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Colouring Platonic Solids: An Exercise In Madness

PROBLEM OUTLINE

It is a truth universally acknowledged that mathematicians succumb to madness
when left alone for extended periods of time. This poster is the result. Our poor
mathematician (me) decided to find how many ways they could uniquely colour
the platonic solids, using k colours.
The main issue in this was discovering how to factor in the various rotations,
symmetries, and movements of these objects and how this affected the unique-
ness of a colouring. Fortunately, there is an area of mathematics specifically
dedicated to study of symmetries and groups of symmetries, fittingly called...

GROUP THEORY

Defined broadly as the study of symmetry. Symmetries are the transformations
that can be composed on a group. A group is a pair (G, ◦) where G is a set and
◦ an operator maps from G×G→ G, which satisfies the following axioms.

i. (Associative) For all g1, g2, g3 ∈ G, g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3
ii. (Neutral Element) There exists e ∈ G such that for all g ∈ G, e ◦ g = e = g ◦ e
iii. (Inverse Elements) For all g ∈ G, there exists g′ : g ◦ g′ = e

A simple example of a group can be seen in the symmetries of an equilateral
triangle. It has three rotational symmetries by 0, 120 and 240 degrees which we
will label r0, r1 and r2, and three reflectional symmetries about the vertices which
we will call s0, s1 and s2. These can be ’added’ or composed together and form
results inside the group. It should be noted that composition of these elements
is not always commutative, g1 ◦ g2 6= g2 ◦ g1.
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◦ r0 r1 r2 s0 s1 s2
r0 r0 r1 r2 s0 s1 s2
r1 r1 r2 r0 s2 s0 s1
r2 r2 r0 r2 s1 s2 s0
s0 s0 s1 s2 r0 r1 r2
s1 s1 s2 s0 r2 r0 r1
s2 s2 s0 s1 r1 r2 r0

∗∗ Note for the addition table: Compose the element in the top row first, then
apply the column symmetry.

BURNSIDE’S THEOREM

Now that we have established the basics of group theory, we can look at how
colouring affects the platonic solids.
In essence we are applying Burnside’s theorem to the group of symmetries of
each platonic solid. The theorem states that:

|G\K| = 1

|G|
∑
g∈G

|Kg|.

While looking complicated, in essence, this formula finds the number of ways
you can uniquely colour an object by looking at how each g, or rotation, of a
solid, would interact with k ∈ K, the group of colours, essentially looking at what
combination of colours does the shape have to be in order to look identical under
the group’s symmetries. We then add up all of these and divide by the number
of symmetries to compensate for over-counting.

The Tetrahedron
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The Tetrahedron has 4 faces, each of which can be
oriented 3 ways, giving a total of 12 symmetries. This
means we have to examine how each of these rota-
tions would affect the colouring of the sides.

• The Neutral Element: Does nothing, meaning each face is fixed to itself.
This means each face can be represented k ways, giving k4 options
• The 11 remaining elements: All fix one face and rotate about that face. One

face is fixed giving k options, the remaining 3 faces are all placed in a cy-
cle, where they all must be the same colour, contributing k again, multiplying
these together we obtain 11k2

The full equation for number of ways to colour a tetrahedron is the sum of these
elements divided by the number of symmetries:

k4 + 11k2
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A way of checking this formula is correct is to see how these rotations transform
the vertices of the tetrahedron. These rotations can be denoted as follows:

(A)(B)(C)(D), (AD)(BC), (AB)(CD), (AC)(BD),
(A)(BCD), (A)(BCD), (B)(ACD), (B)(ADC),
(C)(ABD), (C)(ADB), (D)(ABC), (D)(ACB).

The Rotation (A)(BCD), means that A is fixed, while B-C-D cycles, so B goes to
C, C goes to D and D goes to B. Due to the tetrahedron being self dual, each
vertex is directly related to its opposite face.

The Cube
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The Cube having 6 faces and 4 ways of rotating each
face, has 24 symmetries. Now, how do these 24 rota-
tions affect the colouring of the cube?

• The neutral element fixes all faces, giving k6 options
for colouration.
• 6 rotations by ±π/4 around the centers of the three

opposite faces. Fixes the opposite faces as them-
selves (k2), the remaining 4 faces are fixed as one
colour (k), contributing 6k3 in total.

• 3 rotations by π/2 around the center of opposite faces. This fixes the oppo-
site faces being rotated about as themselves (k2), the 4 remaining faces are
fixed to their opposite face (k2), giving 3k4.
• 8 rotations by ±π/3 around the 4 pairs of opposite vertices. This fixes two

cycles of three adjacent faces giving 8k2 options.
• Rotation by π about the center of the six pairs of opposite edges. This fixes

one set of opposite faces to each other (k). The remaining 4 sides are fixed
by having two sets of two adjacent faces fixed to each other (k2), giving 6k3.

Adding these together and dividing by 24, we obtain:

k6 + 3k4 + 12k3 + 8k2

24

The Octohedron, Dodecahedron and Icosahedron

k8 + 17k4 + 6k2

24

k12 + 15k6 + 44k4

60

k20 + 15k10 + 20k8 + 24k4

60

Thus concludes our foray into group theory. If you wanted an exercise to torment
yourself with I would recommend attempting to inductively prove each expres-
sion is a whole number for all positive k, the tetrahedron is easiest, the rest are a
headache. You could also try and formulate a composition table for the rotations
of these solids (I would not recommend this), or you can construct a represen-
tation of them, i.e. a group of matrices, that acts exactly the same way under
composition (far easier than you think).

https://zerodimensional.group


