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A witty quote.





Abstra
t

This work is 
on
erned with the stru
ture theory of totally dis
onne
ted lo
ally


ompa
t groups. In a �rst part, we develop a generalization of Burger{Mozes uni-

versal groups a
ting on regular trees lo
ally like a given permutation group of �nite

degree. This generalization arises through pres
ribing the lo
al a
tion on vertex

neighbourhoods of a given radius and results in an equally ri
h and manageable


lass of groups a
ting on trees. As an appli
ation, we 
hara
terize Banks{Elder{

Willis k-
losures of groups that a
t lo
ally transitively on the regular tree T

d

with

an involutive inversion. Our 
onstru
tion also o�ers a new perspe
tive on the long

standing Weiss 
onje
ture in the 
ontext of whi
h we re
over several known results.

Finally, the framework of generalized universal group yields a lo
al-to-global type


hara
terization of the elements whi
h the quasi-
enter of a non-dis
rete subgroup

of Aut(T

d

) may 
ontain in terms of the group's lo
al a
tion. Most importantly,

we show that this 
hara
terization is sharp through expli
it 
onstru
tion, thus an-

swering a question of Burger for more examples of 
losed non-dis
rete subgroups of

Aut(T

d

) with non-trivial quasi-
enter.

The �rst part ends with a 
omputation of prime lo
alizations of a large 
lass of

Burger{Mozes-type groups, in
luding Burger{Mozes universal groups, Le Boude


groups with almost pres
ribed lo
al a
tion and Lederle's 
oloured Neretin groups.

The se
ond part 
ontains two works, joint with H. Gl�o
kner and T. Bywaters,

and T. Bywaters respe
tively. Both 
ontribute to Willis theory whi
h studies totally

dis
onne
ted lo
ally 
ompa
t groups from the point of view of their endomorphisms.

First, we extend results about how the s
ale and tidy subgroups behave when pass-

ing to subgroups or quotients from automorphisms to endomorphisms. Se
ondly,

we o�er a geometri
 
hara
terization of the s
ale and tidy subgroups asso
iated

to endomorphisms, as well as a new tidying pro
edure in terms of graphs. This is

based on prior work of M�oller in the 
ase of automorphisms.



v

Zusammenfassung

Diese Arbeit befasst si
h mit der Strukturtheorie total unzusammenh�angender

lokalkompakter Gruppen. Der erste Teil entwi
kelt eine Verallgemeinerung der uni-

versellen Burger{Mozes-Gruppen, die lokal wie eine gegebene Permutationsgruppe

endli
hen Grades auf regul�aren B�aumen wirken. Besagte Verallgemeinerung basiert

auf der Festlegung der lokalen Wirkung auf Knotenumgebungen eines vorgegeben

Radius, und resultiert in einer glei
herma�en rei
hhaltigen und handli
hen Klasse

von Gruppen, die auf B�aumen wirken. Eine erste Anwendung besteht in der Charak-

terisierung der Banks{Elder{Willis k-Abs
hl�usse von Gruppen, die lokal transitiv

auf dem regul�aren Baum T

d

wirken und eine involutoris
he Kanteninversion en-

thalten. Unsere Konstruktion bietet au�erdem eine neue Perspektive auf die lang

bestehende Weiss's
he Vermutung, in dessen Kontext wir einige bekannte Resul-

tate wiedergewinnen. S
hlie�li
h erlangen wir im Rahmen der verallgemeinerten

universellen Gruppen eine Charakterisierung der Elemente, die das Quasi-Zentrum

einer ni
ht-diskreten Untergruppe von Aut(T

d

) enthalten kann, in Abh�angigkeit

von der lokalen Wirkung. Es sei betont, dass si
h besagte Charakterisierung dur
h

explizite Konstruktion als strikt erweist. Damit beantworten wir eine Frage von

Burger na
h neuen Beispielen von abges
hlossenen, ni
ht-diskreten Untergruppen

von Aut(T

d

) mit ni
ht-trivialem Quasi-Zentrum.

Der erste Teil endet mit der Bere
hnung der Primlokalisierungen einer gro�en

Klasse von Gruppen des Burger{Mozes Typ. Dies umfasst die universellen Burger{

Mozes-Gruppen, Le Boude
-Gruppen mit fast �uberall vorges
hriebener lokaler Wir-

kung, und Lederle's gef�arbte Versionen von Neretin's Gruppe.

Der zweite Teil enth�alt zwei Zusammenarbeiten mit H. Gl�o
kner und T. Bywa-

ters beziehungsweise T. Bywaters. Beide leisten einen Beitrag zur Willis-Theorie,

die total unzusammenh�angende lokalkompakte Gruppen vom Standpunkt ihrer

Endomorphismen aus studiert. Zuerst erweitern wir Resultate, die das Verhalten

zentraler Konzepte beim

�

Ubergang zu Untergruppen oder Quotienten betre�en,

von Automorphismen zu Endomorphismen. Ans
hlie�end entwi
keln wir eine ge-

ometris
he Bes
hreibung derselben Konzepte. Dies basiert auf einer bestehenden

Arbeit von M�oller f�ur den Fall von Automorphismen.
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Introdu
tion and Main Results

In a broad sense, this work is 
on
erned with the stru
ture theory of lo
ally


ompa
t groups. A lo
ally 
ompa
t group G is an extension of its 
onne
ted 
om-

ponent G

0

by the totally dis
onne
ted quotient G=G

0

:

1

//

G

0

//

G

//

G=G

0

//

1:

Consequently, the study of general lo
ally 
ompa
t groups splits into 
onne
ted and

totally dis
onne
ted su
h groups via topologi
al group extensions.

Conne
ted lo
ally 
ompa
t groups are inverse limits of Lie groups by the sem-

inal solution of Hilbert's �fth problem due to Gleason [Gle52℄, Yamabe [Yam53℄,

Montgomery{Zippin [MZ52℄ and others. As su
h, the methods of Lie theory have

su

essfully 
ontributed to their understanding.

Totally dis
onne
ted lo
ally 
ompa
t (t.d.l.
.) groups are nowhere near as well

understood as their 
onne
ted 
ounterparts and exhibit a wealth of phenomena.

Nevertheless, re
ent developments su
h as [Wil94℄, [BM00a℄, [CM11℄, [Wes15℄,

[RW15℄, [Wil15℄ and [CRW17℄ hint at the potential for a general stru
ture theory.

This thesis advan
es said emerging theory in two largely independent parts.

The �rst one is 
on
erned with the stru
ture theory of groups a
ting on trees

after Burger{Mozes, see [BM00a℄ and [BM00b℄. These groups form a parti
ularly

important 
lass of t.d.l.
. groups for both theoreti
al and pra
ti
al reasons.

Part 2 
ontributes to Willis theory, initiated in [Wil94℄. This theory studies

t.d.l.
. groups from the point of view of their endomorphisms and has lead to

numerous unexpe
ted appli
ations. Whereas Chapter V 
ontains joint work with

T. Bywaters and H. Gl�o
kner, Chapter VI 
onstitutes joint work with T. Bywaters.

Burger{Mozes Theory and Universal Groups

Every (totally dis
onne
ted) lo
ally 
ompa
t group 
an be viewed as a dire
ted

union of 
ompa
tly generated open subgroups. Among 
ompa
tly generated t.d.l.
.

groups, automorphism groups of trees stand out for the following reason: Every


ompa
tly generated t.d.l.
. group G a
ts vertex-transitively on a regular graph

� of �nite degree d with 
ompa
t normal kernel K, known as the S
hreier graph

or Cayley-Abels graph, see e.g. [Mon01, Se
tion 11.3℄. In parti
ular, the universal


over of � is the d-regular tree T

d

and one obtains G=K as a quotient of a 
o
ompa
t

subgroup

e

G of Aut(T

d

) due to the short exa
t sequen
e

1

//

�

1

(�)

// e

G

//

G=K

//

1:

Let 
 be a set of 
ardinality d � 3 and let T

d

= (V;E) denote the d-regular tree,

following Serre's notation [Ser03℄. Then Aut(T

d

) is a (
ompa
tly generated) t.d.l.
.

group when equipped with the permutation topology for its a
tion on V . For a

subgroup H � Aut(T

d

) and a vertex x 2 V , we let H

x

denote the stabilizer of x in

H . It indu
es a permutation group on the set E(x) := fe 2 E j o(e) = xg of edges

issuing from x. We say that H is lo
ally \P" if for every x 2 V said permutation

group satis�es property \P", e.g. being transitive, quasiprimitive or 2-transitive.

Refer to Se
tion I.1 for details about permutation groups.

ix



x INTRODUCTION AND MAIN RESULTS

In [BM00a℄, Burger{Mozes develop a remarkable stru
ture theory of 
losed,

non-dis
rete, lo
ally quasiprimitive subgroups of Aut(T

d

), whi
h resembles the the-

ory of semisimple Lie groups, see Se
tion I.3.

This stru
ture theory is 
omplemented with a parti
ularly a

essible 
lass of

examples of subgroups of Aut(T

d

) with pres
ribed lo
al properties: Let l : E ! 


be a labelling of T

d

, i.e. l

x

:= lj

E(x)

: E(x) ! 
 is a bije
tion for every x 2 V and

l(e) = l(e) for all e 2 E. Then the map

� : Aut(T

d

)� V ! Sym(
); (g; x) 7! l

gx

Æ g Æ l

�1

x


aptures the lo
al a
tion of g at x 2 V . Now, given F � Sym(
), a subgroup of

Aut(T

d

) all of whose lo
al a
tions are in F 
an be de�ned as follows.

De�nition. Let F � Sym(
). Set U(F ) := fg 2 Aut(T

d

) j 8x 2 V : �(g; x) 2 Fg.

The following list of properties of U(F ) underlines its utility.

Proposition I.12 ([BM00a, Se
tion 3.2℄). Let F � Sym(
). Then U(F ) is

(i) 
losed in Aut(T

d

),

(ii) vertex-transitive,

(iii) 
ompa
tly generated,

(iv) lo
ally permutation isomorphi
 to F ,

(v) edge-transitive if and only if F is transitive, and

(vi) dis
rete in Aut(T

d

) if and only if F is semiregular.

For transitive F , the group U(F ) is maximal up to 
onjugation among vertex-

transitive subgroups of Aut(T

d

) that lo
ally a
t like F , hen
e the term universal.

Proposition I.14 ([BM00a, Proposition 3.2.2℄). Let H�Aut(T

d

) be lo
ally transi-

tive and vertex-transitive. Then there is a labelling of T

d

su
h that H�U(F ) where

F � Sym(
) is permutation isomorphi
 to the a
tion of H on balls of radius 1.

The universal groups de�ned above are a 
entral tool in the study of more

general subgroups Aut(T

d

), su
h as proje
tions of latti
es � � Aut(T

d

1

)�Aut(T

d

2

)

whi
h are investigated in [BM00b℄ and [Rat04℄.

We generalize the universal groups by pres
ribing the lo
al a
tion on balls of a

given radius k 2 N, the Burger{Mozes 
onstru
tion 
orresponding to the 
ase k = 1.

Namely, �x a tree B

d;k

whi
h is isomorphi
 to a ball of radius k in the labelled tree

T

d

and let l

k

x

: B(x; k)! B

d;k

be the unique label-respe
ting isomorphism. Then

�

k

: Aut(T

d

)� V ! Aut(B

d;k

); (g; x) 7! l

k

gx

Æ g Æ (l

k

x

)

�1

is the natural generalization of the map � de�ned above to the k-lo
al a
tion.

De�nition II.1. Let F � Aut(B

d;k

). De�ne

U

k

(F ) :=fg2Aut(T

d

) j 8x 2 V : �

k

(g; x)2Fg:

Properties (i), (ii) and (iii) of U(F ) 
arry over to U

k

(F ) in a straightforward

fashion, whereas (v) admits a natural generalization. Con
erning (vi), there is a

natural dis
reteness 
ondition (D) on F � Aut(B

d;k

) in terms of 
ertain stabilizers

in F whi
h holds if and only if U

k

(F ) is dis
rete, generalizing the 
ase k = 1. See

Se
tion II.3. Property (iv), however, need not hold for k � 2: The group U

k

(F

(k)

)

need not be lo
ally a
tion isomorphi
 to F

(k)

. We de�ne the following 
ompatibility


ondition, whi
h 
an be viewed as an inter
hangeability 
ondition on neighbouring

lo
al a
tions with the appropriate point of view on F

(k)

, see Se
tion II.3.

De�nition II.8.Let F �Aut(B

d;k

). Then F satis�es (C) if U

k

(F ) lo
ally a
ts like F .
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Numerous examples of subgroups of Aut(B

d;k

) satisfying the 
ompatibility 
on-

dition (C) and/or the dis
retenss 
ondition (D) are given in Se
tion II.3.

Next re
all that the quasi-
enter of a topologi
al group G, denoted by QZ(G),


onsists of those elements whose 
entralizer in G is open. It plays a major role in

the Burger{Mozes Stru
ture Theorem I.9.

Proposition II.16. Let F � Aut(B

d;k

). If F satis�es (D) then QZ(U

k

(F )) = U

k

(F ).

Otherwise QZ(U

k

(F )) = fidg.

We prove an analogue of the universality statement (Proposition I.14), whi
h

not only provides maximality but also a des
ription of the k-
losures

H

(k)

:= fg 2 Aut(T

d

) j 8x 2 V 9h

x

2 H : gj

B(x;k)

= h

x

j

B(x;k)

g

of lo
ally transitive groups H � Aut(T

d

) 
ontaining an involutive inversion, i.e. an

inversion of order 2; the notion of k-
losures was introdu
ed by Banks{Elder{Willis

in [BEW15℄ as a tool to 
onstru
t simple t.d.l.
. groups, see Se
tion I.2.3.

Theorem II.23. Let H � Aut(T

d

) be lo
ally transitive and 
ontain an involutive

inversion. Then there is a labelling of T

d

su
h that

U

1

(F

(1)

) � U

2

(F

(2)

) � � � �U

k

(F

(k)

) � � � � � H � U

1

(fidg)

where F

(k)

� Aut(B

d;k

) is a
tion isomorphi
 to the a
tion of H on balls of radius k.

Furthermore, H

(k)

= U

k

(F

(k)

).

We show that the assumption that H 
ontains an involutive inversion, whi
h


ombined with the lo
al transitivity assumption is stronger than vertex-transitivity

assumption for the 
ase k = 1, is ne
essary.

Combined with the independen
e properties P

k

(k 2 N) (see Se
tion I.2.3),

introdu
ed by Banks{Elder{Willis in [BEW15℄ as generalizations of Tits' Inde-

penden
e Property and satis�ed by the U

k

(F

(k)

), the universality theorem entails

the following 
hara
terization of universal groups.

Corollary II.25. Let H � Aut(T

d

) be 
losed, lo
ally transitive and 
ontain an

involutive inversion. Then H = U

k

(F

(k)

) if and only if H satis�es Property P

k

.

Given

e

F � Aut(B

d;k

), let F := �

e

F � Sym(
) denote the proje
tion of

e

F to

Aut(B

d;1

). Whereas we provide an abundan
e of possible a
tions

e

F \above" a given

F � Sym(
) in general, we also have the following rigidity.

Theorem II.22. Let F � Sym(
) be 2-transitive with F

!

simple non-abelian for all

! 2 
, and let

e

F � Aut(B

d;k

) with �

e

F = F satisfy (C). Then U

k

(

e

F ) equals either

U

2

(�(F )); U

2

(�(F )); or U

1

(F ):

Here, �(F );�(F ) � Aut(B

d;2

) satisfy (C) and (D) and therefore yield dis
rete

universal groups. More examples of both dis
rete and non-dis
rete universal groups

are 
onstru
ted in the 
ase where either point stabilizers in F are not simple or F

is not primitive, see e.g. �(F;N);�(F;N);�(F;P) � Aut(B

d;2

) in Se
tion II.3.1.

We now present two more appli
ations of universal groups.

On the Weiss Conje
ture. The 
lassi
al Weiss 
onje
ture [Wei78℄ states

that for a given lo
ally �nite tree T there are only �nitely many 
onjuga
y 
lasses

of dis
rete, lo
ally primitive and vertex-transitive subgroups of Aut(T ). This 
on-

je
ture has been extended by Poto�
nik{Spiga{Verret in [PSV12℄ and impressive

partial results have been obtained by the same authors as well as Guidi
i{Morgan

[GM14℄. The Weiss 
onje
ture relates to universal groups through the following


ombination of previous results.
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Corollary II.27.LetH�Aut(T

d

) be dis
rete, lo
ally transitive and 
ontain an involu-

tive inversion. Then there is F

(k)

�Aut(B

d;k

) with (C) and (D), and H=U

k

(F

(k)

).

This suggests to ta
kle the following weak version of the Weiss 
onje
ture by

studying the subgroups of Aut(B

d;k

) satisfying (C) and (D).

Conje
ture II.29. Let F � Sym(
) be primitive. Then there are only �nitely many


onjuga
y 
lasses of dis
rete subgroups of Aut(T

d

) whi
h lo
ally a
t like F and


ontain an involutive inversion.

Given a transitive group F � Sym(
), let H

F

denote the 
olle
tion of sub-

groups of Aut(T

d

) whi
h are dis
rete, lo
ally a
t like F and 
ontain an involutive

inversion. Then the following de�nition is meaningful by the above Corollary.

De�nition II.30. Let F � Sym(
) be transitive. De�ne

dim

CD

(F ) := max

H2H

F

min

n

k2N

�

�

�

9F

(k)

2Aut(B

d;k

) with (C),(D) : H=U

k

(F

(k)

)

o

if the maximum exists and dim

CD

(F ) =1 otherwise.

Conje
ture II.29 is now equivalent to the assertion that dim

CD

(F ) is �nite for

every primitive permutation group F �Sym(
). Using the framework of universal

groups we re
over the following known results in Se
tion II.5.1.

Proposition. Let F �Sym(
) and P �Sym(�) be transitive for j
j; j�j � 2. Then

(i) dim

CD

(F ) = 1 if and only if F is regular.

(ii) dim

CD

(F ) = 2 if F

!

has trivial nilpotent radi
al for all ! 2 
.

(iii) dim

CD

(F o P ) � 3.

Non-Trivial Quasi-Centers. The dis
reteness assertion of part (ii) in the

Burger{Mozes Stru
ture Theorem I.9 follows from the fa
t that a non-dis
rete

lo
ally quasiprimitive subgroup of Aut(T

d

) 
annot 
ontain any non-trivial quasi-


entral ellipti
 elements, see [BM00a, Proposition 1.2.1℄. The framework of uni-

versal groups lends itself to 
omplete this fa
t to the following theorem.

Theorem II.40. Let H � Aut(T

d

) be non-dis
rete. If H is lo
ally

(i) transitive then QZ(H) 
ontains no inversion.

(ii) semiprimitive then QZ(H) 
ontains no non-trivial edge-�xating element.

(iii) quasiprimitive then QZ(H) 
ontains no non-trivial ellipti
 element.

(iv) k-transitive (k 2 N) then QZ(H) 
ontains no hyperboli
 element of length k.

More importantly, the proof of the above theorem suggests to use groups of

the form

T

k2N

U

k

(F

(k)

) for appropriate lo
al a
tions F

(k)

in order to expli
itly


onstru
t non-dis
rete subgroups of Aut(T

d

) whose quasi-
enters 
ontain 
ertain

types of elements. This leads to the following sharpness result.

Theorem II.41. There is a 
losed, non-dis
rete, 
ompa
tly generated subgroup of

Aut(T

d

) whi
h is lo
ally

(i) intransitive and 
ontains a quasi-
entral inversion.

(ii) transitive and 
ontains a non-trivial quasi-
entral edge-�xating element.

(iii) semiprimitive and 
ontains a non-trivial quasi-
entral ellipti
 element.

(iv) (a) intransitive and 
ontains a quasi-
entral hyperboli
 element of length 1.

(b) quasiprimitive and 
ontains a quasi-
entral hyperboli
 element of length 2.

Part (ii) of this theorem 
an be strengthened to the following result whi
h

shows that Burger{Mozes theory does not 
arry over to lo
ally transitive groups.

Proposition II.53. There is a 
losed non-dis
rete subgroup H � Aut(T

d

) whi
h is

lo
ally transitive and has non-dis
rete quasi-
enter.



PRIME LOCALIZATIONS OF BURGER{MOZES-TYPE GROUPS xiii

In a di�erent dire
tion, Banks{Elder{Willis list PGL(2;Q

p

) � Aut(T

p+1

) as an

example of a group with in�nitely many distin
t k-
losures, see [BEW15℄. Whereas

PGL(2;Q

p

) has trivial quasi-
enter be
ause it is simple, the groups 
onstru
ted in

the proof of the theorem above provide a wealth of examples with non-trivial quasi-


enter. In fa
t, the following proposition shows that in 
ertain 
ases su
h examples

have to be of the type 
onstru
ted in the proof of the above theorem.

Proposition II.73. Let H � Aut(T

d

) be 
losed, non-dis
rete, lo
ally transitive and


ontain an involutive inversion. Then H

(k)

= U

k

(F

(k)

) and H =

T

k2N

U

k

(F

(k)

),

where F

(k)

�Aut(B

d;k

) is a
tion-isomorphi
 to the a
tion of H on balls of radius k.

If, in addition, QZ(H) 6= fidg then H has in�nitely many distin
t k-
losures.

Prime Lo
alizations of Burger{Mozes-type Groups

The 
on
ept of prime lo
alization of a totally dis
onne
ted lo
ally 
ompa
t

group G was introdu
ed by Reid in [Rei13℄: Let p be prime. A lo
al p-Sylow sub-

group of G is a maximal pro-p subgroup of a 
ompa
t open subgroup of G. The

p-lo
alization G

(p)

of G is de�ned as the 
ommensurator Comm

G

(S) of a lo
al p-

Sylow subgroup S of G, equipped with the unique group topology whi
h makes the

in
lusion of S into G

(p)

= Comm

G

(S) 
ontinuous and open. Reid shows that this

yields a dense, lo
ally virtually pro-p subgroup of G whose isomorphism type and

G-
onjuga
y 
lass do not depend on the 
hoi
e of S. We refer the reader to [Rei13℄

for general properties of prime lo
alization and its appli
ations.

Let F � F

0

� Sym(
). We 
onsider the Burger{Mozes group U(F ) and two

lo
ally isomorphi
 versions of it: The Le Boude
 group G(F; F

0

) a
ting on T

d

almost

everywhere like F and elsewhere like F

0

, and Lederle's 
oloured Neretin groups N(F )


onsisting of almost automorphisms of T

d

asso
iated to U(F ). See Se
tion I.4 for

an introdu
tion to these groups.

For a large family of the above groups, we determine lo
al p-Sylow subgroups

in terms of a p-Sylow subgroup of F . By de�nition of the topologies, any lo
al p-

Sylow subgroup of U(F ) is also a lo
al p-Sylow subgroup of G(F; F

0

) and N(F ). Let

T � T

d

denote a �nite subtree. The following proposition provides lo
al p-Sylow

subgroups of U(F ) in the 
ase where the operations of taking a p-Sylow subgroup

and taking point stabilizers 
ommute for F .

Proposition III.1. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. Then U(F (p))

T

is a p-Sylow subgroup of U(F )

T

if and only if so is F (p)

!

�F

!

for all ! 2 
.

After 
olle
ting 
riteria and examples for the above situation we determine gen-

eral subgroups of the p-lo
alization of Burger{Mozes-type groups whi
h we use to

identify said p-lo
alization as a group of the same type in 
ertain 
ases. Re
alling

that U(F ) = G(F; F ), the following theorem addresses both the Burger{Mozes uni-

versal group U(F ) and the Le Boude
 groups G(F; F

0

). It amends [Rei13, Lemma

4.2℄. We let

b

F denotes the maximal subgroup of Sym(
) preserving the partition

Fn
 setwise.

Theorem III.8. Let F � F

0

�

b

F � Sym(
) and F (p) � F a p-Sylow subgroup

of F . Assume that we have Fn
 = F (p)n
 and N

F

0

!

(F (p)

!

) = F (p)

!

for all ! 2 
.

Then G(F; F

0

)

(p)

= G(F (p); F

0

).

Theorem III.9. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. If Fn
=F (p)n


and N

b

F

!

(F (p)

!

) = F (p)

!

for all ! 2 
 then N(F )

(p)

= N(F (p)).



xiv INTRODUCTION AND MAIN RESULTS

Extending Willis Theory

In [Wil94℄, Willis advan
es the stru
ture theory of totally dis
onne
ted lo
ally


ompa
t groups by introdu
ing the notions of s
ale of an automorphism of a t.d.l.
.

group and tidiness of 
ompa
t open subgroups for the same automorphism. Being

the �rst major advan
e in the theory of t.d.l.
. groups for de
ades, it reignited the

hope for a general stru
ture theory of the latter and unexpe
tedly answered ques-

tions in �elds as diverse as random walks and ergodi
 theory [DSW06℄, [JRW96℄,

[PW03℄, arithmeti
 groups [SW13℄ and Galois theory [CH09℄.

This theory was further developed in [Wil01℄, [Wil04℄, [BW06℄, [Wil07℄ and

[BMW12℄, among others. We highlight that, sear
hing for the most general natural

setting of tidiness and the s
ale, the de�nitions were generalized to endomorphisms

in [Wil15℄. For the pre
ise de�nition, re
all that any t.d.l.
. group admits a neigh-

bourhood basis of 
ompa
t open subgroups by work of van Dantzig [vD31℄. For a

modern treatment, see [HR12, (7.7)℄. Given a topologi
al group G, we let End(G)

denote the semigroup of 
ontinuous homomorphisms from G to itself.

De�nition. Let G be a t.d.l.
. group and � 2 End(G). The s
ale of � is

s

G

(�) = min

�

[�(U) : �(U) \ U ℄ j U � G 
ompa
t open

	

:

A 
ompa
t open subgroup U � G is minimizing for � if [�(U) : �(U) \ U ℄ = s(�).

It is a 
ornerstone of Willis theory that U is mimimizing for � if and only if

it has a 
ertain stru
ture, whi
h is phrased in terms of the following subgroups

of G. Put U

0

:= U . For n 2 N

0

, we de�ne U

�n

=

T

n

k=0

�

�k

(U) and, indu
tively,

U

n+1

:= U \ �(U

n

). Now set

U

+

:=

\

n2N

0

U

n

; U

�

:=

\

n2N

0

U

�n

=

1

\

k=0

�

�k

(U);

U

++

:=

[

n2N

0

�

n

(U

+

) and U

��

:=

[

n2N

0

�

�n

(U

�

):

The subgroup U is tidy above for � if U = U

+

U

�

, and tidy below for � if U

��

is


losed. It is tidy for � if it is both tidy above and tidy below for �. Note that this

de�nition of being tidy below deviates from [Wil15, De�nition 9℄ but turns out to

be equivalent for tidy above subgroups, see [Wil15, Proposition 9℄.

Theorem ([Wil15, Theorem 2℄). Let G be a t.d.l.
. group, � 2 End(G) and U � G


ompa
t open. Then U is minimizing for � if and only if it is tidy for �.

Willis 
omplements this theorem with an algorithm, a tidying pro
edure, whi
h

turns an arbitrary 
ompa
t open subgroup of G into one tidy for �.

Whereas statements about automorphisms in this theory frequently utilize 
on-

tinuous invertibility and produ
e important dual statements by passing to the in-

verse, statements about endomorphisms often need to be formulated di�erently and

require di�erent te
hniques of proof. The present work goes through this pro
ess

for two aspe
ts of the theory.

S
ale and Tidiness for Subgroups and Quotients. This se
tion presents

joint work with T. Bywaters and H. Gl�o
kner, see [BGT16, Se
tion 8℄.

It is natural to ask how the notions of s
ale and tidiness introdu
ed above

behave with respe
t to taking subgroups and quotients of the given group. For

automorphisms, this was studied in [Wil01℄. Our �rst result states that, in the 
ase

of endomorphisms, restri
ting to a 
losed invariant subgroup 
an only de
rease the

s
ale and thereby generalizes [Wil01, Proposition 4.3℄.
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Theorem V.3. Let G be a t.d.l.
. group, � 2 End(G) and H � G 
losed with

�(H)�H . Then s

H

(�j

H

) � s

G

(�).

Con
erning quotients, we generalize [Wil01, Proposition 4.7℄. Given �2End(G)

andH�G with �(H)�H , we let �2End(G=H) be the endomorphism indu
ed by �.

Theorem V.8. LetG be a t.d.l.
. group, �2End(G) andH�G 
losed with �(H)�H .

Then s

H

(�j

H

)s

G=H

(�) divides s

G

(�):

Equality holds for example in the following 
ase, where

par

�

(�) =

�

x 2 G

�

�

�

�

9(x

n

)

n2N

0

: x

0

= x; 8n 2 N : �(x

n

) = x

n�1

and fx

n

j n 2 N

0

g is pre
ompa
t

�

:

Proposition V.10. Let G be a t.d.l.
. group, � 2 End(G) and H � par

�

(�) 
losed

su
h that �(H) = H . Further, let N �H be 
losed with �(N) = N . Denote by �

the endomorphism indu
ed by �j

H

on H=N . Then s

H

(�j

H

) = s

H=N

(�)s

N

(�j

N

).

S
ale and Tidiness via Graphs. The results presented in this se
tion 
on-

stitute joint work with T. Bywaters, namely [BT17℄.

An important 
ontribution to Willis theory was made by M�oller in [M�ol02℄,

who, in the 
ase of automorphisms, 
hara
terized the notions of s
ale and tidiness

in terms of 
ertain graphs asso
iated to the data (G;�; U). This lead to geometri


proofs of known results and provided a new, geometri
 tidying pro
edure, as well

as a spe
tral radius type formula for the s
ale.

We adapt M�oller's de�nitions to the 
ase of endomorphisms. Let G be a t.d.l.
.

group. Further, let � be a 
ontinuous endomorphism of G and U a 
ompa
t open

subgroup of G. Using a 
ertain graph asso
iated to the data (G;�; U) we give a

geometri
 proof of existen
e of a subgroup of U whi
h is tidy above for � ([Wil15,

Proposition 3℄), as well as the tidiness below 
ondition ([Wil15, Proposition 8℄).

Combining both yields the following 
hara
terization of the s
ale and tidiness, re-

sembling [M�ol02, Lemma 3.1℄ and [M�ol02, Theorem 3.4℄, see Lemma VI.1 and

Theorem VI.11.

For i2N

0

, de�ne v

�i

:=�

�i

(U)2P(G) and a rooted dire
ted graph �

+

by

V (�

+

)=fuv

�i

j u 2 U

++

; i 2 N

0

g; E(�

+

)=f(uv

�i

; uv

�i�1

) j u 2 U; i 2 N

0

g:

Theorem. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

(i) If fv

�i

j i 2 N

0

g is �nite then there is a 
ompa
t open subgroup U of G with

�(U) � U and whi
h is tidy for � and s(�) = 1.

(ii) If fv

�i

j i 2 N

0

g is in�nite then U is tidy for � if and only if the graph �

+

is a

dire
ted tree, rooted at v

0

with 
ontant in-valen
y (ex
luding the root) equal

to 1 and 
onstant out-valen
y. In this 
ase, s(�) equals said out-valen
y.

We use this theorem to establish a new, geometri
 tidying pro
edure for the


ase of endomorphisms, see Theorem VI.26. It features yet another graph de�ned in

terms of the data (G;�; U) whi
h admits an a
tion of U

++

, a fundamental subgroup

of G asso
iated to � and U , see Se
tion IV.1. Most of the work goes into showing

that this graph admits a quotient with a 
onne
ted 
omponent isomorphi
 to a

regular rooted tree. The stabilizer of its root turns out to be tidy for �.

Theorem VI.26 and asso
iated 
onstru
tions result in a geometri
 proof of

the fa
t [Wil15, Theorem 2℄ that tidiness is equivalent to being minimizing, see

Theorem VI.34. Using the aforementioned ideas, we obtain a tree representation

theorem for a 
ertain natural subsemigroup of End(G) asso
iated to �, analogous

to [BW04, Theorem 4.1℄ for the 
ase of automorphisms.

Finally, we give a simple way to 
onstru
t endomorphisms of non-
ompa
t

t.d.l.
 groups from 
ertain endomorphisms of 
ompa
t groups.



Part 1

Groups A
ting On Trees With

Pres
ribed Lo
al A
tion





CHAPTER I

Preliminaries

This 
hapter 
olle
ts the ne
essary preliminaries about permutation groups,

groups a
ting on trees, Burger{Mozes theory and Burger{Mozes type groups. We

provide referen
es at the beginning of ea
h se
tion.

1. Permutation Groups

Let 
 be a set. In this se
tion, we 
olle
t de�nitions and results around the

group of bije
tions of 
, denoted Sym(
). Refer to [DM96℄, [Pra96℄ and [GM16℄

for more details about the various 
lasses of permutation groups to be introdu
ed.

1.1. De�nitions and Examples. Let F � Sym(
). The degree of F is j
j.

For ! 2 
, the stabilizer of ! in F is F

!

:= f� 2 F j �! = !g. The subgroup

of F generated by its point stabilizers is denoted by F

+

:= hfF

!

j ! 2 
gi. The

permutation group F is semiregular , or free, if F

!

= fidg for all ! 2 
; equivalently,

if F

+

is trivial. It is transitive if its a
tion on 
 is transitive, and regular if it is

both semiregular and transitive.

Let F � Sym(
) be transitive. The rank of F is the number rank(F ) := jFn


2

j

of orbits of the diagonal a
tion � � (!; !

0

) := (�!; �!

0

) of F on 


2

. Equivalently,

rank(F ) = jF

!

n
j for all ! 2 
. Note that the diagonal �(
) = f(!; !) j ! 2 
g

is always an orbit of the diagonal a
tion F y 


2

. The permutation group F is

2-transitive if rank(F ) = 2. In other words, it a
ts transitively on 


2

n�(
).

We now de�ne several relevant 
lasses of permutation groups in between the


lasses of transitive and 2-transitive permutation groups. Let F � Sym(
). A par-

tition P : 
 =

F

i2I




i

of 
 is preserved by F , or F -invariant , if for all � 2 F we

have f�


i

j i 2 Ig = f


i

j i 2 Ig. The partition of 
 as 
 itself, as well as the

partition into singletons are trivial . A map a : 
! F is 
onstant with respe
t to P

if a(!) = a(!

0

) whenever !; !

0

2 


i

for some i 2 I .

The permutation group F is primitive if it is transitive and preserves no non-

trivial partition of 
, and imprimitive otherwise. Given a normal subgroup N of

F , the partition of 
 into N -orbits is F -invariant. Consequently, every normal sub-

group of a primitive group is transitive. A permutation group is quasiprimitive if it

is transitive and all its non-trivial normal subgroups are transitive. Finally, a per-

mutation group is semiprimitive if it is transitive and all its normal subgroups are

either transitive or semiregular. The following 
hain of impli
ations among prop-

erties of permutation groups is immediate from the de�nitions. We list examples

illustrating that ea
h impli
ation is stri
t. In doing so we refer to the GAP library

of small transitive groups [GAP17℄.

2-transitive ) primitive

A

3

; D

5

) quasiprimitive

Tr(12; 33)

�

=

A

5

) semiprimitive

C

4

� C

2

) transitive

D

4

� C

2

�C

2

Note that every transitive permutation group of prime degree is ne
essarily primi-

tive as all elements of an F -invariant partition have the same order, and that every

simple transitive group is ne
essarily quasiprimitive.

3
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1.2. Permutation Topology. Given a faithful a
tion of a group H on a

dis
rete setX , or, equivalently, a subgroupH � Sym(X), there is a natural topology

on H , termed permutation topology , whi
h makes the a
tion map 
ontinuous. For

example, we equip the automorphism group of a tree with the permutation topology

for its a
tion on the vertex set of the tree, see Se
tion 2.2.

As a referen
e for the following, see e.g. [M�ol10℄. Let X be a set and 
onsider

G := Sym(X). The basi
 open sets for the permutation topology on G are

U

x;y

:= fg 2 G j 8i 2 f1; : : : ; ng : g(x

i

) = y

i

g

with n 2 N and x = (x

1

; : : : ; x

n

); y = (y

1

; : : : ; y

n

) 2 X

n

.

The permutation topology turns G into a topologi
al group. It is Hausdor� and

totally dis
onne
ted as the following two lemmas show. Re
all that a topologi
al

spa
e is zero-dimensional if it admits a basis 
onsisting of 
losed open sets.

Lemma I.1. A Hausdor� and zero-dimensional spa
e X is totally dis
onne
ted.

Proof. Let x 2 X . To see that no element y 2 Y is 
ontained in the 
onne
ted


omponent of x it suÆ
es to �nd disjoint 
losed open sets 
ontaining x and y

respe
tively. Given that X is Hausdor� there are open sets separating x and y.

Ea
h 
ontains a 
losed open set by de�nition of zero-dimensionality. �

We remark that a lo
ally 
ompa
t Hausdor� spa
e is zero-dimensional if and

only if it is totally dis
onne
ted, see [AT08℄.

Lemma I.2. Let X be a set. Then Sym(X) is Hausdor� and zero-dimensional.

Proof. To see that Sym(X) is Hausdor�, let g; h 2 Sym(X) be distin
t. Then there

is x 2 X su
h that g(x) 6= h(x), to the e�e
t that U

x;g(x)

and U

x;h(x)

are disjoint

open sets 
ontaining g and h respe
tively.

For zero-dimensionality, note that the sets U

x;y

for x; y 2 X

n

and n 2 N are

open by de�nition. Now 
onsider g 2 Sym(X)nU

x;y

. Then there is i 2 f1; : : : ; ng

su
h that g(x

i

) 6= y

i

and U

x;g(x)

� Sym(X)nU

x;y


ontains g. That is, the 
omple-

ment of U

x;y

is open. Hen
e the assertion. �

We now show that the permutation topology makes the a
tion map 
ontinuous.

Lemma I.3. Let X be a set equipped with the dis
rete topology. Then the a
tion

map � : Sym(X)�X ! X given by (g; x) 7! g(x) is 
ontinuous.

