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plan

– geodetic graphs (graph theory)

– plain groups (group theory)

– finite convergent length-reducing rewriting systems
(computer science)

– what do any of these things have to do with any other?
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geodetic graphs

Let ∆ be a simple (no loops or multiple edges) undirected graph.

A path of length n in ∆ is a sequence of vertices u0,u1, . . . ,un with
the property that ui and ui+1 are adjacent.

Each connected graph ∆ is equipped with a natural metric in which
the distance between two vertices is the length of the shortest path
between them.

The shortest path between any two vertices is called a geodesic.

∆ is geodetic if the geodesic between any two vertices is unique.
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example
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example
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ecs and iecs

A path in ∆ is an embedded circuit (EC) if the vertices u0, . . . ,un−1
are distinct and u0 = un.

An embedded circuit in ∆ is isometrically embedded (IEC) if the
subgraph comprising the vertices in the circuit and the edges
between consecutive vertices is convex in ∆;

that is, d(ui,uj) = min{j− i,n+ i− j} for all 0 ≤ i < j < n.

Quiz 1: if ∆ is geodetic, length of an IEC must be . . . odd.
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iecs

Cool fact (in Andrew Elvey Price’s MSc thesis)

Lemma
Let ∆ be a geodetic graph, and let u0,u1, . . . ,un and u0,u′1, . . . ,u′n
be equal length geodesics in ∆ such that u1 ̸= u′1 and d(un,u′n) = 1.
Then

u0,u1, . . . ,un,u′n, . . . ,u′1,u0

is an IEC.
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challenges: geodetic graphs

Ore (1962, “Theory of graphs”): classify them!

Build them: method to construct new ones: eg start with Kn and . . .

Shapiro (1997): What groups admit geodetic Cayley graphs?
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new kids on the block

A vertex v in ∆ is a cut vertex if ∆ is connected, but the graph
obtained from ∆ by removing v and the edges incident to v is
disconnected.

A graph is two-connected if it is connected and has no cut vertices.

The maximal two-connected subgraphs of a graph Γ are called
blocks.
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It follows immediately from the maximality of blocks that any block
B in ∆ is the subgraph of ∆ induced by the vertex set of B.
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blocks vs. ecs

Lemma (Blocks vs. ECs)
Let ∆ be a simple undirected graph. Two vertices u, v of ∆ lie in the
same block if and only if there exists an embedded circuit in ∆ that
visits both.
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block-cut tree

.

Given a connected graph ∆, the block-cut tree T = T(∆) is a
well-known construction which encodes the block structure of ∆.

– one vertex vx (of type I) for each vertex x of ∆, and one vertex vB (of
type II) for each block B of ∆;

– a type I vertex vx is adjacent in T to a type II vertex vB if x is a vertex
in the block B.

For any connected graph ∆, the block-cut tree T(∆) is a tree (every
embedded circuit has length at most two).
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plain groups

Definition
A group is plain if it isomorphic to a free product of finitely many
factors, with each factor a finite group or an infinite cyclic group.

Bass-Serre Theory tells us that a group G is plain if and only if G acts
geometrically on a locally-finite tree, with finite vertex stabilisers
and trivial edges stabilisers. 12/29



plain groups and ecs

Theorem (Plain groups and ECs)
For a group G and a positive integer s, the following are equivalent:

1. G admits a finite generating set Σ such that, in the associated
undirected Cayley graph Γ(G,Σ), the diameter of any embedded
circuit is at most s.

2. G admits a finite generating set Σ such that, in the associated
undirected Cayley graph Γ(G,Σ), the diameter of any block is at
most s.

3. G is a plain group.
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proof sketch

1. ⇔ 2.: follows immediately from the Lemma above (Blocks vs. ECs).

Any group G acts on the block-cut tree of its (undirected) Cayley
graph.

If this graph has finite diameter blocks (and its locally-finite), then G
is acting on a tree with finite vertex stabilisers and (because of the
block-cut construction) trivial edges stabilisers.

So Bass-Serre Theory tells us G is plain.
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rewriting systems

A rewriting system is a pair (Σ, T) that formalises the idea of working
with products from a set of allowable symbols, using a set of
simplifying rules.

Σ is a nonempty set, called an alphabet of letters. T is a possibly
empty subset of Σ∗ × Σ∗, called a set of rewriting rules.

The set of rewriting rules determines a relation→ (immediately
reduces to) on the set Σ∗ by the following rule: a→ b if a = uℓv,
b = urv and (ℓ, r) ∈ T.

The reflexive and transitive closure of→ is denoted ∗→ (reduces to).

A word u ∈ Σ∗ is irreducible if no factor is the left-hand side of any
rewriting rule, and hence u ∗→ v implies that u = v.
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rewriting systems

The reflexive, transitive and symmetric closure of→ is called
“equivalence”, and denoted ∗↔.

The operation of concatenation of representatives is well defined on
the set of ∗↔-equivalence classes, and hence makes a monoid
M = M(Σ, T).

