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A witty quote.





Abstrat

This work is onerned with the struture theory of totally disonneted loally

ompat groups. In a �rst part, we develop a generalization of Burger{Mozes uni-

versal groups ating on regular trees loally like a given permutation group of �nite

degree. This generalization arises through presribing the loal ation on vertex

neighbourhoods of a given radius and results in an equally rih and manageable

lass of groups ating on trees. As an appliation, we haraterize Banks{Elder{

Willis k-losures of groups that at loally transitively on the regular tree T

d

with

an involutive inversion. Our onstrution also o�ers a new perspetive on the long

standing Weiss onjeture in the ontext of whih we reover several known results.

Finally, the framework of generalized universal group yields a loal-to-global type

haraterization of the elements whih the quasi-enter of a non-disrete subgroup

of Aut(T

d

) may ontain in terms of the group's loal ation. Most importantly,

we show that this haraterization is sharp through expliit onstrution, thus an-

swering a question of Burger for more examples of losed non-disrete subgroups of

Aut(T

d

) with non-trivial quasi-enter.

The �rst part ends with a omputation of prime loalizations of a large lass of

Burger{Mozes-type groups, inluding Burger{Mozes universal groups, Le Boude

groups with almost presribed loal ation and Lederle's oloured Neretin groups.

The seond part ontains two works, joint with H. Gl�okner and T. Bywaters,

and T. Bywaters respetively. Both ontribute to Willis theory whih studies totally

disonneted loally ompat groups from the point of view of their endomorphisms.

First, we extend results about how the sale and tidy subgroups behave when pass-

ing to subgroups or quotients from automorphisms to endomorphisms. Seondly,

we o�er a geometri haraterization of the sale and tidy subgroups assoiated

to endomorphisms, as well as a new tidying proedure in terms of graphs. This is

based on prior work of M�oller in the ase of automorphisms.



v

Zusammenfassung

Diese Arbeit befasst sih mit der Strukturtheorie total unzusammenh�angender

lokalkompakter Gruppen. Der erste Teil entwikelt eine Verallgemeinerung der uni-

versellen Burger{Mozes-Gruppen, die lokal wie eine gegebene Permutationsgruppe

endlihen Grades auf regul�aren B�aumen wirken. Besagte Verallgemeinerung basiert

auf der Festlegung der lokalen Wirkung auf Knotenumgebungen eines vorgegeben

Radius, und resultiert in einer gleiherma�en reihhaltigen und handlihen Klasse

von Gruppen, die auf B�aumen wirken. Eine erste Anwendung besteht in der Charak-

terisierung der Banks{Elder{Willis k-Abshl�usse von Gruppen, die lokal transitiv

auf dem regul�aren Baum T

d

wirken und eine involutorishe Kanteninversion en-

thalten. Unsere Konstruktion bietet au�erdem eine neue Perspektive auf die lang

bestehende Weiss'she Vermutung, in dessen Kontext wir einige bekannte Resul-

tate wiedergewinnen. Shlie�lih erlangen wir im Rahmen der verallgemeinerten

universellen Gruppen eine Charakterisierung der Elemente, die das Quasi-Zentrum

einer niht-diskreten Untergruppe von Aut(T

d

) enthalten kann, in Abh�angigkeit

von der lokalen Wirkung. Es sei betont, dass sih besagte Charakterisierung durh

explizite Konstruktion als strikt erweist. Damit beantworten wir eine Frage von

Burger nah neuen Beispielen von abgeshlossenen, niht-diskreten Untergruppen

von Aut(T

d

) mit niht-trivialem Quasi-Zentrum.

Der erste Teil endet mit der Berehnung der Primlokalisierungen einer gro�en

Klasse von Gruppen des Burger{Mozes Typ. Dies umfasst die universellen Burger{

Mozes-Gruppen, Le Boude-Gruppen mit fast �uberall vorgeshriebener lokaler Wir-

kung, und Lederle's gef�arbte Versionen von Neretin's Gruppe.

Der zweite Teil enth�alt zwei Zusammenarbeiten mit H. Gl�okner und T. Bywa-

ters beziehungsweise T. Bywaters. Beide leisten einen Beitrag zur Willis-Theorie,

die total unzusammenh�angende lokalkompakte Gruppen vom Standpunkt ihrer

Endomorphismen aus studiert. Zuerst erweitern wir Resultate, die das Verhalten

zentraler Konzepte beim

�

Ubergang zu Untergruppen oder Quotienten betre�en,

von Automorphismen zu Endomorphismen. Anshlie�end entwikeln wir eine ge-

ometrishe Beshreibung derselben Konzepte. Dies basiert auf einer bestehenden

Arbeit von M�oller f�ur den Fall von Automorphismen.
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Introdution and Main Results

In a broad sense, this work is onerned with the struture theory of loally

ompat groups. A loally ompat group G is an extension of its onneted om-

ponent G

0

by the totally disonneted quotient G=G

0

:

1

//

G

0

//

G

//

G=G

0

//

1:

Consequently, the study of general loally ompat groups splits into onneted and

totally disonneted suh groups via topologial group extensions.

Conneted loally ompat groups are inverse limits of Lie groups by the sem-

inal solution of Hilbert's �fth problem due to Gleason [Gle52℄, Yamabe [Yam53℄,

Montgomery{Zippin [MZ52℄ and others. As suh, the methods of Lie theory have

suessfully ontributed to their understanding.

Totally disonneted loally ompat (t.d.l..) groups are nowhere near as well

understood as their onneted ounterparts and exhibit a wealth of phenomena.