Proof. Let Y � X (be open). Then �

�1

(Y ) = f(g; x) 2 Sym(X)�X j g(x) 2 Y g.

Hen
e, if (g; x) 2 �

�1

(Y ) then so is the open set U

x;g(x)

�fxg 
ontaining (g; x). �

Finally, we 
hara
terize 
ompa
t subsets of Sym(X).

Proposition I.4. Let X be a set and H � Sym(X). Then H is 
ompa
t if and only

if H � Sym(X) is 
losed and all its orbits are �nite.

Proof. If H is 
ompa
t, then H is 
losed in Sym(X) as Sym(X) is Hausdor�.

Furthermore, Hx = �j

H�fxg

is 
ompa
t be
ause � is 
ontinuous and hen
e �nite.

Conversely, assume that H � Sym(X) is 
losed and has �nite orbits (X

i

)

i2I

.

Then H �

Q

i2I

Sym(X

i

). Sin
e every X

i

is �nite, Sym(X

i

) is 
ompa
t and hen
e

so is

Q

i2I

Sym(X

i

) by Ty
hono�'s theorem. Therefore, the 
on
lusion follows if

we show that the in
lusion map

Q

i2I

Sym(X

i

) ! Sym(X) is 
ontinuous. Indeed,

an interse
tion U

x;y

\

Q

i2I

Sym(X

i

) restri
ts only �nitely many fa
tors and hen
e

gives rise to an open subset of the produ
t topology. �
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2. Generalities of Groups A
ting On Trees

In this se
tion, we �rst re
all Serre's [Ser03℄ notation and de�nitions in the


ontext of graphs and trees, and then 
olle
t generalities about automorphisms of

trees. We 
on
lude with an important simpli
ity 
riterion.

2.1. De�nitions and Notation. A graph � is a tuple (V;E) 
onsisting of a

vertex set V and an edge set E, together with a �xed-point-free involution of E,

denoted by e 7! e, and maps o; t : E ! V , providing the origin and terminus of

an edge, su
h that o(e) = t(e) and t(e) = o(e) for all e 2 E. Given e 2 E, the pair

fe; eg is a geometri
 edge. For x 2 V , we let E(x) := o

�1

(x) = fe 2 E j o(e) = xg

be the set of edges issuing from x. The valen
y of x 2 V is jE(x)j. A vertex of

valen
y 1 is a leaf . A morphism between graphs �

1

= (V

1

; E

1

) and �

2

= (V

2

; E

2

)

is a pair (�

V

; �

E

) of maps �

V

: V

1

! V

2

and �

E

: E

1

! E

2

preserving the graph

stru
ture, i.e. �

V

(o(e)) = o(�

E

(e)) and �

V

(t(e)) = t(�

E

(e)) for all e 2 E.

For n 2 N, let Path

n

denote the graph with vertex set f0; : : : ; ng and edge

set f(k; k + 1); (k; k + 1) j k 2 f0; : : : ; n� 1gg. A path of length n in a graph � is a

morphism 
 from Path

n

to �. It 
an be identi�ed with (e

1

; : : : ; e

n

) 2 E(�)

n

, where

e

k

is the image of (k � 1; k) 2 E(Path

n

) for all k 2 f1; : : : ; ng. In this 
ase, 
 is a

path from o(e

1

) to t(e

n

).

Similarly, let Path

N

0

and Path

Z

denote the graphs with vertex sets N

0

and

Z, and edge sets f(k; k + 1); (k; k + 1) j k 2 N

0

g and f(k; k + 1); (k; k + 1) j k 2 Zg

respe
tively. A half-in�nite path, or ray , in a graph � is a morphism 
 from Path

N

0

to �. It 
an be identi�ed with (e

k

)

k2N

2 E(�)

N

where e

k

= 
(k�1; k) for all k 2 N.

In this 
ase, 
 originates at, or issues from, o(e

1

). An in�nite path, or line, in a

graph � is a morphism 
 from Path

Z

to �.

A pair (e

k

; e

k+1

) = (e

k

; e

k

) in a path is a ba
ktra
king . A graph is 
onne
ted if

any two of its verti
es 
an be joined by a path. The maximal 
onne
ted subgraphs

of a graph are its 
omponents .

A forest is a graph in whi
h there are no non-ba
ktra
king paths (e

1

; : : : ; e

n

)

with o(e

1

) = t(e

n

) (n 2 N). Consequently, a morphism of forests is determined

by the underlying vertex map. In parti
ular, a path of length n 2 N in a forest is

determined by the images of the verti
es of Path

n

.

A tree is a 
onne
ted forest. As a 
onsequen
e of the above, the vertex set V

of a tree T admits a natural metri
: Given x; y 2 V , de�ne d(x; y) as the minimal

length of a path from x to y. A tree in whi
h every vertex has valen
y d 2 N is

d-regular tree. It is unique up to isomorphism and denoted by T

d

.

Let T = (V;E) be a tree. For S � V [E, the subtree spanned by S is the unique

minimal subtree of T 
ontaining S. For x 2 V and n 2 N

0

, the subtree spanned

by fy 2 V j d(y; x) � ng is the ball of radius n around x, denoted by B(x; n).

Similarly, S(x; n) = fy 2 V j d(y; x)=ng is the sphere of radius n around x. For a

subtree T

0

� T , let � : V ! V (T

0

) denote the 
losest point proje
tion, i.e. �(x) = y

whenever d(x; y) = min

z2T

0

(d(x; z)). In the 
ase of a single edge e = (v; w) 2 E, the

half-trees T

v

and T

w

are the subtrees spanned by �

�1

(v) and �

�1

(w) respe
tively.

Two rays 


1

; 


2

: Path

N

! T in T are equivalent , 


1

� 


2

, if there existN; d 2 N

su
h that 


1

(n) = 


2

(n + d) for all n � N . The boundary , or set of ends , of T is

the set �T of equivalen
e 
lasses of rays in T .

2.2. Automorphism Groups. Let d � 3 and T

d

= (V;E) the d-regular tree.

The group of automorphism Aut(T

d

) of T

d

, i.e. the group of bije
tive morphisms

from T

d

to itself, is our foremost 
on
ern. Throughout this work, we equip Aut(T

d

)

with the permutation topology for its (faithful) a
tion on V (T

d

).
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2.2.1. Notation. Let H � Aut(T

d

). Given a subtree T � T

d

, the pointwise

stabilizer of T in H is denoted by H

T

. Similary, the setwise stabilizer of T in H

is denoted by H

fTg

. In the 
ase where T is a single vertex x, the permutation

group that H

x

indu
es on S(x; 1) is denoted by H

(1)

x

� Sym(E(x)). We say that

H is lo
ally \P" if for every x 2 V the permutation group H

(1)

x

satis�es property

\P", e.g. being tansitive, semiprimitive, quasiprimitive, primitive or 2-transitive.

Furthermore, H is lo
ally k-transitive (k 2 N

�3

) if H

x

a
ts transitively on the set

of non-ba
ktra
king paths of length k issuing from x. It is lo
ally 1-transitive if it

is lo
ally k-transitive for all k 2 N.

The group Aut(T

d

) a
ts on �T

d

by g � [
℄ := [g Æ 
℄. Given an end [
℄ 2 �T

d

, the

stabilizer of [
℄ in H is H

[
℄

= fh 2 H j h Æ 
 � 
g.

We let H

+

=hfH

x

jx 2 V (T

d

)gi denote the subgroup of H generated by vertex-

stabilizers and H

+

=hfH

e

je 2 E(T

d

)gi the subgroup generated by edge-stabilizers.

For a subtree T � T

d

and k 2 N, let T

k

denote the subtree of T

d

spanned by

fx 2 V (T

d

) j d(x; T ) � kg. We set H

+

k

=hfH

e

k
je 2 E(T

d

)gi. Then H

+

1

=H

+

and

H

+

k

�H

+

� H

+

�H:

2.2.2. Classi�
ation of Automorphisms. On a high level, elements of Aut(T

d

)


an be distinguished into three disjoint 
lasses whi
h we outline below. We refer

the reader to [GGT16, Se
tion 2℄ for details. Let g 2 Aut(T

d

). De�ne

l(g) := min

x2V

d(x; gx) and V (g) := fx 2 V j d(x; gx) = l(g)g:

If l(g) = 0 then g �xes a vertex. An automorphism of this kind is ellipti
. Suppose

now that l(g) > 0. If V (g) is in�nite then g is hyperboli
. Geometri
ally, it is a

translation of length l(g) along a line in T

d

.

g

b b b b b
b

gb

x

gx

: : : : : :

b b b b b

b b b b b b b b b b

y gy

If V (g) is �nite then l(g) = 1 and g maps an edge e to e and is termed an inversion.

2.3. Independen
e and Simpli
ity. This se
tion 
ontains an important 
ri-

terion to obtain simple subgroups of Aut(T

d

). In its base 
ase due to Tits [Tit70℄, it

applies to suÆ
iently large subgroups of Aut(T

d

) satisfying a 
ertain independen
e

property. The generalized version we des
ribe here is due to Banks{Elder{Willis

[BEW15℄. As an alternative referen
e, see [GGT16℄.

Let 
 denote a path in T

d

(�nite, half-in�nite or in�nite). For every x 2 C and

k 2 N

0

, the pointwise stabilizer H




k of 


k

indu
es an a
tion H

(x)




k

� Aut(�

�1

(x))

on �

�1

(x). We therefore obtain an inje
tive homomorphism

'

(k)




: H




k !

Y

x2C

H

(x)




k

:

The subgroup H � Aut(T

d

) satis�es Property P

k

(k 2 N) if '

(k�1)




is an isomor-

phism for every path 
 in T

d

. We remark that in 
ase H � Aut(T

d

) is 
losed, it

suÆ
es to 
he
k the above properties in the 
ase where 
 is a single edge. Given a


losed subgroup H � Aut(T

d

), Property P

(k)

is satis�ed by its k-
losure

H

(k)

= fg 2 Aut(T

d

) j 8x 2 V (T

d

) 9h 2 H : gj

B(x;k)

= hj

B(x;k)

g:

Theorem I.5 ([BEW15, Theorem 7.3℄). Let H � Aut(T

d

). If H neither �xes an

end of T

d

nor stabilizes a proper subtree of T

d

setwise, then H satisfy Property P

k

and G

+

k

is either trivial or simple.
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3. Burger{Mozes Theory

In [BM00a℄, Burger{Mozes develop a remarkable stru
ture theory of a 
ertain


lass of groups a
ting on graphs, resembling the theory of semisimple Lie groups.

In order to give the pre
ise stru
ture theorem we introdu
e further notation.

The fundamental de�nitions are meaningful in the setting of totally dis
on-

ne
ted lo
ally 
ompa
t groups: Let H be a t.d.l.
. group. We de�ne H

(1)

to be the

interse
tion of all 
losed normal 
o
ompa
t subgroups of H , and QZ(H) to be the

subgroup of elements whose 
entralizer in H is open in H . As a 
onsequen
e, both

H

(1)

and QZ(H) are topologi
ally 
hara
teristi
 subgroups of H , i.e. they are pre-

served by 
ontinuous automorphisms of H . Alternatively, H

(1)


an be des
ribed

as the interse
tion of all open subgroups of �nite index.

The next example shows that H

(1)

and QZ(H) play roles analogous to that of

the 
onne
ted 
omponent of the identity and the kernel of the adjoint representation

in Lie theory, 
f. [BM00a, Example 1.1.1.℄.

Example I.6. Let H be a semisimple p-adi
 matrix group. Then H

(1)


oin
ides

with the subgroup generated by unipotent elements and QZ(H) is given by the

kernel of the adjoint representation.

The de�nitions also readily imply that H

(1)

is 
losed. The next example shows

that QZ(H) need not be so.

Example I.7. LetH :=

Q

N

F where F is a �nite 
enterless group. ThenH

(1)

= fidg

as fidg is 
o
ompa
t in the 
ompa
t group H . Furthermore, QZ(H) is the dire
t

sum

L

N

F . In parti
ular, QZ(H) is dense in H .

Our third example relies on Se
tion II.4.1.

Example I.8. Let F � Sym(
) and H := U(F ) � Aut(T

d

). If F is transitive and

generated by point stabilizers then U(F )

+

has index 2 in U(F ) and is simple. Thus

H

(1)

= U(F )

+

. Furthermore, QZ(U(F )

+

) = fidg.

Re
all that any dis
rete normal subgroup of a topologi
al group is 
entral. From

the de�nitions we 
an therefore dedu
e that every 
o
ompa
t normal subgroup of

H 
ontains H

(1)

and that QZ(H) 
ontains all dis
rete normal subgroups of H .

The subquotient H

(1)

=QZ(H

(1)

) of H therefore has a 
han
e to be topologi
ally

simple. Whereas Examples I.6 and I.7 show that nothing mu
h 
an be said about

the size of H

(1)

and QZ(H) in general, Burger{Mozes show that good 
ontrol


an be obtained in the 
ase of 
losed non-dis
rete subgroups of Aut(�), where �

is a 
onne
ted graph, satisfying 
ertain lo
al transitivity properties. The following

result summarizes their stru
ture theory in the 
ase of regular trees to whi
h the

present work 
ontributes. It is a 
ombination of Proposition 1.2.1, Corollary 1.5.1,

Theorem 1.7.1 and Corollary 1.7.2 in [BM00a℄.

Theorem I.9. Let H � Aut(T

d

) be 
losed, non-dis
rete and lo
ally quasiprimitive.

(i) H

(1)

is minimal 
losed normal 
o
ompa
t in H .

(ii) QZ(H) is maximal dis
rete normal, and non-
o
ompa
t in H .

(iii) H

(1)

=QZ(H

(1)

)=H

(1)

=(QZ(H)\H

(1)

) admits minimal, non-trivial 
losed

normal subgroups; �nite in number, H-
onjugate and topologi
ally simple.

If, in addition, H is lo
ally primitive then

(iv) H

(1)

=QZ(H

(1)

) is a dire
t produ
t of topologi
ally simple groups.
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4. Burger{Mozes-type Groups

In this se
tion we introdu
e several 
lasses of groups a
ting on (regular) trees.

First, we 
on
ern ourselves with Burger{Mozes universal groups, introdu
ed by

Burger{Mozes in [BM00a, Se
tion 3.2℄ as a 
omplement to their stru
ture theory.

Chapter II develops a versatile generalization of these groups.

Se
ondly, we re
all a lo
ally isomorphi
 generalization of these groups due to

Le Boude
 [Bou16℄. Among his examples are t.d.l.
. groups whi
h are virtually

simple and 
ontain no latti
es, i.e. dis
rete 
o�nite subgroups.

Finally, we introdu
e a re
ently developed generalization of Neretin's group

[Ner03℄ due to Lederle [Led17℄. She shows that most of these groups do not


ontain latti
es, generalizing the same result for Neretin's group [BCGM12℄.

In Chapter III, we 
ompute the p-lo
alizations of a large sub
lass of the three

types of Burger{Mozes groups and primes p.

Let 
 be a set of 
ardinality d � 3 and let T

d

= (V;E) denote the d-regular

tree. A labelling l of T

d

is a map l : E ! 
 su
h that for every x 2 V the map

l

x

:= lj

E(x)

: E(x)! 
; y 7! l(y) is a bije
tion and for all e 2 E we have l(e) = l(e).

4.1. Burger{Mozes Groups. The original introdu
tion of Burger{Mozes

universal groups in [BM00a, Se
tion 3.2℄ has been expanded in the introdu
tory

arti
le [GGT16℄ whi
h we follow 
losely. Most results are generalized in Chapter II.

Consider the labelled tree T

d

introdu
ed above. The lo
al a
tions of automor-

phisms are 
aptured by the map

� : Aut(T

d

)�X ! Sym(
); (g; x) 7! �(g; x) := l

gx

Æ g Æ l

�1

x

:

Given any permutation group F �Sym(
), we 
an de�ne a subgroup of Aut(T

d

)

all of whose lo
al a
tions are in F as follows.

De�nition I.10. Let F � Sym(
) and l a labelling of T

d

. De�ne

U

(l)

(F ) :=fg 2 Aut(T

d

) j 8x 2 V : �(g; x) 2 Fg:

The map � satis�es a 
o
y
le identity : For all g; h 2 Aut(T

d

) and x 2 V we have

�(gh; x) = �(g; hx)�(h; x). As a 
onsequen
e, U

(l)

(F ) is a subgroup of Aut(T

d

).

Passing to a di�erent labelling amounts to passing to a 
onjugate of U

(l)

(F )

inside Aut(T

d

). We therefore omit expli
it referen
e to the labelling from here on.

Remark I.11. Let F � Sym(
). Elements of U(F ) are readily 
onstru
ted: Given

v; w 2 V (T

d

) and � 2 F , de�ne g : B(v; 1) ! B(w; 1) by setting g(v) = w and

�(g; v) = � . Given a 
olle
tion of permutations (�

!

)

!2


su
h that �(!) = �

!

(!) for

all ! 2 
 there is a unique extension of g to B(v; 2) su
h that �(g; v

!

) = �

!

where

v

!

2 S(v; 1) is the unique vertex with l(v; v

!

) = !. Then pro
eed iteratively.

The following proposition 
olle
ts several elementary properties of Burger{

Mozes groups. We refer the reader to [GGT16, Se
tion 4℄ for proofs. Alternatively,

a generalized version of this result is 
ontained in Se
tion II.1.

Proposition I.12. Let F � Sym(
). Then U(F ) is

(i) 
losed in Aut(T

d

),

(ii) vertex-transitive,

(iii) 
ompa
tly generated,

(iv) lo
ally permutation isomorphi
 to F ,

(v) edge-transitive if and only if F is transitive, and

(vi) dis
rete in Aut(T

d

) if and only if F is semiregular.
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Part (iii) of Proposition I.12 relies on the following result whi
h we in
lude for

future referen
e.

Lemma I.13. The group U

1

(fidg) is �nitely generated.

Proof. Fix x 2 V . For every ! 2 
, let �

!

2 U

1

(fidg) denote the unique label-

respe
ting inversion of the edge e

!

2 E with origin x and label !. Then U

1

(fidg) is

generated by f�

!

j ! 2 
g: Every element of U

1

(fidg) is determined by its image on

v, so the assertion follows from vertex-transitivity of hf�

!

j ! 2 
gi: Let y 2 V nfxg

and let (!

1

; : : : ; !

n

) be the labels appearing in the geodesi
 from x to y. Then

�

!

1

Æ � � � Æ �

!

n

2 U

1

(fidg) maps x to y. �

The name universal group is due to the following maximality statement whose

proof should be 
ompared with the proof of Theorem II.23.

Proposition I.14. LetH � Aut(T

d

) be lo
ally transitive and vertex-transitive. Then

there is a labelling l of T

d

su
h that H � U

(l)

(F ) where F � Sym(
) is a
tion

isomorphi
 to the a
tion of H on balls of radius 1.

Proof. Fix b 2 V and a bije
tion l

b

: E(b) ! 
. Then the lo
al a
tion of H at b is

given by F := l

b

ÆH

b

j

E(b)

Æl

�1

b

. We now indu
tively de�ne a legal labelling l : E ! 


su
h that H � U

(l)

(F ). Set lj

E(b)

:= l

b

and suppose indu
tively that l is de�ned

on E(b; n) :=

S

x2B(b;n�1)

E(x). To extend l to E(b; n+ 1), let x 2 S(b; n) and let

e

x

2 E be the unique edge with o(e

x

) = x and d(b; t(e

x

)) + 1 = d(b; x). Sin
e H is

vertex-transitive and lo
ally transitive, there is an element �

e

x

2 H whi
h inverts

the edge e

x

. Using �

e

x

we may extend l to E(x) by setting lj

E(x)

:= l Æ �

e

x

.

To 
he
k the in
lusion H � U

(l)

(F ), let x 2 V and h 2 H . If (b; b

1

; : : : ; b

n

; x)

and (b; b

0

1

; : : : ; b

0

m

; h(x)) denote the unique redu
ed paths from b to x and h(x), then

s := �

e

b

0

1

� � � �

e

b

0

m

�

e

h(x)

Æ h Æ �

x

�

e

b

n

� � � �

e

b

2

�

e

b

1

2 H

b

and we have �(h; x)=�(s; b) 2 F by the 
o
y
le identity satis�ed by the map �. �

4.2. Le Boude
 Groups. In [Bou16℄, Le Boude
 introdu
es groups a
ting

on T

d

lo
ally like a given permutation group F � Sym(
) almost everywhere. The

pre
ise de�nition reads as follows.

De�nition I.15. Let F �Sym(
). De�ne

G(F ) :=fg 2 Aut(T

d

) j �(g; x) 2 F for almost all x 2 V g:

Noti
e that U(F ) is a subgroup of G(F ). We equip G(F ) with the unique

group topology making the in
lusion U(F )� G(F ) 
ontinous and open. It exists

essentially due to the fa
t that G(F ) 
ommensurates a 
ompa
t open subgroup

of U(F ), see [Bou16, Lemma 3.2℄. We state expli
itly that this topology di�ers

from the subspa
e topology of Aut(T

d

), see e.g. Proposition I.18 below. However,

it entails that G(F ) is lo
ally isomorphi
 to U(F ).

Given g 2 G(F ), a vertex v 2 V with �(g; v) 62 F is a singularity . The lo
al

a
tion at singularities is restri
ted as follows.

Lemma I.16 ([Bou16, Lemma 3.3℄). Let F � Sym(
) and g 2 G(F ) with a singu-

larity v 2 V . Then �(g; v) preserves the partition Fn
 of 
 into F -orbits setwise.

For F �Sym(
), the maximal subgroup of Sym(
) whi
h preserves the parti-

tion Fn
 =

F

i2I




i

setwise is the dire
t produ
t

b

F :=

Q

i2I

Sym(


i

). Combined

with Lemma I.16, this suggests the following extension of De�nition I.15.

De�nition I.17. Let F � F

0

�

b

F � Sym(
). Set G(F; F

0

) := G(F ) \ U(F

0

).
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We remark that G(F; F ) = U(F ) and G(F;

b

F ) = G(F ). In this sense, the groups

G(F; F

0

) interpolate between U(F ) and G(F ). Le Boude
 shows that for 
ertain


hoi
es of F and F

0

, the groups G(F; F

0

) are virtually simple and 
ontain no latti
es,

see [Bou16, Introdu
tion℄. For future referen
e we in
lude the following fa
t.

Proposition I.18. Let F� F

0

�

b

F � Sym(
) and b 2 V (T

d

). Then G(F; F

0

)

b

is non-


ompa
t and residually dis
rete.

Proof. The vertex stabilizer G(F; F

0

)

b


an be written as the (stri
tly) in
reasing

union G(F; F

0

)

b

=

S

n2N

K

n

of the open sets K

n

, 
onsisting of the elements of

G(F; F

0

)

b

whose singularities are 
ontained in B(b; n). Hen
e it is non-
ompa
t.

As to residual dis
reteness, an identity neighbourhood basis of G(F; F

0

)

b


on-

sisting of open normal subgroups is given by the 
olle
tion

�

G(F; F

0

)

B(b;n)

�

n2N

. �

4.3. Lederle Groups. As before, we 
onsider the d-regular tree T

d

= (V;E)

with a labelling and a base vertex b 2 V . Further, let F � Sym(
). In [Led17℄,

Lederle introdu
es a lo
ally isomorphi
 version of U(F ) resembling Neretin's group

[Ner03℄ and thereby generalizes Neretin's 
onstru
tion.

Towards a pre
ise de�nition, we re
all the following from [Led17, Se
tion 3.2℄:

A �nite subtree T � T

d

is 
omplete if it 
ontains b and all its non-leaf verti
es have

valen
y d. We denote the set of leaves of T by L(T ) � V (T

d

). Given a leaf v 2 L(T ),

let T

v

denote the subtree of T

d

spanned by v and those verti
es outside T whose


losest vertex in T is v. Then de�ne T

d

nT :=

F

v2L(T )

T

v

, a forest of jL(T )j trees.

Let H � Aut(T

d

). Given �nite 
omplete subtrees T; T

0

� T

d

with jL(T )j =

jL(T

0

)j, a forest isomorphism ' : T

d

nT ! T

d

nT

0

su
h that for every v 2 L(T )

there is h

v

2 H with 'j

T

v

= h

v

j

T

v

is an H-honest almost automorphism of T

d

.

Two H-honest almost automorphisms of T

d

given by ' : T

d

nT

1

! T

d

nT

0

1

and  :

T

d

nT

2

! T

d

nT

0

2

are equivalent if there exists a �nite 
omplete subtree T � T

1

[ T

2

with 'j

T

d

nT

=  j

T

d

nT

. Noti
e that for any �nite 
omplete subtree T � T

1

there is a

unique �nite 
omplete subtree T

0

� T

0

1

and representative '

0

: T

d

nT ! T

d

nT

0

of ';

analogously for T

0

1

. Hen
e we may pi
k a �nite 
omplete subtree T � T

0

1

[ T

2

and

representatives of ' and  with 
odomain and domain equal to T

d

nT respe
tively,

thus allowing for a 
omposition of equivalen
e 
lasses of H-honest almost automor-

phisms. Lederle's 
oloured Neretin groups (original notation F(U(F ))) 
an now be

de�ned as follows.

De�nition I.19. Let F � Sym(
). Set

N(F ) := f['℄ j ' is a U(F )-honest almost autormorphism of T

d

g:

Observe that N(F ) \ Aut(T

d

) = G(F ). As before, there exists a unique group

topology on N(F ) su
h that the in
lusion U(F ) � N(F ) is open and 
ontinu-

ous. This is essentially due to the fa
t that N(F ) 
ommensurates a 
ompa
t open

subgroup of U(F ), see [Led17, Proposition 2.24℄.

We mention that most Lederle groups 
ontain no latti
es, see [Led17, The-

orem 1.2℄. This generalizes the same assertion for Neretin's group obtained in

[BCGM12℄. In this 
ontext, Lederle also produ
es new examples of lo
ally 
om-

pa
t, 
ompa
tly generated, simple groups without latti
es.

Overall, we have the following 
ontinuous and open inje
tions, 
apturing that

all involved groups have isomorphi
 open subgroups:

U(F )

// //

G(F )

// //

N(F ):



CHAPTER II

Universal Groups

We present a generalization of Burger{Mozes universal groups that arises via

pres
ribing the lo
al a
tion on balls of a given radius k 2 N around verti
es. The

Burger{Mozes 
onstru
tion 
orresponds to the 
ase k = 1. Whereas many prop-

erties of their 
onstru
tion 
arry over to this new setting in a straightforward

fashion, others require a more 
areful analysis. We pro
eed by exhibiting exam-

ples and (non)-rigidity phenomena of our 
onstru
tion. The universality statement

given in Theorem II.23 provides both a 
hara
terization of the generalized universal

groups and the k-
losures of groups that a
t lo
ally transitively with an involutive

inversion on the d-regular tree. The dis
rete 
ase dis
ussed in Se
tion 5, utilizes

Theorem II.23 to suggest a new approa
h to the Weiss 
onje
ture stating that for a

given lo
ally �nite tree T there are only �nitely many 
onjuga
y 
lasses of dis
rete,

vertex-transitive and lo
ally primitive subgroups of Aut(T ). It also shows that the

additional assumption in Theorem II.23 
ompared to [BM00a, Proposition 3.2.2℄

is indeed ne
essary. Finally, Se
tion 7 applies the framework of universal groups to

groups a
ting with non-trivial quasi-
enter. We 
hara
terize the type of elements

that the quasi-
enter of a non-dis
rete subgroup of Aut(T

d

) 
an have in terms of its

lo
al a
tion and expli
itly 
onstru
t groups with non-trivial quasi-
enters to show

that said 
hara
terization is sharp.

1. De�nition and Basi
 Properties

1.1. De�nition. Let 
 be a set of 
ardinality d � 3 and let T

d

= (V;E)

denote the d-regular tree. Re
all that a labelling l of T

d

is a map l : E ! 
 su
h

that for every x 2 V the map l

x

: E(x) ! 
; y 7! l(y) is a bije
tion and for all

e 2 E we have l(e) = l(e).

Given k 2 N, �x a labelled tree B

d;k

with


enter b whi
h is isomorphi
 to a ball of radius k

in T

d

and whose labelling arises from a labelling

of T

d

via su
h an isomorphism. For example, B

3;2

may be as on the side. Then for every x 2 V ,

there is a unique label-respe
ting isomorphism

l

k

x

: B(x; k)! B

d;k

:

b

b

b

b

b

1

2

3

b

b

2

3

b

b

1

3

b

b
2

1

These maps allow us to 
apture the k-lo
al a
tions of automorphisms via the map

�

k

: Aut(T

d

)�X ! Aut(B

d;k

); (g; x) 7! �

k

(g; x) := l

k

gx

Æ g Æ (l

k

x

)

�1

:

De�nition II.1. Let F � Aut(B

d;k

) and l a labelling of T

d

. De�ne

U

(l)

k

(F ) := fg 2 Aut(T

d

) j 8x 2 V : �

k

(g; x) 2 Fg:

The following lemma states that the maps �

k

satisfy a 
o
y
le identity whi
h

immediately implies that U

(l)

k

(F ) is a subgroup of Aut(T

d

) for every F � Aut(B

d;k

).

Lemma II.2. Let x 2 V and g; h 2 Aut(T

d

). Then �

k

(gh; x) = �

k

(g; hx)�

k

(h; x).

11
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Proof. We readily 
ompute

�

k

(gh; x) =l

k

(gh)x

Æ gh Æ (l

k

x

)

�1

= l

k

(gh)x

Æ g Æ h Æ (l

k

x

)

�1

=

= l

k

(gh)x

Æ g Æ (l

k

hx

)

�1

Æ l

k

hx

Æ h Æ (l

k

x

)

�1

= �

k

(g; hx)�

k

(h; x):

for all x 2 V and all g; h 2 Aut(T

d

). �

1.2. Basi
 Properties. Note that the group U

(l)

1

(F ) of De�nition II.1 for

F � Aut(B

d;1

)

�

=

Sym(
) 
oin
ides with the Burger{Mozes universal group U

(l)

(F )

introdu
ed in [BM00a, Se
. 3.2℄ and Se
tion 4.1. Several basi
 properties of the

latter 
arry over to our generalized situation. First of all, passing between labellings

of T

d

amounts to 
onjugating in Aut(T

d

).

Lemma II.3. For every quadruple (l; l

0

; x; x

0

) of labellings l; l

0

of T

d

and verti
es

x; x

0

2 V , there is a unique automorphism g 2 Aut(T

d

) with gx = x

0

and l

0

= l Æ g.

Proof. Set gx := x

0

. Now assume indu
tively that g is uniquely determined on

B(x; n) (n 2 N

0

) and let v 2 S(x; n). Then g is also uniquely determined on E(v)

by the requirement l

0

= l Æ g, namely gj

E(v)

:= lj

�1

E(gv)

Æ l

0

j

E(v)

. �

Corollary II.4. Let F � Aut(B

d;k

). Further, let l and l

0

be labellings of T

d

. Then

the groups U

(l)

k

(F ) and U

(l

0

)

k

(F ) are 
onjugate in Aut(T

d

).

Proof. Choose x 2 V . Let � 2 Aut(T

d

) denote the automorphism of T

d

asso
iated

to (l; l

0

; x; x) by Lemma II.3, then U

(l)

k

(F ) = �U

(l

0

)

k

(F )�

�1

. �

In the following, we shall therefore omit the referen
e to an expli
it labelling.

Proposition II.5. Let F � Aut(B

d;k

). Then U

k

(F ) is a

(i) 
losed subgroup of Aut(B

d;k

), and

(ii) vertex-transitive.

Proof. As to (i), note that if g =2 U

k

(F ) then �

k

(g; x) =2 F for some x 2 V . In this


ase, the open neighbourhood fh 2 Aut(T

d

) j hj

B(x;k)

= gj

B(x;k)

g of g in Aut(T

d

)

is also 
ontained in the 
omplement of U

k

(F ).

For (ii), let x; x

0

2 V and let g 2 Aut(T

d

) be the automorphism of T

d

asso
iated

to (l; l; x; x

0

) by Lemma II.3. Then g 2 U

k

(F ) as �

k

(g; v) = id 2 F for all v 2 V . �

The following result is now a 
onsequen
e of Proposition II.5 and Lemma I.13.

Corollary II.6. Let F � Aut(B

d;k

). Then U

k

(F ) is a 
ompa
tly generated, totally

dis
onne
ted, lo
ally 
ompa
t Hausdor� group.

Proof. The group U

k

(F ) is totally dis
onne
ted lo
ally 
ompa
t Hausdor� as a


losed subgroup of Aut(T

d

). To show 
ompa
t generation, �x x 2 V . Then U

k

(F )

is generated by the join of the 
ompa
t set U

k

(F )

x

and the �nite generating set

of U

1

(fidg) = U

k

(fidg) � U

k

(F ) given in the proof of Lemma I.13: Indeed, for

� 2 U

k

(F ) pi
k � in the �nitely generated, vertex-transitive subgroup U

1

(fidg) of

U

k

(F ) su
h that �(�x) = x. Then �� 2 U

k

(F )

x

and the assertion follows. �

Proposition II.7. Let F � Aut(B

d;k

). Then U

k

(F ) satis�es Property P

k

.

Proof. Let e 2 E. Clearly, U

k

(F )

e

k
� U

k

(F )

e

k

;T

y

�U

k

(F )

e

k

;T

x

. Conversely, 
onsider

g 2 U

k

(F )

e

k and de�ne g

y

2 Aut(T

d

) and g

x

2 Aut(T

d

) by

�

k

(g

y

; v) =

(

�

k

(g; v) v 2 V (T

x

)

id v 2 V (T

y

)

and �

k

(g

x

; v) =

(

id v 2 V (T

x

)

�

k

(g; v) v 2 V (T

y

)

respe
tively. Then g

y

2 U

k

(F )

e

k

;T

y

, g

x

2 U

k

(F )

e

k

;T

x

and g = g

y

Æ g

x

. �
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2. Compatibility and Dis
reteness

We now generalize parts (iv) and (vi) of Proposition I.12 to the generalized

setting. This results in a 
ompatibility 
ondition (C) and a dis
reteness 
ondition

(D) on subgroups F � Aut(B

d;k

) that hold if and only if the asso
iated universal

group lo
ally a
ts like F and is dis
rete respe
tively.

2.1. Compatibility. First, we ask whether U

k

(F ) lo
ally a
ts like F , that

is whether the a
tions U

k

(F )

x

y B(x; k) and F y B

d;k

are isomorphi
 for every

x 2 V . Whereas this always holds for k = 1 by Lemma II.3 it need not be true for

k � 2, see Example II.9, the issue being (non)-
ompatibility among elements of F .

The 
ondition developed in this se
tion allows for 
omputations. A more pra
ti
al

version from a theoreti
al viewpoint follows in Se
tion 3.

We introdu
e the following notation for verti
es in the labelled tree (T

d

; l):

Given x 2 V and w = (!

1

; : : : ; !

n

) 2 


n

(n 2 N

0

), set x

w

:= 


x;w

(n) where




x;w

: Path

(w)

n

:=

b b b b

0 1 2

: : :

n

w

1

w

2

! T

d

is the unique label-respe
ting morphism sending 0 to x 2 V . If w is the empty

word, set x

w

:= x. Whenever admissible, we also adopt this notation in the 
ase

of B

d;k

and its labelling. In parti
ular, S(x; n) is in natural bije
tion with the set




(n)

:= f(!

1

; : : : ; !

n

) 2 


n

j 8k 2 f1; : : : ; n� 1g : !

k

6= !

k+1

g.

Now, let x 2 V and suppose that � 2 U

k

(F )

x

realizes a 2 F at x, that is

�j

B(x;k)

= (l

k

x

)

�1

Æ a Æ l

k

x

:

Then given the 
ondition that �

k

(�; x

!

) be in F for all ! 2 
, we obtain the

following ne
essary 
ondition on F for U

k

(F ) to a
t like F at x 2 V :

8a 2 F 8! 2 
 : 9a

!

2 F : (l

k

x

)

�1

Æ a Æ l

k

x

j

S

!

= (l

k

�x

!

)

�1

Æ a

!

Æ l

k

x

!

j

S

!

where S

!

:= B(x; k) \ B(x

!

; k) � T

d

. Set T

!

:= l

k

x

(S

!

) � B

d;k

. Then the above


ondition 
an be rewritten as

8a 2 F 8! 2 
 : 9a

!

2 F : a

!

j

T

!

= l

k

�x

!

Æ (l

k

x

)

�1

Æ a Æ l

k

x

Æ (l

k

x

!

)

�1

j

T

!

:

Now observe the following: First of all, �x

!

depends only on a. Se
ondly, the subtree

T

!

of B

d;k

does not depend on x, and thirdly, �

!

:= l

k

x

j

T

!

Æ (l

k

x

)

�1

j

T

!

is the unique

non-trivial, involutive and label-respe
ting automorphism of T

!

, given by

�

!

:= l

k

x

�

�

T

!

Æ (l

k

x

!

)

�1

�

�

T

!

: T

!

! S

!

! T

!

; b

w

7! x

!w

7! b

!w

for admissible words w. Hen
e the above 
ondition may be rewritten as

(C) 8a 2 F 8! 2 
 : 9a

!

2 F : a

!

j

T

!

= �

a(!)

Æ a Æ �

!

:

In this situation we shall say that a

!

is 
ompatible with a in dire
tion !.

Proposition II.8. Let F � Aut(B

d;k

). Then U

k

(F ) lo
ally a
ts like F if and only if

F satis�es the 
ompatibility 
ondition (C).

Proof. By the above, 
ondition (C) is ne
essary. To show that it is also suÆ
ient,

let v 2 V and a 2 F . We aim to de�ne an automorphism � 2 U

k

(F ) whi
h realizes

a at v. This for
es us to set

�j

B(v;k)

:= (l

k

v

)

�1

Æ a Æ l

k

v

:

Now, assume indu
tively that � is de�ned 
onsistently on B(v; n) in the sense that

�

k

(�; x) 2 F for all x 2 B(v; n) with B(x; k) � B(v; n). In order to extend � to

B(v; n + 1), let x 2 S(v; n � k + 1) and let ! 2 
 be the unique label su
h that

x

!

