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The structure theory of locally compact groups starts with a
decomposition:

]Connected case\ & ]Totally disconnected case\

e Connected locally compact groups are pro-Lie (Gleason-Yamabe)

¢ Totally disconnected locally compact (tdic) - lots to learn
A tdlc group G is compactly generated if there is a compact subset A of
G such that G = (A).
G compactly generated tdlic = T locally finite connected graph T s.t.

e G acts as a vertex-transitive group of automorphisms on T’
o All vertex stabilisers are compact and open
I' is called a Cayley-Abels graph for G.

Can do geometric group theory: two Cayley-Abels graphs for G are
quasi-isometric; ends of groups
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Let G be a tdlc group. By van Dantzig’s Theorem, GG has a compact open
subgroup U.

e (G acts on cosets G/U by multiplication

e Let G//U be the permutation group (i.e. subgroup of Sym(G/U))
induced by this action. Called the Schlichting completion

e Under the topology of pointwise convergence (i.e. permutation
topology), G//U is a tdlc group

e As a permutation group, G//U is closed, transitive and
subdegree-finite (i.e. all orbits of point stabilisers are finite)

So the Schlichting completion allows us to see:

Under their “natural” topology < Under their “natural” permutation
closed, transitive, representations tdlc groups are
subdegree-finite permutation closed, transitive and

groups are tldc subdegree-finite.
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s Background: box product
Suppose A is a 2-connected, vertex transitive graph and m € N.

The graph I'(m, A) is the connectivity-one graph whose lobes are A and
all vertices lie in m lobes.

For example . ..

For H < Aut(A) and F' < S,,, both transitive, the box product H X F'is
the subgroup of Aut(I'(m, A)) satisfying:

(i) The setwise stabiliser in H X F' of any lobe A’ in I'(m, A) induces H
on A’

(i) The stabiliser in H X F of any vertex v in I'(m, A) permutes the m
lobes containing v. The induced permutation group is F'

For example . ..

Note: Any subgroup G < Aut(I'(m, A)) has a faithful action on the
(|A|, m)-biregular tree . ..
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See Praeger & Schneider’s book: Permutation groups and cartesian
decompositions (2018). Used to detect product actions. E.g.
(g1,--+,9m;0) € Sym(Y)WrS,, sends (y1,...,ym) € Y t0
o(g1y1, - - - gm¥ym) = (GUyrs - GnYm)

A nontrivial homogeneous cartesian decomposition, £ of a set X, is a
finite set of partitions {3, ..., %,,} of X such that:

e m > 1, each partition has at least two parts, all partitions have the
same cardinality

o [y1N---Ny, =1foreach vy, € ¥q,...,9m € Zp.
& is preserved by G (for G < Sym(X)) if the partitions in £ are permuted
by G.

o Sym(Y)WrS,,, for |Y|,m > 1, preserves some £ on Y™

e Conversely, if G < Sym(X) preserves some € = {¥;,..., 3, } on X,
then G is a subgroup of Sym(3;)WrS,,.
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- Background: A cartesian decomposition example
(taken from the book)
Let C be the cube {(a,b,c) : a,b,c € {1,0}}.
Partition C' according to the z-coordinate:
¥ := {{elements whose z coordinate is 0},
{elements whose = coordinate is 1}}
Now do the same for the y-coordinate (X3) and z-coordinate (X3)

The “points” in C' can be recovered by taking intersections of parts:

NNy =1 forall ; € &;

£ is a nontrivial homogeneous cartesian decomposition of C'
Aut(C) = (C9WrS3 = (CQ x Cy X 02) X S3

First Cy swaps z-coordinates, second swaps y-coords, third
z-coords

The S5 interchanges the 3 components. Hence Aut(C) preserves &.
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Theorem. (S.) Let G be non-compact tdic and U a compact open
subgroup. Suppose further that U is maximal in G and G//U is
nondiscrete. If G//U:

e preserves no nontrivial homogeneous cartesian decomp. on G/U

e doesn’t split nontrivially as an amalgamated free product over a
compact open subgroup

then the monolith of G//U is a one-ended group in ..
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Then:

e G//U is just-non-compact
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e G//U is compactly generated — it has a Cayley-Abels graph I"
(G=(U,g)forany g ¢ U)
e G//U is primitive
(i.e. transitive with pt stabilisers maximal)