We say that M is the monoid presented by (Σ, T). When the
equivalence class of every letter has an inverse, the monoid M is a
group and we say it is the group presented by (Σ, T).
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quiz continued

Quiz 2: Let Σ = {a,A} and let T = {(aA, 1), (Aa, 1)} .

Then (Σ, T) presents Z.

Quiz 3: Let G be a finite group. Let Σ = G \ {e} and let T ={
(gh, k) | g,h, k ∈ Σ and gh =G k} ∪ {(gh, 1) | g,h ∈ Σ and g =G h−1

}
.

Then (Σ, T) presents G.
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adjectives

A rewriting system (Σ, T) is

– finite if Σ and T are finite sets,
– terminating (or noetherian) if there are no infinite sequences of
allowable factor replacements,

– length-reducing if for all (ℓ, r) ∈ T we have that |ℓ| > |r|.

Two words x and y are called joinable if there exists z ∈ Σ∗ such that
x and y both reduce to z.

A rewriting system is called confluent if whenever w ∗→ x and w ∗→ y,
then x and y are joinable.
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confluent
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more adjectives

A rewriting system is called convergent if it is terminating and
confluent.

It follows that in a convergent [length-reducing] rewriting system,
rewriting any word in Σ∗ until you can rewrite no more

is an algorithm for producing the unique irreducible [geodesic] word
representing the same element.
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rewriting and geodetic graphs

Lemma (FCLRRS implies geodetic)
If G is presented by a FCLRRS (Σ, T) with Σ = Σ−1,

then its undirected Cayley graph (wrt Σ) Γ must be geodetic.

Moreover, if the left sides of rules in T have length at most s+ 1,

then IECs in Γ have length at most 2s+ 1.
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free products

Lemma (Combining rewriting system to present free products)

Suppose that (Σ1, T1), . . . , (Σn, Tn) are rewriting systems presenting
groups G1, . . . ,Gn respectively and such that the alphabets
Σ1, . . . ,Σn are pairwise disjoint.

The combined rewriting system
(
∪ni=1Σi,∪ni=1Ti

)
presents the free

product G1 ∗ · · · ∗ Gn.

Corollary

If G is a plain group, then G admits presentation by a finite
convergent length-reducing rewriting system (Σ, T) where Σ = Σ−1

and the left-hand side of every rule has length equal to two.
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challenge problems

(Madlener and Otto) Prove a complete algebraic characterisation of
groups presented by length-reducing systems.

Conjecture (Gilman (1984))
Let G be a group. Then G admits presentation by a finite convergent
length-reducing rewriting system (Σ, T) in which the right-hand
side of every rule has length at most one if and only if G is plain.

Conjecture (Madlener and Otto (1987))
Let G be a group. Then G admits presentation by a finite convergent
length-reducing rewriting system (Σ, T) if and only if G is plain.
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results

Eisenberg and Piggott (2019): proved Gilman’s Conjecture

and then

Theorem 1 (E, Piggott (2020))
Let G be a group. Then G admits presentation by a finite convergent
length-reducing rewriting system (Σ, T) such that Σ = Σ−1 and the
left-hand side of every rule has length at most three if and only if G
is plain.
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the proof

Our proof is via geodetic graph theory.

The backwards direction is done: if G is plain, you can explicitly
construct a rewriting system (choosing Σ to be every non-trivial
element of every finite factor, plus one generator and its inverse for
each Z factor. Corollary above).
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the proof

The forwards direction: Lemma (FCLRRS implies geodetic) gives us
the undirected Cayley graph is geodetic and IECs length at most 5.

If we could connect this up to say something about the diameter of
embedded circuits (not nec IEC), then we have Theorem (Plain
groups and ECs — the block-cut tree stuff) which gives plain.
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iecs and ecs

Theorem 2 (E, Piggott)
If Γ is a locally-finite geodetic undirected simple graph in which
isometrically embedded circuits have length at most 5, then all
embedded circuits have diameter at most 2.

Proof strategy: assume you have a minimial length counterexample.
Argue a lot. Then get a contradiction.

27/29



proof strategy: theorem 2

– if ρ is a minimal length counterexample (an EC of diameter at
least 3) then ρ contains a geodesic subpath of length 3.

– if ρ is a minimal counterexample in a geodetic graph with IECs
length at most 5, then ρ must look like this:

1

u1

u2

u3

u4v1

v2

v3

1

u1

u2

u3
u4

v1
v2

v3

28/29



final words

While Theorem 1 (rewriting left sides length ≤ 3 iff plain) falls well
short of resolving Madlener and Otto’s conjecture,

and Theorem 2 (IECs length ≤ 5 implies ECs diameter ≤ 2) is an
incremental contribution to our understanding of geodetic graphs,

we think our proof shows how far you can get (or maybe one can
push it further) using a primarily graph-theoretic approach.
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thanks
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