2 S(v; n � k). Applying 
ondition (C) to the pair (
 := �

k

(�; x

!

); !) provides
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an element 


!

2 F su
h that

(l

k

�x

!

)

�1

Æ 
 Æ l

k

x

!

�

�

S

!

= (l

k

�x

)

�1

Æ 


!

Æ l

k

x

�

�

S

!

where S

!

:= B(x; k) \ B(x

!

; k) and we have realized

�

!

as l

k

x

!

�

�

T

!

Æ (l

k

x

)

�1

�

�

T

!

and �


(!)

as l

k

�x

�

�

T


(!)

Æ (l

k

�x

i

)

�1

�

�

T


(!)

:

Now extend � 
onsistently to B(v; n+1) by setting �j

B(x;k)

:= (l

k

�x

)

�1

Æ


!

Æ l

k

x

. �

Example II.9. Let 
 := f1; 2; 3g and a 2 Aut(B

3;2

) the element whi
h swaps the

leaves x

12

and x

13

of B

3;2

. Then F := hai = fid; ag does not 
ontain an element


ompatible with a in dire
tion 1 2 
 and hen
e does not satisfy 
ondition (C).

To make the veri�
ation of 
ondition (C) viable, we re
ord the following redu
-

tion to generating sets: For a; b 2 F � Aut(B

d;k

) and 
 := ab 2 F we have




!

j

T

!

= �


(!)

Æ a Æ b Æ �

!

=

�

�


(!)

Æ a Æ �

b(!)

�

Æ

�

�

b(!)

Æ b Æ �

!

�

=

�

�

a(b(!))

Æ a Æ �

b(!)

�

Æ

�

�

b(!)

Æ b Æ �

!

�

Thus if C

F

(a; !) denotes the set of elements in F whi
h are 
ompatible with a 2 F

in dire
tion ! 2 
 then C

F

(ab; !) � C

F

(b; a!)C

F

(a; !). It therefore suÆ
es to


he
k 
ondition (C) on a generating set of F .

Given S � 
, we also de�ne the 
ompatibility set C

F

(a; S) :=

T

!2S

C

F

(a; !),

the set of elements in F whi
h are 
ompatible with a 2 F in all dire
tions from S.

As a 
onsequen
e, we obtain the following des
ription of the lo
al a
tion of

U

k

(F ) if F does not satisfy 
ondition (C).

Corollary II.10. Let F � Aut(B

d;k

). Then F has a unique maximal subgroup C(F )

whi
h satis�es 
ondition (C). Furthermore, U

k

(F ) = U

k

(C(F )).

Proof. By the above, C(F ) :=hH � F j H satis�es (C)i�F satis�es 
ondition (C).

Clearly, it is the unique maximal su
h subgroup of F .

By de�nition, U

k

(C(F )) � U

k

(F ). Conversely, suppose g 2 U

k

(F )nU

k

(C(F )).

Then there is x 2 V su
h that �

k

(g; x) 2 FnC(F ) and the group

C(F ) � hC(F ); f�

k

(g; x) j x 2 V gi � F

satis�es 
ondition (C), too, as 
an be seen by setting �

k

(g; x)

!

:= �

k

(g; x

!

). This


ontradi
ts the maximality of C(F ). �

Remark II.11. Let F � Aut(B

d;k

) satisfy (C). Elements of U

k

(F ) are readily 
on-

stru
ted: Given v; w 2 V (T

d

) and a 2 F , de�ne g : B(v; k) ! B(w; k) by set-

ting g(v) = w and �(g; v) = a. Given a 
olle
tion of a
tions (a

!

)

!2


su
h that

a

!

2 C(�; !) for all ! 2 
 there is a unique extension of g to B(v; k+1) su
h that

�

k

(g; v

!

) = a

!

. Pro
eed iteratively.

2.2. Dis
reteness. The group F � Aut(B

d;k

) also determines whether or

not U

k

(F ) is dis
rete. In fa
t, the following proposition generalizes the fa
t that a

Burger-Mozes universal group is dis
rete if and only if its lo
al a
tion is semiregular.

Proposition II.12. Let F � Aut(B

d;k

) satisfy 
ondition (C). Then U

k

(F ) � Aut(T

d

)

is dis
rete if and only if F satis�es

(D) 8! 2 
 : F

T

!

= fidg:

Proof. Fix v 2 V . A subgroup H � Aut(T

d

) is non-dis
rete if and only if for every

n 2 N there is h 2 Hnfidg su
h that hj

B(v;n)

= id.

Suppose that U

k

(F ) is non-dis
rete. Then there are n 2 N

�k

and � 2 U

k

(F )

su
h that �j

B(v;n)

= id and �j

B(v;n+1)

6= id. Hen
e there is x 2 S(v; n� k+1) with
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a := �

k

(�; x) 6= id. In parti
ular, a 2 F

T

!

nfidg where ! is the label of the unique

edge e with o(e) = x and d(v; x) = d(v; t(e)) + 1.

Conversely, suppose that F

T

!

6= fidg for some ! 2 
. For every n 2 N

�k

,

we de�ne an automorphism � 2 U

k

(F ) with �j

B(v;n)

= id and �j

B(v;n+1)

6= id: If

�j

B(v;n)

= id, then �

k

(�; x) 2 F for all x 2 B(v; n � k). Next, 
hoose e 2 E with

x := o(e) 2 S(v; n� k + 1) and t(e) 2 S(v; n� k) su
h that l(e) = !. We extend �

to B(x; k) by �j

B(x;k)

:= l

k

x

Æ s Æ (l

k

x

)

�1

where s 2 F

T

!

nfidg. Finally, we extend �

to T

d

using 
ondition (C). �

As we shall investigate the dis
rete 
ase later on in Se
tion 5, we de�ne 
ondition

(CD) on F � Aut(B

d;k

) to be the 
onjun
tion of (C) and (D). The following

des
ription is then immediate from the above:

(CD) 8a 2 F 8! 2 
 : 9! a

!

2 F : a

!

j

T

!

= �

a(!)

Æ a Æ �

!

:

In this 
ase, an element of U

k

(F )

x

is determined by its a
tion on B(x; k). Hen
e

U

k

(F )

x

�

=

F for all x 2 V and U

k

(F )

(x;y)

�

=

F

(b;b

!

)

for all adja
ent x; y 2 V with

l(x; y) = !. Also, F admits a unique map z : F �
! F; (a; !) 7! a

!

whi
h for all

a; b 2 F and ! 2 
 satis�es

(i) z(a; !) 2 C

F

(a; !),

(ii) z(ab; !) = z(a; b!)z(b; !), and

(iii) z(z(a; !); !) = a,

We shall refer to a map z as above as an involutive 
ompatibility 
o
y
le of F . In

parti
ular, z restri
ts to an automorphism z

!

:= z(�; !)j

F

(b;b

!

)

2 Aut(F

(b;b

!

)

) of

order at most 2 for every ! 2 
.

2.3. Group Stru
ture. For

e

F � Aut(B

d;k

), let F := �

e

F � Sym(
) denote

the proje
tion of

e

F onto Aut(B

d;1

)

�

=

Sym(
). As an illustration, we re
ord that

the stru
ture of U

k

(

e

F ) is parti
ularly simple if F is regular.

Proposition II.13. Let

e

F � Aut(B

d;k

) satisfy 
ondition (C). Suppose that F := �

e

F

is regular. Then U

k

(

e

F ) = U

1

(F )

�

=

F � Z =2Z.

Proof. Fix b 2 V . Sin
e F is transitive, U

k

(

e

F ) is generated by U

k

(

e

F )

b

and an invo-

lution � inverting an edge with origin b. Given � 2 U

k

(

e

F )

b

, regularity of F implies

that �

1

(�; x) = 


1

(�; b) 2 F for all x 2 V . The subgroups H

1

:= U

k

(

e

F )

b

�

=

F and

H

2

:= h�i of U

k

(

e

F ) generate a free produ
t within U

k

(F ) by the ping-pong lemma:

Put X

1

:= V (T

b

) and X

2

:= V (T

b

!

). Any non-trivial element of H

1

maps X

2

into

X

1

be regularity of F . Also, � 2 H

2

maps X

1

into X

2

by de�nition. �

More generally, Bass-Serre theory [Ser03℄ identi�es the universal groups U

k

(F )

as amalgamated free produ
ts.

Proposition II.14. Let F � Aut(B

d;k

) with �F transitive satisfy (C) (and D). Then

U

k

(F )

�

=

U

k

(F )

x

�

U

k

(F )

(x;y)

U

k

(F )

fx;yg

 

�

=

F �

F

(b;b

!

)

(F

(b;b

!

)

)o Z =2Z)

!

for any edge (x; y) 2 E, where ! = l(x; y) and the a
tion of Z =2Z on F

(b;b

!

)

is

given by z

!

2 Aut(F

(b;b

!

)

).

Corollary II.15. Let F; F

0

� Aut(B

d;k

) satisfy (CD). If ' : F ! F

0

is an isomor-

phism su
h that '(F

(b;b

!

)

) = F

0

(b;b

!

0

)

for some !; !

0

2 
, then U

k

(F )

�

=

U

k

(F

0

). �

Note that Corollary II.15 applies to 
onjugate subgroups of Aut(B

d;k

) with (CD).

2.4. The Burger{Mozes Subquotient. Here, we determine the Burger{

Mozes subquotient H

(1)

=QZ(H

(1)

) of Theorem I.9 for 
ertain universal groups.



16 II. UNIVERSAL GROUPS

Proposition II.16. Let F � Aut(B

d;k

). If F satis�es (D) then QZ(U

k

(F )) = U

k

(F ).

Otherwise, QZ(U

k

(F )) = fidg.

Proof. If F satis�es (D) then U

k

(F ) is dis
rete and hen
e QZ(U

k

(F )) = U

k

(F ).

Conversely, if F does not satisfy (D) then Proposition II.7 implies that any half-tree

stabilizer in U

k

(F ) is non-trivial: Let T � T

d

be a half-tree. Then T 2 fT

x

; T

y

g for

an edge e := (x; y) 2 E. Sin
e U

k

(F ) is non-dis
rete and has satis�es Property P

k

by Proposition II.7, the stabilizer U

k

(F )

e

k
= U

k

(F )

e

k

;T

y

�U

k

(F )

e

k

;T

x

is non-trivial.

In parti
ular, either U

k

(F )

T

x

or U

k

(F )

T

y

is non-trivial. Then both are non-trivial

in view of the existen
e of label-respe
ting inversions. Hen
e so is U

k

(F )

T

.

Therefore, U

k

(F ) has Property H of M�oller{Vonk [MV12, De�nition 2.3℄ and

[MV12, Proposition 2.6℄ implies that U

k

(F ) has trivial quasi-
enter. �

Proposition II.17. Let F � Aut(B

d;k

) with �F � Sym(
) semiprimitive satisfy (C)

but not (D). Then U

k

(F )

(1)

= U

k

(F )

+

k

.

Proof. The subgroup U

k

(F )

+

k

� U

k

(F ) is open, hen
e 
losed, and normal by

de�nition. Sin
e U

k

(F ) does not satisfy (D) it is also non-dis
rete. By Corollary

II.43, we 
on
lude that U

k

(F )

+

k

� U

k

(F )

(1)

. However, sin
e U

k

(F ) satis�es Prop-

erty P

k

by Proposition II.7, the group U

k

(F )

+

k

is simple by Theorem I.5. Hen
e

U

k

(F )

+

k

= U

k

(F )

(1)

. �

In parti
ular, U

k

(F )

+

k

is a non-dis
rete, totally dis
onne
ted lo
ally 
ompa
t

simple group in the 
ase of Proposition II.17. If �F is quasiprimitive, then U

k

(F )

+

k

is 
o
ompa
t in U

k

(F ) by [BM00a, Proposition 1.2.1℄ and therefore 
ompa
tly

generated by [M

�

S59℄.

Overall, we may re
ord U

k

(F )

(1)

=QZ(U

k

(F )

(1

)) = U

k

(F )

+

k

in the quasiprim-

itive 
ase, using [BM00a, Proposition 1.2.1 (4)℄.

3. Examples

In this se
tion, we 
onstru
t various 
lasses of examples of subgroups of Aut(B

d;k

)

satisfying (C) or (CD), and prove a rigidity result for 
ertain lo
al a
tions.

First, we introdu
e a workable realization of Aut(B

d;k

) as well as the 
onditions

(C) and (CD). Essentially, we view an automorphism � of B

d;k

as the 
olle
tion

f�

k�1

(�; v) j v 2 B(b; 1)g: Let Aut(B

d;1

)

�

=

Sym(
) be the natural isomorphism

and for k � 2 identify Aut(B

d;k

) with its image under the map

Aut(B

d;k

)! Aut(B

d;k�1

)n

Y

!2


Aut(B

d;k�1

); � 7! (�

k�1

(�; b); (�

k�1

(�; b

!

))

!

)

where Aut(B

d;k�1

) a
ts on

Q

!2


Aut(B

d;k�1

) by permuting the fa
tors a

ording

to its a
tion on S(b; 1)

�

=


. In addition, for every ! 2 
 
onsider the map

p

!

: Aut(B

d;k

)! Aut(B

d;k�1

)�Aut(B

d;k�1

); � 7! (�

k�1

(�; b); �

k�1

(�; b

!

))

whose image we interpret as a relation on Aut(B

d;k�1

). The 
onditions (C) and (D)

for a subgroup F � Aut(B

d;k

) now read as follows.

(C) 8! 2 
 : p

!

(F ) is symmetri


(D) 8! 2 
 : p

!

j

�1

F

(id; id) = fidg

3.1. The 
ase k = 2. We �rst 
onsider the 
ase k = 2 whi
h suÆ
es in 
ertain

situations, see Theorem II.22. Consider the map 
 : Sym(
) ! Aut(B

d;2

) whi
h

maps a 2 Sym(
) to (a; (a; : : : ; a)) 2 Aut(B

d;2

) using the realization of Aut(B

d;2

)

de�ned above. Given F � Sym(
), the image

�(F ) := im(
j

F

) = f(a; (a; : : : ; a)) j a 2 Fg

�

=

F
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is a subgroup of Aut(B

d;2

) isomorphi
 to F whi
h satis�es (CD). Indeed, its 
om-

patibility 
o
y
le is given by z : �(F ) � 
 ! �(F ); (
(a); !) 7! 
(a). Noti
e that

�(F ) implements the restri
tion of the diagonal a
tion F y 


2

to 


(2)

�

=

S(b; 2).

Clearly, U

2

(�(F ))=f� 2 Aut(T

d

) j 9a 2 F : 8x 2 V : 


!

(�; x) = ag =: D(F ),

following the notation of [BEW15℄. Moreover, we have the following des
ription of

all subgroups F

(2)

�Aut(B

d;2

) whi
h satisfy (C), proje
t onto F and 
ontain �(F ).

Proposition II.18. Let F � Sym(
). Given K �

Q

!2


F

!

�

=

ker� � Aut(B

d;2

),

there is F

(2)

� Aut(B

d;2

) with (C) and �tting into the split exa
t sequen
e

1

//

K

//

�

//

F

(2)

�

/

F




o

//

1

if and only if K is invariant under the a
tion F y

Q

!2


F

!

given by

a � (a

!

)

!2


:= (aa

a

�1

(!)

)

!2


In the split situation of Proposition II.18 we also denote F

(2)

by �(K).

Proof. If there is an exa
t sequen
e as above then K�F

(2)

is invariant under 
on-

jugation by �(F ) � F

(2)

. Conversely, if K is invariant under the given a
tion, then

F

(2)

:= f(a; (aa

!

)

!

) j a 2 F; 8! 2 
 : a

!

2 F

!

g �ts into the sequen
e. Note that

F

(2)


ontains K and �(F ), and is a subgroup: For (a; (aa

!

)

!

); (b; (bb

!

)

!

) 2 F

(2)

,

(a; (aa

!

)

!

)(b; (bb

!

)

!

) = (ab; (aa

b(!)

bb

!

)) = (ab; (ab Æ b

�1

a

b(!)

bb

!

)

!

) 2 F

(2)

by assumption. In parti
ular, F

(2)

= h�(F );Ki. We now 
he
k 
ondition (C) on

generators of F

(2)

. As before, 
(a) 2 C(
(a); !) for all a 2 F and ! 2 
. Further,

given k 2 K, we have 
(pr

!

k)k

�1

2 C(k; !) for all ! 2 
. �

Both the 
onstru
tion � and Proposition II.18 generalize to non-trivial involu-

tive 
ompatibility 
o
y
les of F . The following subgroups of Aut(B

d;2

) are of this

type: Let F � Sym(
) be transitive. Fix !

0

2 
 and let N � F

!

0

be normal.

Furthermore, �x elements f

!

2 F (! 2 
) satisfying f

!

(!

0

) = ! and de�ne

�(F;N) := f(a; (f

a(!)

f

�1

!

Æ f

!

a

!

0

f

�1

!

)

!

) j a 2 F; a

!

0

2 Ng

�

=

F �N;

�(F;N) := f(a; (a Æ f

!

a

(!)

!

0

f

�1

!

)

!

) j a 2 F; 8! 2 
 : a

(!)

!

0

2 Ng

�

=

F nN

d

:

Note that in the 
ase of �(F;N) we have 
hosen z(a; !) := f

a(!)

f

�1

!

for all a 2 F

and ! 2 
 but in general any involutive 
ompatibility 
o
y
le z of F for whi
h

�(F ) and f(id; (f

!

a

!

0

f

�1

!

)

!

) j ! 2 
g 
ommute works. The groups �(F;N) sat-

isfy (C) and the groups �(F;N) satisfy (CD). We abbreviate �(F ) := �(F; F

!

0

)

and �(F ) := �(F; F

!

0

). Noti
e that �(F ) 
an also be de�ned without assuming

transitivity of F , namely

�(F ) := f(a; (a

!

)

!

) j a 2 F; 8! 2 
 : a

!

2 C

F

(a; !)g

�

=

F n

Y

!2


F

!

It is then plain that U

2

(�(F )) = U

1

(F ) for every F � Sym(
). More generally,

assume that F � Sym(
) preserves a partition P : 
 =

F

i2I




i

. Set

�(F;P) := f(a; (a

!

)

!

) j a 2 F; a

!

2 C

F

(a; !) 
onstant w.r.t. Pg

�

=

F n

Y

i2I

F




i

:

The group �(F;P) satis�es (C) and plays a major role in Se
tion 7.

Example II.19. In this example we investigate Proposition II.18 for primitive dihe-

dral groups: Set F := D

p

� S

p

for some prime p � 3. Then F

i

�

=

(F

2

;+). Hen
e

U :=

Q

p

i=1

F

i

is a p-dimensional ve
tor spa
e over F

2

and the F -a
tion on it re-

du
es to permuting 
oordinates. In 
ase 2 2 (Z =pZ)

�

is primitive we show that

there are only the following four F -invariant subspa
es of U : The trivial subspa
e,

the diagonal subspa
e h(1; : : : ; 1)i, the whole spa
e and K := ker�

�

=

F

(p�1)

2

where
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� : U ! F

2

; (v

1

; : : : ; v

p

)

T

7!

P

p

i=1

v

i

. Noti
e that K is an F -invariant subspa
e be-


ause � is an F -invariant homomorphism. It is a 
onje
ture of Artin that there are

in�nitely many su
h primes, the list starting with 3, 5, 11, 13 : : :, see [Slo, A001122℄.

Suppose that W � U is F -invariant. It suÆ
es to show that K � W as soon

as W \ ker� 
ontains a non-trivial element w. To see this, we show that the or-

bit of w under the 
y
li
 group h%i = C

p

� D

p

generates a (p � 1)-dimensional

subspa
e of K whi
h hen
e equals K: Indeed, the rank of the 
ir
ulant matrix

C := (w; %w; %

2

w; : : : ; %

(p�1)

w) equals p�deg(g
d(x

p

�1; f(x))) where f(x) 2 F

2

[x℄

is the polynomial f(x) = w

p

x

p�1

+� � �+w

2

x+w

1

, see e.g. [Day60, Corollary 1℄. The

polynomial x

p

�1 2 F

2

[x℄ fa
tors into the irredu
ibles (x

p�1

+x

p�2

+� � �+x+1)(x�1)

by the assumption on p. Sin
e f has an even number of non-zero 
oeÆ
ients, we


on
lude that rank(C) = p� 1.

3.2. General 
ase. We now extend the 
onstru
tions � and � to arbitrary k.

Given F � Aut(B

d;k

) with (C), de�ne the subgroup

�

k

(F ) := f(�; (�

!

)

!

) j � 2 F; 8! 2 
 : �

!

2 C

F

(�; !)g

of Aut(B

d;k+1

). Clearly, �

k

(F ) satis�es (C) and U

k+1

(�

k

(F )) = U

k

(F ). Con
erning

the 
onstru
tion � we have the following.

Lemma II.20. Let F �Aut(B

d;k

) satisfy (C). Then there exists �

k

(F )�Aut(B

d;k+1

)

satisfying (CD) and su
h that �

k

: �

k

(F ) ! F is an isomorphism if and only if F

admits an involutive 
ompatibility 
o
y
le.

Proof. If F admits an involutive 
ompatibility 
o
y
le z, de�ne

�

k

(F ) := f(�; (z(�; !))

!

) j � 2 Fg � Aut(B

d;k+1

):

Then 


k

: F ! �

k

(F ); � 7! (�; (z(�; !))

!

) is an isomorphism and the involutive


ompatibility 
o
y
le of �

k

(F ) is given by ez : (


k

(�); !) 7! 


k

(z(�; !)). Conversely,

if a group �

k

(F ) as above exists, set z : (�; !) 7! pr

!

�

�1

k

�. �

Let F �Aut(B

d;k

) with (C) and l > k. Set �

l

(F ) := �

l�1

Æ � � � Æ �

k

(F ) for an

impli
it sequen
e of involutive 
ompatibility 
o
y
les and �

l

(F ) :=�

l�1

Æ� � �Æ�

k

(F ).

Example II.28 provides a group E � Aut(B

3;2

) that satis�es (C), admits an

involutive 
ompatibility 
o
y
le but does not satisfy (CD).

3.3. A rigid 
ase. For 
ertain F � Sym(
) the groups �(F ), �(F ) and �(F )

already yield all possible U

k

(

e

F ). The argument is based on Se
tions 3.4 and 3.5 of

[BM00a℄. The following lemma is due to M. Guidi
i by personal 
ommuni
ation.

Lemma II.21. Let F � Sym(
) be 2-transitive with F

!

simple non-abelian for all

! 2 
. Then every extension of F

!

(! 2 
) by F is equivalent to the dire
t produ
t.

Proof. Let 1! F

!

! F

(2)

! F ! 1 be an extension of F

!

by F . In parti
ular, F

!


an be regarded as a subgroup of F

(2)

and we may 
onsider the 
onjugation map

' : F

(2)

! Aut(F

!

). We show that K := ker' = C

F

(2)

(F

!

) � F

(2)


omplements

F

!

in F

(2)

. Sin
e F

!

is non-abelian, we have K\F

!

= fidg when
e K�F

!

� F

(2)

.

Now 
onsider F

(2)

=(K �F

!

) � Out(F

!

) whi
h is solvable by S
hreier's 
onje
ture.

Sin
e F

(2)

=F

!

�

=

F is not solvable we 
on
lude K 6= fidg. Now, by a theorem of

Burnside, every 2-transitive permutation group F is either almost simple or aÆne.

In the �rst 
ase, F is a
tually simple: LetN�F . Then F

!

\N�F

!

. Hen
e either

F

!

\N = fidg or F

!

\N = F

!

. Sin
e F is 2-transitive and hen
e primitive, every

normal subgroup a
ts transitively. In the �rst 
ase, N is regular whi
h 
ontradi
ts

F being almost simple. Hen
e the se
ond 
ase holds and N = NF

!

= F . Now

F

(2)

=(K�F

!

) is a proper quotient of F and hen
e trivial. Therefore F

(2)

= K�F

!

and K

�

=

F

(2)

=F

!

�

=

F . In the se
ond 
ase, F = F

!

o C

d

p

(d 2 N) and fidg 6= K

�

=
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K � F

!

=F

!

� F 
ontains the unique minimal normal subgroup C

d

p

�K � F . Sin
e

F

!

�

=

F=C

d

p

is non-abelian simple whereas F

(2)

=(K � F

!

) is solvable, we 
on
lude

that K 6= C

d

p

. But F=C

d

p

�

=

F

!

is simple, so K � F

!

= F

(2)

. �

Theorem II.22. Let F � Sym(
) be 2-transitive with F

!

simple non-abelian for all

! 2 
, and let

e

F � Aut(B

d;k

) with �

e

F = F satisfy (C). Then U

k

(

e

F ) equals either

U

2

(�(F )); U

2

(�(F )) or U

2

(�(F )) = U

1

(F ):

Proof. We may assume k � 2. Sin
e

e

F � Aut(B

d;k

) satis�es (C) so does the

restri
tion F

(2)

:= �

2

e

F � �(F ) � Aut(B

d;2

). Consider the proje
tion � : F

(2)

� F

and �x !

0

2 
. We have ker� �

Q

!2


F

!

�

=

F

d

!

0

and pr

!

ker� � F

!

0

for all ! 2 


be
ause F

(2)

satis�es (C). Sin
e F

!

0

is simple, ker� � F

(2)

and F is transitive

this implies that either pr

!

ker� = fidg for all ! 2 
 or pr

!

ker� = F

!

0

for

all ! 2 
. In the �rst 
ase, � : F

(2)

! F is an isomorphism and F

(2)

satis�es

(CD) whi
h implies F

(2)

= �(F ) and hen
e U

k

(

e

F ) = U

2

(�(F )) for some involutive


ompatibility 
o
y
le of F .

In the se
ond 
ase, Se
tion 3.4.3 of [BM00a℄ implies that ker� � F

d

!

0

is a

produ
t of subdiagonals preserved by the primitive a
tion of F on the index set

of F

d

!

0

. Therefore, either there is just one blo
k and ker�

�

=

F

!

0

, or all blo
ks

are singletons and ker�

�

=

F

d

!

0

. In the �rst 
ase, we 
on
lude F

(2)

= �(F ) using

Lemma II.21 whi
h satis�es (CD) and therefore U

k

(

e

F ) = U

2

(�(F )).

Now assume that ker�

�

=

F

d

!

0

. We aim to show that

e

F = �

k

(F ) whi
h implies

U

k

(

e

F ) = U

2

(�(F )) = U

1

(F ). To this end, we introdu
e the following notation:

Given ! 2 
 and B

d;k

, set S

n

(b; !) = fx 2 S(b; n) j d(x; b) = d(x; b

!

) + 1g for

n � k, a(n) := jS

n

(b; !)j and 
(n) := jS(b; n)j. Further, let F

(n)

� Aut(B

d;n

)

(n 2 N) denote the lo
al a
tions of U

k

(

e

F ).

First of all, note that U

k

(

e

F ) is non-dis
rete by the Thompson-Wielandt Theo-

rem, see [BM00a, Theorem 2.1.1℄: The group �(F )

T

!

�

=

F

d�1

!

0


annot be a p-group

given that F

!

0

is simple non-abelian. Thus K

n

:= stab

F

(n)

(B(b; n� 1)) � F


(n�1)

!

0

is non-trivial for all n 2 N.

We now indu
tively prove that F

(n)

a
ts transitively on S(b; n) for all n 2 N

whi
h holds for n = 2. Sin
e F

(n+1)

satis�es (C), the proje
tion onto ea
h fa
tor

of K

n+1

� F


(n)

!

0

is subnormal in F

!

0

. Sin
e F

!

0

is simple, F

(n)

a
ts transitively

on S(b; n) by the indu
tion hypothesis, and K

n+1

is non-trivial this implies that

pr

x

K

n+1

= F

!

0

for all x 2 S(b; n). Hen
e F

(n+1)

a
ts transitively on S(b; n + 1).

Thus U

k

(

e

F ) is lo
ally 1-transitive.

We now indu
tively prove that F

(n)

= �

n�1

(F

(n�1)

) for all n 2 N. This holds

for n = 2. As a 
onsequen
e of the above argument, K

n+1

is a produ
t of subdiag-

onals preserved by the transitive a
tion of F

(n+1)

on S(b; n). The asso
iated blo
k

de
omposition (B

j

)

j2J

of S(b; n) satis�es jB

j

\S

n

(b; !)j � 1 for all j 2 J and ! 2 
:

Sin
eK

n

�

=

F


(n�1)

!

0

by the indu
tion hypothesis we 
on
ludeK

n+1

j

S

n+1

(b;!)

�

=

F

a(n)

!

0

be
ause K

n+1

= stab

F

(n+1)

(B(b; n))�stab

F

(n+1)

(B(b

!

; n�1))

�

=

K

n

. However, any

su
h blo
k de
omposition has to be the de
omposition into singletons: Assume that

jB

j

j � 2 for some j 2 J and 
hoose !; !

0

2 
 su
h that B

j

\ S

n

(b; !) = x and

B(j) \ S

n

(b; !

0

) = x

0

. Further, 
hoose y 2 S

n

(b; !

0

)nfx

0

g. Then y 2 B

j

0

for some

j

0

2 Jnj. Sin
e U

k

(F

(k)

) is lo
ally 1-transitive, there is a 2 F

(n+1)

su
h that

ax = x and ax

0

= y. However, this implies aB

j

= B

j

and aB

j

= B

j

0

whi
h


ontradi
ts the assumption j 6= j

0

. �

See [BM00a, Example 3.3.1℄ for examples of permutation groups satisfying

the assumptions of Theorem II.22. If F does not have simple point stabilizers or

preserves a non-trivial partition, further universal groups are given by U

2

(�(F;N)),

U

2

(�(F;N)) and U

2

(�(F;P)), see Se
tion 3.1.
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4. Universality

Let

e

F � Aut(B

d;k

) satisfy (C). Suppose that F := �

e

F is transitive. Then

U

k

(

e

F ) � Aut(T

d

) is lo
ally transitive, satis�es Property P

k

and 
ontains an in-

volutive inversion. In this se
tion we show that these properties 
hara
terize lo-


ally transitive universal groups and thereby determine the k-
losures of all lo
ally

transitive groups 
ontaining an involutive inversion. Re
all that the k-
losure of

H � Aut(T

d

) is the group

H

(k)

:= fg 2 Aut(T

d

) j 8x 2 V : 9h 2 H : gj

B(x;k)

= hj

B(x;k)

g:

Theorem II.23. Let H � Aut(T

d

) be lo
ally transitive and 
ontain an involutive

inversion. Then there is a labelling l of T

d

su
h that

U

1

(F

(1)

) � U

2

(F

(2)

) � � � �U

k

(F

(k)

) � � � � � H � U

1

(fidg)

where F

(k)

� Aut(B

d;k

) is a
tion isomorphi
 to the a
tion of H on balls of radius k.

Furthermore, H

(k)

= U

k

(F

(k)

).

Proof. We �rst 
onstru
t a labelling l of T

d

su
h thatH � U

(l)

1

(fidg): Fix b 2 V and


hoose a bije
tion l

b

: E(b) ! 
. The assumptions provide an involutive inversion

�

!

2 H of the edge (b; b

!

) for ea
h ! 2 
. Using these, we de�ne the announ
ed

labelling indu
tively: Set lj

E(b)

:= l

b

. Assume that l is de�ned on E(b; n) and for

e 2 E(b; n+ 1) put l(e) := l(�

!

(e)) if b

!

is part of the unique redu
ed path from b

to o(e). Sin
e the �

!

(! 2 
) have order 2, we have �

1

(�

!

; x) = id for all ! 2 
 and

x 2 V . Thus hf�

!

j ! 2 
gi = U

(l)

1

(fidg) � H .

Now let h 2 H and x 2 V . Further, let (b; b

1

; : : : ; b

n

; x) and (b; b

0

1

; : : : ; b

0

m

; h(x))

be the unique redu
ed paths from b to x and h(x) respe
tively. Sin
e U

(l)

1

(fidg) � H ,

the latter in parti
ular 
ontains the unique label-respe
ting inversion �

e

about every

edge e in the above paths. Then

s := �

�1

(b

0

1

;b)

� � � �

�1

(b

0

m

;b

0

m�1

)

�

�1

(h(x);b

0

m

)

Æ h Æ �

(x;b

n

)

� � � �

(b

2

;b

1

)

�

(b

1

;b)

2 H

stabilizes b and the 
o
y
le identity implies for every k 2 N:

�

k

(h; x) = �

k

(�

(h(x);b

0

m

)

� � � �

(b

0

1

;b)

Æ s Æ �

�1

(b

1

;b)

� � � �

�1

(x;b

n

)

; x) = �

k

(s; b) 2 F

(k)

:

where F

(k)

� Aut(B

d;k

) is de�ned by l

k

b

ÆH

b

j

B(b;k)

Æ(l

k

b

)

�1

. The remaining assertions

are now immediate from [BEW15, Theorem 5.4℄. �

Remark II.24. Retain the notation of Theorem II.23. By Proposition I.14, there

is a labelling l of T

d

su
h that U

(l)

1

(F

(1)

) � H regardless of the minimal order of

an inversion. This labelling may be distin
t from the one of Theorem II.23 whi
h

fails without assuming the existen
e of an involutive inversion: For example, a

vertex-stabilizer of the group G

1

2

of Example II.28 is a
tion isomorphi
 to �(S

3

)

but G

1

2

6� U

(l)

2

(�(S

3

)) for any labelling l be
ause (G

1

2

)

fb;b

i

g

�

=

Z =4Z whereas

U

(l)

2

(�(S

3

))

fb;b

i

g

�

=

�(S

3

)

(b;b

i

)

o Z =2Z

�

=

Z =2Z�Z =2Z

by Proposition II.14.

The following 
orollary of Theorem II.23 
hara
terizes universal groups as the

lo
ally transitive subgroups of Aut(T

d

) whi
h 
ontain an involutive inversion and

satisfy an independen
e property.

Corollary II.25. Let H � Aut(T

d

) be 
losed, lo
ally transitive and 
ontain an

involutive inversion. Then there is a labelling l of T

d

and a group F

(k)

� Aut(B

d;k

)

su
h that H = U

k

(F

(k)

) if and only if H satis�es Property P

k

.
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Proof. If H = U

k

(F

(k)

) then H has Property P

k

by Proposition II.7. Conversely,

if H satis�es Property P

k

then H = H = H

(k)

= U

k

(F

(k)

) by virtue of [BEW15,

Theorem 5.4℄ and Theorem II.23. �

To 
omplement Theorem II.23 we re
ord the following 
riterion for 
ertain

dis
rete subgroups of Aut(T

d

) to 
ontain an involutive inversion.

Proposition II.26. LetH�Aut(T

d

) be dis
rete and lo
ally transitive with odd order

point stabilizers. If H 
ontains an inversion then it 
ontains an involutive one.

Proof. Let k

0

2 N

0

be minimal su
h that stabilizers in H of balls of radius k

0

about

edges in T

d

are trivial. Let � 2 H be an inversion of an edge e 2 E. Then �

2

2 H

e

.

Hen
e we are done if k

0

= 0. Otherwise the smallest integer n

1

2 N su
h that

(�

2

)

n

1

2 H

B(1;e)

is odd by the assumptions on the lo
al a
tion of H . Iteratively, the

smallest integer n

k

2 N su
h that (�

2

)

n

k

2 H

B(k;e)

is odd for every k � k

0

and we


on
lude that �

n

k

0

is an involutive inversion. �

In Proposition II.26, we may for example assume that H be vertex-transitive.

Combined with lo
al transitivity this implies the existen
e of an inversion.

Primitive permutation groups with odd order point stabilizers were 
lassi�ed

in [LS91℄. For instan
e, they in
lude PSL(2; q) for all q � 3 mod 4.

5. The Dis
rete Case

In this se
tion we study the universal group 
onstru
tion in the dis
rete 
ase.

This provides Remark II.24 showing that the assumptions of Theorem II.23 are

ne
essary and o�ers a new approa
h to the long standing Weiss 
onje
ture, stating

in parti
ular that there are only �nitely many 
onjuga
y 
lasses of dis
rete, vertex-

transitive, lo
ally primitive subgroups of Aut(T

d

).

The following straightforward 
onsequen
e of Theorem II.23 identi�es 
ertain

groups relevant to the Weiss 
onje
ture as universal groups for lo
al a
tions satis-

fying 
ondition (CD).

Corollary II.27. Let H � Aut(T

d

) be dis
rete, lo
ally transitive and 
ontain an in-

volutive inversion. Then there is k 2 N and a labelling l of T

d

su
h thatH = U

(l)

k

(F

k

)

where F

k

� Aut(B

d;k

) is a
tion isomorphi
 to the a
tion of H on balls of radius k.

Proof. Note that dis
reteness of H implies Property P

k

for every k 2 N su
h that

stabilizers in H of balls of radius k in T

d

are trivial and apply Corollary II.25. �

Hen
e studying the 
lass of groups given in Corollary II.27 redu
es to studying

subgroups of Aut(B

d;k

) (k 2 N) whi
h satisfy (CD). By Corollary II.15, any two


onjugate su
h groups yield isomorphi
 universal groups. In this sense, it suÆ
es

to examine 
onjuga
y 
lasses of subgroups of Aut(B

d;k

). This 
an be done 
ompu-

tationally using the des
ription of 
onditions (C) and (D) developed in Se
tion 2,

using e.g. GAP [GAP17℄.

