(F•(Z ;V ))

- We replace arguments of [DS] by microlocal ones, which
removes the assumption H1(S⇤Z ) = 0 made by [DS], and
which also enables us to extend it to the case with coefficients
in a vector bundle, generalising [DS].

- There are plenty of outer automorphisms of  Z(Z ;V ), since
the inner automorphisms are PGL( •(Z ;V )), which is a much
smaller subgroup of PGL(F•(Z ;V )).
Roughly speaking, the difference is the group of contact
diffeomorphisms of S⇤Z .



Construction of pseudodifferential algebra bundles

Consider a principal bundles F ! X over X with structure
group PGL(F•(Z ;V )).
Then we can form the associated algebra bundle of
pseudodifferential operators

 Z = F ⇥PGL(F•(Z ;V ))  
Z(Z ,V ).

And conversely, every algebra bundle of pseudodifferential
operators is of this form, since we have shown that
Aut( Z(Z ;V )) = PGL(F•(Z ;V )).

It remains to show that there are examples of purely infinite
dimensional pseudodifferential algebra bundles.



Construction of purely infinite dimensional
pseudodifferential algebra bundles

Theorem
Whereas there are no non-trivial fibre bundles over Sn, n � 2
with typical fibre ⌃g , g � 2, there are infinitely many

topologically distinct principal GL(F0(⌃g)) bundles over

Sn, n � 2. Similarly there are infinitely many topologically

distinct principal PGL(F0(⌃g)) bundles over Sn, n � 2.

These principal GL(F0(⌃g)) and PGL(F0(⌃g)) bundles over
Sn, n � 2 are all purely infinite dimensional, and not arising
from any fibre bundles over Sn, n � 2 with typical fibre
⌃g , g � 2.



Construction of purely infinite dimensional
pseudodifferential algebra bundles

Key computation:

⇡k (PGL(F0(⌃g))) ⇠=

8
><

>:

Z2g if k > 2 is even;

Z2g+1 � Z2�2g if k > 1 is odd

Also
Z2g ,! ⇡2(PGL(F0(⌃g)))

and
Z2g+2 � Z2�2g ⇣ ⇡1(PGL(F0(⌃g))).

So there are plenty of topologically nontrivial principal
PGL(F0(⌃g)-bundles over spheres.



Construction of purely infinite dimensional
pseudodifferential algebra bundles

In contrast, one knows by a classical result of C. Earle, J. Eells,

⇡k (Diff(⌃g)) = 0, if k > 0.

This shows in particular that there are no nontrivial fibre
bundles

⌃g
// Y

�
✏✏

Sk+1

where k > 0.



Geometry of the central extension
We now want to study the geometry of the central extension

C⇤ �! GL(F•(Z )) �! PGL(F•(Z )) = Aut( Z(Z )).

Consider the Cartan-Maurer 1-form ⇥ on GL(F•(Z )), which is
a Lie algebra valued differential 1-form on GL(F•(Z )),

⇥ 2 ⌦1(GL(F•(Z )))⌦ •(Z ),

where  •(Z ) is identified with the Lie algebra of GL(F•(Z )),
satisfying the following two properties:

1 ⇥ is GL(F•(Z ))-invariant under the left action of
GL(F•(Z )) on itself and the induced infinitesmal action on
the Lie algebra  •(Z );

2 The contraction ◆V (⇥) = V for all V 2  •(Z ).

Informally, ⇥F = F�1dF for F 2 GL(F•(Z )).



Traces used in the construction
Let Q be a positive elliptic differential operator on Z of order
one, and let

TrQ :  Z(Z ) �! C,

denote the regularized trace with respect to Q, defined as

TrQ(A) = finite part
��
z=0 Tr(Q�z

A)

= lim
z!0

✓
Tr(Q�z

A)� 1
z

TrR(A)

◆

where TrR(A) is the residue trace, defined as

TrR(A) = lim
z!0

z Tr(Q�z
A)

It is also determined by the symbol of A,

TrR(A) =

Z

S⇤Z

tr(��n(A)(x , ⇠))dxd⇠



Traces used in the construction
where n = dim(Z ). What is unusual about this definition is that
the order (�n) symbol isn’t invariantly defined, so it depends on
the local chart, but yet the integral determining the trace is well
defined.

The regularized trace TrQ extends the operator trace on the
ideal of trace class operators on L2(Z ), although TrQ is itself
not a trace.