Nevertheless, reent developments suh as [Wil94℄, [BM00a℄, [CM11℄, [Wes15℄,

[RW15℄, [Wil15℄ and [CRW17℄ hint at the potential for a general struture theory.

This thesis advanes said emerging theory in two largely independent parts.

The �rst one is onerned with the struture theory of groups ating on trees

after Burger{Mozes, see [BM00a℄ and [BM00b℄. These groups form a partiularly

important lass of t.d.l.. groups for both theoretial and pratial reasons.

Part 2 ontributes to Willis theory, initiated in [Wil94℄. This theory studies

t.d.l.. groups from the point of view of their endomorphisms and has lead to

numerous unexpeted appliations. Whereas Chapter V ontains joint work with

T. Bywaters and H. Gl�okner, Chapter VI onstitutes joint work with T. Bywaters.

Burger{Mozes Theory and Universal Groups

Every (totally disonneted) loally ompat group an be viewed as a direted

union of ompatly generated open subgroups. Among ompatly generated t.d.l..

groups, automorphism groups of trees stand out for the following reason: Every

ompatly generated t.d.l.. group G ats vertex-transitively on a regular graph

� of �nite degree d with ompat normal kernel K, known as the Shreier graph

or Cayley-Abels graph, see e.g. [Mon01, Setion 11.3℄. In partiular, the universal

over of � is the d-regular tree T

d

and one obtains G=K as a quotient of a oompat

subgroup

e

G of Aut(T

d

) due to the short exat sequene

1

//

�

1

(�)

// e

G

//

G=K

//

1:

Let 
 be a set of ardinality d � 3 and let T

d

= (V;E) denote the d-regular tree,

following Serre's notation [Ser03℄. Then Aut(T

d

) is a (ompatly generated) t.d.l..

group when equipped with the permutation topology for its ation on V . For a

subgroup H � Aut(T

d

) and a vertex x 2 V , we let H

x

denote the stabilizer of x in

H . It indues a permutation group on the set E(x) := fe 2 E j o(e) = xg of edges

issuing from x. We say that H is loally \P" if for every x 2 V said permutation

group satis�es property \P", e.g. being transitive, quasiprimitive or 2-transitive.

Refer to Setion I.1 for details about permutation groups.

ix



x INTRODUCTION AND MAIN RESULTS

In [BM00a℄, Burger{Mozes develop a remarkable struture theory of losed,

non-disrete, loally quasiprimitive subgroups of Aut(T

d

), whih resembles the the-

ory of semisimple Lie groups, see Setion I.3.

This struture theory is omplemented with a partiularly aessible lass of

examples of subgroups of Aut(T

d

) with presribed loal properties: Let l : E ! 


be a labelling of T

d

, i.e. l

x

:= lj

E(x)

: E(x) ! 
 is a bijetion for every x 2 V and

l(e) = l(e) for all e 2 E. Then the map

� : Aut(T

d

)� V ! Sym(
); (g; x) 7! l

gx

Æ g Æ l

�1

x

aptures the loal ation of g at x 2 V . Now, given F � Sym(
), a subgroup of

Aut(T

d

) all of whose loal ations are in F an be de�ned as follows.

De�nition. Let F � Sym(
). Set U(F ) := fg 2 Aut(T

d

) j 8x 2 V : �(g; x) 2 Fg.

The following list of properties of U(F ) underlines its utility.

Proposition I.12 ([BM00a, Setion 3.2℄). Let F � Sym(
). Then U(F ) is

(i) losed in Aut(T

d

),

(ii) vertex-transitive,

(iii) ompatly generated,

(iv) loally permutation isomorphi to F ,

(v) edge-transitive if and only if F is transitive, and

(vi) disrete in Aut(T

d

) if and only if F is semiregular.

For transitive F , the group U(F ) is maximal up to onjugation among vertex-

transitive subgroups of Aut(T

d

) that loally at like F , hene the term universal.

Proposition I.14 ([BM00a, Proposition 3.2.2℄). Let H�Aut(T

d

) be loally transi-

tive and vertex-transitive. Then there is a labelling of T

d

suh that H�U(F ) where

F � Sym(
) is permutation isomorphi to the ation of H on balls of radius 1.

The universal groups de�ned above are a entral tool in the study of more

general subgroups Aut(T

d

), suh as projetions of latties � � Aut(T

d

1

)�Aut(T

d

2

)

whih are investigated in [BM00b℄ and [Rat04℄.

We generalize the universal groups by presribing the loal ation on balls of a

given radius k 2 N, the Burger{Mozes onstrution orresponding to the ase k = 1.

Namely, �x a tree B

d;k

whih is isomorphi to a ball of radius k in the labelled tree

T

d

and let l

k

x

: B(x; k)! B

d;k

be the unique label-respeting isomorphism. Then

�

k

: Aut(T

d

)� V ! Aut(B

d;k

); (g; x) 7! l

k

gx

Æ g Æ (l

k

x

)

�1

is the natural generalization of the map � de�ned above to the k-loal ation.

De�nition II.1. Let F � Aut(B

d;k

). De�ne

U

k

(F ) :=fg2Aut(T

d

) j 8x 2 V : �

k

(g; x)2Fg:

Properties (i), (ii) and (iii) of U(F ) arry over to U

k

(F ) in a straightforward

fashion, whereas (v) admits a natural generalization. Conerning (vi), there is a

natural disreteness ondition (D) on F � Aut(B

d;k

) in terms of ertain stabilizers

in F whih holds if and only if U

k

(F ) is disrete, generalizing the ase k = 1. See

Setion II.3. Property (iv), however, need not hold for k � 2: The group U

k

(F

(k)

)

need not be loally ation isomorphi to F

(k)

. We de�ne the following ompatibility

ondition, whih an be viewed as an interhangeability ondition on neighbouring

loal ations with the appropriate point of view on F

(k)

, see Setion II.3.