Example II.28. Consider the 
ase d = 3. By [Tut47℄, [Tut59℄ and [DM80℄, there

are, up to 
onjuga
y, seven dis
rete, vertex-transitive and lo
ally transitive sub-

groups of Aut(T

3

). We denote them by G

1

, G

2

, G

1

2

, G

3

, G

4

, G

1

4

and G

5

. They have

known amalgamated free produ
t stru
ture and presentation. A subs
ript n indi-


ates that the respe
tive group a
ts regularly on non-ba
ktra
king paths of length

n in T

3

, and determines the isomorphism 
lass of the (�nite) vertex stabilizer whi
h

is of order 3 � 2

n�1

. The respe
tive group 
ontains an involutive inversion if and

only if it has no supers
ript. The minimal order of an inversion in G

1

2

and G

1

4

is

4. See also [CL89℄. By Corollary II.27, the groups G

n

(n 2 f1; : : : ; 5g) are of the

form U

k

(F ). We re
over their lo
al a
tions in the following table of 
onjuga
y 
lass
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representatives of subgroups

e

F of Aut(B

3;2

) and Aut(B

3;3

) whi
h satisfy 
ondition

(C) and proje
t onto a transitive subgroup of S

3

. The list is 
omplete for k = 2,

and for k = 3 in the 
ase of (CD).

Des
ription of

e

F k �

e

F j

e

F j (CD) i.
.
.

�(A

3

) 2 A

3

3 Yes

�(S

3

) 2 S

3

6 Yes

�(S

3

) 2 S

3

12 Yes

�(K) 2 S

3

24 No No

E 2 S

3

24 No Yes

�(S

3

) 2 S

3

48 No No

Des
ription of

e

F k �

2

e

F j

e

F j (CD) i.
.
.

�

2

(E) 3 E 24 Yes

�

2

(E) 3 E 48 Yes

The 
olumn labelled \i.
.
." re
ords whether the respe
tive group admits an involu-

tive 
ompatibility 
o
y
le whi
h 
an be determined 
omputationally in [GAP17℄.

Re
all that this is automati
 if (CD) is satis�ed. The kernel K stems from Ex-

ample II.19. The split example �(K), after Proposition II.18, is isomorphi
 to an

ex
eptional group termed E but the two are not 
onjugate within Aut(B

3;2

).

Using the above, we 
on
lude G

1

= U

1

(A

3

), G

2

= U

2

(�(S

3

)), G

3

= U

2

(�(S

3

)),

G

4

= U

3

(�

2

(E)) and G

5

= U

3

(�

2

(E)). It appears likely that the groups G

1

2

and G

1

4


an be des
ribed as universal groups with pres
ribed lo
al a
tion on balls around

edges, in whi
h one prevents involutive inversions to begin with.

5.1. On theWeiss Conje
ture. The long standingWeiss 
onje
ture [Wei78℄

states that for a given lo
ally �nite tree T there are only �nitely many 
onjuga
y


lasses of dis
rete, vertex-transitive, lo
ally primitive subgroups of Aut(T ). It is

typi
ally studied from the point of view of �nite graphs. See Poto�
ni
{Spiga{Verret

[PSV12℄ for a des
ription and a generalization of the 
onje
ture to semiprimitive

lo
al a
tion. Promising partial results were obtained in the same arti
le as well as

by Guidi
i{Morgan in [GM14℄.

Corollary II.27 suggests to restri
t to dis
rete, lo
ally primitive subgroups of

Aut(T

d

) 
ontaining an involutive inversion.

Conje
ture II.29. Let F � Sym(
) be primitive. Then there are only �nitely many


onjuga
y 
lasses of dis
rete subgroups of Aut(T

d

) whi
h lo
ally a
t like F and


ontain an involutive inversion.

Given a transitive group F � Sym(
), let H

F

denote the 
olle
tion of sub-

groups of Aut(T

d

) whi
h are dis
rete, lo
ally a
t like F and 
ontain an involutive

inversion. Then the following de�nition is meaningful by Corollary II.27.

De�nition II.30. Let F � Sym(
) be transitive. De�ne

dim

CD

(F ) := max

H2H

F

min

n

k2N j9F

(k)

2Aut(B

d;k

) with (CD) : H=U

k

(F

(k)

)

o

if the maximum exists and dim

CD

(F ) =1 otherwise.

Conje
ture II.29 is equivalent to the statement that dim

CD

(F ) is �nite whenever

F � Sym(
) is primitive.

The remainder of this se
tion is devoted to determining the dimension of 
er-

tain 
lasses of permutation groups. As a start, transitive permutation groups of

dimension 1 are readily 
hara
terized.
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Lemma II.31. Let F � Sym(
) be transitive. Then dim

CD

(F ) = 1 if and only if F

is regular.

Proof. If F is regular, then dim

CD

(F ) = 1 by Proposition II.13. Conversely, if

dim

CD

(F ) = 1 then ne
essarily U

2

(�(F )) = U

1

(F ). Hen
e �(F )

�

=

�(F ) whi
h

implies that F

!

is trivial for all ! 2 
. That is, F is regular. �

The next proposition provides a large 
lass of primitive groups of dimension 2.

For its proof, we �rst re
ord the following relations between various 
hara
teris-

ti
 subgroups of a �nite group. Re
all that the so
le of a group is the subgroup

generated by its minimal normal subgroups. These form a dire
t produ
t.

Lemma II.32. LetG be a �nite group. Then the following statements are equivalent.

(i) The so
le so
(G) has no abelian fa
tor.

(ii) The solvable radi
al O

1

(G) is trivial.

(iii) The nilpotent radi
al Fit(G) is trivial.

Proof. If so
(G) has no abelian fa
tor then O

1

(G) is trivial: A non-trivial solvable

normal subgroup of G would 
ontain a solvable minimal normal subgroup of G

whi
h is ne
essarily abelian. Hen
e (i) implies (ii). Statement (ii) implies (iii) by

de�nition. Finally, if so
(G) has an abelian fa
tor then G has a (minimal) normal

abelian and hen
e nilpotent subgroup. Thus (iii) implies (i). �

Proposition II.33. Let F � Sym(
) be primitive non-regular and assume that F

!

has trivial nilpotent radi
al for all ! 2 
. Then dim

CD

(F ) = 2.

Proof. Suppose that F

(2)

� Aut(B

d;2

) has (C) and that

1! ker� ! F

(2)

�

�! F ! 1

is exa
t. Fix !

0

2 
. Then ker� �

Q

!2


F

!

�

=

F

d

!

0

. Sin
e F

(2)

has (C) we get

pr

!

ker� � F

!

0

for all ! 2 
. Sin
e F is transitive these proje
tions furthermore


oin
ide with the same N �F

!

0

. Now 
onsider F

(2)

T

!

= kerpr

!

j

ker�

� ker� for some

! 2 
. Either F

(2)

T

!

is trivial in whi
h 
ase F

(2)

has (CD) or F

(2)

T

!

is non-trivial.

In the latter 
ase, suppose that N

!;!

0

:= pr

!

0

F

(2)

T

!

is non-trivial for some !

0

2 
.

Then N

!;!

0

is subnormal in F

!

0

as fidg 6= N

!;!

0

� N � F

!

0

. As a 
onsequen
e,

N

!;!

0

has trivial nilpotent radi
al sin
e F

!

0

does. Hen
e the Thompson-Wielandt

Theorem [Tho70℄, [Wie71℄ (
f. [BM00a, Theorem 2.1.1℄) implies that there is no

F

(k)

� Aut(B

d;k

) (k � 3) with �

2

F

(k)

= F

(2)

and (CD). Therefore dim

CD

(F ) � 2.

Lemma II.31 implies that equality holds. �

We now list several 
lasses of permutation groups that Proposition II.33 in-


ludes; see [LPS88℄ for a statement of the O'Nan-S
ott 
lassi�
ation theorem of

�nite primitive groups to whi
h the following types refer.

(i) A

n

, S

n

(n � 6) a
ting on f1; : : : ; ng (whi
h are of almost simple type (AS)).

(ii) Primitive groups of twisted wreath type (TW).

(iii) Primitive groups of type (HS).

This follows from 
ombining Lemma II.32 with the following observations: For every

F 2 fA

n

; S

n

j n � 6g, point stabilizers have so
le isomorphi
 to the simple non-

abelian group A

n�1

. Point stabilizers in primitive groups of type (TW) have trivial

solvable radi
al by [DM96, Theorem 4.7B℄, and point stabilizers in primitive groups

of type (HS) have simple non-abelian so
le, see [LPS88℄.

Example II.34. By Example II.28, we have dim

CD

(S

3

) � 3 and it was shown in

[DM80℄ that in fa
t dim

CD

(S

3

) = 3. Computationally 
onstru
ting involutive


ompatibility 
o
y
les one 
an show that dim

CD

(F ) � 3 for the dihedral groups

F 2 fD

4

; D

6

g and their natural permutation a
tions.
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To 
ontrast the primitive 
ase, we show that non-trivial transitive wreath prod-

u
ts have dimension at least 3. The proof illustrates the use of involutive 
ompati-

bility 
o
y
les. Re
all that for F � Sym(
) and P � Sym(�) the wreath produ
t

F o P := F

j�j

o P admits a natural imprimitive permutation a
tion on 
�� given

by ((a

�

)

�

; �) � (!; �

0

) := (a

�(�

0

)

!; ��

0

) with blo
ks 
� � =

F

�2�


� f�g.

Proposition II.35. Let 
 and � be �nite sets su
h that j
j; j�j � 2. Furthermore,

let F � Sym(
) and P � Sym(�) be transitive. Then dim

CD

(F o P ) � 3.

Proof. We de�ne a subgroup W (F; P ) � Aut(B


��;2

) whi
h proje
ts onto F o P ,

satis�es (C), does not satisfy (CD) but admits an involutive 
ompatibility 
o
y
le.

This suÆ
es by Lemma II.20. For � 2 �, let �

�

denote the �-th embedding of F

into F o P =

�

Q

�2�

F

�

o P . Re
all the map 
 from Se
tion 3.1 and 
onsider




�

: F ! Aut(B


��;2

); a 7! (�

�

(a); ((�

�

(a))

(!;�)

; (id)

(!;�

0

6=�)

));




(2)

�

: F ! Aut(B


��;2

); a 7! (id; ((id)

(!;�)

; (�

�

(a))

(!;�

0

6=�)

)):

Furthermore, let � denote the embedding of P into F o P . We de�ne

W (F; P ) := h


�

(a); 


(2)

�

(a); 
(�(%)) j � 2 �; a 2 F; % 2 P i:

In order to show that W (F; P ) admits an involutive 
ompatibility 
o
y
le, we �rst

determine its group stru
ture. Consider the subgroups

V := h


�

(a) j � 2 �; a 2 F i and V := h


(2)

�

(a) j � 2 �; a 2 F i:

Then W (F; P ) = hV; V ;�(�(P ))i. Now observe that V

�

=

F

j�j

and V

�

=

F

j�j


om-

mute, interse
t trivially and are normalized by �(�(P )) whi
h permutes the fa
tors

of ea
h produ
t. Therefore

W (F; P )

�

=

(V � V )o P

�

=

(F

j�j

� F

j�j

)o P:

An involutive 
ompatibility 
o
y
le z of W (F; P ) may now be de�ned by setting

z(


�

(a); (!; �

0

)) :=

(




�

(a) � = �

0




(2)

�

(a) � 6= �

0

; z(


(2)

�

(a); (!; �

0

)) :=

(




(2)

�

(a) � = �

0




�

(a) � 6= �

0

for all � 2 �, a 2 F and % 2 P and z(
(�(%)); (!; �)) := 
(�(%)). Note that the map

z extends to an involutive 
ompatibility 
o
y
le of V �V �W (F; P ) whi
h in turn

extends to W (F; P ). �

A
tually, mu
h more than Proposition II.35 holds true for parti
ular wreath

produ
ts. For instan
e, there is the following well-known 
onstru
tion, 
.f. [MSV14℄.

Proposition II.36. Let m � 2. Then dim

CD

(S

m

o S

2

) =1.

Proof. We give a family of 2m-regular �nite graphs (�

n

)

n�3

whose automorphism

groups yield amalgams with the right properties: Let C(m;n) be the graph with

vertex set f1; : : : ;mg � f1; : : : ; ng where (i; j) is 
onne
ted to (i

0

; j

0

) via an edge if

and only j

0

2 fj � 1g (
y
li
ally). For example, C(3; 8) is given below.

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Then G

m;n

:= Aut(C(m;n))

�

=

S

m

oD

n

. If (v; w) is any edge of

C(m;n) then the vertex stabilizer G

m;n

v

�

=

S

n�1

m

o S

2

has the

1-lo
al a
tion S

2

m

o S

2

= S

m

o S

2

. Furthermore, the subgroup

D

n

� G

m;n

provides an involutive inversion of (v; w). Via the


oset 
onstru
tion, the amalgam

G

m;n

v

�

G

m;n

(v;w)

G

m;n

fv;wg

yields a dis
rete group

e

G

m;n

a
ting vertex-transitively on T

2m

= (V;E) with lo
al

a
tion S

m

oS

2

and an involutive inversion. Let (x; y) 2 E(T

2m

) lie over (v; w). Then

j

e

G

m;n

x

j = jG

m;n

v

j tends to in�nity as n does. Thus dim

CD

(S

m

o S

2

) =1. �
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6. A Bipartite Version

We now present a bipartite version of the universal groups introdu
ed in Se
-

tion 1. It plays a 
riti
al role in the proof of Theorem II.41 below. Retain the

notation of Se
tion 1, let V = V

1

tV

2

be a regular bipartition of V (T

d

), and b 2 V

1

.

6.1. De�nition and Basi
 Properties. The groups to be de�ned are sub-

groups of Aut(T

d

)

+

� Aut(T

d

), the maximal subgroup of Aut(T

d

) preserving the

bipartition V = V

1

tV

2

. Alternatively, it 
an be des
ribed as the subgroup generated

by all point stabilizers, or all edge-stabilizers.

De�nition II.37. Let F

(2k)

� Aut(B

d;2k

). De�ne

BU

2k

(F

(2k)

) := f� 2 Aut(T

d

)

+

j 8v 2 V

1

(T

d

) : �

2k

(�; v) 2 F

(2k)

g:

Note that BU

2k

(F

(2k)

) is a subgroup of Aut(T

d

)

+

thanks to Lemma II.2 and

the assumption that it is a subset of Aut(T

d

)

+

.

As before, BU

2k

(F

(2k)

) is a 
losed subgroup of Aut(T

d

) and transitive on both

V

1

and V

2

. We also re
over 
ompa
t generation and thereby the following.

Lemma II.38. Let F

(2k)

� Aut(B

d;2k

). Then BU

2k

(F

(2k)

) is a 
ompa
tly generated,

totally dis
onne
ted lo
ally 
ompa
t group.

Proof. The group BU

2k

(F

(2k)

) is totally dis
onne
ted and lo
ally 
ompa
t as a


losed subgroup of Aut(T

d

). Compa
t generation relies on the Lemma II.39 below,

showing that BU

2

(fidg) = U

1

(fidg) \ Aut(T

d

)

+

is �nitely generated. Given that

it is also transitive on V

1

(and V

2

) we 
on
lude that BU

2k

(F

(2k)

) is 
ompa
tly

generated by BU

2k

(F

(2k)

)

b

and the �nite generating set of the V

1

-transitive group

BU

2

(fidg) given in Lemma II.39. �

Given v 2 V (T

d

) and w 2 


(2)

, let t

(v)

w

2 Aut(T

d

) denote the unique label-

preserving translation with t

(v)

w

(v) = v

w

.

Lemma II.39. The group BU

2

(fidg) is �nitely generated by ft

(b)

w

jw2


(2)

g.

Proof. Argue by indu
tion on k 2 N that b 
an be mapped to b

w

for any w 2 


(2k)

by a unique element of hft

w

j w 2 


(2)

gi � U

1

(fidg) \ Aut(T

d

)

+

, using the fa
t

that ea
h t

w

is label-preserving.

Now, let h 2 U

1

(fidg)\ Aut(T

d

)

+

be non-trivial. Sin
e Aut(T

d

)

+

= Aut(T

d

)

+

,

the element h is hyperboli
 of even length. Pi
k v 2 V

1

on the axis of h. Then there

is t 2 hft

w

j w 2 


(2)

gi su
h that t(b) = v and t

�1

ht is a hyperboli
 element whose

axis 
ontains b. Thus t

�1

ht 2 hft

w

j w 2 


(2)

gi by the above and so is h. �

6.2. Compatibility and Dis
reteness. In order to des
ribe the 
ompatibil-

ity and dis
reteness 
ondition in the bipartite setting, we �rst introdu
e a workable

realization of Aut(B

d;2k

) (k 2 N), similar to the one given at the beginning of

Se
tion 3. Let Aut(B

d;1

)

�

=

Sym(
) and Aut(B

d;2

) be as before. For k � 2, we

indu
tively identify Aut(B

d;2k

) with its image under

Aut(B

d;2k

)! Aut(B

d;2(k�1)

)n

Y

w2


(2)

Aut(B

d;2(k�1)

)

� 7! (�

2(k�1)

(�; b); (�

2(k�1)

(�; b

w

))

w

))

where Aut(B

d;2(k�1)

) a
ts on 


(2)

by permuting fa
tors a

ording to its a
tion on

S(b; 2)

�

=




(2)

. In addition, 
onsider the map pr

w

: Aut(B

d;2k

) ! Aut(B

d;2(k�1)

),

� 7! �

2(k�1)

(�; b

w

) for every w 2 


(2)

, as well as

p

w

: Aut(B

d;2k

)! Aut(B

d;2(k�1)

)�Aut(B

d;2(k�1)

); � 7! (�

2(k�1)

(�); pr

w

(�))
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For k � 2, 
onditions (C) and (D) for F � Aut(B

d;2k

) now read as follows.

(C) 8� 2 F 8w 2 


(2)

9�

w

2 F : �

2(k�1)

(�

w

) = pr

w

(�); pr

w

(�

w

) = �

2(k�1)

(�)

(D) 8w 2 


(2)

: p

w

j

�1

F

(id; id) = fidg

For k = 1 we have, using the maps p

!

(! 2 
) as in Se
tion 3,

(C) 8� 2 F 8w = (!

1

; !

2

) 2 


(2)

9�

w

2 F : pr

!

2

(�

w

) = pr

!

1

�:

(D) 8! 2 
 : p

!

j

�1

F

(id; id) = fidg:

The dis
reteness 
onditions are proven as in Proposition II.12. We do not introdu
e

new notation for any of the above as the 
ontext always implies whi
h 
ondition is to

be 
onsidered. The de�nition of the 
ompatibility sets C

F

(�; S) for F � Aut(B

d;2k

)

and S � 


(2)


arries over from Se
tion 2 in a straightforward fashion.

Similar to the non-bipartite 
ase, given F � Aut(B

d;2k

) with (C), we set

	

2k

(F ) :=f(�; (�

w

)

w2


(2)

) j� 2 F; 8w 2 


(2)

: �

w

2 C

F

(�;w)g � Aut(B

d;2(k+1)

):

Then 	

2k

(F ) � Aut(B

d;2(k+1)

) satis�es (C) and BU

2(k+1)

(	

2k

(F )) = BU

2k

(F ).

Given l > k, we also set 	

2l

(F ) := 	

2(l�1)

Æ � � � Æ	

2k

(F ), 
.f. Se
tion 3.2.

More examples of bipartite universal groups are 
ontained in Se
tion 7.5 below.

7. Non-Trivial Quasi-Centers

We now apply the framework of universal groups to the study of subgroups

of Aut(T

d

) with non-trivial quasi-
enter, motivated by Burger{Mozes theory as

outlined in Se
tion 3 of Chapter I and questions about latti
es in produ
ts of trees

as studied in [BM00b℄ and [Rat04℄, spe
i�
ally [Rat04, Conje
ture 2.63℄.

The dis
reteness assertion of part (ii) in Theorem I.9 follows from the fa
t

that a non-dis
rete lo
ally quasiprimitive subgroup of Aut(T

d

) 
annot 
ontain any

non-trivial quasi-
entral ellipti
 elements by [BM00a, Proposition 1.2.1℄. We now


omplete this fa
t to the following lo
al-to-global type 
hara
terization of the quasi-


entral elements a subgroup of Aut(T

d

) 
an 
ointain in terms of its lo
al a
tion.

Theorem II.40. Let H � Aut(T

d

) be non-dis
rete. If H is lo
ally

(i) transitive then QZ(H) 
ontains no inversion.

(ii) semiprimitive then QZ(H) 
ontains no non-trivial edge-�xating element.

(iii) quasiprimitive then QZ(H) 
ontains no non-trivial ellipti
 element.

(iv) k-transitive (k 2 N) then QZ(H) 
ontains no hyperboli
 element of length k.

The assertions of Theorem II.40 are sharp in the following sense.

Theorem II.41. There is a 
losed, non-dis
rete, 
ompa
tly generated subgroup of

Aut(T

d

) whi
h is lo
ally

(i) intransitive and 
ontains a quasi-
entral inversion.

(ii) transitive and 
ontains a non-trivial quasi-
entral edge-�xating element.

(iii) semiprimitive and 
ontains a non-trivial quasi-
entral ellipti
 element.

(iv) (a) intransitive and 
ontains a quasi-
entral hyperboli
 element of length 1.

(b) quasiprimitive and 
ontains a quasi-
entral hyperboli
 element of length 2.

Proof. (Theorem II.40). Fix a labelling of T

d

and let H � Aut(T

d

) be non-dis
rete.

For (i), assume that H is lo
ally transitive and � 2 QZ(H) inverts the edge

(b; b

!

) 2 E(T

d

). By de�nition, the 
entralizer of � in H is open. Hen
e there is

n 2 N su
h that H

B(b;n)


ommutes with �. Thus for all h 2 H

B(b;n)

and k 2 N:

�

k

(�; b)�

k

(h; b) = �

k

(�; hb)�

k

(h; b) = �

k

(�h; b)

= �

k

(h�; b) = �

k

(h; �b)�

k

(�; b) = �

k

(h; b

!

)�

k

(�; b):
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Therefore, �

k

(h; b

!

) = �

k

(�; b)�

k

(h; b)�

k

(�; b)

�1

for all k 2 N. Now, sin
e H is non-

dis
rete, we may assume without loss of generality that H

B(b;n)

a
ts non-trivially on

B(b; n+1). Let h

0

2 H

B(b;n)

nH

B(b;n+1)

. Then there is !

0

2 
 with �

n

(h

0

; b

!

0

) 6= id.

Furthermore, sin
e H is lo
ally transitive, there is g 2 H

b

with g

�1

b

!

= b

!

0

. For

the element gh

0

g

�1

2 H

B(b;n)

we have �

n

(gh

0

g

�1

; b) = id but

�

n

(gh

0

g

�1

; b

!

) = �

n

(g; h

0

g

�1

b

!

)�

n

(h

0

; g

�1

b

!

)�

n

(g

�1

; b

!

)

= �

n

(g; g

�1

b

!

)�

n

(h

0

; b

!

0

)�

n

(g

�1

; b

!

)

= �

n

(g; g

�1

b

!

)�

n

(h

0

; b

!

0

)�

n

(g; g

�1

b

!

)

�1

6= id

be
ause �

n

(h

0

; b

!

0

) 6= id by assumption. This 
ontradi
ts the assumption that �


ommutes with H

B(b;n)

elaborated above. Hen
e the assertion.

Part (ii) is based on a variation of [BM00a, Lemma 1.4.2℄ given in Proposition

II.42 below and the observation [BM00a, 1.3.5℄ a

ording to whi
h a non-dis
rete

group H � Aut(T

d

) 
annot have 
o�nite quasi-
enter. Hen
e part (i) of Proposition

II.42 applies and QZ(H) a
ts freely on E(T

d

).

Part (iii) follows from [BM00a, Lemma 1.4.2℄ and [BM00a, 1.3.5℄. The 
losed-

ness assumption of [BM00a, Proposition 1.2.1℄ is unne
essary for its se
ond part.

For part (iv), assume that H is lo
ally k-transitive and that � 2 QZ(H) is a

translation of length k. Let b 2 V be a vertex on the axis of � . Then �b = b

w

for some path w = (!

1

; : : : ; !

k

) 2 


(k)

. By de�nition, the 
entralizer of � in H is

open. Hen
e there is n 2 N

�k

su
h that H

B(b;n)


ommutes with � . Thus for all

h 2 H

B(b;n)

and l 2 N:

�

l

(�; b)�

l

(h; b) = �

l

(�; hb)�

l

(h; b) = �

l

(�h; b)

= �

l

(h�; b) = �

l

(h; �b)�

l

(�; b) = �

l

(h; b

w

)�

l

(�; b):

Therefore, �

l

(h; b

w

) = �

l

(�; b)�

l

(h; b)�

l

(�; b)

�1

for all l 2 N. Now, sin
e H is non-

dis
rete, there is m 2 N

�n

su
h that H

B(b;m)

a
ts non-trivially on B(b;m+1). Let

h

0

2 H

B(b;m)

nH

B(b;m+1)

and de�ne l via k+ l = m+1. Then there is w

0

2 


(k)

su
h

that �

l

(h

0

; b

w

0

) 6= id. Furthermore, sin
e H is lo
ally k-transitive there is g 2 H

b

with g

�1

b

w

0

= b

w

. Then gh

0

g

�1

2 H

B(b;m)

satis�es �

l

(gh

0

g

�1

; b) = id but

�

l

(gh

0

g

�1

; b

w

) = �

l

(g; h

0

g

�1

b

w

)�

l

(h

0

; g

�1

b

w

)�

l

(g

�1

; b

w

)

= �

l

(g; g

�1

b

w

)�

l

(h

0

; b

w

0

)�

l

(g

�1

; b

w

)

= �

l

(g; g

�1

b

w

)�

l

(h

0

; b

w

0

)�

l

(g; g

�1

b

w

)

�1

6= id

be
ause �

l

(h

0

; b

w

0

) 6= id by assumption. This 
ontradi
ts the assumption that �


ommutes with H

B(b;m)

� H

B(b;n)

elaborated above. Hen
e the assertion. �

The following result referen
ed to in the proof of Theorem II.40 generalizes

[BM00a, Proposition 1.4.2℄ to semiprimitive a
tions.

Proposition II.42. Let H � Aut(T

d

) be lo
ally semiprimitive and N �H . De�ne

V

1

(N) := fx 2 V (T

d

) j N

x

y S(x; 1) is transitive and not semiregularg

V

2

(N) := fx 2 V (T

d

) j N

x

y S(x; 1) is semiregularg.

Then one of the following holds.

(i) V (T

d

) = V

2

(N) and N a
ts freely on E(T

d

).

(ii) V (T

d

) = V

1

(N) and N a
ts transitively on the set of geometri
 edges of T

d

.

(iii) V (T

d

) = V

1

(N) t V

2

(N) is an H-invariant bipartition of V (T

d

) and B(x; 1)

is a fundamental domain for the a
tion of N on T

d

for any x 2 V

2

(N).

Proof. Sin
e H is lo
ally semiprimitive, we have V (T

d

) = V

1

(N) t V

2

(N). If N

does not a
t freely on E(T

d

) then there is an edge e 2 E(T

d

) with N

e

6= fidg

and 
onsequently an N

e

-�xed vertex x 2 V (T

d

) for whi
h N

x

y S(x; 1) is not
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semiregular and hen
e transitive. Then V

1

(N) 6= ;. Now, either V

2

(N) = ; in whi
h


ase N is lo
ally transitive and we are in 
ase (ii), or V

2

(N) 6= ;. Being lo
ally

transitive, H a
ts transitively on the set of geometri
 edges it thus has at most two

orbits in V (T

d

). Given that both V

1

(N) and V

2

(N) are non-empty and H-invariant,

they 
onstitute exa
tly said orbits. Sin
e any pair of adja
ent verti
es (x; y) is a

fundamental domain for the H-a
tion on V (T

d

), we 
on
lude that if y 2 V

2

(N)

then x 2 V

1

(N). Thus every leaf of B(y; 1) is in V

1

(N) and we are in 
ase (iii) by

[BM00a, 1.3.1℄. �

We also in
lude the natural generalization of [BM00a, Proposition 1.2.1 3)℄.

Corollary II.43. Let H � Aut(T

d

) be lo
ally semiprimitive and N�H 
losed. Then

either N is dis
rete and N � QZ(H), or N is 
o
ompa
t and H

(1)

� N .

Proof. By Proposition II.42, the 
losed normal subgroup N of H is either dis
rete

or 
o
ompa
t. The assertion hen
e follows from the de�nitions and the fa
t that

every dis
rete normal subgroup of a topologi
al group is 
entral. �

Before pro
eeding to the proof of Theorem II.41, we 
omplement part (iv) of

Theorem II.40 with the following result inspired by [BM00a, Proposition 3.1.2℄

and [Rat04, Conje
ture 2.63℄.

Proposition II.44. Let H � Aut(T

d

) be non-dis
rete and lo
ally semiprimitive. If all

orbits of H y �T

d

are un
ountable then QZ(H) 
ontains no hyperboli
 elements.

Proof. Let S � �T

d

be the 
olle
tion of �xed points of hyperboli
 elements in

QZ(H). Sin
e QZ(H) � H , the set S is H-invariant. Also, QZ(H) is dis
rete by

Theorem II.40 and therefore 
ountable as a subgroup of the se
ond-
ountable group

H whi
h inherits se
ond-
ountability from Aut(T

d

). We 
on
lude that S is 
ountable

and therefore empty in view of the assumption. �

Theorem II.41 is proven by 
onstru
tion in the 
onse
utive se
tions. Whereas

parts (i) to (iv) (a) all rely on a 
onstru
tion of the form H :=

T

k2N

U

k

(F

(k)

)

for appropriate lo
al a
tions F

(k)

� Aut(B

d;k

), part (iv) (b) utilizes the bipartite

version of the universal groups developed in Se
tion 6. All se
tions appear similar

at �rst glan
e but vary in detail.

7.1. Theorem II.41 (i). For 
ertain intransitive F � Sym(
) we 
onstru
t a

group H(F ) � Aut(T

d

) whi
h is 
losed, non-dis
rete, 
ompa
tly generated, vertex-

transitive, lo
ally a
ts like F and 
ontains a quasi-
entral involutive inversion.

Let F � Sym(
). Assume that the partition Fn
 =

F

i2I




i

of 
 into F -orbits

has at least three elements and F




i

6= fidg for all i 2 I .

Fix an orbit 


0

of size at least 2 and !

0

2 


0

. De�ne a
tions F

(k)

� Aut(B

d;k

)

for k 2 N indu
tively by F

(1)

:= F and

F

(k+1)

:=f(�; (�

!

)

!

) j� 2 F

(k)

; �

!

2 C

F

(k)

(�; !) is 
onstant w.r.t. Fn
; �

!

0

=�g:

Proposition II.45. The a
tions F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) Every � 2 F

(k)

is self-
ompatible in dire
tions from 


0

.

(ii) The 
ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In parti
ular, the group F

(k)

satis�es (C).

(iii) The 
ompatibility set C

F

(k)

(id;


i

) is non-trivial for all 


i

6= 


0

.

In parti
ular, the group F

(k)

does not satisfy (D).

Proof. We prove all three properties simultaneously by indu
tion: For k = 1, the

assertions (i) and (ii) are trivial. The third translates to F




i

being non-trivial for
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all 


i

6= 


0

whi
h is an assumption. Now, assume that all properties hold for F

(k)

.

Then the de�nition of F

(k+1)

is meaningful be
ause of (i) and it is a subgroup of

Aut(B

d;k+1

) be
ause F preserves Fn
. Assertion (i) is now evident. Statements (ii)


arries over from F

(k)

to F

(k+1)

. So does (iii) sin
e jFn
j � 3. �

De�nition II.46. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The group H(F ) is vertex-transitive, 
ompa
tly generated and 
ontains an in-

volutive inversion be
ause U

1

(fidg) � H(F ). Also, H(F ) is 
losed as an interse
tion

of 
losed sets. The 1-lo
al a
tion of H is given by F = F

(1)

be
ause D(F ) � H(F ).

Lemma II.47. Let F be as above. Then H(F ) is non-dis
rete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily


onstru
ted using Proposition II.45: Consider �

n

:= id 2 F

(n)

. By parts (i) and (iii)

of Proposition II.45 as well as the de�nition of F

(n+1)

, there is a non-trivial element

�

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying parts (i) and (ii) of Proposition

II.45 repeatedly, we obtain non-trivial elements �

k

2 F

(k)

for all k � n + 1 with

�

k

�

k+1

= �

k

for all k � n + 1. Set �

k

:= id 2 F

(k)

for all k � n and de�ne

h 2 Aut(T

d

)

b

by �xing b and setting �

k

(h; b) := �

k

2 F

(k)

. Sin
e F

(l)

� �

l

(F

(k)

)

for all k � l we 
on
lude that h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.48. Let F be as above. Then QZ(H(F )) 
ontains an involutive in-

version.

Proof. Fix b 2 V (T

d

). We show that QZ(H(F )) 
ontains the label-preserving in-

version �

!

of the edge (b; b

!

) for all ! 2 


0

: Indeed, let h 2 H(F )

B(b;1)

and ! 2 


0

.

Then h�

!

(b) = b

!

= �

!

h(b) and

�

k

(h�

!

; b) = �

k

(h; �

!

b)�

k

(�

!

; b) = �

k

(h; b

!

) = �

k

(�

!

; hb)�

k

(h; b) = �

k

(�

!

h; b)

for all k 2 N sin
e h 2 U

k+1

(F

(k+1)

). That is, �

!


ommutes with H(F )

B(b;1)

. �

7.2. Theorem II.41 (ii). For 
ertain transitive F � Sym(
) we 
onstru
t a

group H(F ) � Aut(T

d

) whi
h is 
losed, non-dis
rete, 
ompa
tly generated, vertex-

transitive, lo
ally a
ts like F and has non-dis
rete quasi-
enter.

Let F � Sym(
) be transitive. Assume that F preserves a non-trivial partition

P = (


i

)

i2I

of 
 and F




i

6= fidg for all i 2 I . Further, suppose that F

+

is abelian

and preserves P setwise.

Example II.49. Let F

0

� Sym(
) be regular abelian and P � Sym(�) be regular.

Then F := F

0

o P � Sym(
� �) satis�es the above properties as F

+

=

Q

�2�

F

0

.

De�ne a
tions F

(k)

� Aut(B

d;k

) for k 2 N indu
tively by F

(1)

:= F and

F

(k+1)

:= f(�; (�

!

)

!

) j � 2 F

(k)

; �

!

2 C

F

(k)

(�; !) 
onstant w.r.t. Pg

for all k 2 N. Then we have the following.

Proposition II.50. The a
tions F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) The 
ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In parti
ular, the group F

(k)

satis�es (C).

(ii) The 
ompatibility set C

F

(k)

(id;


i

) is non-trivial for all i 2 I .

In parti
ular, the group F

(k)

does not satisfy (D).

(iii) The group F

(k)

\ �

k

(F

+

) is abelian.

Proof. We prove all three properties simultaneously by indu
tion: For k = 1, asser-

tion (i) is trivial whereas (iii) is an assumption. The se
ond translates to F




i

being

non-trivial for all i 2 I whi
h is an assumption. Now, assume that all properties
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hold for F

(k)

. Then the de�nition of F

(k+1)

is meaningful be
ause of (i) and it is a

subgroup of Aut(B

d;k

) be
ause F preserves P. Statement (ii) 
arries over from F

(k)

to F

(k+1)

. Finally, (iii) follows indu
tively be
ause F

+

preserves P setwise. �

De�nition II.51. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The group H(F ) is vertex-transitive, 
ompa
tly generated and 
ontains an in-

volutive inversion be
ause U

1

(fidg) � H(F ). Also, H(F ) is 
losed as an interse
tion

of 
losed sets. The 1-lo
al a
tion of H is given by F = F

(1)

be
ause D(F ) � H(F ).

Lemma II.52. Let F be as above. Then H(F ) is non-dis
rete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily


onstru
ted using Proposition II.50: Consider �

n

:= id 2 F

(n)

. By part (ii) of

Proposition II.50 and the de�nition of F

(n+1)

, there is a non-trivial �

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying part (i) of Proposition II.50 repeatedly, we obtain

non-trivial elements �

k

2 F

(k)

for all k � n+1 with �

k

�

k+1

= �

k

for all k � n+1.

Set �

k

:= id 2 F

(k)

for all k � n and de�ne h 2 Aut(T

d

)

b

by �xing b and setting

�

k

(h; b) := �

k

2 F

(k)

. Be
ause F

(l)

� �

l

(F

(k)

) for all k � l we 
on
lude that

h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.53. Let F be as above. Then QZ(H(F )) is non-dis
rete.

Proof. The group H(F )

B(b;1)

is a subgroup of the group H(F

+

)

b

whi
h is abelian

by part (iii) of Proposition II.50. In other words, QZ(H(F )) 
ontains H(F )

B(b;1)

and is therefore non-dis
rete. �

Remark II.54. Without assuming lo
al transitivity one 
an a
hieve abelian point

stabilizers, following the 
onstru
tion of the previous se
tion. This 
annot happen

for non-dis
rete lo
ally transitive groups H � Aut(T

d

) whi
h are vertex-transitive

as the following argument shows: By Proposition I.14, the group H is 
ontained in

U(F ) where F � Sym(
) is the lo
al a
tion of H . If H

b

is abelian, then so is F .

Sin
e any transitive abelian permutation group is regular we 
on
lude that U(F )

and hen
e H are dis
rete. In this sense, the 
onstru
tion of this se
tion is eÆ
ient.

7.3. Theorem II.41 (iii). For 
ertain semiprimitive F � Sym(
) we 
on-

stru
t a group H(F ) � Aut(T

d

) whi
h is 
losed, non-dis
rete, 
ompa
tly generated,

vertex-transitive, lo
ally a
ts like F and whose quasi-
enter 
ontains a non-trivial

ellipti
 element.

Let F � Sym(
) be semiprimitive. Assume that F preserves a non-trivial

partition P : 
 =

F

i2I




i

of 
. Further, suppose that F




i

6= fidg for all i 2 I and

that F 
ontains a non-trivial 
entral element � whi
h preserves P setwise.

Example II.55. Using the GAP library of small transitive groups [GAP17℄, 
on-

sider e.g. Tr(8; 23)

�

=

GL(2; 3) with blo
k system ff1; 5g; f2; 6g; f3; 7g; f4; 8gg and


enter h(1; 5)(2; 6)(3; 7)(4; 8)i. It is semiprimitive and has non-trivial blo
k �xators.