The residue trace TrR is a trace, but vanishes on trace class
pseudodifferential operators.

The trace defect formula relates the two traces;

TrQ([A,B]) = TrR(�Q(A)B)

where �Q = [log(Q), .] is the outer derivation determined by Q.



Geometry of the central extension

We can extend TrQ to be ⌦1(GL(F•(Z )))-linear, and we denote
the extension by the same symbol, that is, we denote 1 ⌦ TrQ

by TrQ. Then

TrQ : ⌦1(GL(F•(Z )))⌦ •(Z ) �! ⌦1(GL(F•(Z ))).

We can similarly extend TrR to be ⌦⇤(GL(F•(Z )))-linear, and
we denote the extension by the same symbol, that is, we
denote 1 ⌦ TrR by TrR.



Geometry of the central extension

Theorem

Let Q 2  1(Z ) be a positive elliptic differential operator on Z ,

such that the regularized trace is normalized, TrQ(I) = 1. Then

the regularized trace of the Cartan-Maurer ⇥ on GL(F•(Z )),

AQ = TrQ(⇥),

is a connection 1-form on the previous central extension.

Let Q1 2  1(Z ) be another positive elliptic differential operator

on Z , such that TrQ1(I) = 1. Then

AQ � AQ1 = �TrR(⇥(log(Q)� log(Q1)), (2)

where TrR denotes the residue trace, log(Q)� log(Q1) 2  0(Z )

and the RHS of (2) is a basic 1-form on GL(F•(Z )).



Geometry of the central extension

Lemma

In the notation above, the curvature ⌦Q of the connection

TrQ(⇥) on the relevant central extension is is

⌦Q( 1, 2) = TrR(�Q( 1) 2), 8 1, 1 2  Z(Z ),

where TrR denotes the Guillemin-Wodzicki trace and �Q is the

derivation [log(Q), ·]. That is,

⌦Q = TrR(�Q(⇥) ^⇥).

Moreover the transgression formula is

⌦Q � ⌦Q1 = �d TrR (⇥(log(Q)� log(Q1))) .



FIO bundle

We have the lifting bundle gerbe,

C⇤

✏✏
GL(F•(Z ))

✏✏
PGL(F•(Z )) // F

⇡
✏✏

X

where

F = Aut( Z).



A connection for the projective FIO bundle

Since we have the curvature differential form ⌦Q for the central
extension we can consider the problem of lifting the
PGL(F•(Z ))-bundle F ! X to a GL(F•(Z ))-bundle bF ! X .

The obstruction to doing this is the Dixmier-Douady class, and
our goal is to calculate it.

We first need to define a fibrewise regularized trace on  Z.
To do this, choose a holomorphic family Q(z) that is a section
of the projective bundle of pseudodifferential algebra bundle
 Z. Such a holomorphic family can be explicitly constructed
using a partition of unity.



A connection for the projective FIO bundle

A Higgs field is a map � : F !  Z(Z ;V ) satisfying

�(p�) = ad(��1)�(p) + ��1@� (3)

for all � 2 PGL(F•(Z ;V )).

It is clear that Higgs fields exist, since they exist when F is
trivial and convex combinations of Higgs fields are also Higgs
fields, we can use a partition of unity to construct a Higgs field
in general.

Let �0 be another Higgs field. Then clearly

(�� �0)(p�) = ad(��1)(�� �0)(p) (4)

so that (�� �0) is a section of the adjoint bundle.



A connection for the projective FIO bundle

A curving or B-field is given by

B = BQ,� =
i

2⇡
TrR(

1
2A ^ �QA � F ^ �). (5)

It follows immediately that

BQ,� � BQ0,� =
i

2⇡
TrR(

1
2A ^ [P,A]� F ^ �).



A connection for the projective FIO bundle

Theorem
Let F ! X be a principal PGL(F•(Z ))-bundle. Let A be a

connection on F with curvature F and let � be a Higgs field for

F, and rQ� = d�+ [A,�]� �QA. Then a B-field is given by

equation (4) and the Dixmier-Douady class of F is represented

in de Rham cohomology by the closed 3-form on X,

HQ = � i

2⇡
TrR(F ^rQ�).

The transgression formula for HQ as Q varies is given by,

HQ � HQ1 = � i

2⇡
d TrR(A ^ [P,A]), (6)

where P = log(Q)� log(Q1) is an order zero, pseudodifferential

section of the pseudodifferential algebra bundle  Z over X.