De�nition II.8.Let F �Aut(B

d;k

). Then F satis�es (C) if U

k

(F ) loally ats like F .
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Numerous examples of subgroups of Aut(B

d;k

) satisfying the ompatibility on-

dition (C) and/or the disretenss ondition (D) are given in Setion II.3.

Next reall that the quasi-enter of a topologial group G, denoted by QZ(G),

onsists of those elements whose entralizer in G is open. It plays a major role in

the Burger{Mozes Struture Theorem I.9.

Proposition II.16. Let F � Aut(B

d;k

). If F satis�es (D) then QZ(U

k

(F )) = U

k

(F ).

Otherwise QZ(U

k

(F )) = fidg.

We prove an analogue of the universality statement (Proposition I.14), whih

not only provides maximality but also a desription of the k-losures

H

(k)

:= fg 2 Aut(T

d

) j 8x 2 V 9h

x

2 H : gj

B(x;k)

= h

x

j

B(x;k)

g

of loally transitive groups H � Aut(T

d

) ontaining an involutive inversion, i.e. an

inversion of order 2; the notion of k-losures was introdued by Banks{Elder{Willis

in [BEW15℄ as a tool to onstrut simple t.d.l.. groups, see Setion I.2.3.

Theorem II.23. Let H � Aut(T

d

) be loally transitive and ontain an involutive

inversion. Then there is a labelling of T

d

suh that

U

1

(F

(1)

) � U

2

(F

(2)

) � � � �U

k

(F

(k)

) � � � � � H � U

1

(fidg)

where F

(k)

� Aut(B

d;k

) is ation isomorphi to the ation of H on balls of radius k.

Furthermore, H

(k)

= U

k

(F

(k)

).

We show that the assumption that H ontains an involutive inversion, whih

ombined with the loal transitivity assumption is stronger than vertex-transitivity

assumption for the ase k = 1, is neessary.

Combined with the independene properties P

k

(k 2 N) (see Setion I.2.3),

introdued by Banks{Elder{Willis in [BEW15℄ as generalizations of Tits' Inde-

pendene Property and satis�ed by the U

k

(F

(k)

), the universality theorem entails

the following haraterization of universal groups.

Corollary II.25. Let H � Aut(T

d

) be losed, loally transitive and ontain an

involutive inversion. Then H = U

k

(F

(k)

) if and only if H satis�es Property P

k

.

Given

e

F � Aut(B

d;k

), let F := �

e

F � Sym(
) denote the projetion of

e

F to

Aut(B

d;1

). Whereas we provide an abundane of possible ations

e

F \above" a given

F � Sym(
) in general, we also have the following rigidity.

Theorem II.22. Let F � Sym(
) be 2-transitive with F

!

simple non-abelian for all

! 2 
, and let

e

F � Aut(B

d;k

) with �

e

F = F satisfy (C). Then U

k

(

e

F ) equals either

U

2

(�(F )); U

2

(�(F )); or U

1

(F ):

Here, �(F );�(F ) � Aut(B

d;2

) satisfy (C) and (D) and therefore yield disrete

universal groups. More examples of both disrete and non-disrete universal groups

are onstruted in the ase where either point stabilizers in F are not simple or F

is not primitive, see e.g. �(F;N);�(F;N);�(F;P) � Aut(B

d;2

) in Setion II.3.1.

We now present two more appliations of universal groups.

On the Weiss Conjeture. The lassial Weiss onjeture [Wei78℄ states

that for a given loally �nite tree T there are only �nitely many onjugay lasses

of disrete, loally primitive and vertex-transitive subgroups of Aut(T ). This on-

jeture has been extended by Poto�nik{Spiga{Verret in [PSV12℄ and impressive

partial results have been obtained by the same authors as well as Guidii{Morgan

[GM14℄. The Weiss onjeture relates to universal groups through the following

ombination of previous results.
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Corollary II.27.LetH�Aut(T

d

) be disrete, loally transitive and ontain an involu-

tive inversion. Then there is F

(k)

�Aut(B

d;k

) with (C) and (D), and H=U

k

(F

(k)

).

This suggests to takle the following weak version of the Weiss onjeture by

studying the subgroups of Aut(B

d;k

) satisfying (C) and (D).

Conjeture II.29. Let F � Sym(
) be primitive. Then there are only �nitely many

onjugay lasses of disrete subgroups of Aut(T

d

) whih loally at like F and

ontain an involutive inversion.

Given a transitive group F � Sym(
), let H

F

denote the olletion of sub-

groups of Aut(T

d

) whih are disrete, loally at like F and ontain an involutive

inversion. Then the following de�nition is meaningful by the above Corollary.

De�nition II.30. Let F � Sym(
) be transitive. De�ne

dim

CD

(F ) := max

H2H

F

min

n

k2N

�

�

�

9F

(k)

2Aut(B

d;k

) with (C),(D) : H=U

k

(F

(k)

)

o

if the maximum exists and dim

CD

(F ) =1 otherwise.

Conjeture II.29 is now equivalent to the assertion that dim

CD

(F ) is �nite for

every primitive permutation group F �Sym(
). Using the framework of universal

groups we reover the following known results in Setion II.5.1.

Proposition. Let F �Sym(
) and P �Sym(�) be transitive for j
j; j�j � 2. Then

(i) dim

CD

(F ) = 1 if and only if F is regular.

(ii) dim

CD

(F ) = 2 if F

!

has trivial nilpotent radial for all ! 2 
.