Example II.56. Transitive F satisfying the above assumptions 
an be 
onstru
ted

as follows. Let F

0

� Sym(


0

) be transitive, non-regular with Z(F

0

) 6= fidg and

P � Sym(�) transitive for j�j � 2. Then F := F

0

o P � Sym(


0

� �) preserves the

partition 
 := 


0

�� =

F

�2�




0

and any diagonal element with entry from Z(F

0

)

does so setwise. The rest follows from the assumptions on F

0

and P .

De�ne a
tions F

(k)

� Aut(B

d;k

) for k 2 N indu
tively by F

(1)

:= F and

F

(k+1)

:= f(�; (�

!

)

!

) j � 2 F

(k)

; �

!

2 C

F

(k)

(�; !) 
onstant w.r.t Pg

for all k 2 N. Then we have the following.
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Proposition II.57. The a
tions F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) The 
ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In parti
ular, the group F

(k)

satis�es (C).

(ii) The 
ompatibility set C

F

(k)

(id;


i

) is non-trivial for all i 2 I .

In parti
ular, the group F

(k)

does not satisfy (D).

(iii) The element 


k

(�) 2 Aut(B

d;k

) is 
entral in F

(k)

.

Proof. We prove all three properties simultaneously by indu
tion: For k = 1, asser-

tion (i) is trivial whereas (iii) is an assumption. The se
ond translates to F




i

being

non-trivial for all i 2 I whi
h is an assumption. Now, assume that all properties

hold for F

(k)

. Then the de�nition of F

(k+1)

is meaningful be
ause of (i) and it is

a subgroup of Aut(B

d;k+1

) be
ause F preserves P. Statement (ii) 
arries over from

F

(k)

to F

(k+1)

. Finally, (iii) follows indu
tively be
ause � and hen
e �

�1

preserves

P setwise: For e� = (�; (�

!

)

!

) 2 F

(k+1)

we have




k+1

(�)e�


k+1

(�)

�1

= (


k

(�)�


k

(�)

�1

; (


k

(�)�

�

�1

(!)




k

(�)

�1

)

!

): �

De�nition II.58. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The group H(F ) is vertex-transitive, 
ompa
tly generated and 
ontains an in-

volutive inversion be
ause U

1

(fidg) � H(F ). Also, H(F ) is 
losed as an interse
tion

of 
losed sets. The 1-lo
al a
tion of H is given by F = F

(1)

be
ause D(F ) � H(F ).

Lemma II.59. Let F be as above. Then H(F ) is non-dis
rete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily


onstru
ted using Proposition II.57: Consider �

n

:= id 2 F

(n)

. By part (ii) of

Proposition II.57 and the de�nition of F

(n+1)

, there is a non-trivial �

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying part (i) of Proposition II.57 repeatedly, we obtain

non-trivial elements �

k

2 F

(k)

for all k � n+1 with �

k

�

k+1

= �

k

for all k � n+1.

Set �

k

:= id 2 F

(k)

for all k � n and de�ne h 2 Aut(T

d

)

b

by �xing b and setting

�

k

(h; b) := �

k

2 F

(k)

. Be
ause F

(l)

� �

l

(F

(k)

) for all k � l we 
on
lude that

h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.60. Retain the above notation. Then QZ(H(F )) 
ontains a non-

trivial ellipti
 element.

Proof. By Proposition II.57, the element d(�) whi
h �xes b and whose 1-lo
al a
tion

is � everywhere 
ommutes with H(F )

b

. Hen
e d(�) 2 QZ(H(F )). �

Remark II.61. We remark that the argument presented in this se
tion 
annot be

made work in the quasiprimitive 
ase be
ause a quasiprimitive group F � Sym(
)

with non-trivial 
enter ne
essarily equals its 
enter and is regular: Re
all that

Z(F ) � F . Hen
e Z(F ) is transitive as soon as it is non-trivial by quasiprimi-

tivity. It now suÆ
es to show that F

!

is trivial for all ! 2 
: Suppose a 2 F

!

moves !

0

2 
 and let z 2 Z(F ) be su
h that z(!) = !

0

. Then za(!) = !

0

6= az(!),


ontradi
ting the assumption that z 2 Z(F ).

7.4. Theorem II.41 (iv) (a). For 
ertain intransitive F � Sym(
) we 
on-

stru
t a group H(F ) � Aut(T

d

) whi
h is 
losed, non-dis
rete, 
ompa
tly generated,

vertex-transitive, lo
ally a
ts like F and 
ontains a quasi-
entral hyperboli
 element

of length 1.

Let F � Sym(
). Assume that the partition Fn
 = t

i2I




i

of 
 has at least

three elements and Z(F ) 6= fidg. Choose a non-trivial element � 2 Z(F ) and

!

0

2 


0

with �(!

0

) 6= !

0

. Assume further that F




i

6= fidg for all 


i

6= 


0

.
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De�ne a
tions F

(k)

� Aut(B

d;k

) for k 2 N indu
tively by F

(1)

:= F and

F

(k+1)

:=f(�; (�

!

)

!

) j� 2 F

(k)

; �

!

2 C

F

(k)

(�; !) is 
onstant w.r.t. Fn
; �

!

0

=�g:

Proposition II.62. The a
tions F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) Every � 2 F

(k)

is self-
ompatible in dire
tions from 


0

.

(ii) The 
ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In parti
ular, the group F

(k)

satis�es (C).

(iii) The 
ompatibility set C

F

(k)

(id;


i

) is non-trivial for all 


i

6= 


0

.

In parti
ular, the group F

(k)

does not satisfy (D).

(iv) The element 


k

(�) 2 Aut(B

d;k

) is 
entral in F

(k)

.

Proof. We prove all four properties simultaneously by indu
tion: For k = 1, the

assertions (i) and (ii) are trivial. The third translates to F




i

being non-trivial for

all 


i

6= 


0

whi
h is an assumption, as is 
ommutativity. Now, assume that all

properties hold for F

(k)

. Then the de�nition of F

(k+1)

is meaningful be
ause of (i)

and it is a subgroup of Aut(B

d;k

) be
ause F preserves Fn
. Assertion (i) is now

evident. Statements (ii), (iii) and (iv) readily 
arry over from F

(k)

to F

(k+1)

. �

De�nition II.63. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The groupH(F ) is vertex-transitive, 
ompa
tly generated and 
ontains an invo-

lutive inversion be
ause U

1

(fidg) � H(F ). Also, H(F ) is 
losed as the interse
tion

of all its k-
losures. The 1-lo
al a
tion of H is given by F = F

(1)

as D(F ) � H .

Lemma II.64. Let F be as above. Then H(F ) is non-dis
rete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily


onstru
ted using Proposition II.62: Consider �

n

:= id 2 F

(n)

. By parts (i) and (iii)

of Proposition II.62 as well as the de�nition of F

(n+1)

, there is a non-trivial element

�

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying parts (i) and (ii) of Proposition

II.62 repeatedly, we obtain non-trivial elements �

k

2 F

(k)

for all k � n + 1 with

�

k

�

k+1

= �

k

for all k � n + 1. Set �

k

:= id 2 F

(k)

for all k � n and de�ne

h 2 Aut(T

d

)

b

by �xing b and setting �

k

(h; b) := �

k

2 F

(k)

. Sin
e F

(l)

� �

l

(F

(k)

)

for all k � l we 
on
lude that h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.65. Let F � Sym(
) be as above. Then QZ(H(F )) 
ontains a hy-

perboli
 element of length 1.

Proof. Fix b 2 V (T

d

) and let � be as above. Consider the line L through b with

edge labels

: : : ; �

�2

!

0

; �

�1

!

0

; !

0

; �!

0

; �

2

!

0

; : : :

De�ne t 2 D(F ) by t(b) = b

!

0

and �

1

(t; x) = � for all x 2 V (T

d

). Then t is a

translation of length 1 along L. Furthermore, t 
ommutes with H(F )

B(b;1)

: Indeed,

let g 2 H(F )

B(b;1)

. Then (gt)(b) = t(b) = (tg)(b) and

�

k

(gt; b) = �

k

(g; tb)�

k

(t; b) = �

k

(t; b)�

k

(g; b) = �

k

(t; gb)�

k

(g; b) = �

k

(tg; b)

for all k 2 N be
ause �

k

(t; b) = 


k

(�) 2 Z(F

(k)

) and g 2 U

k+1

(F

(k+1)

)

B(b;1)

. �

7.5. Theorem II.41 (iv) (b). For 
ertain quasiprimitive F � Sym(
) we


onstru
t a group H(F ) � Aut(T

d

) whi
h is 
losed, non-dis
rete, 
ompa
tly gen-

erated, lo
ally a
ts like F and whose quasi-
enter 
ontains a hyperboli
 element of

length 2.

Let F � Sym(
) be quasiprimitive. Assume that F preserves a non-trivial

partition P : 
 =

F

i2I




i

. Further, suppose that F




i

6= fidg and F

!

i

y 


i

nf!

i

g is

transitive for all i 2 I and !

i

2 


i

.
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Example II.66. Using the GAP library of small transitive groups [GAP17℄, 
on-

sider e.g. Tr(12; 33)

�

=

A

5

, Tr(14; 10)

�

=

PSL(3; 2) or Tr(15; 10)

�

=

S

5

, all of whi
h

are quasiprimitive. The former two have blo
ks of size 2, the latter has blo
ks of

size 3. Its point stabilizers a
t transitively on the remainder of the respe
tive blo
k.

An orbit for the a
tion of �(F ) on S(b; 2)

�

=




(2)

is given by




(2)

0

:= f(!

1

; !

2

) j 9i 2 I : !

1

; !

2

2 


i

g � 


(2)

:

Indeed, let �=(a; (a

!

)

!

) 2 �(F ) and (!

1

; !

2

) 2 


(2)

0

. Then �(!

1

; !

2

)=(a!

1

; a

!

1

!

2

)

is in 


(2)

0

be
ause a and a

!

1

agree on !

1

. Note that if w = (!

1

; !

2

) 2 


(2)

0

then so

is w := (!

2

; !

1

). The subgroup of �(F ) 
onsisting of those elements whi
h are

self-
ompatible with respe
t 


(2)

0

is given by

F

(2)

:= f(a; (a

!

)

!

) j a 2 F; a

!

2 C

F

(a; !) 
onstant w.r.t. Pg:

Then de�ne indu
tively for k 2 N:

F

(2(k+1))

:= f(�; (�

w

)

w

) j � 2 F

(2k)

; �

w

2 C

F

(�;w); 8w 2 


(2)

0

: �

w

= �g

Proposition II.67. The a
tions F

(2k)

� Aut(B

d;2k

) (k 2 N) de�ned above satisfy:

(i) Every � 2 F

(2k)

is self-
ompatible in dire
tions from 


(2)

0

.

(ii) The 
ompatibility set C

F

(2k)

(�;w) is non-empty for all �2F

(2k)

and w2


(2)

.

In parti
ular, the group F

(2k)

satis�es (C).

(iii) The 
ompatibility set C

F

(2k)

(id; w) is non-trivial for all w 2 


(2)

.

In parti
ular, the group F

(2k)

does not satisfy (D).

Proof. We prove all three properties simultaneously by indu
tion: For k = 1, as-

sertion (i) holds by 
onstru
tion of F

(2)

, as do (ii) and (iii). Now assume that all

properties hold for F

(2k)

. Then the de�nition of F

(2(k+1))

is meaningful be
ause

of (i) and it is a subgroup be
ause F

(2)

preserves 


(2)

0

. Also, F

(2(k+1))

satis�es (i)

be
ause 


(2)

0

is inversion-
losed and statements (ii), (iii) 
arry over from F

(2k)

. �

De�nition II.68. Retain the above notation. De�ne H(F ) :=

T

k2N

BU

(l)

2k

(F

(2k)

).

The group H(F ) is 
losed as an interse
tion of 
losed sets and 
ompa
tly gen-

erated by H(F )

b

and a �nite generating set of BU

2

(fidg)

+

, see Lemma II.39. For

verti
es in V

1

, the 1-lo
al a
tion is F be
ause �

2k

(F ) � F

(2k)

. For verti
es in V

2

the 1-lo
al a
tion is F

+

= F as �

2

(F ) � F

(2)

.

Lemma II.69. Let F be as above. Then H(F ) is non-dis
rete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; 2n) for a given n 2 N is readily


onstru
ted using Proposition II.45: Consider �

2n

:= id 2 F

(2n)

. By parts (i)

and (iii) of Proposition II.45 and the de�nition of F

(2(n+1))

, there is a non-trivial

element �

2(n+1)

2 F

(2(n+1))

with �

2n

�

2(n+1)

= �

2n

. Applying parts (i) and (ii)

of Proposition II.67 repeatedly, we obtain non-trivial elements �

2k

2 F

(2k)

for all

k � n + 1 with �

2k

�

2(k+1)

= �

2k

for all k � n + 1. Set �

2k

:= id 2 F

(2k)

for all

k � n and de�ne h 2 Aut(T

d

)

b

by �xing b and setting �

2k

(h; b) := �

2k

2 F

(2k)

. Sin
e

F

(2l)

�	

2l

(F

(2k)

) for all k� l we 
on
lude that h 2

T

k2N

BU

2k

(F

(2k)

) = H(F ). �

Proposition II.70. Let F be as above. Then QZ(H(F )) 
ontains a hyperboli
 ele-

ment of length 2.

Proof. Fix b 2 V (T

d

) and let w = (!

1

; !

2

) 2 


(2)

0

. Consider the line L through b

with edge labels : : : ; !

1

; !

2

; !

1

; !

2

; : : :. De�ne t 2 D(F ) by t(b)=b

w

and �

1

(t; x)=id

for all x 2 V (T

d

). Then t is a translation of length 2 along L. Furthermore, t


ommutes with H(F )

B(b;2)

: Indeed, let g 2 H(F )

B(b;2)

. Then gt(b) = t(b) = tg(b)
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and for all k 2 N:

�

2k

(gt; b) = �

2k

(g; tb)�

2k

(t; b) = �

2k

(g; b

w

)

= �

2k

(g; b) = �

2k

(t; gb)�

2k

(g; b) = �

2k

(tg; b)

as �

l

(t; x) = id for all l 2 N and x 2 V (T

d

), and g 2 BU

2(k+1)

(F

(2(k+1))

)

B(b;2)

. �

7.6. Limitations. We argue that the 
onstru
tion of Se
tion 7.5 does not

easily 
arry over to primitive lo
al a
tions. Re
all that for a transitive permutation

group F � Sym(
) one de�nes rank(F ) := jFn


2

j, where F a
ts on 


2

diagonally,

and that rank(F ) = 2 if and only if F is 2-transitive.

Lemma II.71. Let F � Sym(
). Then j�(F )n


(2)

j = rank(F )� 1.

Proof. Noti
e that 


(2)

= 


2

n� where � denotes the diagonal in 


2

. Given that

�(F ) � �(F ) we therefore 
on
lude j�(F )n


(2)

j � j�(F )n


(2)

j = rank(F )�1. The

orbits of �(F ) and �(F ) are in fa
t the same: Let � := (a; (a

!

)

!2


) 2 �(F ). Then

we have �(!

1

; !

2

) = (a!

1

; a

!

1

!

2

) 2 f(a!

1

; aF

!

1

!

2

)g � �(F )(!

1

; !

2

). �

In parti
ular, a permutation group has to have rank at least 3 in order to

be eligible for the 
onstru
tion of the previous se
tion. The smallest non-regular

primitive permutation group of rank 3 is D

5

� S

5

. However, we also have the

following obstru
tion to non-dis
reteness.

Proposition II.72. Let F � Sym(
) be primitive and let 


(2)

0

be an orbit for the

a
tion of �(F ) on 


(2)

�

=

S(b; 2). The subgroup of elements in �(F ) whi
h are

self-
ompatible in dire
tions from 


(2)

0

is pre
isely �(F ).

Proof. Every element of �(F ) is self-
ompatible in every dire
tion from 


(2)

. Con-

versely, assume that (a; (a

!

)

!

) 2 �(F ) is self-
ompatible in all dire
tions from 


(2)

0

.

Then a

!

1

= a

!

2

whenever w := (!

1

; !

2

) 2 


(2)

0

. This indu
es a non-trivial equiv-

alen
e relation on 
 whi
h is F -invariant be
ause �(F ) � �(F ): If (!

1

; !

2

) 2 


(2)

0

then 
(a)(!

1

; !

2

) = (a!

1

; a!

2

) 2 


(2)

0

for all a 2 F . Sin
e F is primitive, it is the

universal relation, i.e. all a

!

(! 2 
) 
oin
ide. Hen
e (a; (a

!

)

!

) 2 �(F ). �

7.7. Groups with In�nitely Many Distin
t k-
losures. Given a prime

p, Banks{Elder{Willis list PGL(2;Q

p

) � Aut(T

p+1

) as an example of a group with

in�nitely many distin
t k-
losures, see [BEW15℄. Whereas PGL(2;Q

p

) has trivial

quasi-
enter be
ause it is simple, the groups 
onstru
ted in the proof of Theorem

II.41 provide examples with non-trivial quasi-
enter. Indeed, we have the following.

Proposition II.73. Let H � Aut(T

d

) be 
losed, non-dis
rete, lo
ally transitive and


ontain an involutive inversion. Then H

(k)

= U

k

(F

(k)

) and H =

T

k2N

U

k

(F

(k)

),

where F

(k)

�Aut(B

d;k

) is a
tion-isomorphi
 to the a
tion of H on balls of radius k.

If, in addition, QZ(H) 6= fidg then H has in�nitely many distin
t k-
losures.

Proof. We have H

(k)

= U

k

(F

(k)

) by Theorem II.23. Then H =

T

k2N

U

k

(F

(k)

) by

[BEW15, Proposition 3.4℄. Hen
e, if H had only �nitely many distin
t k-
losures,

the sequen
e (H

(k)

)

k2N

of subgroups of Aut(T

d

) is eventually 
onstant equal to,

say, H

(n)

= U

n

(F

(n)

) � H whi
h is non-dis
rete be
ause H is and therefore has

trivial quasi-
enter by Proposition II.16. �



CHAPTER III

Prime Lo
alizations of Burger{Mozes-type Groups

This se
tion is based on [Tor17℄. We determine the p-lo
alization of Burger{

Mozes-type groups, i.e. the groups U(F ), G(F; F

0

) and N(F ) dis
ussed in Chapter I,

for a large 
lass of permutation groups F � F

0

� Sym(
) and primes p.

The 
on
ept of prime lo
alization of a totally dis
onne
ted lo
ally 
ompa
t

group G was introdu
ed by Reid in [Rei13℄: Let p be prime. A lo
al p-Sylow sub-

group of G is a maximal pro-p subgroup of a 
ompa
t open subgroup of G. The

p-lo
alization G

(p)

of G is de�ned as the 
ommensurator Comm

G

(S) of a lo
al p-

Sylow subgroup S of G, equipped with the unique group topology whi
h makes the

in
lusion of S into G

(p)

= Comm

G

(S) 
ontinuous and open. We refer the reader to

[Rei13℄ for general properties of prime lo
alization and its appli
ations, of whi
h

we highlight the s
ale fun
tion introdu
ed by Willis in [Wil94℄.

1. Lo
al Sylow Subgroups

This se
tion is 
on
erned with determining lo
al Sylow subgroups of the Burger{

Mozes-type groups. Throughout, 
 denotes a set of 
ardinality d 2 N

�3

and p is a

prime. We 
onsider the d-regular tree T

d

= (V;E) with a �xed labelling and base

vertex b 2 V . Furthermore, T denotes a �nite subtree of T

d

.

Note that it suÆ
es to 
onsider U(F ): Any lo
al Sylow subgroup of U(F ) is

also a lo
al Sylow subgroup of G(F; F

0

) and N(F ) by de�nition of the topologies.

In a sense, the following proposition provides lo
al p-Sylow subgroups of U(F )

in the 
ase where the operations of taking a p-Sylow subgroup and taking point

stabilizers 
ommute for F . It is the basis of all subsequent statements about the

p-lo
alization of Burger{Mozes-type groups and amends [Rei13, Lemma 4.2℄.

Proposition III.1. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. Then U(F (p))

T

is a p-Sylow subgroup of U(F )

T

if and only if so is F (p)

!

�F

!

for all ! 2 
.

Proof. First, assume that T 
onsists of a single vertex b 2 V . The sphere S(b; k) � V

of radius k around b 2 V is, via the given labelling, in natural bije
tion with

P

k

:= fw = (!

1

; : : : ; !

k

) 2 


k

j 8i 2 f1; : : : ; k � 1g : !

i+1

6= !

i

g:

The restri
tion of U(F ) to S(b; k) yields a subgroup of Sym(S(b; k)) of 
ardinality

given by

�

�

U(F )

b

j

S(b;1)

�

�

= jF j and

�

�

U(F )

b

j

S(b;k+1)

�

�

=

�

�

U(F )

b

j

S(b;k)

�

�

�

Q

w2P

k

jF

!

k

j.

The maximal powers of p dividing

�

�

U(F )

b

j

S(b;k)

�

�

and

�

�

U(F (p))

b

j

S(b;k)

�

�

are hen
e

equal for all k 2 N

0

if and only if F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
.

Similarly, when T is not a single vertex, the size of the restri
tion of U(F )

T

to

a suÆ
iently larger subtree is a produ
t of the jF

!

j involving all ! 2 
. �

For transitive F � Sym(
), it suÆ
es to 
he
k the above 
riterion for one


hoi
e of a p-Sylow subgroup F (p) of F and all ! 2 
. We now identify 
lasses

of permutation group and values of p to whi
h Proposition III.1 applies. For the

symmetri
 and alternating groups we have the following, 
omplete des
ription.

35
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Proposition III.2. Let F = Sym(
) or F = Alt(
) and F (p) � F a p-Sylow

subgroup. Further, let p

s

(s 2 N

0

) be the maximal power of p dividing d. Then

F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
 if and only if either

(i) p > d, or

(ii) s � 1 and p

s+1

> d, or

(iii) F = Alt(
) and (d; p) = (3; 2).

Proof. If p > d then F (p) is trivial and so is any p-Sylow subgroup of F

!

. Now

assume p � d and 
onsider the following diagram of subgroups of F and indi
es.

F

d

i

i

i

i

i

i

i

k

V

V

V

V

V

V

V

F

!

S

S

S

S

S

F (p)

p

r

!

j

j

j

j

j

F (p)

!

For every ! 2 
 we have [F : F

!

℄ = jF � !j = d

and [F (p) : F (p)

!

℄ = jF (p) � !j = p

r

!

for some

r

!

2 N

0

. Note that p - k by de�nition. Now ex-

amine the equation d � [F

!

: F (p)

!

℄ = k � p

r

!

.

If F (p) is trivial then F = Alt(
) and p is even, hen
e (iii). Now assume that

F (p) is non-trivial. Then there is ! 2 
 su
h that r

!

� 1. Thus, if p - d, then

p j [F

!

: F (p)

!

℄ and hen
e F (p)

!

is not a p-Sylow subgroup of F

!

. We 
on
lude

that the 
ondition s � 1 is ne
essary. Note that the biggest p

r

!

(! 2 
) whi
h

o

urs is given by the biggest power of p whi
h is smaller than or equal to d due to

the iterated wreath produ
t stru
ture of F (p). As p - k we 
on
lude (ii).

Conversely, suppose s � 1 and p

s+1

� d. If p is odd, or F = Sym(
) and p

is even, then F (p) is a dire
t produ
t of s-fold iterated wreath produ
ts and the

maximum power of p dividing [F (p) : F (p)

!

℄ and [F : F

!

℄ is p

s

in both 
ases. The

same index assertions hold for F = Alt(
) and p even. �

For a general permutation group F � Sym(
) and ! 2 
 we have

jF (p) � !j =

jF (p)j

jF (p)

!

j

=

jF (p)j � [F

!

: F (p)

!

℄

jF

!

j

=

[F

!

: F (p)

!

℄

[F : F (p)℄

� jF � !j:

by the orbit-stabilizer theorem. In parti
ular, we 
on
lude the following.

Proposition III.3. Let F � Sym(
) and F (p) � F a p-Sylow subgroup. Assume

that Fn
 = F (p)n
. Then F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
. �

Proposition III.4. Let j
j = p

n

and F � Sym(
) transitive. Also, let F (p) � F be

a p-Sylow subgroup. Then so is F (p)

!

� F

!

for all ! 2 
 and F (p) is transitive.

Proof. In this 
ase, the above equation is jF (p) �!j = ([F

!

: F (p)

!

℄=[F : F (p)℄) � p

n

.

As always, jF (p) � !j is a power of p and bounded by j
j = p

n

. Sin
e p does not

divide [F : F (p)℄ the above implies that p does not divide [F

!

: F (p)

!

℄. �

2. Prime Lo
alizations

This se
tion is 
on
erned with the p-lo
alizations of Burger{Mozes-type groups.

Re
all that for groups H � G one de�nes the 
ommensurator of H in G by

Comm

G

(H) := fg 2 G j [H : H \ gHg

�1

℄ <1 and [gHg

�1

: gHg

�1

\H ℄ <1g:

The p-lo
alization of a totally dis
onne
ted lo
ally 
ompa
t group G is de�ned as

the 
ommensurator Comm

G

(S) of a lo
al p-Sylow subgroup S of G, equipped with

the unique group topology that makes the in
lusion of S into G

(p)

:= Comm

G

(S)


ontinuous and open. Then the in
lusion Comm

G

(S)! G is 
ontinuous.

The following lemma due to Capra
e{Monod [CM11, Se
tion 4℄ and Capra
e{

Reid{Willis [CRW17, Corollary 7.4℄ is 
ru
ial for the subsequent statements of

this se
tion. See also [Wes15℄.

Lemma III.5. Let G be residually dis
rete, lo
ally 
ompa
t and totally dis
on-

ne
ted. Further, let K � G be 
ompa
t. Then Comm

G

(K) =

S

L�

o

K

N

G

(L).
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Proof. Every element of G whi
h normalizes an open subgroup ofK 
ommensurates

K be
ause open subgroups of K have �nite index in K given that K is 
ompa
t.

Conversely, let g 2 Comm

G

(K) and 
onsider H := hK; gi. Then H is a 
om-

pa
tly generated open subgroup of Comm

G

(K) and hen
e a 
ompa
tly generated,

totally dis
onne
ted lo
ally 
ompa
t group in its own right. It inherits residual dis-


reteness from Comm

G

(K) whi
h inje
ts 
ontinuously into the residually dis
rete

group G. By [CM11, Corollary 4.1℄, H has an identity neighbourhood basis of


ompa
t open normal subgroups. Hen
e g normalizes an open subgroup of K. �

Now, let F � F

0

�

b

F � Sym(
). In the 
ase of Proposition III.1, the following

proposition identifes 
ertain subsets of the p-lo
alization of G(F; F

0

) and thereby

expands [Rei13, Lemma 4.2℄ given that U(F ) = G(F; F ). We establish the following

notation: Given partitions P := (P

i

)

i2I

of V and H = (H

j

)

j2J

of H � Sym(
), let

�

P

(H) := fg 2 Aut(T

d

) j 8i 2 I : 9j 2 J : 8v 2 P

i

: �(g; v) 2 H

j

g

denote the set of automorphisms of T

d

whose lo
al permutations at the verti
es of

a given element of P all 
ome from the same element of H.

Proposition III.6. Let F �F

0

�

b

F �Sym(
) and F (p)�F a p-Sylow subgroup su
h

that F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
. Set S := U(F (p))

b

. Then

Comm

G(F;F

0

)

(S) = hU(fidg);Comm

G(F;F

0

)

b

(S)i

� hG(F (p); F

0

); f�

V=L

(N

F

(F (p))=F (p)) j L � S opengi:

Proof. By Proposition III.1, the group S is a lo
al p-Sylow subgroup of U(F ) and

hen
e of G(F; F

0

). We �rst show that G(F; F

0

)

(p)


ontains U(fidg). Indeed, given

g 2 U(fidg) we have gSg

�1

= U(F (p))

g(b)

. Thus S\gSg

�1

= U(F (p))

(b;g(b))

whi
h

has �nite index in both S = U(F )

b

and gSg

�1

= U(F (p))

g(b)

by the orbit-stabilizer

theorem. Sin
e U(fidg) a
ts vertex-transitively on T

d

we 
on
lude

Comm

G(F;F

0

)

(S) = hU(fidg);Comm

G(F;F

0

)

b

(S)i:

Now, the vertex stabilizer G(F; F

0

)

b

is residually dis
rete by Proposition I.18.

Hen
e, by Lemma III.5, the 
ommensurator Comm

G(F;F

0

)

b

(S) is the union of the

normalizers in G(F; F

0

)

b

of open subgroups of S = U(F (p))

b

. For example, we

may 
onsider L

n

:= U(F (p))

B(b;n)

�

o

S for every n 2 N. The normalizer of L

n

in G(F; F

0

)

b


ontains those elements of G(F (p); F

0

)

b

all of whose singularities are


ontained in B(b; n). Taking the union over all n 2 N and using vertex-transitivity

of G(F (p); F

0

) in the sense that G(F (p); F

0

) = hG(F (p); F

0

)

b

;U(fidg)i we 
on
lude

that Comm

G(F:F

0

)

(S) 
ontains G(F (p); F

0

) as a topologi
al subgroup. Alternatively,

use [Bou16, Lemma 3.2℄. Now, note that for all g; s 2 Aut(T

d

) and v 2 V we have

�(gsg

�1

; v) = �(g; sg

�1

v)�(s; g

�1

v)�(g

�1

; v)

= �(g; sg

�1

v)�(s; g

�1

v)�(g; g

�1

v)

�1

:

Hen
e if g 2 �

V=L

(N

F

(F (p))=F (p)), i.e. the 
oset �(g; v)F (p) � N

F

(F (p)) is 
on-

stant on L-orbits, then gLg

�1

� U(F (p)) when
e g 2 Comm

G(F;F

0

)

(S). �

Remark III.7. Whereas the next result provides 
onditions on F � Sym(
) whi
h

ensure U(F )

(p)

= G(F (p); F ) and we have U(F )

(p)

= U(F ) for semiregular F by

Proposition I.12, it may happen that G(F (p); F ) � U(F )

(p)

� U(F ). Indeed, if

for every ! 2 
 there is an element a

!

2 F

!

su
h that for all � 2 
 we have

F (p)

�

\ a

!

F (p)

�

a

�1

!

= fidg then there is an element g 2 U(F )

B(b;1)

su
h that for

S := U(F (p))

B(b;1)

we have S \ gSg

�1

= fidg and therefore g =2 U(F )

(p)

: Choose

the lo
al permutation of g at v 2 V (T

d

) to be a

!

whenever d(v; b) = d(v; b

!

) + 1.

If in addition N

F

(F (p)) 
 F (p) then the assertion holds by virtue of Proposition

III.6. For instan
e, these assumptions are satis�ed for F = S

6

and p = 3.
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Theorem III.8. Let F � F

0

�

b

F � Sym(
) and F (p) � F a p-Sylow subgroup of F .

Assume that we have Fn
 = F (p)n
 and N

F

0

!

(F (p)

!

) = F (p)

!

for all ! 2 
.

Then G(F; F

0

)

(p)

= G(F (p); F

0

).

If F does not �x a point of 
 and Fn
 = F (p)n
 then p divides j
j. By

Proposition III.3 the same assumption implies that the point stabilizers in F (p) are

p-Sylow subgroups of the respe
tive point stabilizers in F . In the 
ase F = F

0

, the

theorem asks that these be self-normalizing.

Proof. (Theorem III.8). By Proposition III.1 and Proposition III.6 it suÆ
es to

show that Comm

G(F;F

0

)

b

(U(F (p))

b

)=G(F (p); F

0

)

b

. By Proposition III.6, the group

G(F (p); F

0

)

b

is a subgroup of said 
ommensurator.

Now suppose g 2 Comm

G(F;F

0

)

b

(U(F (p))

b

) � G(F; F

0

)

b

. Given that G(F; F

0

)

b

is residually dis
rete by Proposition I.18, the element g normalizes an open subgroup

L � U(F (p))

b

by virtue of Lemma III.5. If g has only �nitely many lo
al permuta-

tions in F

0

nF (p) then g 2 G(F (p); F

0

)

b

. Otherwise, the above implies that there is

n 2 N su
h that gU(F (p))

B(b;n)

g

�1

� L � U(F (p))

b

and g has a lo
al permutation

in F

0

nF (p) on S(b; n). Then 
onstru
t h 2 G(F (p); F

0

) with lo
al permutations in

F (p) on spheres of radius at least n and su
h that h

�1

g �xes B(b; n) pointwise as

follows: Set hj

B(b;n�1)

:= g and use the assumption F

0

n
 = Fn
 = F (p)n
 to ex-

tend h to all T

d

using F (p) only. Then h

�1

g has a lo
al permutation in F

0

!

nF (p)

!

for some ! 2 
 on S(b; n) and (h

�1

g)U(F (p))

B(b;n)

(h

�1

g)

�1

� L � U(F (p))

b

.

However, this 
ontradi
ts the assumption N

F

0

!

(F (p)

!

) = F (p)

!

for all ! 2 
. �

Theorem III.8 
an be used to determine the p-lo
alization of Lederle's 
oloured

Neretin group N(F ) under similar assumptions.

Theorem III.9. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. If Fn
=F (p)n


and N

b

F

!

(F (p)

!

) = F (p)

!

for all ! 2 
 then N(F )

(p)

= N(F (p)).

Proof. By Proposition III.1, the group S := U(F (p))

b

is a lo
al Sylow subgroup

of N(F ). Also, by [Led17, Proposition 2.24℄, we have N(F (p)) � Comm

N(F )

(S).

Now, let g 2 Comm

N(F )

(S) and let g : T

d

nT ! T

d

nT

0

be a representative of g

as an U(F )-honest almost automorphism. Given that Fn
 = F (p)n
 there is a

U(F (p))-honest almost automorphism h 2 N(F (p)) � Comm

N(F )

(S) with repre-

sentative h : T

d

nT

0

! T

d

nT su
h that hg : T

d

nT ! T

d

nT �xes the leaves of T

and therefore extends to an autormorphism of T

d

�xing T . Furthermore, on ea
h


onne
ted 
omponent of T

d

nT , the automorphism hg 2 N(F ) \ Aut(T

d

) 
oin
ides

with an element of U(F ). Hen
e, using Proposition II.7, we have hg 2 U(F ) when
e

hg 2 Comm

N(F )\Aut(T

d

)

(S) = Comm

G(F )

(S) = G(F )

(p)

= G(F (p)) � N(F (p)):

by Theorem III.8. Given that h 2 N(F (p)) we 
on
lude g 2 N(F (p)) as required. �

Proposition III.6 suggests that Theorem III.8 might hold as soon as F (p) is

self-normalizing in F

0

. This is not the 
ase as the following remark shows.

Remark III.10. Theorem III.8 does not hold if the 
ondition N

F

0

!

(F (p)

!

)=F (p)

!

for all ! 2 
 is repla
ed with N

F

0

(F (p)) = F (p): There are transitive, non-regular

permutation groups F � Sym(
) and primes p su
h that Fn
 = F (p)n
 and

N

F

(F (p)) = F (p) for whi
h F (p) is regular. In parti
ular, N

F

!

(F (p)

!

) 
 F (p)

!

.

In this 
ase, U(F (p))

b

is a lo
al p-Sylow subgroup of U(F ) by Proposition III.3.

However, U(F (p))

b

�

=

F (p) is �nite and hen
e U(F )

(p)

= U(F ) 
 G(F (p); F ).

A small example of this situation is a 
ertain F

�

=

S

4

� S

8

and the prime

p = 2, namely put F := h(123)(456); (14)(25)(37)(68)i. Here, F (2) is regular and

self-normalizing in F of order 8.



Part 2

Contributions to Willis Theory





CHAPTER IV

Preliminaries

1. Willis Theory

In this 
hapter we re
all 
entral de�nitions of Willis theory and 
olle
t results

around them. Let G be a t.d.l.
. group. In [Wil94℄, Willis introdu
ed the notions

of s
ale of an automorphism of G and tidiness of a 
ompa
t open subgroup of G

for a given automorphism of G.

Sear
hing for the most general natural setting of tidiness and the s
ale, the

de�nitions were generalized to endomorphisms in [Wil15℄: Let G be a t.d.l.
. group

and � 2 End(G). Note that [�(U) : �(U)\U ℄ 2 N for every 
ompa
t open subgroup

U � G be
ause �(U) is 
ompa
t and �(U) \ U is open in �(U). The s
ale of � is

s(�) = min

�

[�(U) : �(U) \ U ℄ j U � G 
ompa
t open

	

:

A 
ompa
t open subgroup U � G is minimizing if [�(U) : �(U) \ U ℄ = s(�).

It is a 
ornerstone of Willis theory that a 
ompa
t open subgroup of G is

minimizing for � if and only if it has a 
ertain stru
ture. This stru
ture is phrased

in terms of the following subgroups of G, see [Wil94℄ and [Wil15℄ for more 
ontext.

Put U

0

:= U . For n 2 N

0

, we de�ne U

�n

=

T

n

k=0

�

�k

(U) and, indu
tively, the

groups U

n+1

:= U \ �(U

n

). Now set

U

+

:=

\

n2N

0

U

n

; U

�

:=

\

n2N

0

U

�n

=

1

\

k=0

�

�k

(U);

U

++

:=

[

n2N

0

�

n

(U

+

) and U

��

:=

[

n2N

0

�

�n

(U

�

):

Both from a theoreti
al and mnemoni
 point of view, the following des
riptions

of the above subgroups are important: Let x 2 G. The �-traje
tory of x is the

sequen
e (�

n

(x))

n2N

0

in G. An �-regressive traje
tory of x is a sequen
e (x

n

)

n2N

0

in G su
h that x

0

= x and �(x

n

) = x

n�1

for all n 2 N. Consequently, we have the

following verbal des
riptions of the subgroups de�ned above.