The closed, subdegree-finite, primitive permutation groups have been
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Suppose G is a noncompact tdlc group with a compact open subgroup U
and U is maximal in G. We classify G using G//U

Then:

e G//U is just-non-compact
(For (1) # N <. @G, since U is maximal, G = NU)

e G//U is compactly generated — it has a Cayley-Abels graph I"
(G=(U,g)forany g ¢ U)
e G//U is primitive
(i.e. transitive with pt stabilisers maximal)

The closed, subdegree-finite, primitive permutation groups have been
classified. All (discrete & nondiscete) are monolithic

We can follow the proof to obtain a structure theorem for G . ..
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Let L be the monolith of G := G//U. Let U be image of U in G//U.
Then 3 topologically simple, nonabelian infinite K < L st

e K closed and normalin L

e M=Kx---x K=K formeNisdensein L

e MJG/U

e K acts faithfully and transitively on a set Y (so wlog K < Sym(Y'))
with projection 71 (M NU) = Stabk(y) for some y € Y

e U acts on components of M by conjugation, inducing a transitive
subgroup F' < S,

— 3 a permutational embedding (¢, #) of G//U into Sym(Y™) st
e 0:G/U —=»Y"witho(U) = (y,...,y)
e (M G/U)= (K™ ~Y™) (K™ ~ Y™ is product action)

° qb(U) < P(Ny(K))Wr F (Wr action is product action)
(here ¢ : Ny (K) — NStabsym<Y) (y) (/) is @ known homomorphism)
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Now take H to be the closure of Kv)(Ny(K)) < Sym(K). Then, up to
permutation isomorphism:

G//U is cocompact in HWrF (Wr acting via product action)

H is noncompact tdlc with a compact open subgroup W that is
maximal so H is subject to this classification

H = H//W & has monolith K - so topologically simple monolith
The action of a setwise stabiliser in G//U ~ Y™ of any fibre (e.g.
Y x {y} x --- x {y}) induces a dense subgroup of H

Any point stabiliser in G//U permutes the fibres containing that
point, inducing F'

(we say G//U is fibrelobe-full on Y™)

G//U is one-ended
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Here we have less to go on

Ca(L) ANg(L) =G

L is the minimal closed normal subgroup of G //U so C(L) is trivial or
contains L.

Since L is nonabelian, must have C (L) is trivial.

Hence G//U acts faithfully on L by conjugation, and so as abstract

groups we have
L <G//U < Aut(L).

Thus G//U is almost topologically simple, with precisely one end.

e Discrete example: Tarski-OI'Shanskii Monsters

e Nondiscrete examples: Certain completions of Kac-Moody groups
(Caprace, Marquis, Rémy)
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a tdic group H that itself has a proper compact open subgroup W that is
maximal, such that H = H//W and precisely one of the following holds
for G//U:

(OAS) G//U is one-ended and has a nonabelian cocompact
monolith L that is one-ended, topologically simple and compactly
generated, with (as abstract groups) L < G//U < Aut(L).

(PA) G//U is a fibrelobe-full, primitive (and therefore cocompact)
subgroup of HWrF (acting via product action) and H = H//W is
infinite of type OAS or BP.

(BP) G//U is a fibrelobe-full, primitive (and therefore cocompact)
subgroup of H X F and H = H//W is either a finite nonregular
primitive permutation group, or H is infinite of type OAS or PA.

(This decomposition eventually halts after finitely many steps)
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So G//U Sprim (((H(]WrFl) X FQ)WI‘Fg X Fn_l)WI"Fn

H, is OAS or finite primitive & non-reg
F; are finite transitive
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e (GG//U acts faithfully on the (|A|, m)-biregular tree
e Edge stabilisers are compact open
e (G//U splits as an amalgamated free prod. over a comp. open subgp
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e doesn’t split nontrivially as an amalgamated free product over a
compact open subgroup
then the monolith of G//U is a one-ended group in ..