(iii) dim

CD

(F o P ) � 3.

Non-Trivial Quasi-Centers. The disreteness assertion of part (ii) in the

Burger{Mozes Struture Theorem I.9 follows from the fat that a non-disrete

loally quasiprimitive subgroup of Aut(T

d

) annot ontain any non-trivial quasi-

entral ellipti elements, see [BM00a, Proposition 1.2.1℄. The framework of uni-

versal groups lends itself to omplete this fat to the following theorem.

Theorem II.40. Let H � Aut(T

d

) be non-disrete. If H is loally

(i) transitive then QZ(H) ontains no inversion.

(ii) semiprimitive then QZ(H) ontains no non-trivial edge-�xating element.

(iii) quasiprimitive then QZ(H) ontains no non-trivial ellipti element.

(iv) k-transitive (k 2 N) then QZ(H) ontains no hyperboli element of length k.

More importantly, the proof of the above theorem suggests to use groups of

the form

T

k2N

U

k

(F

(k)

) for appropriate loal ations F

(k)

in order to expliitly

onstrut non-disrete subgroups of Aut(T

d

) whose quasi-enters ontain ertain

types of elements. This leads to the following sharpness result.

Theorem II.41. There is a losed, non-disrete, ompatly generated subgroup of

Aut(T

d

) whih is loally

(i) intransitive and ontains a quasi-entral inversion.

(ii) transitive and ontains a non-trivial quasi-entral edge-�xating element.

(iii) semiprimitive and ontains a non-trivial quasi-entral ellipti element.

(iv) (a) intransitive and ontains a quasi-entral hyperboli element of length 1.

(b) quasiprimitive and ontains a quasi-entral hyperboli element of length 2.

Part (ii) of this theorem an be strengthened to the following result whih

shows that Burger{Mozes theory does not arry over to loally transitive groups.

Proposition II.53. There is a losed non-disrete subgroup H � Aut(T

d

) whih is

loally transitive and has non-disrete quasi-enter.
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In a di�erent diretion, Banks{Elder{Willis list PGL(2;Q

p

) � Aut(T

p+1

) as an

example of a group with in�nitely many distint k-losures, see [BEW15℄. Whereas

PGL(2;Q

p

) has trivial quasi-enter beause it is simple, the groups onstruted in

the proof of the theorem above provide a wealth of examples with non-trivial quasi-

enter. In fat, the following proposition shows that in ertain ases suh examples

have to be of the type onstruted in the proof of the above theorem.

Proposition II.73. Let H � Aut(T

d

) be losed, non-disrete, loally transitive and

ontain an involutive inversion. Then H

(k)

= U

k

(F

(k)

) and H =

T

k2N

U

k

(F

(k)

),

where F

(k)

�Aut(B

d;k

) is ation-isomorphi to the ation of H on balls of radius k.

If, in addition, QZ(H) 6= fidg then H has in�nitely many distint k-losures.

Prime Loalizations of Burger{Mozes-type Groups

The onept of prime loalization of a totally disonneted loally ompat

group G was introdued by Reid in [Rei13℄: Let p be prime. A loal p-Sylow sub-

group of G is a maximal pro-p subgroup of a ompat open subgroup of G. The

p-loalization G

(p)

of G is de�ned as the ommensurator Comm

G

(S) of a loal p-

Sylow subgroup S of G, equipped with the unique group topology whih makes the

inlusion of S into G

(p)

= Comm

G

(S) ontinuous and open. Reid shows that this

yields a dense, loally virtually pro-p subgroup of G whose isomorphism type and

G-onjugay lass do not depend on the hoie of S. We refer the reader to [Rei13℄

for general properties of prime loalization and its appliations.

Let F � F

0

� Sym(
). We onsider the Burger{Mozes group U(F ) and two

loally isomorphi versions of it: The Le Boude group G(F; F

0

) ating on T

d

almost

everywhere like F and elsewhere like F

0

, and Lederle's oloured Neretin groups N(F )

onsisting of almost automorphisms of T

d

assoiated to U(F ). See Setion I.4 for

an introdution to these groups.

For a large family of the above groups, we determine loal p-Sylow subgroups

in terms of a p-Sylow subgroup of F . By de�nition of the topologies, any loal p-

Sylow subgroup of U(F ) is also a loal p-Sylow subgroup of G(F; F

0

) and N(F ). Let

T � T

d

denote a �nite subtree. The following proposition provides loal p-Sylow

subgroups of U(F ) in the ase where the operations of taking a p-Sylow subgroup

and taking point stabilizers ommute for F .

Proposition III.1. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. Then U(F (p))

T

is a p-Sylow subgroup of U(F )

T

if and only if so is F (p)

!

�F

!

for all ! 2 
.

After olleting riteria and examples for the above situation we determine gen-

eral subgroups of the p-loalization of Burger{Mozes-type groups whih we use to

identify said p-loalization as a group of the same type in ertain ases. Realling

that U(F ) = G(F; F ), the following theorem addresses both the Burger{Mozes uni-

versal group U(F ) and the Le Boude groups G(F; F

0

). It amends [Rei13, Lemma

4.2℄. We let

b

F denotes the maximal subgroup of Sym(
) preserving the partition

Fn
 setwise.

Theorem III.8. Let F � F

0

�

b

F � Sym(
) and F (p) � F a p-Sylow subgroup

of F . Assume that we have Fn
 = F (p)n
 and N

F

0

!

(F (p)

!

) = F (p)

!

for all ! 2 
.

Then G(F; F

0

)

(p)

= G(F (p); F

0

).

Theorem III.9. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. If Fn
=F (p)n


and N

b

F

!

(F (p)

!