U

�

=

�

elements of U whose

�-traje
tory is 
ontained in U

�

;

U

+

=

�

elements of U whi
h admit an

�-regressive traje
tory 
ontained in U

�

;

U

��

=

�

elements of G whose �-traje
tory

is eventually 
ontained in U

�

:

U

++

=

�

elements of G whi
h admit an �-regressive

traje
tory eventually 
ontained in U

�

;

The subgroup U is tidy above for � if U = U

+

U

�

, and tidy below for � if U

��

is


losed. It is tidy for � if it is both tidy above and tidy below for �. Note that this

de�nition of being tidy below deviates from [Wil15, De�nition 9℄ but turns out to

be equivalent in the 
ase of tidy above subgroups, see [Wil15, Proposition 9℄.

The announ
ed 
ornerstone of Willis theory now reads as follows.

41
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Theorem IV.1 ([Wil15, Theorem 2℄). Let G be a t.d.l.
. group, � 2 End(G) and

U � G 
ompa
t open. Then U is minimizing for � if and only if it is tidy for �.

We have �(U

+

)�U

+

and �(U

�

)�U

�

. It 
an be shown that s(�)=[�(U

+

) : U

+

℄

if U � G is tidy for � 2 End(G), and [U

�

: �(U

�

)℄ = s(�

�1

) in 
ase � 2 Aut(G).

For future referen
e, we in
lude the following result whi
h 
onstitutes an endo-

morphism version of the equality

�

k

 

n

\

i=m

�

i

(U)

!

=

n+k

\

i=m+k

�

i

(U)

whi
h holds for an automorphism � 2 Aut(G), U � G 
ompa
t open andm;n; k2Z.

Lemma IV.2 ([Wil15, Lemma 2℄). Retain the above notation. For all n;m 2 N:

(i) U

�n�m

= (U

�n

)

�m

, and

(ii) �

k

(U

�n

) =

(

U

k

\ U

k�n

0 � k � n

�

k�n

(U

n

) k � n

, and

(iii) (U

�n

)

k

= U

k

\ U

�n

for all k � 0 and (U

�n

)

+

= U

+

\ U

�n

.

Complementing Theorem IV.1, Willis provides an algorithm, the tidying pro
e-

dure, whi
h, starting from an arbitrary 
ompa
t open subgroup of U � G, produ
es

a 
ompa
t open subgroup of G whi
h is tidy for �.

Algorithm IV.3 ([Wil15, Se
tion 7℄). Let U � G be 
ompa
t open and � 2 End(G).

(i) There exists n 2 N su
h that U

�n

is tidy above for �.

Repla
ing U with U

�n

we may assume that U is tidy above for �.

(ii) De�ne L

U

:= U

++

\ U

��

and L

U

:= L

U

.

(iii) Set

e

U := fx 2 U : xL

U

� L

U

Ug.

(iv) Then

e

UL

U

is a 
ompa
t open subgroup of G whi
h is tidy for �.

If, in Algorithm IV.3, the subgroup U � G is already tidy for �, then

e

UL

U

= U .

We remark that L

U

of Algorithm IV.3 is given by

L

U

= fx 2 G j 9y 2 U

+

9m;n 2 N with �

m

(y) = x and �

n

(x) 2 U

�

g:

We 
ontinue with the introdu
tion of further relevant subgroups of G asso
iated

to an endomorphism � 2 End(G). The identity element of G is denoted by e.

(a) The nub of � is given by

nub(�) :=

\

fU � G j U is 
ompa
t open and tidy for �g:

It is a 
ompa
t subgroup of G whi
h by [Wil15, Proposition 12℄ 
aptures the

obstru
tion for there to be an identity neighbourhood basis of tidy subgroups.

(b) The 
ontra
tion groups


on(�) := fx 2 G j lim

n!1

�

n

(x) = e 2 Gg and


on

�

(�) := fx 2 G j 9(x

n

)

n2N

0

�-regressive for x with lim

n!1

x

n

= e 2 Gg:

play a parti
ularly important role in the general theory of t.d.l.
. groups, see

e.g. [BW04℄, [BGT16℄ and [CRW17℄. They are �-invariant subgroups of G

but not ne
essarily 
losed in G.

(
) The relevan
e of the paraboli
 subgroups

par(�) := fx 2 G j f�

n

(x) j n 2 N

0

g is pre
ompa
tg and

par

�

(�) := fx 2 G j x admits a pre
ompa
t �-regressive traje
toryg
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stems from the fa
t that par

�

(�) admits a quotient on whi
h � indu
es an

automorphism, see [Wil15, Proposition 20℄. They are 
losed and �-invariant

subgroups of G. Note that 
on(�) � par(�) and 
on

�

(�) � par

�

(�).

(d) The normal subgroup of said quotient is the bounded iterated kernel

bik(�) := fx 2 par

�

(�) j �

n

(x) = e for some n 2 Ng:

It is a 
onsequen
e of [Wil15, Proposition 20℄ that any two �-regressive traje
-

tories of elements of par

�

(�) di�er only by elements of bik(�): Let x 2 par

�

(�)

and suppose that (x

n

)

n2N

0

and (x

0

n

)

n2N

0

are �-regressive traje
tories of x. Then

x

0

n

x

�1

n

2 bik(�) for all n 2 N

0

.

We remark that bik(�) � nub(�) � par(�) \ par

�

(�) by [Wil15, Proposition 20℄.

2. Dire
ted Graphs

Chapter VI makes use of the permutation topology introdu
ed in Se
tion I.1.2

as well as dire
ted graphs. Here, we re
all notation around the latter, largely fol-

lowing M�oller [M�ol02℄.

A dire
ted graph � is a tuple (V (�); E(�)) 
onsisting of a vertex set V (�) and an

edge set E(�) � V (�)� V (�) n f(u; u) j u 2 V (�)g. We let pr

1

; pr

2

: E(�)! V (�)

denote the proje
tions onto the �rst and se
ond fa
tor, the origin and terminus

of an edge. Let � be a dire
ted graph. An ar
 of length k 2 N from v 2 V (�) to

v

0

2 V (�) is a tuple (v = v

0

; : : : ; v

k

= v

0

) of distin
t verti
es of � su
h that (v

i

; v

i+1

)

in an edge in � for all i2f0; : : : ; k � 1g. Two verti
es v; w 2 �(V ) are adja
ent if

either (v; w) 2 E(�) or (w; v) 2 E(�). A path of length k 2 N from v 2 V (�) to

v

0

2 V (�) is a tuple (v = v

0

; : : : ; v

k

= v

0

) of distin
t verti
es of � su
h that either

(v

i

; v

i+1

) or (v

i+1

; v

i

) is an edge in � for all i 2 f0; : : : ; k � 1g. The dire
ted graph

� is 
onne
ted if for all v; w 2 V (�) there is a path from v to w. It is a tree if it

is 
onne
ted and has no non-trivial 
y
les, i.e. tuples (v

0

; : : : ; v

k

) with k � 3 and

su
h that (v

0

; : : : ; v

k�1

) and (v

k�1

; v

k

) 2 E(�) are both paths and v

k

= v

0

. Two

in�nite paths in � are equivalent if they interse
t in an in�nite path. When � is a

tree, this is an equivalen
e relation on in�nite paths and the boundary �� of � is

the set of these equivalen
e 
lasses.

For the following, let v 2 V (�). Set in

�

(v) := fw 2 V (�) j (w; v) 2 E(�)g

and out

�

(v) := fw 2 V (�) j (v; w) 2 E(�)g. The in-valen
y of v 2 V (�) is the


ardinality of in

�

(v) and the out-valen
y of v 2 V (�) is the 
ardinality of out

�

(v).

The dire
ted graph � is lo
ally �nite if all its verti
es have �nite in- and out-valen
y.

A dire
ted line in � is a sequen
e (v

i

)

i2Z

of distin
t verti
es su
h that either

(v

i

; v

i+1

) is an edge for every i 2 Z, or (v

i

; v

i�1

) is an edge for every i 2 Z.

For a subset A � V (�), the subgraph of � spanned by A is the dire
ted graph

with vertex set A and edge set f(v; w) 2 E(�) j v; w 2 Ag.

The set of des
endants of v2V (�) is des


�

(v) :=fw 2 V (�) j9 ar
 from v to wg.

For A � V (�), set des


�

(A) :=

S

v2A

des


�

(v). A dire
ted tree � is rooted at

v

0

2 V (�) if � = des
(v

0

), in whi
h 
ase j in

�

(v)j = 1 for all verti
es v 6= v

0

and

j in

�

(v

0

)j = 0. The de�nition of being regular is altered for rooted trees: A dire
ted

tree rooted at v

0

is regular if j out(v)j is 
onstant for v 2 V (�).

A morphism between dire
ted graphs �

1

= (V

1

; E

1

) and �

2

= (V

2

; E

2

) is a

pair (�

V

; �

E

) of maps �

V

: V

1

! V

2

and �

E

: E

1

! E

2

preserving the graph

stru
ture, i.e. �

V

(pr

1

(e)) = pr

1

�

E

(e) and �

V

(pr

2

(e)) = pr

2

�

E

(e) for all e 2 E

1

.

An automorphism of a dire
ted graph � = (V;E) is a morphism � = (�

V

; �

E

) from

� to itself su
h that �

V

and �

E

are bije
tive and � admits an inverse morphism.





CHAPTER V

Tidiness and S
ale for Subgroups and Quotients

This se
tion 
ontains joint work with T. Bywaters and H. Gl�o
kner, namely

[BGT16, Se
tion 8℄. We generalize several results of [Wil01℄ about how tidy sub-

groups and the s
ale behave with respe
t to taking subgroups and quotients from

automorphisms to endomorphisms. This 
an be seen as a parallel to the study of

topologi
al entropy given in [BV16℄. Generally speaking, the proofs follow the same

basi
 stru
ture as those for automorphisms but 
hanges need to be made to a

om-

modate for the additional 
ompli
ations that arise in the 
ase of endomorphisms.

1. Subgroups

We �rst explore the e�e
t of taking subgroups on tidiness and the s
ale. The

following two lemmas show that tidy subgroups behave well when passing to sub-

groups. Lemma V.2 is applied in Theorem V.3 whi
h 
on
erns the s
ale.

Lemma V.1. LetG be a t.d.l.
. group, �2End(G) andH�G 
losed with �(H)�H .

Further, letW � G be 
ompa
t open. Then there exists N 2 N

0

su
h thatW

�n

\H

is tidy above for �j

H

, for all n � N .

Proof. Sin
e �(H) � H we 
on
lude that H \W

�n

equals

H \

n

\

k=0

�

�k

(W )=fw2H j8k 2 f1; : : : ; ng : �

k

(w) 2Wg

=fw2H j8k 2 f1; : : : ; ng : �

k

(w) 2W \Hg=

n

\

k=0

(�j

H

)

�k

(H\W ):

whi
h is tidy above for �j

H

by [Wil15, Proposition 3℄ for large n. �

Lemma V.2. LetG be a t.d.l.
. group, �2End(G) andH�G 
losed with �(H)�H .

Further, let U � G be 
ompa
t open and tidy for �. Set V := U \H . Then there

is N 2 N su
h that V

�N

is tidy for �j

H

.

Proof. Note that V is a 
ompa
t open subgroup of H . By [Wil15, Proposition 3℄

there is N 2 N su
h that V

�N

is tidy above for �j

H

. Sin
e U is minimizing, the

same proposition implies that U

�N

is tidy for �. By Lemma V.1, repla
ing U by

U

�N

, we may assume that V is tidy above for �j

H

. To see that this V is tidy, we

show that L

V

� V where L

V

is given in Algorithm IV.3. Sin
e V � H is 
losed

this implies that L

V

= L

V

� V and hen
e V is tidy below and therefore tidy for

�j

H

by [Wil15, Proposition 8℄. First, note that

V

�

=

\

n�0

V

�n

= U

�

\H

Also, sin
e V

+

is the 
olle
tion of all elements in V that admit an �-regressive

traje
tory in V = U \H , it follows that V

+

� U

+

\H . Now, suppose that x 2 L

V

.

Then x 2 H and there are y 2 V

+

and m;n 2 N su
h that �

m

(y) = x and

�

n

(y) 2 V

�

. By the above, y 2 U

+

and �

n

(y) 2 U

�

. Therefore, x 2 L

U

\H . Sin
e

U is tidy for � we have L

U

� U and thus 
on
lude x 2 U \ H = V . This shows

L

V

� V as required. �

45
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Theorem V.3. Let G be a t.d.l.
. group and � 2 End(G). Furher, let H � G be


losed with �(H)�H . Then s

H

(�j

H

) � s

G

(�). Furthermore, if H�G and U � G is


ompa
t open and tidy for � su
h that U \H is tidy for �j

H

, then �((U \H)

+

)U

+

is a subgroup of G and s

H

(�j

H

) = [�((U \H)

+

)U

+

: U

+

℄:

Proof. By Lemma V.2 there is a 
ompa
t open subgroup U � G whi
h is tidy for

� and su
h that V := U \H is tidy for �j

H

. In parti
ular, s

H

(�j

H

) = [�(V

+

) : V

+

℄

and s

G

(�) = [�(U

+

) : U

+

℄. De�ne ' : �(V

+

)=V

+

! �(U

+

)=U

+

by '(uV

+

) := uU

+

for all uV

+

2 �(V

+

)=V

+

. Then ' is well-de�ned as V

+

� U

+

. For the �rst 
laim

it suÆ
es to show that ' is inje
tive. Indeed, assume that '(uV

+

) = '(vV

+

) for

some uV

+

; vV

+

2 �(V

+

)=V

+

. Then it follows that x := v

�1

u 2 �(V

+

) \ U

+

where

�(V

+

) = �((U \ H)

+

) � H . It is now a 
onsequen
e of [Wil15, Lemma 1℄ that

x 2 U \H \ �(V

+

) = V \ �(V

+

) = V

+

.

For the se
ond 
laim, suppose that H is normal in G. It suÆ
es to show that

�((U \ H)

+

)U

+

= U

+

�((U \ H)

+

): Indeed, this implies that �((U \ H)

+

)U

+

is

a group in whi
h 
ase the assertion follows from the previous paragraph. Now,

(U \H)

0

:= U \H is normal in U

0

:= U and (U \H)

n+1

:= �((U \H)

n

)\U \H is

normal in U

n+1

:= �(U

n

)\U for ea
h n 2 N

0

by the following indu
tive argument:

By the indu
tive hypothesis, (U\H)

n

is normal in U

n

. Hen
e �((U\H)

n

) is normal

in �(U

n

). Sin
e U \H is normal in U , it follows that �((U \H)

n

)\U \H is normal

in �(U

n

) \ U whi
h 
ompletes the indu
tion. As a 
onsequen
e,

(U \H)

+

:=

\

n2N

0

(U \H)

n

is normal in U

+

:=

\

n2N

0

U

n

:

Let u 2 U

+

. Pi
k w 2 U

+

with �(w) = u. Applying � to (U \H)

+

w = w(U \H)

+

,

we dedu
e that �((U \H)

+

)u = u�((U \H)

+

). �

2. Quotients

We now turn our attention to quotients. Again, we �rst 
onsider tidy subgroups

and then apply our �ndings to gain insight into the s
ale. Our �rst lemma provides


ontrol over �-regressive traje
tories. We let L

U

and

e

U be as in Algorithm IV.3.

Lemma V.4. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open as

well as tidy above for �. Then U \

e

UL

U

=

e

U .

Proof. By de�nition

e

U � U \

e

UL

U

as

e

U � U and

e

U �

e

UL

U

. Now, let x 2 U\

e

UL

U

.

We need to show xL

U

� L

U

U . Indeed, xL

U

�

e

UL

U

L

U

=

e

UL

U

� L

U

U . �

There are examples of automorphisms [Wil01℄ and asso
iated tidy below sub-

groups whi
h do not behave well when passing to quotients. Lemma V.6 shows that

although we 
annot expe
t a tidy below subgroup to be tidy below when passing to

a quotient, the original subgroup 
an be 
hosen so that the quotient is as 
lose as

possible to being tidy below using Algorithm IV.3. The proof of LemmaV.6 relies

on the following result whi
h is immediate from the proof of [Wil15, Lemma 16℄.

Lemma V.5. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open as

well as tidy above for �. Let u 2

e

U . Then u

�

2

e

U

�

for any u

�

2 U

�

with u = u

+

u

�

.

Lemma V.6. Let G be a t.d.l.
. group, �2End(G) and H�G 
losed with �(H)�H .

Denote by � the endomorphism indu
ed by � on G=H and by q : G ! G=H the

quotient map. Then there is a 
ompa
t open subgroup U of G su
h that

(i) U tidy for �,

(ii) U \H is tidy for �j

H

, and

(iii) q(U) is tidy above for �, and L

q(U)

q(U) = q(U)L

q(U)

.
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Proof. Applying Lemma V.2, 
hoose V � G 
ompa
t open and tidy for � and su
h

that V \H is tidy for �j

H

. Then q(V ) is tidy above for �: On the one hand

q(V

�

) = q

0

�

\

n�0

�

�n

(V )

1

A

�

\

n�0

q(�

�n

(V )) =

\

n�0

�

�n

(q(V )) = q(V )

�

:

Also, V

+

=fx 2 V jx admits an �-regressive traje
tory in V g. Thus q(V

+

) � q(V )

+

as �-regressive traje
tories des
end to the quotient. Combined, we 
on
lude

q(V ) = q(V

+

V

�

) = q(V

+

)q(V

�

) � q(V )

+

q(V )

�

:

That is, q(V ) is tidy above for �. Now de�ne U := V \ q

�1

(q(V )e), where q(V )e

is as in Algorithm IV.3. Then q(U) = q(V )e and hen
e q(U) is tidy above for �

by [Wil15, Lemma 16℄. In addition, by applying [Wil15, Proposition 6 (3)℄ we see

that L

q(U)

= L

q(V )e

= L

q(V )

. It follows from [Wil15, Lemma 13℄ and q(U) = q(V )e

that q(U)L

q(U)

= L

q(U)

q(U). Furthermore, V \H � ker q � q

�1

(q(V )e). Hen
e

U \H = V \H \ q

�1

(q(V )e) = V \H

is tidy for �j

H

.

It remains to show that U is tidy for �. We begin by proving that U is tidy above

for �. Let u 2 U . Then sin
e V is tidy above, u = v

+

v

�

for some v

�

2 V

�

and we aim

to show that v

�

2 U

�

. Note that q(u) = q(v

+

)q(v

�

) with q(v

�

) 2 q(V

�

) � q(V )

�

.

Sin
e q(u) 2 q(V )e, we dedu
e q(v

�

) 2 (q(V )e)

�

by Lemma V.5. Sin
e �

n

(v

�

) 2 V

�

and �

n

(q(v

�

)) 2 (q(V )e)

�

for all n � 0 we have q(�

n

(v

�

)) 2 (q(V )e)

�

. Therefore,

the orbit of v

�

2V \q

�1

(q(V )e)= U stays in U and we 
on
lude v

�

2U

�

.

As to v

+

, 
hoose an �-regressive traje
tory (v

i

)

i2N

0

for v

+


ontained in V

+

. We

show that this sequen
e is 
ontained within U . It is 
lear that v

0

= v

+

2 U . Suppose

for the purpose of indu
tion that v

n

2 U . Applying [Wil15, Lemma 15℄ we see that

q(v

n

) 2 q(U) \ q(V

+

) � q(V )e\ q(V )

+

= (q(V )e)

+

. There exists w 2 (q(V )e)

+

with

�(w) = q(v

n

) = �(q(v

n+1

)):

Now w, q(v

n

) and q(v

n+1

) are elements of par

�

(�). By [Wil15, Proposition 20℄,

there is b 2 bik(�) su
h that q(v

n+1

) = wb. Sin
e q(V )eL

q(V )

is tidy, b 2 q(V )eL

q(V )

.

Hen
e q(v

n+1

) 2 q(V )eL

q(V )

. By Lemma V.4, q(v

n+1

) 2 q(V )e when
e v

n+1

2 U .

Indu
tively, v

i

2 U for all i 2 N

0

and so v

+

2 U

+

.

To see that U is tidy below, note that V is tidy below and U � V . Hen
e

L

U

� V

+

\ V

�

. Clearly, q(V

+

\ V

�

) � L

q(V )

and so q(V

+

\ V

�

) � q(V )e. Hen
e

V

+

\ V

�

� U . As a 
onsequen
e, L

U

� U whi
h implies that U is tidy below, see

[Wil15, Proposition 8℄. �

In the following lemma, we fa
tor the subgroup used to 
al
ulate the s
ale.

Later on, we turn this into a fa
torization of the s
ale itself.

Lemma V.7. Let G be a t.d.l.
. group, �2End(G) and H�G 
losed with �(H)�H .

Denote by � the endomorphism indu
ed by � on G=H . Then there is a 
losed

subgroup J of G with �((H \ U)

+

)U

+

� J � �(U

+

) and s

G=H

(�) = [�(U

+

) : J ℄:

Proof. Let U satisfy the 
on
lusions of Lemma V.6 and let q : G ! G=H denote

the quotient map. Then q(U)L

q(U)

is tidy for � and

s

G=H

(�) = [�(q(U)

+

)L

q(U)

: q(U)

+

L

q(U)

℄

using [Wil15, Proposition 4, Proposition 6 (2)℄. Now 
onsider the map

�(q(U)

+

)=(�(q(U)

+

) \ q(U)

+

L

q(U)

)! �(q(U)

+

L

q(U)

)=q(U)

+

L

q(U)

given by

g(�(q(U)

+

) \ q(U)

+

L

q(U)

) 7! g(q(U)

+

L

q(U)

):
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This map is well-de�ned as �(q(U)

+

) \ q(U)

+

L

q(U)

) � q(U)

+

L

q(U)

. It is inje
tive

be
ause any two elements in the domain whi
h have the same image have 
oset

representatives whi
h di�er by an element in �(q(U)

+

) \ q(U)

+

L

q(U)

. To see sur-

je
tivity, simply note that �(L

q(U)

) � L

q(U)

� q(U

+

)L

q(U)

by [Wil15, Lemma 6℄.

This shows

s

G=H

(�) = [�(q(U)

+

)L

q(U)

: q(U)

+

L

q(U)

℄

= [�(q(U)

+

) : �(q(U)

+

) \ q(U)

+

L

q(U)

℄:(1)

We know that �(q(U)

+

) \ q(U)

+

L

q(U)

is 
losed in G=H be
ause � and q are 
on-

tinuous, U is 
ompa
t and L

q(U)

is 
losed. Set

J := q

�1

�

�(q(U)

+

) \ q(U)

+

L

q(U)

�

\ �(U

+

):

By the above, J � �(U

+

) is 
losed. To see �((H \ U)

+

)U

+

� J , note that

(2) q(�((H \ U)

+

)U

+

) = q(U

+

) � q(U)

+

� �(q(U)

+

) \ q(U)

+

L

q(U)

=: S

be
ause �((H \ U)

+

)U

+

= U

+

�((H \ U)

+

) and �((H \ U)

+

) is 
ontained in H .

The formula

x:(yS) := q(x)yS for x 2 �(U

+

) and y 2 q(U

+

)

de�nes a transitive a
tion of �(U

+

) on X := �(q(U

+

))=S as q(�(U

+

)) = �(q(U

+

)).

Sin
e S 2 X has stabilizer q

�1

(S)\�(U

+

) = J under the a
tion, the Orbit Stabilizer

Theorem (as in [Rob96, 1.6.1 (i)℄) shows that

�(U

+

) : J ℄ = jX j = [�(q(U

+

)) : S℄:

Combining this with (2) and (1) we obtain s

G=H

(�) = [�(U

+

) : J ℄. �

Theorem V.8. LetG be a t.d.l.
. group, �2End(G) andH�G 
losed with �(H)�H .

Then s

H

(�j

H

)s

G=H

(�) divides s

G

(�).

Proof. Let U satisfy the 
on
lusions of Lemma V.6. By Lemma V.7 there is a 
losed

subgroup J of G su
h that

U

+

� �((U \H)

+

)U

+

� J � �(U

+

):

Re
all that by Theorem V.3, the set �((U \ H)

+

)U

+

is indeed a subgroup of G.

Applying Lemma V.7 and Theorem V.3 yields

s

G

(�) = [�(U

+

) : U

+

℄

= [�(U

+

) : J ℄[J : �((U \H)

+

)U

+

℄[�((U \H)

+

)U

+

: U

+

℄

= s

G=H

(�)[J : �((U \H)

+

)U

+

℄s

H

(�j

H

):

whi
h 
ompletes the proof. �

We end this se
tion by 
onsidering the spe
ial 
ase of nested subgroups inside

par

�

(�) for whi
h we a
hieve equality in Theorem V.8.

Lemma V.9. Let G be a t.d.l.
. group, � 2 End(G) and H � par

�

(�) 
losed su
h

that �(H) = H . Then par

�

(�j

H

) = H .

Proof. Suppose x 2 H . We 
an �nd an �-regressive traje
tory (x = x

0

; x

1

; : : :)

whi
h is 
ontained in some 
ompa
t set K. Sin
e �(H) = H we 
an 
hoose another

�-regressive traje
tory (x = y

0

; y

1

; : : :) su
h that y

n

2 H for all n 2 N. Therefore

y

n

; x

n

2 par

�

(�) and hen
e x

�1

n

y

n

2 bik(�) for all n 2 N. Thus y

n

2 x

n

bik(�)

whi
h is 
ontained in K bik(�). Sin
e both K and bik(�) are 
ompa
t, K bik(�)

is 
ompa
t and hen
e K bik(�) \ H is a 
ompa
t subset of H . This shows that

(y

0

; y

1

; : : :) is bounded and hen
e x 2 par

�

(�j

H

). �
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The following result is known for automorphisms [DS91, Proposition 3.21 (2)℄.

Its proof utilizes the modular fun
tion whi
h is not de�ned for endomorphisms.

Instead we 
onsider the fa
toring of the s
ale given by Theorem V.8.

Proposition V.10. Let G be a t.d.l.
. group, � 2 End(G) and H � par

�

(�) 
losed

su
h that �(H) = H . Further, let N �H be 
losed with �(N) = N . Denote by �

the endomorphism indu
ed by �j

H

on H=N . Then

s

H

(�j

H

) = s

H=N

(�)s

N

(�j

N

):

Proof. For simpli
ity, we write � for �j

H

as the enveloping group will play no

further role. By Lemma V.9, par

�

(�) = H and so if U � H is 
ompa
t open as

well as tidy for �, then U = U

+

by [Wil15, Proposition 11℄.

By Lemma V.2, we may assume that U \N is tidy for �j

N

. Let q : H ! H=N

denote the quotient map. Choose U � H 
ompa
t open and satisfying 
onditions

of Lemma V.6 with respe
t to N . From the proof of Theorem V.8 we have

s

H

(�) = s

H=N

(�)[J : �((U \N)

+

)U

+

℄s

N

(�j

N

);

where J is given in the proof of Lemma V.6 by

J = q

�1

(�(q(U)

+

) \ q(U)

+

L

q(U)

) \ �(U

+

):

It suÆ
es to show J � �((U \N)

+

)U

+

. Sin
e q(U

+

) � q(U)

+

, as seen in the proof

of Lemma V.6, and U

+

= U we have q(U

+

) � q(U)

+

� q(U) = q(U

+

); whi
h gives

equality throughout. Thus J = q

�1

�

�(q(U)) \ q(U)L

q(U)

�

\�(U). Sin
e q(U) is an

open identity neighbourhood, we obtain

q(U)L

q(U)

= q(U)L

q(U)

= q(U)L

q(U)

:

Suppose that x 2 q

�1

(q(U)L

q(U)

). Then we 
an write x = ul for some u 2 U and

l 2 q

�1

(L

q(U)

). Consider q(l) = lN 2 L

q(U)

. There exists n 2 N with

�

n

(lN) = �

n

(l)N 2 q(U):

This implies �

n

(l)m 2 U for some m 2 N . Then �

n

(l)m has an �-regressive

traje
tory 
ontained in U = U

+

. Using that fa
t that N is assumed to satisfy

�(N) = N , 
hoose m

0

2 N su
h that �

n

(m

0

) = m.

Sin
e [Wil15, Proposition 20℄ implies that any two elements in the preimage

of an element of par

�

(�) = H are equal modulo bik(�), we have lm

0

2 U bik(�) by


omparing �

n

(lm

0

) = �

n

(l)m with the �-regressive traje
tory for �

n

(l)m 
ontained

in U . But U is tidy and so bik(�) � U . Hen
e l 2 UN and thus x 2 UN . This

shows that J � UN \�(U). Suppose now that x 2 UN \�(U). Then we 
an write

x = un where u 2 U and n 2 N . Choose �-regressive traje
tories

(u = u

0

; u

1

; : : :), (un = v

0

; v

1

; : : :), and (n = n

0

; n

1

; : : :)

su
h that u

i

; v

i+1

2 U for all i � 0 and n

i

2 N for all i 2 N. Now, noti
e that

(un = u

0

n

0

; u

1

n

1

; : : :) is also an �-regressive traje
tory. For all i � 1 we have

u

i

n

i

2 v

i

bik(�). Noting that bik(�) � U , we have n

i

2 U for all i � 1. Then

n

1

2 (U \ N)

+

and so n = n

0

= �(n

1

) 2 �((U \ N)

+

). As x = un, this shows

x 2 U�((U \N)

+

) = �((U \N)

+

)U (with equality by Theorem V.3). �





CHAPTER VI

Tidiness and S
ale via Graphs

This se
tion 
ontains joint work with T. Bywaters, namely [BT17℄. We study

Willis' theory of totally dis
onne
ted lo
ally 
ompa
t groups and their endomor-

phisms in a geometri
 framework using graphs. This leads to new interpretations

of tidy subgroups and the s
ale fun
tion. Foremost, we obtain a geometri
 tidy-

ing pro
edure whi
h applies to endomorphisms as well as a geometri
 proof of the

fa
t that tidiness is equivalent to being minimizing for a given endomorphism. Our

framework also yields an endomorphism version of the Baumgartner-Willis tree

representation theorem. We 
on
lude with a 
onstru
tion of new endomorphisms

of totally dis
onne
ted lo
ally 
ompa
t groups from old via HNN-extensions.

1. Chara
terization of Tidy Subgroups

Let G be a totally dis
onne
ted, lo
ally 
ompa
t group and let � 2 End(G).

In this se
tion, we 
hara
terize the 
ompa
t open subgroups U of G whi
h are tidy

for � in terms of 
ertain dire
ted graphs. In doing so we generalize several results

of [M�ol02℄ from 
onjugation automorphisms to general endomorphisms.

Frequently, we restri
t to the 
ase where the set f�

�i

(U) j i 2 N

0

g is in�nite

and hen
e all �

�i

(U) (i 2 N

0

) are distin
t. The �nite 
ase 
orresponds to M�oller's

periodi
ity 
ase [M�ol02, Lemma 3.1℄ and is 
overed by the following lemma.

Lemma VI.1. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open. If

f�

�i

(U) j i 2 N

0

g is �nite then there is N 2 N

0

su
h that V :=

T

N

k=0

�

�k

(U) = U

�

satis�es �(V ) � V and is tidy for �.

Proof. If f�

�i

(U) j i 2 N

0

g is �nite, then U

�

=

T

k2N

0

�

�i

(U) is an interse
tion

of �nitely many open subgroups. Say U

�

=

T

N

k=0

�

�k

(U)=:V . Then V � G is


ompa
t open and �(V ) � V . We 
on
lude V = V

�

. Hen
e V is tidy above for �.

Sin
e V = V

�

� V

��

we also dedu
e that V

��

is open and hen
e 
losed. Thus V

is also tidy below for �. �

1.1. Tidiness Above. We re
over the fa
t that for every 
ompa
t open sub-

group U � G there is n2N

0

su
h that U

�n

=

T

n

k=0

�

�n

(U) is tidy above for �.

Consider the graph � de�ned as follows: Set v

�i

:= �

�i

(U) 2 P(G) for i 2 N

0

,

where P(G) denotes the power set of G. Now set

V (�) := fgv

�i

j g 2 G; i 2 N

0

g and E(�) := f(gv

�i

; gv

�i�1

) j g 2 G; i 2 N

0

g:

Note that G a
ts on � by automorphisms via left multipli
ation. For this a
tion,

we 
ompute the stabilizer G

v

�i

= �

�i

(U) (i � 0), as well as

G

fv

�m

jm�0g

=

\

m�0

�

�m

(U) = U

�

:

We now reprove [Wil15, Lemma 4℄ in terms of the graph �.

Lemma VI.2. Retain the above notation. Suppose that U

N

v

�1

= U

+

v

�1

for some

N 2 N. Then U

�n

v

�n�1

= (U

�n

)

+

v

�n�1

for all n � N .

51
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Proof. By de�nition, (U

�n

)

+

v

�n�1

� U

�n

v

�n�1

. Now, let w 2 U

�n

v

�n�1

. Then

there is u 2 U

�n

su
h that w = uv

�n�1

. We obtain �

n

(u) 2 �

n

(U

�n

) whi
h equals

U

n

by Lemma IV.2 and is 
ontained in U

N

sin
e n � N . Hen
e, by assumption,

there is u

+

2 U

+

su
h that �

n

(u)v

�1

= u

+

v

�1

. By de�nition of U

+

, we may pi
k

u

0

+

2 U

+

\ U

�n

su
h that u

+

v

�1

= �

n

(u

0

+

)v

�1

. Then u

0

+

2 (U

�n

)

+

as by Lemma

IV.2 we have U

+

\ U

�n

= (U

�n

)

+

. We 
on
lude that u

0

+

v

�n�1

= uv

�n�1

sin
e

u

0

+

u

�1

2 U

�n�1

� G

v

�n�1

by the following argument: We have u

0

+

u

�1

2 U

�n

by

de�nition and u

0

+

u

�1

2 �

�n�1

(U) by the subsequent 
omputation:

�

n+1

(u

0

+

u

�1

) = �

n+1

(u

0

+

)�

n+1

(u

�1

) = �(u

+

�

n

(u

�1

)) 2 U

sin
e, by 
onstru
tion, u

+

�

n

(u)

�1

2 G

v

�1

= �

�1

(U). �

The following Lemma will be used to prove analogues of Theorems 2.1 and 2.3

from [M�ol02℄.

Lemma VI.3. Retain the above notation. Fix N 2 N and 
onsider the following:

(i) U

N

v

�1

= U

+

v

�1

.

(ii) For every u 2 U

�N

there is u

+

2 U

+

\ U

�N

with u

+

v

i

= uv

i

for all i � 0.

(iii) The subgroup U

�N

is tidy above for �.

Then (i) implies (ii), and (ii) implies (iii).

Proof. To see (i) implies (ii) let u 2 U

�N

. By indu
tion, we 
onstru
t a sequen
e

(u

n

)

n2N


ontained in U

+

\ U

�N

su
h that u

n

v

i

= uv

i

for all i 2 f�N � n; : : : ; 0g.

Then, as U

+

\U

�N

is 
ompa
t, (u

n

)

n2N

has an a

umulation point u

+

2 U

+

\U

�N

.

We 
on
lude that for any given n 2 N, we have

u

�1

k

u

+

2 G

v

�n

= �

�n

(U)

for large enough k 2 N be
ause �

�n

(U) is open. That is, given n 2 N we have

u

+

(v

�n

) = u

k

(v

�n

) = u(v

�n

):

for suÆ
iently large k 2 N.

Now, by (i), Lemma VI.2 and Lemma IV.2, we may pi
k u

1

2 U

+

\ U

�N

su
h

that u

1

v

�N�1

= uv

�N�1

. Next, assume that u

n

has been 
onstru
ted for some

n 2 N. Then uu

�1

n

(v

i

) = v

i

for all i 2 f�N � n; : : : ; 0g. That is,

u

�1

n

u 2

n+N

\

i=0

�

�i

(U) = U

�N�n

:

By Lemma VI.2, there exists x 2 (U

�N�n

)

+

su
h that u

�1

n

uv

�N�n�1

= xv

�N�n�1

.

By assumption, u

n

2 U

+

\U

�N

and, by Lemma VI.2, x 2 (U

�N�n

)

+

=U

+

\U

�N�n

.

Hen
e u

n

x 2 U

+

\ U

�N

. Also, u

n

x(v

i

) = u(v

i

) for all i 2 f�N � n� 1; : : : ; 0g. We

may therefore set u

n+1

:= u

n

x.

To see that (ii) implies (iii) we use that, by assumption, for every u 2 U

�N

there is u

+

2 U

+

\U

�N

su
h that u and u

+

agree on v

i

for all i � 0. Set u

�

:= u

�1

+

u.

Then u

�

v

i

= v

i

for all i � 0. Hen
e u

�

2 G

fv

m

jm�0g

= U

�

and

U

�N

= (U

+

\ U

�N

)U

�

= (U

�N

)

+

(U

�N

)

�

by Lemma IV.2 as required. �

Theorem VI.4. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

Then there is N 2 N su
h that U

N

v

�1

= U

+

v

�1

, and U

�N

is tidy above for �.

Proof. First note that U

+

v

�1

� U

m

v

�1

� U

n

v

�1

for all 0 � n � m sin
e the sets

U

n

(n 2 N

0

) are nested. Thus it suÆ
es to show that U

N

v

�1

� U

+

v

�1

for some

N 2 N. Towards a 
ontradi
tion, assume that U

+

v

�1

( U

n

v

�1

for all n 2 N, i.e.

there is w

n

2 V (�) su
h that w

n

2 U

n

v

�1

for all n 2 N but w

n

62 U

+

v

�1

. Then
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there is a sequen
e (u

n

)

n2N


ontained in U su
h that u

n

2 U

n

and u

n

v

�1

= w

n

.

Sin
e U is 
ompa
t, the sequen
e (u

n

)

n2N

has an a

umulation point u

+

in U . This

a

umulation point has to be 
ontained in U

+

: Indeed, pi
k a subsequen
e (u

n

k

)

k2N

of (u

n

)

n2N


onverging to u

+

. Then for any given m 2 N, we have u

n

k

2 U

m

for

almost all k. Sin
e U

m

is 
losed we 
on
lude that u

+

2 U

m

for every m 2 N. Hen
e

u

+

2

\

m2N

U

m

= U

+

:

Furthermore, if u

+

v

�1

= w, then be
ause u

+

u

�1

n

k

is 
ontained in the open set

G

v

�1

for large enough k 2 N we must have w = w

k

for suÆ
iently large k 2 N.

