
Error Correcting Codes

Jacob Cameron, Abi Hall, and Marcus Chijoff
Zero Dimensional Symmetry Summer Project

Error Correcting Codes

Jacob Cameron, Abi Hall, and Marcus Chijoff
Zero Dimensional Symmetry Summer Project

Overview

An error correcting code is any method of encoding a message such that you are able
to both detect and fix errors that occur in transmission. They are useful in situations
where it is not practical to retransmit data if an error is detected. For example, they
were used by the Voyager spacecraft due to the amount of time it takes to send data
back to Earth from other planets.[1]

A message is made up of different ‘words’, which can be thought of as vectors in Fn
q ,

where Fq is the finite field of q elements. If they are in Fn
2 , then they are known as

binary code words. The code words can be encoded with redundant information using
a code defined by its [n, k, d] structure where n is the length of the encoded words,
k is the length of the words to be encoded, and d is the minimum distance between
any two code words. The distance between two code words is defined as the number
of components in the vectors that have different values. You are able to correct up to⌊
d−1

2

⌋
errors in each code word.

Linear codes are codes where any linear combination of code words is also a code
word. They allow you to use linear algebra in order to have more efficient encoding and
decoding. As any linear combination of code words is also a code word, the code may
be represented by the span of a set of k vectors. You can use this to create a matrix
known as a generating matrix which gives you a code word whenever it is multiplied
by a word. This matrix can be put in the form [Ik|A] which allows for the code words
to be decoded easily. The matrix representing the transformation whose kernel is the
code is known as the parity check matrix. This is used to correct errors in transmission.
If the generator matrix is in the form above, then the parity matrix is simply

[
−AT |In−k

]
.

Say that you have a linear code with parity matrix P and you were trying to send the
code word x but received z = x + e, where e is some error. Performing the matrix
multiplication gives you PzT = P (x + e)T = PxT +PeT . However, as x is in the kernel
of P we have that PxT = 0 and thus that PzT = PeT := s. Using a pre-computed
lookup table, we are able to find that s corresponds to the error e and thus we are able
to find x as x = z − e. This method is known as syndrome decoding.

Hamming Codes

Hamming codes are a family of linear codes of the form [2r − 1, 2r − r − 1, 3] for r ≥ 2.
We will be focusing in the F2 − [7, 4, 3] code which has generating matrix:

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


And parity matrix:

P =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


Its syndrome lookup table is:

Syndrome Error

(000) (0000000)
(001) (0000001)
(010) (0000010)
(100) (0000100)
(101) (0100000)
(110) (1000000)
(111) (0001000)

This code can be constructed by using the Fano Plane, shown in Figure 1.

A B C

D

E

F

G

Fig. 1: The Fano Plane

The adjacency matrix of the Fano Plane — when reduced to row echelon form — is the
generator matrix for the F2 − [7, 4, 3] code. As this code has a distance of 3 it is able
to correct up to

⌊
3
2

⌋
= 1 error in each code word. While this isn’t a lot, the code adds

relatively few bits to each message. This makes it good for situations where there isn’t
that much noise on the communication channel.

Example Encoding

Let’s say you wanted to encode m = (0110) with the [7, 4, 3] code. You multiply it by
G to get the code word.

mG = (0110110) := c

Say that when this is transmitted, you receive z = (1110110). Multiplying this by the
parity matrix gives you:

PzT = (110)

Using the syndrome lookup table, we can see that this means an error occurred in the
first bit. Thus, when we correct the error we get z − (1000000) = (0110110) = c.

As the generator matrix is in the form [I4|P ], the first 4 components of the vector
correspond to the original message. Thus, we can just take those first four components
in order to decode the message.

Huffman Encoding

The ASCII standard encodes each of its supported 128 characters using eight bits. This
is wasteful, as a message will most likely not use all 128 of the characters and some
characters appear more often than others. For example, in the message “HelloWorld”
there are three occurrences of the letter ‘l’ but only one of the letter ‘d.’ If we were to
use a smaller number of bits to represent ‘l’ then we would have a much shorter message.

Huffman Encoding is a way of encoding a message such that the most common letters
have shorter representations than the least common letters. It works by building a tree
where each letter is assigned only to a leaf and the more common letters have a smaller
distance to the root of a tree than the less common ones. Figure 2 shows a possible
Huffman tree for the message “HelloWorld”. Note that there can be more than one
Huffman tree for a message.

d o

l

H e W r

0

0 1

0 1

1

10

0 1 0 1

Fig. 2: A Possible Huffman Tree For The Message “HelloWorld”

In order to encode a message using a Huffman code, you traverse the tree from the root
to the letter you want to encode. Going left corresponds to a“0;”going right corresponds
to a “1.” For example, using the tree in Figure 2, you would encode the letter “H” as
“100.” The encoding of the message “HelloWorld” is “100101010100111000111101000.”
In ASCII, “HelloWorld” is represented as “01001000 01100101 01101100 01101100
01101111 01010111 01101111 01110010 01101100 01100100.” The Huffman code reduces
the message to 33.75% of its size.

A tree is defined as any graph where there is exactly one path between any two vertices.
As there is a unique path between any two vertices in a tree, there is one way to get from
the root of a Huffman tree to each letter. Thus, you simply move along the encoded
message until you are able to decode a letter by traversing the tree from the root
to a leaf. You keep performing this process until you have reached the end of the message.

While Huffman encoding is not an error correcting code, they help other error correcting
codes by reducing the length of the message, and thus the chance for it to be corrupted
in transmission. However, if a Huffman encoded message is corrupted during transit, it
will be much worse than a regular ASCII message. This is because changing a bit could
result in the message decoding a letter with a different distance from the root. This
will result the next block of the message having a different length, which can result in
the error propagating much further in the message.

References

[1] Richard P. Laeser, William I. McLaughlin and Donna M. Wolff. ‘Engineering Voyager 2’s Encounter
with Uranus’. In: Scientific American 255.5 (1986), pp. 36–45. issn: 00368733, 19467087. url:
http://www.jstor.org/stable/24976083.