) = F (p)

!

for all ! 2 
 then N(F )

(p)

= N(F (p)).



xiv INTRODUCTION AND MAIN RESULTS

Extending Willis Theory

In [Wil94℄, Willis advanes the struture theory of totally disonneted loally

ompat groups by introduing the notions of sale of an automorphism of a t.d.l..

group and tidiness of ompat open subgroups for the same automorphism. Being

the �rst major advane in the theory of t.d.l.. groups for deades, it reignited the

hope for a general struture theory of the latter and unexpetedly answered ques-

tions in �elds as diverse as random walks and ergodi theory [DSW06℄, [JRW96℄,

[PW03℄, arithmeti groups [SW13℄ and Galois theory [CH09℄.

This theory was further developed in [Wil01℄, [Wil04℄, [BW06℄, [Wil07℄ and

[BMW12℄, among others. We highlight that, searhing for the most general natural

setting of tidiness and the sale, the de�nitions were generalized to endomorphisms

in [Wil15℄. For the preise de�nition, reall that any t.d.l.. group admits a neigh-

bourhood basis of ompat open subgroups by work of van Dantzig [vD31℄. For a

modern treatment, see [HR12, (7.7)℄. Given a topologial group G, we let End(G)

denote the semigroup of ontinuous homomorphisms from G to itself.

De�nition. Let G be a t.d.l.. group and � 2 End(G). The sale of � is

s

G

(�) = min

�

[�(U) : �(U) \ U ℄ j U � G ompat open

	

:

A ompat open subgroup U � G is minimizing for � if [�(U) : �(U) \ U ℄ = s(�).

It is a ornerstone of Willis theory that U is mimimizing for � if and only if

it has a ertain struture, whih is phrased in terms of the following subgroups

of G. Put U

0

:= U . For n 2 N

0

, we de�ne U

�n

=

T

n

k=0

�

�k

(U) and, indutively,

U

n+1

:= U \ �(U

n

). Now set

U

+

:=

\

n2N

0

U

n

; U

�

:=

\

n2N

0

U

�n

=

1

\

k=0

�

�k

(U);

U

++

:=

[

n2N

0

�

n

(U

+

) and U

��

:=

[

n2N

0

�

�n

(U

�

):

The subgroup U is tidy above for � if U = U

+

U

�

, and tidy below for � if U

��

is

losed. It is tidy for � if it is both tidy above and tidy below for �. Note that this

de�nition of being tidy below deviates from [Wil15, De�nition 9℄ but turns out to

be equivalent for tidy above subgroups, see [Wil15, Proposition 9℄.

Theorem ([Wil15, Theorem 2℄). Let G be a t.d.l.. group, � 2 End(G) and U � G

ompat open. Then U is minimizing for � if and only if it is tidy for �.

Willis omplements this theorem with an algorithm, a tidying proedure, whih

turns an arbitrary ompat open subgroup of G into one tidy for �.

Whereas statements about automorphisms in this theory frequently utilize on-

tinuous invertibility and produe important dual statements by passing to the in-

verse, statements about endomorphisms often need to be formulated di�erently and

require di�erent tehniques of proof. The present work goes through this proess

for two aspets of the theory.

Sale and Tidiness for Subgroups and Quotients. This setion presents

joint work with T. Bywaters and H. Gl�okner, see [BGT16, Setion 8℄.

It is natural to ask how the notions of sale and tidiness introdued above

behave with respet to taking subgroups and quotients of the given group. For

automorphisms, this was studied in [Wil01℄. Our �rst result states that, in the ase

of endomorphisms, restriting to a losed invariant subgroup an only derease the

sale and thereby generalizes [Wil01, Proposition 4.3℄.
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Theorem V.3. Let G be a t.d.l.. group, � 2 End(G) and H � G losed with

�(H)�H . Then s

H

(�j

H

) � s

G

(�).

Conerning quotients, we generalize [Wil01, Proposition 4.7℄. Given �2End(G)

andH�G with �(H)�H , we let �2End(G=H) be the endomorphism indued by �.

Theorem V.8. LetG be a t.d.l.. group, �2End(G) andH�G losed with �(H)�H .

Then s

H

(�j

H

)s

G=H

(�) divides s

G

(�):

Equality holds for example in the following ase, where

par

�

(�) =

�

x 2 G

�

�

�

�

9(x

n

)

n2N

0

: x

0

= x; 8n 2 N : �(x

n

) = x

n�1

and fx

n

j n 2 N

0

g is preompat

�

:

Proposition V.10. Let G be a t.d.l.. group, � 2 End(G) and H � par

�

(�) losed

suh that �(H) = H . Further, let N �H be losed with �(N) = N . Denote by �

the endomorphism indued by �j

H

on H=N . Then s

H

(�j

H

) = s

H=N

(�)s

N

(�j

N

).

Sale and Tidiness via Graphs. The results presented in this setion on-

stitute joint work with T. Bywaters, namely [BT17℄.

An important ontribution to Willis theory was made by M�oller in [M�ol02℄,

who, in the ase of automorphisms, haraterized the notions of sale and tidiness

in terms of ertain graphs assoiated to the data (G;�; U). This lead to geometri

proofs of known results and provided a new, geometri tidying proedure, as well

as a spetral radius type formula for the sale.

We adapt M�oller's de�nitions to the ase of endomorphisms. Let G be a t.d.l..

group. Further, let � be a ontinuous endomorphism of G and U a ompat open

subgroup of G. Using a ertain graph assoiated to the data (G;�; U) we give a

geometri proof of existene of a subgroup of U whih is tidy above for � ([Wil15,

Proposition 3℄), as well as the tidiness below ondition ([Wil15, Proposition 8℄).