We 
on
lude that w

k

2 U

+

v

�1

for suÆ
iently large k 2 N and thus we have a


ontradi
tion. Now, U

�N

is tidy above for � by Lemma VI.3. �

Theorem VI.5. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

Then the following statements are equivalent.

(i) Uv

�1

= U

+

v

�1

.

(ii) For every u 2 U there is u

+

2 U

+

su
h that u

+

v

i

= uv

i

for all i � 0.

(iii) The subgroup U is tidy above for �.

Proof. Note that (i) implies (ii) and (ii) implies (iii) by Lemma VI.3 for N = 0.

Now, if (iii) holds, then Uv

�1

= U

+

U

�

v

�1

= U

+

v

�1

as U

�

� G

v

�1

. �

Proposition VI.6. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open

as well as tidy above for �. Then

[U

�n

: U

�n�1

℄ = [U : U

�1

℄ = [�

�n

(U) : �

�n�1

(U) \ �

�n

(U)℄

for all n 2 N.

Proof. Let u2U

�n

nU

�n�1

. Then �

n

(u)2UnU

�1

. Hen
e [U

�n

: U

�n�1

℄� [U : U

�1

℄.

Conversely, if u 2 UnU

�1

then u admits a representative in U

+

by Theorem VI.5.

Let (u

n

)

n

be an �-regressive sequen
e of u 
ontained in U . Then u

n

2 U

�n�1

nU

�n

.

Hen
e equality holds. The same argument applies to the right hand equality. �

The following equality is used in Se
tion 4.

Lemma VI.7. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open as

well as tidy above for �. Then [�(U) : U \ �(U)℄ = [�(U

+

) : U

+

℄.

Proof. Note that

�(U)(U \ �(U)) = �(U

+

)�(U

�

)(U \ �(U)) = �(U

+

)(U \ �(U))

as �(U

�

) � U . Thus

[�(U) : U \ �(U)℄ = [�(U

+

) : U \ �(U) \ �(U

+

)℄ = [�(U

+

) : U \ �(U

+

)℄:

Sin
e U \ �(U

+

) = U

+

, the desired equality follows. �

1.2. Tidiness Below. In this se
tion we present a geometri
 proof for the


ommonly used 
riterion that identi�es a 
ompa
t open and tidy above subgroup

U � G as tidy below if U

��

\ U = U

�

, 
f. [Wil15, Proposition 8℄.

First, re
all that U

++

=

S

i2N

0

�

i

(U

+

) and U

��

=

S

i2N

0

�

�i

(U

�

). In terms of

the graph � introdu
ed in Se
tion 1.1, we have

U

��

=

[

n2N

G

fv

�m

jm��ng

:

Lemma VI.8. Let G be a t.d.l.
. group, � 2 End(G) and U � G be 
ompa
t open

as well as tidy above for �. Then

(i) the group U

��

� G is 
losed if and only if U

��

\ U = U

�

, and

(ii) if U

��

is 
losed then U

++

\ U = U

+

.
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Proof. For (i), �rst assume that U

��

\ U = U

�

. Then U

��

\ U is 
losed. Sin
e U

is 
losed, this implies that U

��

is 
losed, see [HR12, 5.37℄.

Now suppose that U

��

\ U 6= U

�

. By de�nition, U

�

� U

��

\ U . Hen
e there

exists u 2 U = G

v

0

with u 2 G

fv

m

jm��ng

for some n 2 N but u 62 U

�

= G

fv

m

jm�0g

.

Then there is l 2 N with 0 < l < n and su
h that uv

�l

6= v

�l

. Sin
e U is tidy above,

we may de
ompose u = u

+

u

�

for some u

+

2 U

+

and u

�

2 U

�

. Hen
e, repla
ing u

with uu

�1

�

, we may assume that u 2 U

+

.

Choose an �-regressive traje
tory (u

j

)

j2N

of u 
ontained in U

+

. De�ne a se-

quen
e (x

i

)

i2N


ontained in U

��

\U

+

� U as follows: Set x

1

:= u and x

i+1

:= x

i

u

in

.

We 
olle
t the relevant properties of the sequen
es (u

j

)

j2N

and (x

i

)

i2N

in the fol-

lowing lemma, see below for an illustration of the se
ond sequen
e.

Lemma VI.9. The sequen
es (u

j

)

j2N

and (x

i

)

i2N

have the following properties.

(a) For all j 2 N: u

j

2 G

fv

m

jm��n�jg

\G

fv

m

j�j�m�0g

\ U

+

� U

��

\ U

+

.

(b) For all i 2 N: x

i

2 G

fv

m

jm��ing

\ U

+

� U

��

\ U

+

.

(
) For all j 2 N: u

j

62 G

v

�l�j

.

(d) For all i 2 N and 0 � j � i� 1: x

i

62 G

v

�l�jn

and x

i+1

v

�l�jn

= x

i

v

�l�jn

.

Proof. For (a), note that �

j

(u

j

) = u 2 G

fv

m

jm��ng

=

T

k�n

�

�k

(U) by assump-

tion and therefore u

j

2 �

�j

�

T

k�n

�

�k

(U)

�

=

T

k�n+j

�

�k

(U) = G

fv

m

jm��n�jg

.

For the se
ond part, simply re
all that (u

j

)

j

is an �-regressive traje
tory of u


ontained in U

+

; in parti
ular, u

j

2 U

+

and �

m

(u

j

) 2 U

+

� U for all 0 � m � j.

Therefore, u

j

2 �

�m

(U) = G

v

�m

for all 0 � m � j.

Part (b) follows from (a) given that x

i+1

= x

i

u

in

= uu

n

� � �u

(i�1)n

u

in

.

For part (
), re
all that we have u 62 �

�l

(U) = G

v

�l

by assumption and there-

fore u

j

62 �

�l�j

(U) = G

v

�l�j

.

In order to prove part (d), we argue by indu
tion: The element x

1

= u satis�es

x

1

62 G

v

�l

by part (
). Also x

2

v

�l

= x

1

v

�l

be
ause x

�1

1

x

2

= u

�1

uu

n

= u

n

and

u

n

2 G

fv

m

j�n�mg

by part (a). Now assume the statement holds true for i 2 N and


onsider x

i+1

= x

i

u

in

. Then x

i+1

62 G

v

�l�in

be
ause u

in

62 G

v

�l�in

by part (a)

whereas x

i

2 G

v

�l�in

by part (b). Also, x

i+1

v

�l�jn

= x

i

v

�l�jn

for all 0 � j � i�1

sin
e x

i+1

= x

i

u

in

and u

in

2 G

fv

m

j�in�mg

by part (a). �

By Lemma VI.9, the sequen
e (x

i

)

i2N

� U

��

\U

+

� U has the following shape,

analogous to [M�ol02, Figure 1℄.

� � �

bbb

0

�l

�n

x

1

� � �

bbbbb

0

�l

�n

�l� n

�2n

x

2

� � �

bbbbbbbb

0

�l

�n

�l� n

�2n

�k(n + 1)

�kn

� � �

x

k

� � �

bbbbbbbb

0

�l

�n

�l� n

�2n

�k(n + 1)

�kn

� � �� � �

x

Now, sin
e U is 
ompa
t, the sequen
e (x

i

)

i2N

� U

��

\U

+

� U has an a

umulation

point x 2 U . However, x 62 U

��

and hen
e U

��

is not 
losed.
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For part (ii), note that U

+

� U

++

\ U by de�nition. Hen
e, towards a 
on-

tradi
tion, we assume that there is u 2 (U

++

\ U)nU

+

. Sin
e U is tidy above

we may de
ompose u = u

+

u

�

with u

+

2 U

+

and u

�

2 U

�

. Repla
ing u with

u

�1

+

u 2 (U

++

\ U)nU

+

we may hen
e assume u 2 U

�

.

Now, sin
e u 2 U

++

, there is an �-regressive traje
tory (u

n

)

n2N

of u in G

su
h that for some N 2 N we have u

n

2 U

+

for all n � N and u

N�1

62 U .

Consider the element u

N

2 U . For n � N we have �

n

(u

N

) = �

n�N

(u) 2 U

�

.

Hen
e u

N

2 U

��

\ U . However, u

N

62 U

�

: Indeed, u

N

62 G

v

�1

= �

�1

(U) be
ause

u

N�1

62 U . Therefore, by part (i), U

��

is not 
losed. �

1.3. Tidiness. Finally, we 
ombine the previous se
tions in order to 
hara
-

terize tidiness in terms of a subgraph of the graph � introdu
ed above. As before, let

G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open. Re
all the de�nition

v

�i

:=�

�i

(U) 2 P(G) for i 2 N

0

. We 
onsider the subgraph �

+

of � de�ned by

V (�

+

) := fuv

�i

j u 2 U; i 2 N

0

g; E(�

+

) := f(uv

�i

; uv

�i�1

) j u 2 U; i 2 N

0

g:

Note that the a
tion of U � G on � preserves �

+

� � and that �

+

= des
(v

0

).

Lemma VI.10. Let G be a t.d.l.
. group, � 2 End(G) and U � G. If U is tidy above

for � then U a
ts transitively on ar
s of a given length issuing from v

0

2 V (�

+

).

Proof. Given that out

�

+

(v

�n+1

) = [�

�n+1

(U) : �

�n+1

(U) \ �

�n

(U)℄ as well as

U

fv

�k

jk�n�1g

=U

�n+1

, this follows by indu
tion from Proposition VI.6. �

We are now ready to 
hara
terize tidiness of U in terms of �

+

when the set

fv

�i

j i 2 N

0

g is in�nite. Con
erning the 
ase where fv

�i

j i 2 N

0

g is �nite,

Theorem VI.11 is 
omplemented by Lemma VI.1.

Theorem VI.11. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

Assume fv

�i

j i 2 N

0

g is in�nite. Then U is tidy for � if and only if �

+

is a dire
ted

tree with 
onstant in-valen
y 1, ex
luding v

0

, as well as 
onstant out-valen
y.

Proof. First, assume that U is tidy for �. Noti
e that for a given i � 0, the in- and

out-valen
y is 
onstant among the 
olle
tion of verti
es fuv

i

j u 2 Ug given that U

a
ts on �

+

by automorphisms.

Con
erning in-valen
ies it therefore suÆ
es to show that ea
h v

�i

for i � 1

has in-valen
y equal to one. Suppose otherwise, that is in(v

�i

) � 2 for some i � 1.

Then there is u 2 U

v

�i

� �

�i

(U) su
h that uv

�i+1

6= v

�i+1

. By Theorem VI.5 we

may assume that u 2 U

+

. Now 
onsider u

0

:= �

i

(u) 2 U

++

\ U . Sin
e U is tidy

below, Lemma VI.8 shows that u

0

2 U

+

= U

++

\ U . But u 62 �

�i+1

(U) and hen
e

u

0

= �

i

(u) 62 �(U) � U

+

, a 
ontradi
tion. Thus �

+

is a dire
ted tree.

Con
erning out-valen
ies, we may also restri
t our attention to fv

�i

j i 2 N

0

g.

Note that out(v

0

) = jU

+

v

�1

j by Theorem VI.5 as U is tidy above. Furthermore,

out(v

�i

) = j(U\�

�i

(U))v

�i�1

j = j(U

+

\�

�i

(U))v

�i�1

j by the same theorem. Now,

sin
e �

+

is a tree and U

+

�xes v

0

, we obtain

out(v

�i

) = j(U

+

\ U

�i

)v

�i�1

j = j(U

�i

)

+

v

�i�1

j = jU

�i

v

�i�1

j

by Lemma VI.2. We 
on
lude the argument by showing that

jU

�i

v

�i�1

j = jUv

�1

j = jU

+

v

�1

j:

On the one hand, we have jU

�i

v

�i�1

j � jUv

�1

j: Indeed, suppose u 2 U

�i

does not

�x v

�i�1

. Then �

i

(u) does not �x v

�1

. If it did, we would have �

i

(u) 2 �

�1

(U)

and hen
e u 2 �

�i�1

(U). On the other hand, jU

�i

v

�i�1

j � jUv

�1

j: Indeed, assume

u 2 U does not �x v

�1

, i.e. u 62 �

�1

(U). By Theorem VI.5, we may assume u 2 U

+

.

Pi
k an �-regressive traje
tory (u

j

)

j2N

0

of u in U . Then �

i+1

(u

i

) = �(u) 62 U and

hen
e u

i

62 �

�i�1

(U), i.e. u

i

does not �x v

�i�1

.
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Now assume that �

+

has all the stated properties. Sin
e �

+

is a tree, we have

U

��

\U � U

�

while the reverse in
lusion holds by de�nition. Hen
e U

��

is 
losed

by Lemma VI.8 and U is tidy below. Combining the 
onstant out-valen
y assump-

tion with the fa
t that �

+

is a tree we obtain the equality jUv

�1

j = jU

�i

v

�i�1

j.

Next, jU

�i

v

�i�1

j = jU

i

v

�1

j sin
e jU

i

v

�1

j � jUv

�1

j and due to the following observa-

tion: If u 2 U

�i

is su
h that uv

�i�1

6= v

�i�1

then �

i

(u) 2 �

i

(U

�i

) = U

i

by Lemma

IV.2 and �

n

(u)v

�1

6= v

�1

. Thus jU

i

v

�1

j � jU

�i

v

�i�1

j. Overall, jUv

�1

j = jU

i

v

�1

j.

Finally, to see that the above implies jUv

�1

j = jU

+

v

�1

j, let u 2 U . Then for

every i 2 N there is u

i

2 U

i

with uv

�1

= u

i

v

�1

. The sequen
e (u

i

)

i2N

is 
ontained

in U and hen
e admits a 
onvergent subsequen
e. Any su
h subsequen
e 
onverges

to an element u

+

2

T

i�0

U

i

= U

+

whi
h 
oin
ides with u on v

�1

. Theorem VI.5

now implies that U is tidy above. �

The following Lemma is a useful test of tidiness as it relies only on 
al
ulating

inverse images and indi
es. It is, in a sense, an algebrai
 way to see if �

+

satis�es the

requirements of Theorem VI.11. We apply it multiple times in up
oming se
tions.

Lemma VI.12. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

Then U is tidy for � if and only if [U : U\�

�n

(U)℄=[U : U\�

�1

(U)℄

n

for all n2N.

Proof. First, assume that U is tidy for �. If fv

�i

j i 2 N

0

g is �nite, then for some

N 2 N

0

we have [U

�N

: U

�N�1

℄ = 1 by Lemma VI.1 and Proposition VI.6 shows

that 1 = [U : U \ �

�1

(U)℄ whi
h implies �

�1

(U) � U . Therefore �

�n

(U) � U for

all n 2 N and the assertion follows. Now assume that fv

�i

j i 2 N

0

g is in�nite.

Then �

+

is a rooted dire
ted tree with 
onstant out-valen
y d and we obtain

[U : U \ �

�n

(U)℄ = [U

v

0

: U

v

0

\ U

v

�n

℄ = jUv

�n

j = d

n

= [U : U \ �

�1

(U)℄

n

by the orbit-stabilizer theorem as desired.

Conversely, assume that [U : U\�

�n

(U)℄ = [U : U\�

�1

(U)℄

n

for all n 2 N and


onsider the graph �

+

. We have d := out(v

0

) = [U

v

0

: U

v

0

\U

v

�1

℄ = [U : U\�

�1

(U)℄

as before. By de�nition of �

+

, the out-valen
y of any other vertex is at most d. But

jUv

�n

j = [U

v

0

: U

v

0

\ U

v

�n

℄ = [U : U \ �

�n

(U)℄ = [U : U \ �

�1

(U)℄

n

= d

n

by assumption. Thus, every vertex has out-valen
y equal to d. Hen
e �

+

is a tree

of 
onstant in-valen
y 1, ex
luding v

0

, and U is tidy for � by Theorem VI.11. �

2. A Graph-Theoreti
 Tidying Pro
edure

Let G be a totally dis
onne
ted, lo
ally 
ompa
t group and let � 2 End(G).

We show that there is a 
ompa
t open subgroup of G whi
h is tidy for �.

The proof is algorithmi
: Starting from an arbitrary 
ompa
t open subgroup

we 
onstru
t a lo
ally �nite graph �

++

. A 
ertain quotient, inspired by [M�ol00℄,

of this graph has a 
onne
ted 
omponent isomorphi
 to a regular rooted tree whi
h

admits an a
tion of a subgroup of G. The stabilizer of the root in this tree is the

desired tidy subgroup.

For the remainder of the se
tion, �x U � G 
ompa
t open. Refering to Lemma

VI.1, we shall assume throughout that f�

�i

(U) j i 2 N

0

g is in�nite. By Theorem

VI.4 we may also assume that U is tidy above for �.

2.1. The Graph �

++

. Consider the graph �

++

de�ned by

V (�

++

)=fuv

�i

j u 2 U

++

, i 2 N

0

g; and

E(�

++

)=f(uv

�i

; uv

�i�1

) j u 2 U

++

, i 2 N

0

g:

The following remark will be used in the proof of Theorem VI.26.
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Remark VI.13. Note that �

++

is a subgraph of �. Also, if U is tidy above for �,

the graphs �

+

and � have the same out-valen
y by Theorem VI.5. Consequently,

des


�

(v

0

) = �

+

� des


�

++

(v

0

) � des


�

(v

0

) = �

+

. Hen
e des


�

++

(v

0

) = �

+

.

The following Lemma will help to identify verti
es in �

++

as (un)equal. It is

immediate from the assumption that f�

�i

(U) j i 2 N

0

g is in�nite and the fa
t that

left 
osets of distin
t subgroups are distin
t.

Lemma VI.14. Retain the above notation and let u

0

v

�i

, u

1

v

�j

2 V (�

++

) � P(G).

If u

0

v

�i

= u

1

v

�j

then i = j. �

Note that U

++

a
ts on �

++

by automorphisms. We now de�ne an inje
tive

graph endomorphism of �

++

that appears frequently. Let uv

i

2 V (�

++

) where

u 2 U

++

. Sin
e �(U

++

) = U

++

, there exists u

0

2 U

++

su
h that �(u

0

) = u. De�ne

�(uv

i

) = u

0

v

i�1

. The following proposition summarizes the properties of � and

in
ludes justi�
ation that � is a well-de�ned.

Proposition VI.15. Retain the above notation. The map � is a graph isomorphism

from �

++

to �(�

++

) where

V (�(�

++

)) = fuv

�i

j u 2 U

++

, i 2 Ng; and

E(�(�

++

)) = f(uv

�i

; uv

�i�1

) j u 2 U

++

, i 2 Ng:

Proof. We �rst show � is well-de�ned. Suppose u

0

v

�i

; u

1

v

�i

2 V (�

++

) represent

the same vertex. Then u

�1

0

u

1

2�

�i

(U). Choose w

0

; w

1

2 U

++

with �(w

i

) = u

i

for

i 2 f0; 1g. Then �(w

�1

0

w

1

) = u

�1

0

u

1

2 �

�i

(U) and so w

�1

0

w

1

2 �

�i�1

(U). This

implies w

0

v

�i�1

= w

1

v

�i�1

. By Lemma VI.14, this is enough to show that setting

�(u

0

v

�i

) = w

0

v

�i�1

is well-de�ned.

To see that � is inje
tive suppose that �(u

0

v

�i

) = �(u

1

v

�i

). Then there are w

0

and w

1

su
h that w

0

v

�i�1

= w

1

v

�i�1

and �(w

i

) = u

i

(i 2 f0; 1g). In parti
ular,

w

�1

0

w

1

2 �

�i�1

(U) and so �(w

�1

0

w

1

) = u

�1

0

u

1

2 �

�i

(U). Thus u

0

v

�1

= u

1

v

�i

.

As to V (�(�

++

)) we have, V (�(�

++

)) � fuv

�i

j u 2 U

++

; i 2 Ng by de�nition

as �(U

++

) = U

++

. Equality follows from Lemma VI.14.

To see that � preserves the edge relation, let (uv

�i

; uv

�i�1

) 2 E(�

++

). Choose

u

0

2 U

++

with �(u

0

)=u. Then (�(uv

�i

); �(uv

�i�1

))=(u

0

v

�i�1

; u

0

v

�i�2

) 2 E(�

++

).

Thus � is a graph morphism.

Again, we have E(�(�

++

)) � f(uv

�i

; uv

�i�1

) j u 2 U

++

, i 2 Ng by de�nition

as �(U

++

) = U

++

and equality by Lemma VI.14. �

The following two results 
apture ar
-transitivity of the a
tion of U

++

on �

++

.

Lemma VI.16. Retain the above notation. Let 


0

and 


1

be ar
s of equal length in

�

++

and with origin uv

0

(u 2 U

++

). Then there is g 2 U

++

su
h that g


0

= 


1

.

Proof. Note that u

�1




i

(i 2 f0; 1g) is an ar
 with origin v

0

and thus is 
ontained in

des


�

++

(v

0

). Remark VI.13 and Lemma VI.10 show that there exists u

0

2 U

+

su
h

that u

0

u

�1




0

= u

�1




1

. Then uu

0

u

�1

2 U

++

and g := uu

0

u

�1

serves. �

In the following, we write [v

0

; v

�k

℄ for the ar
 (v

0

; : : : ; v

�k

).

Proposition VI.17. Retain the above notation. Let 


0

and 


1

be ar
s in �

++

of

equal length. Then there are u 2 U

++

and n 2 N

0

with either u�

n




0

= 


1

or

u�

n




1

= 


0

. If 


0

and 


1

both terminate at v

�i

(i 2 N), we may 
hoose n = 0 and

u 2 U

++

\ U

��

.

Proof. Suppose 


0

originates at u

i

v

�i

0

and 


1

originates at u

1

v

�i

1

. Without loss

of generality assume i

0

� i

1

. Then �

i

0

�i

1

(


1

) originates at u

0

1

v

�i

0

= �

i

0

�i

1

(u

1

v

�i

1

)

for some u

0

1

2 U

++

. For the �rst assertion it therefore suÆ
es to show that for any
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two ar
s 


0

and 


1

originating at verti
es u

0

v

�i

and u

1

v

�i

(u

0

; u

1

2 U

++

), there

exists u 2 U

++

with u


0

= 


1

. Further still, by 
onsidering the image of 


1

under

multipli
ation by u

0

u

�1

1

, we 
an assume the u

0

= u

1

. Now we 
an extend 


j

to




0

j

by 
on
atenating on the left with the path (u

0

v

0

; : : : ; u

0

v

�i

). By Lemma VI.16,

there exists u 2 U

++

su
h that u


0

0

= 


0

1

. We must ne
essarily have u


0

= 


1

.

For the se
ond assertion, let 
 be an ar
 terminating in v

�k

. It suÆ
es to show

that there is g 2 U

++

\U

��

su
h that g
 � [v

0

; v

�k

℄. Extending 
 if ne
essary, we


an assume without loss of generality that 
 originates at some uv

0

where u 2 U

++

.

We now 
onstru
t g 2 U

++

\ U

��

su
h that g
 = [v

0

; v

�k

℄. By Lemma VI.16,

there exists u

0

2 U

++

su
h that u

0


 = [v

0

; v

�k

℄. Applying Lemma VI.16, for ea
h

n 2 N

0

there exist w

n

2 U

++

su
h that

w

n

(v

0

; : : : ; v

�k

; u

0

v

�k�1

; : : : ; u

0

v

�k�n

) = [v

0

; v

�k�n

℄:

The sequen
e (w

n

)

n2N

is 
ontained in U as ea
h element �xes v

0

. It hen
e admits a

subsequen
e 
onverging to some w

0

2 U . Put g := w

0

u

0

2 U

++

. Sin
e the permuta-

tion topology is 
oarser than the topology on G, we get g(v

�l

) = v

�l

for all l � k.

That is, g 2 U

��

and g
 = [v

0

; v

�k

℄. �

Remark VI.18. Restri
ting Proposition VI.17 to the 
ase where 


0

and 


1

are single

verti
es we 
on
lude that for any two verti
es u

0

; u

1

2 V (�

++

), there are n 2 N

0

and u 2 U

++

su
h that either u�

n

(u

0

) = u

1

or u�

n

(u

1

) = u

0

.

We now show that �

++

is lo
ally �nite. We will need the following Lemma whi
h

is a 
onsequen
e of [Wil15, Proposition 4℄ given that L

U

, see [Wil15, De�nition

5℄, is pre
isely U

++

\ U

��

.

Lemma VI.19. The 
losure of U

++

\ U

��

is 
ompa
t. �

The last assertion of the following proposition will be used to show that �

++

admits a well-de�ned \depth" fun
tion.

Proposition VI.20. Retain the above notation. The graph �

++

(i) has 
onstant out-valen
y,

(ii) has 
onstant in-valen
y among the verti
es fuv

�i

j u 2 U

++

; i 2 Ng,

(iii) satis�es that the in-valen
y of uv

0

(u 2 U

++

) is 0,

(iv) is lo
ally �nite, and

(v) satis�es that every ar
 from uv

�i

to u

0

v

�i�k

(u; u

0

2 U

++

; i; k 2 N

0

) has

length k.

Proof. If u

0

; u

1

2 V (�

++

), then by Remark VI.18 and swapping u

0

with u

1

if

ne
essary, there are g 2 U

++

and n 2 N

0

su
h that g�

n

(u

0

) = u

1

. Proposition VI.15,

shows that j out(u

1

)j = j out(�

n

(u

0

))j, hen
e (i). Similarly, in(u) = in(g�

n

(u

0

)) if

neither u

0

and u

1

are of the form uv

0

for some u 2 U

++

and therefore (ii) holds.

The assertion that j in(uv

0

)j = 0 follows sin
e for every edge (u

0

v

�i

; u

0

v

�i�1

)

we have u

0

v

�i�1

6= uv

0

by Lemma VI.14.

For lo
al �niteness it now suÆ
es to show that both out(v

0

) and in(v

�1

) are

�nite. Note that by Remark VI.13 we have

j out(v

0

)j = jUv

�1

j = [U : U \ �

�1

(U)℄

whi
h is �nite by 
ompa
tness of U and 
ontinuity of �. To see that in(v

�1

) is

�nite, note that by Proposition VI.17 ea
h vertex of in(v

�1

) 
an be written as uv

0

where u 2 U

++

\ U

��

\ �

�1

(U). Conversely, any su
h u yields a vertex in in(v

0

).

Thus

j in(v

�1

)j = [U

++

\ U

��

\ �

�1

(U) : U

++

\ U

��

\ �

�1

(U) \ U ℄:
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If u

0

; u

1

2 U

++

\U

��

\�

�1

(U) with u

0

u

�1

1

62 U then u

0

; u

1

2 U

++

\ U

��

\�

�1

(U)

a fortiori and u

0

u

�1

1

62 U . Thus

j in(v

�1

)j � [U

++

\ U

��

\ �

�1

(U) : U

++

\ U

��

\ �

�1

(U) \ U ℄:

Applying Lemma VI.19 and noting that �

�1

(U) is 
losed, U

++

\ U

��

\ �

�1

(U) is


ompa
t. Furthermore, sin
e U is open, we derive that U

++

\ U

��

\ �

�1

(U) \ U

is open in U

++

\ U

��

\ �

�1

(U). Thus in(v

�1

) is �nite.

For part (v), let 
 be an ar
 from uv

�i

to uv

�i�k

. Note that by Proposition

VI.17, there is g 2 U

++

with g
 � (v

0

; v

�1

; : : :). By Lemma VI.14, guv

�i

= v

�i

and

gu

0

v

�i�k

= v

�i�k

. Thus g
 = (v

�i

; : : : ; v

�k

) has length k and so does 
 be
ause

U

++

a
ts by automorphisms. �

2.2. The quotient T . The tidying pro
edure relies on identifying a 
ertain

quotient T of �

++

as a forest of regular rooted trees. To de�ne this quotient, we �rst

introdu
e a \depth" fun
tion  : V (�

++

)! N on �

++

as follows: For v 2 V (�

++

),


hoose an ar
 
 originating from some uv

0

(u 2 U

++

) and terminating at v. Set

 (v) to be the length of 
. The following is immediate from Proposition VI.20.

Lemma VI.21.Retain the above notation. The map  is well-de�ned and  (uv

�i

)= i

for all u 2 U

++

and i 2 N

0

. �

By virtue of Lemma VI.21 we may de�ne the level sets V

k

:=  

�1

(k) � V (�

++

)

for k � 0 and the edge sets E

k

:= f(w;w

0

) 2 E(�

++

) j  (w

0

) = kg for k � 1. It is

a 
onsequen
e of Lemma VI.21 and Lemma VI.14 that (w;w

0

) 2 E

k

if and only if

there is u 2 U

++

su
h that (w;w

0

) = (uv

�k+1

; uv

�k

). On V

k

(k � 1) we introdu
e

an equivalen
e relation by w � w

0

if w and w

0

belong to the same 
onne
ted


omponent of �

++

nE

k

. Similarly, for w;w

0

2 V

0

we put w � w

0

if they belong to

the same 
onne
ted 
omponent of �

++

. Write [w℄ for the 
olle
tion of verti
es w

0

with w � w

0

. Note that for every g 2 U

++

and k 2 N

0

we have gV

k

= V

k

and

gE

k

= E

k

. Sin
e the a
tion of U

++

on �

++

preserves 
onne
ted 
omponents we see

that w � w

0

if and only if gw � gw

0

. The following Lemma extends this to �.

Lemma VI.22. Retain the above notation and let k 2 N

0

. Then �(V

k

)=V

k+1

and

�(E

k

) = E

k+1

. Hen
e, for w;w

0

2V (�

++

) we have w�w

0

if and only if �(w)��(w

0

).

Proof. The assertions �(V

k

) = V

k+1

and �(E

k

) = E

k+1

are immediate from the

de�nitions. Suppose now that w;w

0

2 V

k

are in the same 
onne
ted 
omponent of

�

++

nE

k

. By Proposition VI.15, this 
an o

ur if and only if �(w); �(w

0

) 2 V

k+1

are

in the same 
onne
ted 
omponent of �(�

++

) nE

k+1

. By Proposition VI.20 and the

de�nition of E

k+1

, the embedding �(�

++

) ! �

++

maps 
onne
ted 
omponents of

�(�

++

)nE

k+1

to 
onne
ted 
omponents of �

++

nE

k+1

and is surje
tive on V

k+1

. �

Lemma VI.23. Retain the above notation. There is N 2 N su
h that for every

v 2 des


�

++

(v

0

) with  (v) � N we have in(v) � des


�

++

(v

0

).

Proof. By Proposition VI.20, we 
an 
hoose u

0

; : : : ; u

k

2 U

++

\ �

�1

(U) su
h that

in(v

�1

) = fu

0

v

0

; : : : ; u

k

v

0

g. Sin
e u

i

2 U

++

for all i 2 f0; : : : ; kg, we may pi
k

�-regressive traje
tories (w

i

j

)

j2N

0

and N

i

2 N su
h that w

i

0

= u

i

and w

i

n

2 U for

all n � N

i

. Set N = maxfN

i

j i 2 f0; : : : ; kgg+ 1.

Suppose n � N . To see that in(v

�n

) � des


�

++

(v

0

) note that by Proposition

VI.20 we have in(v

�n

) = �

n�1

(in(v

�1

)) = fw

i

n�1

v

�N+1

j i 2 f0; : : : ; kgg. Sin
e

n� 1 � N

i

for all i2f0; : : : ; kg, the path (w

i

n�1

v

0

; : : : ; w

i

n�1

v

�n+1

) is 
ontained in

des


�

++

(v

0

). This shows in(v

�n

) � des


�

++

(v

0

).

In general, let v 2 des


�

++

(v

0

) with  (v) = n � N . Applying Proposition

VI.17 to the ar
 (v

0

; : : : ; v

�n

) and any ar
 
onne
ting v

0

to v, there is u 2 U \U

++
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su
h that uv

�n

= v. Furthermore, u des


�

++

(v

0

) = des


�

++

(v

0

) as uv

0

= v

0

and it

follows that in(v) = u in(v

�n

) � des


�

++

(v

0

). �

Lemma VI.24. Retain the above notation. Then the equivalen
e 
lasses on �

++

indu
ed by � have �nite 
onstant size.

Proof. By Proposition VI.17 and Lemma VI.22, it suÆ
es to show that a single

equivalen
e 
lass is �nite. Using Lemma VI.23, 
hoose N 2 N su
h that for every

v 2 des


�

++

(v

0

) with  (v) � N we have in(v) � des
(v

0

). We show that [v

�N

℄ �

des


�

++

(v

0

). Sin
e des
(v

0

) \ V

k

is �nite for all k 2 N, this assertion will follow.

Suppose v 2 [v

�N

℄. Then v

�N

and v are in the same 
onne
ted 
omponent of

�

++

nE

N

. Hen
e there is a path from v

�N

to v 
ontained in �

++

nE

N

. Choosing ar
s

within this path and extending them to V

N

if ne
essary, we see that there are ver-

ti
es u

0

; : : : ; u

n

2 V

N

with u

0

= v

�N

, u

n

= v and des


�

++

(u

i

)\des


�

++

(u

i+1

) 6= ;.

We use indu
tion to show that u

i

2 des


�

++

(v

0

). Clearly, u

0

= v

�N

2 des


�

++

(v

0

).

Suppose u

k

2 des


�

++

(v

0

) and let (w

0

; : : : ; w

l

) be an ar
 su
h that w

0

= u

k+1

and

w

l

2 des


�

++

(u

k

)\des


�

++

(u

k+1

). Then w

l

2 des


�

++

(v

0

) and  (w

�l

) = N+l > N .

This implies w

l�1

2 in(w

l

) � des


�

++

(v

0

) by the 
hoi
e of N . Repeating this pro-


ess until we have u

k+1

= w

0

2 in(w

1

) � des


�

++

(v

0

) 
ompletes the indu
tion. �

Now de�ne a dire
ted graph T as the quotient of �

++

by the vertex equivalen
e

relation introdu
ed above. In parti
ular, ([w℄; [w

0

℄) is an edge in T if and only if there

are representatives w 2 [w℄ and w

0

2 [w

0

℄ su
h that (w;w

0

) is an edge in �

++

. The

following result 
olle
ts properties of T . For the statement, we let d

+

= j out

�

++

(v

0

)j

and d

�

= j in

�

++

(v

�1

)j. We let ' : �

++

! T denote the quotient map.

Lemma VI.25. Retain the above notation. The quotient T is a forest of regular

rooted trees of degree d

+

=d

�

. The map � and the a
tion of U

++

on �

++

des
end

to T . Furthermore, we have the following.

(i) The map � is a graph morphism from T onto �(T ) where

V (�(T )) = f[uv

�i

℄ j u 2 U

++

; i 2 Ng; and

E(�(T )) = f([uv

�i

℄; [uv

�i�1

℄) j u 2 U

++

; i 2 Ng:

(ii) For every v 2 V (T ), the stabilizer (U

++

)

v

a
ts transitively on out

T

(v).

Proof. It is 
lear that if v 2 V (�

++

)\V

0

, then j in

T

([v℄)j = 0 sin
e j in

�

++

(u)j = 0 for

all u 2 V

0

. We now show that if v 2 �

++

nV

0

, then j in

T

([v℄)j=1. Sin
e j in

�

++

(v)j�1,

we have j in

T

([v℄)j � 1. Suppose now that (u

0

; [v℄) and (u

1

; [v℄) are edges in T .

Then there are representatives u

0

i

; w

0

i

2 V (�

++

) su
h that u

0

i

2 [u

i

℄, w

i

2 [v℄ and

(u

0

i

; w

0

i

)2E(�

++

) for i2f0; 1g. In parti
ular,w

0

is in the same 
onne
ted 
omponent

of �

++

n E

 (w

0

)

as w

1

. Consequently, u

0

0

is in the same 
onne
ted 
omponent of

E

 (w

0

)�1

as u

0

1

. As  (u

0

0

) =  (w

0

) � 1 =  (w

1

) � 1 =  (u

0

1

), this shows that

u

0

= [u

0

0

℄ = [u

0

1

℄ = u

1

and so (u

0

; [v℄) = (u

1

; [v℄). Hen
e j in([v℄)j = 1.

The map � and the a
tion of U

++

on �

++

des
end to T by Lemma VI.22

and the pre
eding paragraph. The assertions 
on
erning � and �(T ) are immediate

from Proposition VI.15. The same Proposition implies u�

n

(in

T

(v)) = in

T

(u�

n

(v)).

Proposition VI.17 shows that an analogue of Remark VI.18 also holds for T . Hen
e

T is a forest of regular rooted trees and has 
onstant out-valen
y.

Let d denote the out-valen
y of T . As in [M�ol00, Lemma 5℄, we argue that

d = d

+

=d

�

. By Lemma VI.24, equivalen
e 
lasses of verti
es in �

++

have 
onstant

�nite order k 2 N. Given v 2 V (T ), let A := '

�1

(v). The d edges issuing from v

end in verti
es w

1

; : : : ; w

d

2 V (T ). Put B := '

�1

(fw

1

; : : : ; w

d

g). Then all edges in

�

++

ending in B originate in A be
ause T has in-valen
y 1. The number of edges

issuing from A, whi
h is kd

+

, and the number of edges terminating in B, whi
h is

kdd

�

, are thus equal. Hen
e d = d

+

=d

�

.
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For (ii), let v 2 V (T ) and u

0

; u

1

2 out

T

(v). Pi
k representatives w

0

; w

0

0

; w

1

; w

0

1

in V (�

++

) su
h that ([w

i

℄; [w

0

i

℄) = (v; u

i

) for i 2 f0; 1g and 
hoose g 2 U

++

su
h

that g(w

0

; w

0

0

) = (w

1

; w

0

1

) by Proposition VI.17. Then gv = v and gu

0

= u

1

. �

Theorem VI.26. Let G be a t.d.l.
. group and � 2 End(G). Then there exists a


ompa
t open subgroup V � G whi
h is tidy for �.