Combining both yields the following haraterization of the sale and tidiness, re-

sembling [M�ol02, Lemma 3.1℄ and [M�ol02, Theorem 3.4℄, see Lemma VI.1 and

Theorem VI.11.

For i2N

0

, de�ne v

�i

:=�

�i

(U)2P(G) and a rooted direted graph �

+

by

V (�

+

)=fuv

�i

j u 2 U

++

; i 2 N

0

g; E(�

+

)=f(uv

�i

; uv

�i�1

) j u 2 U; i 2 N

0

g:

Theorem. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

(i) If fv

�i

j i 2 N

0

g is �nite then there is a ompat open subgroup U of G with

�(U) � U and whih is tidy for � and s(�) = 1.

(ii) If fv

�i

j i 2 N

0

g is in�nite then U is tidy for � if and only if the graph �

+

is a

direted tree, rooted at v

0

with ontant in-valeny (exluding the root) equal

to 1 and onstant out-valeny. In this ase, s(�) equals said out-valeny.

We use this theorem to establish a new, geometri tidying proedure for the

ase of endomorphisms, see Theorem VI.26. It features yet another graph de�ned in

terms of the data (G;�; U) whih admits an ation of U

++

, a fundamental subgroup

of G assoiated to � and U , see Setion IV.1. Most of the work goes into showing

that this graph admits a quotient with a onneted omponent isomorphi to a

regular rooted tree. The stabilizer of its root turns out to be tidy for �.

Theorem VI.26 and assoiated onstrutions result in a geometri proof of

the fat [Wil15, Theorem 2℄ that tidiness is equivalent to being minimizing, see

Theorem VI.34. Using the aforementioned ideas, we obtain a tree representation

theorem for a ertain natural subsemigroup of End(G) assoiated to �, analogous

to [BW04, Theorem 4.1℄ for the ase of automorphisms.

Finally, we give a simple way to onstrut endomorphisms of non-ompat

t.d.l. groups from ertain endomorphisms of ompat groups.
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CHAPTER I

Preliminaries

This hapter ollets the neessary preliminaries about permutation groups,

groups ating on trees, Burger{Mozes theory and Burger{Mozes type groups. We

provide referenes at the beginning of eah setion.

1. Permutation Groups

Let 
 be a set. In this setion, we ollet de�nitions and results around the

group of bijetions of 
, denoted Sym(
). Refer to [DM96℄, [Pra96℄ and [GM16℄

for more details about the various lasses of permutation groups to be introdued.

1.1. De�nitions and Examples. Let F � Sym(
). The degree of F is j
j.

For ! 2 
, the stabilizer of ! in F is F

!

:= f� 2 F j �! = !g. The subgroup

of F generated by its point stabilizers is denoted by F

+

:= hfF

!

j ! 2 
gi. The

permutation group F is semiregular , or free, if F

!

= fidg for all ! 2 
; equivalently,

if F

+

is trivial. It is transitive if its ation on 
 is transitive, and regular if it is

both semiregular and transitive.

Let F � Sym(
) be transitive. The rank of F is the number rank(F ) := jFn


2

j

of orbits of the diagonal ation � � (!; !

0

) := (�!; �!

0

) of F on 


2

. Equivalently,

rank(F ) = jF

!

n
j for all ! 2 
. Note that the diagonal �(
) = f(!; !) j ! 2 
g

is always an orbit of the diagonal ation F y 


2

. The permutation group F is

2-transitive if rank(F ) = 2. In other words, it ats transitively on 


2

n�(
).

We now de�ne several relevant lasses of permutation groups in between the

lasses of transitive and 2-transitive permutation groups. Let F � Sym(
). A par-

tition P : 
 =

F

i2I




i

of 
 is preserved by F , or F -invariant , if for all � 2 F we

have f�


i

j i 2 Ig = f


i

j i 2 Ig. The partition of 
 as 
 itself, as well as the

partition into singletons are trivial . A map a : 
! F is onstant with respet to P

if a(!) = a(!

0

) whenever !; !

0

2 


i

for some i 2 I .

The permutation group F is primitive if it is transitive and preserves no non-

trivial partition of 
, and imprimitive otherwise. Given a normal subgroup N of

F , the partition of 
 into N -orbits is F -invariant. Consequently, every normal sub-

group of a primitive group is transitive. A permutation group is quasiprimitive if it

is transitive and all its non-trivial normal subgroups are transitive. Finally, a per-

mutation group is semiprimitive if it is transitive and all its normal subgroups are

either transitive or semiregular. The following hain of impliations among prop-

erties of permutation groups is immediate from the de�nitions. We list examples

illustrating that eah impliation is strit. In doing so we refer to the GAP library

of small transitive groups [GAP17℄.

2-transitive ) primitive

A

3

; D

5

) quasiprimitive

Tr(12; 33)

�

=

A

5

) semiprimitive

C

4

� C

2

) transitive

D

4

� C

2

�C

2

Note that every transitive permutation group of prime degree is neessarily primi-

tive as all elements of an F -invariant partition have the same order, and that every

simple transitive group is neessarily quasiprimitive.

3
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1.2. Permutation Topology. Given a faithful ation of a group H on a

disrete setX , or, equivalently, a subgroupH � Sym(X), there is a natural topology

on H , termed permutation topology , whih makes the ation map ontinuous. For

example, we equip the automorphism group of a tree with the permutation topology

for its ation on the vertex set of the tree, see Setion 2.2.

As a referene for the following, see e.g. [M�ol10℄. Let X be a set and onsider

G := Sym(X). The basi open sets for the permutation topology on G are

U

x;y

:= fg 2 G j 8i 2 f1; : : : ; ng : g(x

i

) = y

i

g

with n 2 N and x = (x

1

; : : : ; x

n

); y = (y

1

; : : : ; y

n

) 2 X

n

.

The permutation topology turns G into a topologial group. It is Hausdor� and

totally disonneted as the following two lemmas show. Reall that a topologial

spae is zero-dimensional if it admits a basis onsisting of losed open sets.

Lemma I.1. A Hausdor� and zero-dimensional spae X is totally disonneted.

Proof. Let x 2 X . To see that no element y 2 Y is ontained in the onneted

omponent of x it suÆes to �nd disjoint losed open sets ontaining x and y

respetively. Given that X is Hausdor� there are open sets separating x and y.

Eah ontains a losed open set by de�nition of zero-dimensionality. �

We remark that a loally ompat Hausdor� spae is zero-dimensional if and

only if it is totally disonneted, see [AT08℄.

Lemma I.2. Let X be a set. Then Sym(X) is Hausdor� and zero-dimensional.

Proof. To see that Sym(X) is Hausdor�, let g; h 2 Sym(X) be distint. Then there

is x 2 X suh that g(x) 6= h(x), to the e�et that U

x;g(x)

and U

x;h(x)

are disjoint

open sets ontaining g and h respetively.

For zero-dimensionality, note that the sets U

x;y

for x; y 2 X

n

and n 2 N are

open by de�nition. Now onsider g 2 Sym(X)nU

x;y

. Then there is i 2 f1; : : : ; ng

suh that g(x

i

) 6= y

i

and U

x;g(x)

� Sym(X)nU

x;y

ontains g. That is, the omple-

ment of U

x;y

is open. Hene the assertion. �

We now show that the permutation topology makes the ation map ontinuous.

Lemma I.3. Let X be a set equipped with the disrete topology. Then the ation

map � : Sym(X)�X ! X given by (g; x) 7! g(x) is ontinuous.

Proof. Let Y � X (be open). Then �

�1

(Y ) = f(g; x) 2 Sym(X)�X j g(x) 2 Y g.

Hene, if (g; x) 2 �

�1

(Y ) then so is the open set U

x;g(x)

�fxg ontaining (g; x). �

Finally, we haraterize ompat subsets of Sym(X).

Proposition I.4. Let X be a set and H � Sym(X). Then H is ompat if and only

if H � Sym(X) is losed and all its orbits are �nite.

Proof. If H is ompat, then H is losed in Sym(X) as Sym(X) is Hausdor�.

Furthermore, Hx = �j

H�fxg

is ompat beause � is ontinuous and hene �nite.

Conversely, assume that H � Sym(X) is losed and has �nite orbits (X

i

)

i2I

.

Then H �

Q

i2I

Sym(X

i

). Sine every X

i

is �nite, Sym(X

i

) is ompat and hene

so is

Q

i2I

Sym(X

i

) by Tyhono�'s theorem. Therefore, the onlusion follows if

we show that the inlusion map

Q

i2I

Sym(X

i

) ! Sym(X) is ontinuous. Indeed,

an intersetion U

x;y

\

Q

i2I

Sym(X

i

) restrits only �nitely many fators and hene

gives rise to an open subset of the produt topology. �
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2. Generalities of Groups Ating On Trees

In this setion, we �rst reall Serre's [Ser03℄ notation and de�nitions in the

ontext of graphs and trees, and then ollet generalities about automorphisms of

trees. We onlude with an important simpliity riterion.

2.1. De�nitions and Notation. A graph � is a tuple (V;E) onsisting of a

vertex set V and an edge set E, together with a �xed-point-free involution of E,

denoted by e 7! e, and maps o; t : E ! V , providing the origin and terminus of

an edge, suh that o(e) = t(e) and t(e) = o(e) for all e 2 E. Given e 2 E, the pair

fe; eg is a geometri edge. For x 2 V , we let E(x) := o

�1

(x) = fe 2 E j o(e) = xg

be the set of edges issuing from x. The valeny of x 2 V is jE(x)j. A vertex of

valeny 1 is a leaf . A morphism between graphs �

1

= (V

1

; E

1

) and �

2

= (V

2

; E

2

)

is a pair (�

V

; �

E

) of maps �

V

: V

1

! V

2

and �

E

: E

1

! E

2

preserving the graph

struture, i.e. �

V

(o(e)) = o(�

E

(e)) and �

V

(t(e)) = t(�

E

(e)) for all e 2 E.

For n 2 N, let Path

n

denote the graph with vertex set f0; : : : ; ng and edge

set f(k; k + 1); (k; k + 1) j k 2 f0; : : : ; n� 1gg. A path of length n in a graph � is a

morphism  from Path

n

to �. It an be identi�ed with (e

1

; : : : ; e

n

) 2 E(�)

n

, where

e

k

is the image of (k � 1; k) 2 E(Path

n

) for all k 2 f1; : : : ; ng. In this ase,  is a

path from o(e

1

) to t(e

n

).

Similarly, let Path

N

0

and Path

Z

denote the graphs with vertex sets N

0

and

Z, and edge sets f(k; k + 1); (k; k + 1) j k 2 N

0

g and f(k; k + 1); (k; k + 1) j k 2 Zg

respetively. A half-in�nite path, or ray , in a graph � is a morphism  from Path

N

0

to �. It an be identi�ed with (e

k

)

k2N

2 E(�)

N

where e

k

= (k�1; k) for all k 2 N.

In this ase,  originates at, or issues from, o(e

1

). An in�nite path, or line, in a

graph � is a morphism  from Path

Z

to �.