Proof. By Lemma VI.1 we may assume that fv

�i

j i 2 N

0

g is in�nite. Furthermore,

by Theorem VI.4, we may assume that U is tidy above for �.

For i 2 N

0

, let v

0

i

:= '(v

i

) 2 V (T ). In view of the fa
t that �

++

� �, 
onsider

V := G

fX

0

g

where X

0

:= [v

0

℄ � V (�

++

) is the equivalen
e 
lass of v

0

in �

++

. Then

V is open in the permutation topology 
oming from � as G

X

0

� V = G

fX

0

g

and

hen
e also open (and 
losed) in G. Sin
e X

0

is �nite by Lemma VI.24 we 
on
lude

that V is 
ompa
t as it 
ontains the 
ompa
t group U as a �nite index subgroup.

We have des


�

++

(X

0

) = des


�

(X

0

) by Remark VI.13. Sin
e the group V pre-

serves des


�

(X

0

) it a
ts on des


�

++

(X

0

) by automorphisms.

It is 
lear that V preserves V

k

, E

k

and 
onne
ted 
omponents. So the a
tion

of V des
ends to T and V stabilizes v

0

0

2 V (T ). Note that (U

++

)

v

0

0

� V and so

iterated appli
ation of Lemma VI.25 shows that V a
ts transitively on verti
es of

�xed depth in T . Also, V

v

0

i

= V \ �

�i

(V ): Suppose g 2 V and gv

i

= uv

i

, where

u 2 U

++

. Then g

�1

u 2 �

�i

(U). Thus �

i

(g

�1

u) 2 U and so �

i

(g)v

0

= �

i

(u)v

0

.

Applying Lemma VI.22, we see that gv

i

� v

i

if and only if �

i

(g)v

0

� v

0

. Finally,

applying the orbit-stabilizer theorem and Lemma VI.25 we have

[V : V \ �

�n

(V )℄ = jV v

0

�n

j = (d

+

=d

�

)

n

= jV v

0

�1

j

n

= [V : V \ �

�1

(V )℄

n

:

for all n 2 N. Hen
e V is tidy for � by Lemma VI.12 �

Remark VI.27. Retain the above notation and assume that U is tidy. We argue

that in this 
ase �

++

and T 
oin
ide: It suÆ
es to show that jin(v)j = 1 for some

v = uv

�i

with i > 0 as Proposition VI.20 shows that the relation � on �

++

is trivial. By Remark VI.13 and Theorem VI.11, the graph des


�

++

(v

0

) = �

+

is

already a tree. Lemma VI.23 shows that there exists a vertex v with in(v) � �

+

.

Thus jin(v)j = 1.

The following lemma will be used in Se
tion 4.

Lemma VI.28. Suppose U is tidy for �. Then U

++

\ U

��

� U

+

\ U

�

� U .

Proof. Sin
e U is tidy for �, the graph �

++

is a forest of rooted trees by Remark

VI.27 . Note that for ea
h u 2 U

++

\U

��

, there exists i 2 N

0

su
h that uv

�i

= v

�i

.

Hen
e U

++

\U

��

preserves des


�

++

(v

0

). Sin
e this is a tree with root v

0

, U

++

\U

��

is 
ontained within stab

G

(v

0

) = U . The 
laim now follows from Lemma VI.8. �

3. The S
ale Fun
tion and Tidy Subgroups

In this se
tion we link the 
on
ept of tidy subgroups to the s
ale fun
tion

and thereby re
over results of [Wil15℄ in a geometri
 manner. First, we make a

preliminary investigation into the interse
tion of tidy subgroups. Let G be a t.d.l.
.

group, � 2 End(G) and U

(1)

; U

(2)

� G 
ompa
t open as well as tidy for �.

Proposition VI.29. Retain the above notation. Then

[U

(1)

: U

(1)

\ �

�1

(U

(1)

)℄ = [U

(2)

: U

(2)

\ �

�1

(U

(2)

)℄

To prove Proposition VI.29, we need some preparatory lemmas 
on
erning in-

verse images of U

(1)

and U

(2)

. The �rst one 
omplements Lemma VI.1.
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Lemma VI.30. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open

and tidy above for �. If f�

�n

(U) j n 2 N

0

g is �nite then �(U) = U = �

�1

(U).

Proof. By assumption, the interse
tion

T

1

k=0

�

�k

(U) has only �nitely many terms

and hen
e stabilizes eventually. For suÆ
iently large n 2 N

0

we therefore have

[U

�n

: U

�n�1

℄ = 1. By Proposition VI.6, we get for all m 2 N

0

that

1=[U

�n

: U

�n�1

℄=[U : U

�1

℄ = [U

�m

: U

�m�1

℄=[�

�m

(U) : �

�m

(U) \ �

�m�1

(U)℄:

For m = 1, we obtain [U : U

�1

℄ = [U : U \ �

�1

(U)℄ = 1 = [�

�1

(U) : U \ �

�1

(U)℄.

That is, �

�1

(U) � U and U � �

�1

(U) whi
h yields the assertion. �

The next lemma settles Proposition VI.29 when both f�

�n

(U

(1)

) j n 2 N

0

g

and f�

�n

(U

(2)

) j n 2 N

0

g are �nite.

Lemma VI.31. Retain the above notation. If f�

�n

(U

(i)

) j n 2 N

0

g is �nite for both

i 2 f1; 2g then [U

(1)

: U

(1)

\�

�1

(U

(1)

)℄=[U

(2)

: U

(2)

\�

�1

(U

(2)

)℄ and U

(1)

\U

(2)

is

tidy for �.

Proof. The �rst assertion follows from Lemma VI.30. By the same Lemma we have

�

�1

(U

(1)

\ U

(2)

) = �

�1

(U

(1)

) \ �

�1

(U

(2)

) = U

(1)

\ U

(2)

. Lemma VI.1 now entails

that (U

(1)

\ U

(2)

)

�

= U

(1)

\ U

(2)

is tidy for �. �

Retain the above notation and set V := U

(1)

\ U

(2)

. Consider the graph �

+

asso
iated to V .

Lemma VI.32. Retain the above notation. Then either �

+

is a dire
ted in�nite tree,

rooted at v

0

, with 
onstant in-valen
y 1 ex
luding the root, or there exists n 2 N

0

su
h that �

�n

(V )=�

�n�k

(V ) for all k 2 N

0

.

Proof. Note that if �

�n

(V ) = �

�n�1

(V ) then �

�n

(V ) = �

�n�k

(V ) for all k 2 N

0

.

Suppose instead that �

�n

(V ) 6= �

�n�1

(V ) for all n 2 N

0

. By Lemma VI.31 we

may assume, without loss of generality, that f�

�n

(U

(1)

) j n 2 N

0

g is in�nite. In

parti
ular, we may 
onsider the graph �

(1)

+

asso
iated to U

(1)

whi
h is an in�nite

rooted tree by Theorem VI.11.

We have to show that �

+

does not 
ontain a 
y
le, the in-valen
y of v

0

2 V (�

+

)

is 0 and the in-valen
y of every other vertex in �

+

is pre
isely 1. Note that every

vertex ex
luding v

0

has in-valen
y at least 1: By assumption, v

�i

6= v

�i�1

for all

i 2 N. In parti
ular v

�i

2 in(v

�i�1

) for all i 2 N.

Now, suppose there is a 
y
le (u

0

v

�i

; : : : ; u

n

v

�i�n

= u

0

v

�i

) in �

+

, where u

j

2

V for all j 2 f0; : : : ; ng. Then �

�i

(V ) = �

�i�n

(V ) and so (v

�i

; : : : ; v

�i�n

) is

a non-trivial 
y
le. We aim to show that v

�i

has in-valen
y at least 2 in this


ase. We 
an 
hoose u 2 �

�i�1

(V )n�

�i

(V ): If �

�i�1

(V ) � �

�i

(V ) then iterated

appli
ations of �

�1

show �

�i

(V )��

�i�1

(V )��

�i�n

(V )=�

�i

(V ), in 
ontradi
tion

to the assumption. Sin
e �

�i�1

(V ) = �

�1

�

�i

(V ) = �

�1

�

�i�n

(V ), we also obtain

u 2 �

�i�n�1

(V )n�

�n�i

(V ). This implies that (uv

�i�n

; v

�i�n�1

) is an edge in �

+

whi
h is distin
t from (v

�n�i

; v

�n�i�1

).

Noting that if v

0

has non-zero in-valen
y then we have a 
y
le, it remains to

show that no vertex has in-valen
y at least 2. We split into two 
ases: First, 
onsider

the 
ase where f�

�n

(U

(2)

) j n 2 N

0

g is �nite. Then �

�n

(U

(2)

) = U

(2)

for all n 2 N

0

by Lemma VI.30 and

j in

�

+

(v

i

)j = [�

�i

(V ) : �

�i

\ �

�i+1

(V )℄

= [�

�i

(U

(1)

) \ U

(2)

: �

�i

(U

(1)

) \ �

�i+1

(U

(1)

) \ U

(2)

℄

� [�

�i

(U

(1)

) : �

�i

(U

(1)

) \ �

�i+1

(U

(1)

)℄ = j in

�

(1)

+

(v

(1)

�i

)j = 1

for all i 2 N whi
h suÆ
es.
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In the 
ase where f�

�n

(U

(2)

) j n 2 N

0

g is in�nite, suppose for the sake of a


ontradi
tion that uv

�n

2 V (�

+

) (n 2 N) has in-valen
y at least 2. Choose ver-

ti
es wv

�n+1

; zv

�n+1

2 V (�

+

) su
h that (wv

�n+1

; uv

�n

) and (zv

�n+1

; vv

�n

) are

distin
t edges in �

+

. Let '

i

: �

+

! �

(i)

+

(i 2 f1; 2g) be the graph morphism given

by '

i

(uv

�j

) = uv

(i)

�j

for all j 2 N

0

and u 2 V � U

(i)

. Sin
e ea
h vertex ex
luding

the root in �

(i)

+

has in-valen
y 1, we have '

i

(wv

�n+1

) = '

i

(zv

�n+1

). This im-

plies w

�1

z 2 �

�n+1

(U

(1)

) \ �

�n+1

(U

(2)

) = �

�n+1

(V ). Thus wv

�n+1

= zv

�n+1

in


ontradi
tion to the assumption. �

Set k

i

= [U

(i)

: V ℄ and d

i

= [U

(i)

: U

(i)

\ �

�1

(U

(i)

)℄.

Lemma VI.33. Retain the above notation. We have k

i

d

n

i

� jV v

�n

j � d

n

i

=k

i

. Also,

if f�

�i

(V ) j i 2 N

0

g is �nite then d

1

= 1 = d

2

.

Proof. Sin
e U

(i)

is tidy, either the graph �

(i)

+

is a tree with out-valen
y d

i

by

Theorem VI.11, or f�

�i

(U

(i)

) j i 2 N

0

g is �nite and �(U

(i)

) = U

(i)

= �

�1

(U

(i)

) by

Lemma VI.30, when
e d

i

= 1. In both 
ases, k

i

d

n

i

= k

i

jU

(i)

v

(i)

�n

j, as the following

arguments show: In the former 
ase this follows from Lemma VI.10, in the latter

we have v

(i)

�n

= v

(i)

0

when
e jU

(i)

v

(i)

�n

j = 1. Next, we have

k

i

jU

(i)

v

(i)

�n

j = [U

(i)

: V ℄[U

(i)

: U

(i)

\ �

�n

(U

(i)

)℄:

Sin
e [�

�n

(U

(i)

) : �

�n

(V )℄ � [U

(i)

: V ℄ we obtain

k

i

jU

(i)

v

(i)

�n

j � [U

(i)

: U

(i)

\ �

�n

(U

(i)

)℄[�

�n

(U

(i)

) : �

�n

(V )℄

� [U

(i)

: U

(i)

\ �

�n

(U

(i)

)℄[�

�n

(U

(i)

) \ U

(i)

: U

(i)

\ �

�n

(V )℄

= [U

(i)

: U

(i)

\ �

�n

(V )℄

= jU

(i)

v

�n

j

where U

(i)

v

�n

is the orbit of v

�n

under the a
tion U

(i)

in P(G). Sin
e V � U

(i)

,

we have k

i

d

n

i

� jU

(i)

v

�n

j � jV v

�n

j whi
h is the �rst inequality.

Sin
e �

�n

(V ) = �

�n

(U

(1)

) \ �

�n

(U

(2)

) � �

�n

(U

(i)

), we have jV v

�n

j � jV v

(i)

�n

j

when 
onsidered as orbits in P(G). The orbit-stabilizer theorem now implies

jV v

(i)

�n

j =

[U

(i)

: V ℄[V : stab

V

(v

(i)

�n

)℄

[U

(i)

: V ℄

=

[U

(i)

: stab

V

(v

(i)

�n

)℄

k

i

�

[U

(i)

: stab

U

(i)

(v

(i)

�n

)℄

k

i

=

jUv

(i)

�n

j

k

i

=

d

n

i

k

i

;

as required. Finally, if f�

�i

(V ) j i 2 N

0

g is �nite, then �

�n

(V ) = �

�n�k

(V ) for

n suÆ
iently large and k 2 N

0

by Lemma VI.32. Thus (jV v

�n

j)

n2N

0

eventually

stabilizes. This implies d

i

= 1. �

Proof. (Proposition VI.29). By Lemma VI.33, we may assume that f�

�i

(V ) j i 2

N

0

g is in�nite. In this 
ase, Lemma VI.32 shows that �

+

is a rooted tree with root

v

0

. Let t

n

= j out

�

+

(v

�n

)j for n 2 N

0

. Sin
e �

+

is a rooted tree, t

n

= [V

�n

: V

�n�1

℄.

The sequen
e (t

n

)

n2N

0

is non-in
reasing: Indeed, we have

t

n�1

= [V

�n+1

: V

�n

℄ � [V

�n

: V

�n�1

℄ = t

n

for all n 2 N by the following argument: If u; u

0

2 V

�n

with uV

�n�1

6= u

0

V

�n�1

,

then �(u) 2 �(V

�n

) � V

�n+1

by Lemma IV.2. Similarly �(u

0

) 2 V

�n+1

. However

sin
e u

�1

u

0

62 �

�n�1

(U), �(u

�1

)�(u

0

) 62 V

�n

.

Sin
e the sequen
e (t

n

)

n2N

0

is non-negative, non-in
reasing and takes integer

values it is eventually 
onstant equal to some integer t. Sin
e �

+

is a tree, we have

jV v

�n

j =

Q

n�1

i=1

t

i

. Given that t

i

= t for almost all i2N

0

there is a 
onstant l 2 Q
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su
h that jV v

�n

j = lt

n

for suÆ
iently large n. Then

k

i

d

n

i

� jV v

�n

j = lt

n

�

d

n

i

k

i

for large enough n 2 N and i 2 f1; 2g by the �rst 
laim. As a 
onsequen
e, we have

t = d

i

for i 2 f1; 2g whi
h implies the overall assertion. �

The following theorem links the 
on
ept of being tidy to the s
ale fun
tion.

Theorem VI.34. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

Then U is tidy for � if and only if U is minimizing for �. In this 
ase, we have

s(�) = j out

�

+

(v

0

)j.

Proof. Suppose that U is minimizing for �. If f�

�k

(U) j k 2 N

0

g is �nite then

s(�) = 1 by Lemma VI.1. Consequently, �(U) � U . Therefore, we have U = U

�

and U

��

� U

�

= U is open and hen
e 
losed.

Assume now that f�

�k

(U) j k 2 Ng is in�nite. First, we show that U is tidy

above for �. Suppose otherwise. Then by Theorem VI.4 and Lemma VI.3 there is

n 2 N su
h that with v

�1

2 V (�) we have jU

n

v

�1

j = jU

+

v

�1

j � jUv

�1

j and so that

U

�n

is tidy above for �. Then

[�(U

�n

) : �(U

�n

) \ U

�n

℄ = [U

�n

: U

�n

\ �

�1

(U

�n

)℄ = [U

n

: U

n

\ �

�1

(U)℄

= jU

n

v

�1

j � jUv

�1

j = [U : U \ �

�1

(U)℄ = [�(U) : �(U) \ U ℄:

where the equalities follow by applying the appropriate power of � to the respe
tive

quotient, using Lemma IV.2. This 
ontradi
ts the assumption that U is minimizing.

Now 
onsider the graph �

++

asso
iated to U with out-valen
y d

+

, and in-

valen
y d

�

, ex
luding all v 2 V (�

++

) with  (v) = 0. Sin
e U is tidy above,

Theorem VI.5 and Remark VI.13 imply that

d

+

= jUv

�1

j = [U : U \ �

�1

(U)℄ = [�(U) : �(U) \ U ℄:

Let V denote the tidy subgroup 
onstru
ted from the graph �

++

asso
iated to U

by Theorem VI.11. Then the quotient T of �

++

has out-valen
y

d = [V : V \ �

�1

(V )℄ = [�(V ) : �(V ) \ V ℄:

Furthermore, d = d

+

=d

�

by Lemma VI.25. The fa
t that U is minimizing now

implies d

�

=1. It follows that �

+

is already a tree and U is tidy by Theorem VI.26.

Conversely, assume that U is tidy for �. Let V � G be a 
ompa
t open subgroup

whi
h is minimizing. Then V is tidy by the above and Proposition VI.29 implies

s(�)=[�(V ) : �(V )\V ℄=[V : V \�

�1

(V )℄=[U : U \�

�1

(U)℄=[�(U) : �(U)\U ℄:

That is, U is minimizing. �

Corollary VI.35. Let G be a t.d.l.
. group and � 2 End(G). Then s(�

n

) = s(�)

n

.

Proof. By Theorem VI.26 there is a 
ompa
t open subgroup U � G whi
h is tidy

for �. Following Theorem VI.34 the group U is minimizing and therefore

s(�) = [�(U) : �(U) \ U ℄ = [U : U \ �

�1

(U)℄:

Sin
e U is also tidy for �

n

by Lemma VI.12 we 
on
lude, using the same lemma, that

s(�

n

) = [�

n

(U) : �

n

(U)\U ℄ = [U : U \�

�n

(U)℄ = [U : U \�

�1

(U)℄

n

= s(�)

n

: �

M�oller's spe
tral radius formula [M�ol02, Theorem 7.7℄ for the s
ale may be

proven as in [Wil15, Proposition 18℄ but with referen
e to Theorem VI.26 for the

existen
e of tidy subgroups.

Theorem VI.36. Let G be a t.d.l.
. group, � 2 End(G) and U � G 
ompa
t open.

Then s(�) = lim

n!1

[�

n

(U) : �

n

(U) \ U ℄

1=n

. �
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4. The Tree-Representation Theorem

In this se
tion, we prove an analogue of the following tree representation theo-

rem for automorphisms due to Baumgartner and Willis [BW04℄, see also [Hor15℄.

Theorem VI.37 ([BW04, Theorem 4.1℄). Let G be a t.d.l.
. group, �2Aut(G) of

in�nite order and U�G 
ompa
t open as well as tidy for �. Then there is a regular

tree T of degree s(�) + 1 and a homomorphism ' : U

++

o h�i ! Aut(T ) su
h that

(i) '(U

++

o h�i) �xes an end ! 2 �T and is transitive on �T n f!g,

(ii) the stabilizer of ea
h end in �T n f!g is 
onjugate to (U

+

\ U

�

)o h�i,

(iii) ker(') is the largest 
ompa
t normal subgroup N � U

++

with �(N) = N ,

(iv) '(U

++

) is the set of ellipti
 elements in '(U

++

o h�i).

To prove an analogous statement for endomorphisms, we let � 2 End(G) have

in�nite order and U � G 
ompa
t open as well as tidy for �. Let S := U

++

o h�i

be the topologi
al semidire
t produ
t semigroup of the (semi)group U

++

� G and

the semigroup h�i � End(G), where End(G) is equipped with the 
ompa
t-open

topology and h�i a
ts 
ontinuously on U

++

by endomorphisms as �(U

++

) = U

++

,

see [CHK83, Theorem 2.9, Theorem 2.10℄. In parti
ular:

(1) Elements of S have the form (u; �

k

) for some u 2 U

++

and k 2 N

0

. We

identify (U

++

; id) with U

++

, and (id; h�i) with h�i.

(2) Composition in S is given by (u

0

; �

k

0

)(u

1

; �

k

1

) = (u

0

�

k

0

(u

1

); �

k

0

+k

1

).

(3) The topology on S is the produ
t topology on the set U

++

� h�i.

(4) The subsemigroup of S generated by (id; �) is isomorphi
 to (N;+) be
ause

� 2 End(G) has in�nite order.

We split the 
onstru
tion of the desired tree into the 
ases s(�)=1 and s(�) > 1.

First, assume s(�) > 1. Re
all that v

�i

:= �

�i

(U) 2 P(G) for i � 0. We extend

this de�nition to positive indi
es by setting v

i

:= �

i

(U) 2 P(G) for all i 2 Z. The

following lemma shows that these verti
es are all distin
t.

Lemma VI.38. Retain the above notation. In parti
ular, assume s(�) > 1. Suppose

�

m

(U) = �

n

(U) for some n;m 2 Z. Then m = n.

Proof. For m;n � 0, an equality �

�m

(U) = �

�n

(U) with m 6= n implies that the

set f�

�k

(U) j k 2 N

0

g is �nite and hen
e s(�) = 1 by Lemma VI.1.

Now, let 0 � m < n. Then Lemma VI.7, Lemma VI.12 and Corollary VI.35

show that

s(�)

n

= [�

n

(U

+

) : U

+

℄

= [�

n

(U

+

) : �

m

(U

+

)℄[�

m

(U

+

) : U

+

℄

= [�

n

(U

+

) : �

m

(U

+

)℄s(�)

m

:

Sin
e m < n and s(�) > 1, we get [�

n

(U

+

) : �

m

(U

+

)℄ 6= 1. Hen
e there exists

u 2 �

n

(U

+

)n�

m

(U

+

) � �

n

(U). For the sake of a 
ontradi
tion, suppose u 2 �

m

(U).

Sin
e U is tidy above, there exists u

�

2 U

�

su
h that u = �

m

(u

+

)�

m

(u

�

). It

follows that �

m

(u

+

)

�1

u 2 �

n

(U

+

) � U

++

sin
e �

m

(U

+

) � �

n

(U

+

). Also, we have

�

m

(u

�

) 2 �

m

(U

�

) � U

�

� U

��

, and so applying Lemma VI.28,

�

m

(u

+

)

�1

u 2 U

++

\ U

��

� U

+

\ U

�

� �

m

(U

+

):

It follows that u 2 �

m

(U

+

), a 
ontradi
tion. Thus u 62 �

m

(U) and �

n

(U) 6= �

m

(U).

Finally, suppose m < 0 < n and �

m

(U) = �

n

(U). Then �

m

(U) is a 
ompa
t

open subgroup whi
h is stabilized by �

n�m

. This shows s(�

n�m

) = 1 whi
h implies

s(�) = 1 by Corollary VI.35. This 
ontradi
ts the assumption s(�) > 1. �
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We de�ne a dire
ted graph �

++

by setting

V (�

++

) = fuv

i

j i 2 Z; u 2 U

++

g and E(�

++

) = f(uv

i

; uv

i�1

j i 2 Z; u 2 U

++

g:

Note that �

++

is a subgraph of �

++

and that U

++

a
ts on �

++

by automor-

phisms. We will show that the map �, de�ned in the paragraph pre
eding Propo-

sition VI.15, extends to an automorphism of �

++

. To do so, 
onsider the following

subgroups asso
iated to �:

par

�

(�) := fx 2 G j there exists a bounded �-regressive traje
tory for xg;

bik(�) := fx 2 par

�

(�) j �

n

(x) = e for some n 2 Ng:

It follows from [Wil15, Proposition 20℄, [Wil15, De�nition 12℄ and Theorem VI.34

that bik(�) � U . The same proposition implies that for u

1

; u

2

2 U

++

� par

�

(�)

with �(u

1

) = �(u

2

) we have u

�1

1

u

2

2 bik(�) � U .

Now de�ne � : �

++

! �

++

as follows: Given uv

i

2 V (�

++

), 
hoose u

0

2 U

++

su
h that �(u

0

) = u and set �(uv

i

) = u

0

v

i�1

.

Proposition VI.39. Retain the above notation. Then � is an automorphism of �

++

.

Proof. We �rst show that � is well-de�ned: By Lemma VI.38, it suÆ
es to sup-

pose u

0

; u

1

; u

0

0

; u

0

1

2 U

++

and i 2 Z are su
h that u

0

v

i

= u

1

v

i

, �(u

0

0

) = u

0

and

�(u

0

1

) = u

1

. Then u

�1

0

u

1

2 �

i

(U) and (u

0

0

)

�1

u

0

1

2 �

�1

(�

i

(U)) \ U

++

. For any

u

3

2 �

i�1

(U) with �(u

3

) = u

�1

0

u

1

we get ((u

0

0

)

�1

u

1

)

�1

u

3

2 bik(�) � �

i�1

(U)

as bik(�) � U and �(bik(�)) = bik(�). Hen
e (u

0

0

)

�1

u

1

2 �

i�1

(U). This shows

u

0

0

v

i�1

= u

0

1

v

i�1

, hen
e � is well-de�ned. To see that � is a bije
tion on V (�

++

) note

�(�(u)v

i+1

) = uv

i

and that �

�1

de�ned by uv

i

7! �(u)v

i+1

is well-de�ned by the

following argument: If uv

i

= u

0

v

i

, then u

�1

u

0

2 �

i

(U) and �(u)

�1

�(u

0

) 2 �

i+1

(U).

Thus �(u)v

i+1

= �(u

0

)v

i+1

. �

Note that �

++


ontains �

++

as a subgraph and �

++

is a forest of rooted

regular trees by Remark VI.27. For v 2 V (�

++

), there is n 2 N

0

su
h that �

n

(v) 2

V (�

++

). This shows that the in-valen
y of v is 1. We �nd that �

++

is a regular

tree with 
onstant out-valen
y s(�) by Theorem VI.11 and Remark VI.13. Sin
e

� is a translation in Aut(�

++

) we see that the subsemigroup generated by �

�1

is

isomorphi
 to (N;+).

De�ne ' : U

++

th�i ! Aut(�

++

) by '(u)(u

0

v

i

)=uu

0

v

i

for all u; u

0

2 U

++

and

'(�

k

) = �

�k

for all k 2 N

0

.

Lemma VI.40. Retain the above notation. The map ' extends to a 
ontinuous

semigroup homomorphism ' : S ! Aut(�

++

).

Proof. Note that ' extends separately both to a semigroup homomorphism of

U

++

, and the semigroup generated by �. To show that it extends to a semi-

group homomorphism of S it suÆ
es to show that '(�)'(u) = '(�(u))'(�). Then

'(u; �

n

) := '(u)'(�

n

) is well-de�ned for all u 2 U

++

and n 2 N

0

. Given a vertex

u

0

v

i

2 V (�

++

), we obtain as required:

'(�)'(u)u

0

v

i

= �

�1

(uu

0

v

i

) = �(uu

0

)v

i+1

= �(u)�

�1

(u

0

v

i

) = '(�(u))'(�)uv

i

:

To see that ' is 
ontinuous it suÆ
es to show that fx 2 S j '(x)w = w

0

g is open in

S for all w;w

0

2 V (�

++

). This follows from the fa
t that the stabilizer V of w

0

in

U

++

is an open subgroup of U

++

, so x is 
ontained in the open subset (V; id)x � S

and '((V; id)x)w = w

0

. �

We are now in a position to prove an analogue of Theorem VI.37 for endomor-

phisms.
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Theorem VI.41. Let G be a t.d.l.
. group, � 2 End(G) of in�nite order, U � G


ompa
t open as well as tidy for �, and S := U

++

o h�i. Then there is a tree T

and a 
ontinuous semigroup homomorphism ' : S ! Aut(T ) su
h that

(i) T has 
onstant valen
y s(�) + 1,

(ii) '(S) �xes an end ! 2 �T and is transitive on �T n f!g,

(iii) ker(') is the largest 
ompa
t normal subgroup N � U

++

with �(N) = N ,

(iv) '(U

++

) is the set of ellipti
 elements of '(S).

Proof. First, assume s(�) > 1. Let T be the undire
ted graph underlying �

++

,

i.e. the graph with vertex set V (�

++

) and edge-relation the symmetri
 
losure

of E(�

++

) � V (�

++

) � V (�

++

). The 
ontinuous semigroup homomorphism '

from S to Aut(�

++

) de�ned above indu
es a 
ontinuous semigroup homomorphism

S ! Aut(T ) for whi
h we use the same letter.

Part (i) is now immediate from the fa
t that every vertex in �

++

has out-

valen
y s(�) and in-valen
y 1.

For part (ii), let ! 2 �T be the end asso
iated to the sequen
e (v

i

)

i2N

0

. Then

�(!) = !. If u 2 U

++

, then there exists an �-regressive traje
tory for u eventually


ontained in U . That is u 2 �

n

(U) for all suÆ
iently large n 2 N when
e uv

n

= v

n

for suÆ
iently large n. This shows that u! = !. Overall, we 
on
lude '(S)! = !.

Now 
onsider the end �! 2 �T asso
iated to the sequen
e (v

�i

)

i2N

0

. Given

another end !

0

2 �T de�ned by (u

k�i

v

k�i

)

i2N

0

for k 2 Z and a sequen
e (u

k�i

)

i2N

0

in U

++

, the sequen
e u

�1

k

�

k

!

0

represents an end !

00

2 �T originating from v

0

and

it suÆ
es to show that there is an element u 2 U

++

whi
h maps the sequen
e of

�! to that of !

00

. This is a 
onsequen
e of Lemma VI.16 by pi
king a 
onvergent

subsequen
e inside the 
ompa
t set U \ U

++

.

As to (iii), the kernel of ' 
onsists of those elements s 2 S su
h that '(s) �xes

every vertex of T . That is,

ker(') = U

++

\

\

i2Z

\

u2U

++

u�

i

(U):

In parti
ular, ker(') is 
ompa
t and satis�es �(ker(')) = ker(') as �(U

++

) = U

++

.

Now, let N be any 
ompa
t normal subgroup of U

++

with �(N) = N . Then

'(N) � Aut(�

++

)

v

for some v 2 V (�

++

) be
ause '(N) is 
ompa
t by Lemma

VI.40. Sin
e N is normal in U

++

, we 
on
lude that

'(N) = '(u)'(N)'(u)

�1

� '(N) \ Aut(�

++

)

'(u)v

� Aut(�

++

)

v;'(u)v

for all u 2 U

++

. Similarly, given that �(N) = N we have

'(N) = '(�(N))'(�)'(�)

�1

= '(�(N) Æ �)'(�)

�1

= '(� ÆN)'(�)

�1

= �

�1

'(N)� � Aut(�

++

)

v;�

�1

(v)

:

as well as

'(N) = '(�)

�1

'(�)'(N) = '(�)

�1

'(� ÆN)

= '(�)

�1

'(�(N))'(�) = �'(N)�

�1

� Aut(�

++

)

v;�(v)

:

As a 
onsequen
e, '(N) �xes every vertex in the orbit of v under the a
tion of the

group generated by '(S). This group a
ts vertex-transitively as it 
ontains '(U

++

)

and both � and �

�1

. This shows that '(N) �xes T , i.e. '(N) � ker'.

For part (iv), write s = (u; �

k

) (u 2 U

++

; k 2 N) for elements of S. Given that

'(�) = �

�1

, we ne
essarily have k = 0 in order for '(s) to �x a vertex, so s 2 U

++

.

Conversely, every element u 2 U

++

is 
ontained in �

n

(U) for all suÆ
iently large

n 2 N, so '(u) �xes v

n

for the same values of n.

Now, assume s(�) = 1. Then �(U

+

) = U

+

by Lemma VI.7. This shows that

U

++

= U

+

is a 
ompa
t subgroup with �(U

++

) = U

++

. Let T be the (undire
ted)
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tree with vertex set Z and i; j 2 V (T ) 
onne
ted by an edge whenever ji� jj = 1.

De�ne ' : S ! Aut(T ) by setting '(�) to be the translation of length 1 in the

dire
tion of ! := (i)

i2N

0

2 �T , and '(u) to be the identity automorphism of T for

all u 2 U

++

. Then ' satis�es all the 
on
lusions of Theorem VI.41. �

Remark VI.42. The a
tion in Theorem VI.41 relates to Theorem VI.37 in the fol-

lowing manner: Results from [Wil15, Se
tion 9℄ show that if U is tidy for �, then

bik(�) � U

++

and the endomorphism � of U

++

= bik(�) indu
ed by �j

U

++

is an

automorphism. Let q : U

++

! U

++

= bik(�) be the quotient map. Then q(U

+

) is

tidy for �, (q(U

+

))

++

= q(U

++

) and s(�) = s(�). Extend q to a semigroup homo-

morphism from S to q(U

++

) o h�i by setting q(�) = �. Also, let ' : S ! Aut(T )

be as in Theorem VI.41 and '

0

: q(U

++

) o h�i ! T

0

as in Theorem VI.37. Then

there exists a graph isomorphism  : T

0

! T su
h that the diagram

S

'

//

q

��

Aut(T )

q(U

++

)o h�i

'

0

//

Aut(T

0

);

e

 

OO

where

e

 is 
onjugation by  , 
ommutes.

5. New Endomorphisms From Old

We 
on
lude with a 
onstru
tion that produ
es new endomorphisms of totally

dis
onne
ted, lo
ally 
ompa
t groups from old, inspired by [Wil15, Example 5℄.

Let G

1

and G

2

be totally dis
onne
ted 
ompa
t groups. Assume that there

are isomorphisms '

i

: G

i

! H

i

�

=

G

i

� G

i

(i 2 f1; 2g) of G

i

onto 
ompa
t open

subgroups H

i

� G

i

. Consider the HNN-extension G of G

1

� G

2

whi
h makes the

isomorphi
 subgroups H

1

�G

2

�

=

G

1

�G

2

�

=

G

1

�H

2


onjugate:

G := hG

1

�G

2

; t j ft

�1

(h

1

; g

2

)t = ('

�1

1

(h

1

); '

2

(g

2

)) j (h

1

; g

2

) 2 H

1

�G

2

gi:

Set U := G

1

�G

2

� G. Given that G 
ommensurates U , it admits a unique group

topology whi
h makes the in
lusion of U into G 
ontinuous and open, see [Bou98,

Chapter III, x1.2, Proposition 1℄. Then G is a non-
ompa
t t.d.l.
. group whi
h


ontains U :=G

1

�G

2

as a 
ompa
t open subgroup. De�ne � 2 End(G) by setting

�(t) = t and �(g

1

; g

2

) = ('

1

(g

1

); g

2

) for all (g

1

; g

2

) 2 G

1

�G

2

. Then

�(t

�1

(h

1

; g

2

)t) = t

�1

('

1

(h

1

); g

2

)t = (h

1

; g

2

) = �('

�1

1

(h

1

); g

2

):

for all (h

1

; g

2

) 2 H

1

�G

2

and hen
e � indeed extends toG. Note that � is 
ontinuous:

Let V � G be open. Then so is V \ (H

1

\G

2

) and

�

�1

(V ) � �

�1

(V \ (H

1

\G

2

)) \ U

whi
h is open in U and therefore in G sin
e '

1

is 
ontinuous. Observe that s(�) = 1

as �(U) � U . Let � := 


t

Æ� 2 End(G) where 


t

: G! G; g 7! tgt

�1

is 
onjugation

by t. For (g

1

; h

2

) 2 G

1

�H

2

we have

(E) �(g

1

; h

2

) = t�(g

1

; h

2

)t

�1

= t('

1

(g

1

); h

2

)t

�1

= ('

2

1

(g

1

); '

�1

2

(h

2

))

We pro
eed to show that U is tidy for � and 
ompute s(�).

Lemma VI.43. Retain the above notation. Then U is tidy for � and s(�)=[G

2

: H

2

℄.

Proof. We pro
eed via Lemma VI.12. First, we show that �

�n

(U)\U =G

1

�'

n

2

(G

2

).

The in
lusion G

1

� '

n

2

(G

2

) � �

�n

(U) \ U follows from equation (E). Suppose g 62

G

1

�'

n

2

(G

2

). We will show g 62 �

�n

(U)\U . If g 62 U , then we are done and so we may

write g = (g

1

; g

2

) 2 G

1

� (G

2

n '

n

2

(H

2

)). By equation (E), there exists 0 � m < n

su
h that �

m

(g

1

; g

2

) 2 G

1

� (G

2

nH

2

). We therefore show that �

l

(g

0

1

; g

0

2

) 62 U for
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all l 2 N whenever (g

0

1

; g

0

2

) 2 G

1

� (G

2

nH

2

). Indeed, �

l

(g

1

; g

2

) = t

l

('

l

1

(g

1

); g

2

)t

�l

is not 
ontained in U : If t

l

('

l

1

(g

1

); g

2

)t

�l

= (g

0

1

; g

0

2

) 2 U then

t � � � t('

l

1

(g

1

); g

2

)t

�1

� � � t

�1

(g

0�1

1

; g

0�1

2

) = 1;


ontradi
ting Britton's Lemma on words in HNN-extensions, see [Bri63, Lemma 4℄

or [LS15, Theorem 2.1℄.

We have shown that �

�n

(U) \ U = G

1

� '

n

2

(G

2

). Sin
e '

n

2

(G

2

) is a nested

series of subgroups for n 2 N, we have

[U : U \ �

�n

(U)℄ = [G

1

�G

2

: G

1

� '

n

2

(G

2

)℄ = [G

2

: '

n

2

(G

2

)℄

=

n�1

Y

i=0

['

i

2

(G

2

) : '

i+1

(G

2

)℄ = [G

2

: H

2

℄

n

:

Lemma VI.12 shows that U is tidy. By Lemma VI.43, we have

s(�) = [U : U \ �

�1

(U)℄ = [G

1

�G

2

: G

1

�H

2

℄ = [G

2

: H

2

℄: �
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