A pair (e

k

; e

k+1

) = (e

k

; e

k

) in a path is a baktraking . A graph is onneted if

any two of its verties an be joined by a path. The maximal onneted subgraphs

of a graph are its omponents .

A forest is a graph in whih there are no non-baktraking paths (e

1

; : : : ; e

n

)

with o(e

1

) = t(e

n

) (n 2 N). Consequently, a morphism of forests is determined

by the underlying vertex map. In partiular, a path of length n 2 N in a forest is

determined by the images of the verties of Path

n

.

A tree is a onneted forest. As a onsequene of the above, the vertex set V

of a tree T admits a natural metri: Given x; y 2 V , de�ne d(x; y) as the minimal

length of a path from x to y. A tree in whih every vertex has valeny d 2 N is

d-regular tree. It is unique up to isomorphism and denoted by T

d

.

Let T = (V;E) be a tree. For S � V [E, the subtree spanned by S is the unique

minimal subtree of T ontaining S. For x 2 V and n 2 N

0

, the subtree spanned

by fy 2 V j d(y; x) � ng is the ball of radius n around x, denoted by B(x; n).

Similarly, S(x; n) = fy 2 V j d(y; x)=ng is the sphere of radius n around x. For a

subtree T

0

� T , let � : V ! V (T

0

) denote the losest point projetion, i.e. �(x) = y

whenever d(x; y) = min

z2T

0

(d(x; z)). In the ase of a single edge e = (v; w) 2 E, the

half-trees T

v

and T

w

are the subtrees spanned by �

�1

(v) and �

�1

(w) respetively.

Two rays 

1

; 

2

: Path

N

! T in T are equivalent , 

1

� 

2

, if there existN; d 2 N

suh that 

1

(n) = 

2

(n + d) for all n � N . The boundary , or set of ends , of T is

the set �T of equivalene lasses of rays in T .

2.2. Automorphism Groups. Let d � 3 and T

d

= (V;E) the d-regular tree.

The group of automorphism Aut(T

d

) of T

d

, i.e. the group of bijetive morphisms

from T

d

to itself, is our foremost onern. Throughout this work, we equip Aut(T

d

)

with the permutation topology for its (faithful) ation on V (T

d

).
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2.2.1. Notation. Let H � Aut(T

d

). Given a subtree T � T

d

, the pointwise

stabilizer of T in H is denoted by H

T

. Similary, the setwise stabilizer of T in H

is denoted by H

fTg

. In the ase where T is a single vertex x, the permutation

group that H

x

indues on S(x; 1) is denoted by H

(1)

x

� Sym(E(x)). We say that

H is loally \P" if for every x 2 V the permutation group H

(1)

x

satis�es property

\P", e.g. being tansitive, semiprimitive, quasiprimitive, primitive or 2-transitive.

Furthermore, H is loally k-transitive (k 2 N

�3

) if H

x

ats transitively on the set

of non-baktraking paths of length k issuing from x. It is loally 1-transitive if it

is loally k-transitive for all k 2 N.

The group Aut(T

d

) ats on �T

d

by g � [℄ := [g Æ ℄. Given an end [℄ 2 �T

d

, the

stabilizer of [℄ in H is H

[℄

= fh 2 H j h Æ  � g.

We let H

+

=hfH

x

jx 2 V (T

d

)gi denote the subgroup of H generated by vertex-

stabilizers and H

+

=hfH

e

je 2 E(T

d

)gi the subgroup generated by edge-stabilizers.

For a subtree T � T

d

and k 2 N, let T

k

denote the subtree of T

d

spanned by

fx 2 V (T

d

) j d(x; T ) � kg. We set H

+

k

=hfH

e

k
je 2 E(T

d

)gi. Then H

+

1

=H

+

and

H

+

k

�H

+

� H

+

�H:

2.2.2. Classi�ation of Automorphisms. On a high level, elements of Aut(T

d

)

an be distinguished into three disjoint lasses whih we outline below. We refer

the reader to [GGT16, Setion 2℄ for details. Let g 2 Aut(T

d

). De�ne

l(g) := min

x2V

d(x; gx) and V (g) := fx 2 V j d(x; gx) = l(g)g:

If l(g) = 0 then g �xes a vertex. An automorphism of this kind is ellipti. Suppose

now that l(g) > 0. If V (g) is in�nite then g is hyperboli. Geometrially, it is a

translation of length l(g) along a line in T

d

.

g

b b b b b
b

gb

x

gx

: : : : : :

b b b b b

b b b b b b b b b b

y gy

If V (g) is �nite then l(g) = 1 and g maps an edge e to e and is termed an inversion.

2.3. Independene and Simpliity. This setion ontains an important ri-

terion to obtain simple subgroups of Aut(T

d

). In its base ase due to Tits [Tit70℄, it

applies to suÆiently large subgroups of Aut(T

d

) satisfying a ertain independene

property. The generalized version we desribe here is due to Banks{Elder{Willis

[BEW15℄. As an alternative referene, see [GGT16℄.

Let  denote a path in T

d

(�nite, half-in�nite or in�nite). For every x 2 C and

k 2 N

0

, the pointwise stabilizer H



k of 

k

indues an ation H

(x)



k

� Aut(�

�1

(x))

on �

�1

(x). We therefore obtain an injetive homomorphism

'

(k)



: H



k !

Y

x2C

H

(x)



k

:

The subgroup H � Aut(T

d

) satis�es Property P

k

(k 2 N) if '

(k�1)



is an isomor-

phism for every path  in T

d

. We remark that in ase H � Aut(T

d

) is losed, it

suÆes to hek the above properties in the ase where  is a single edge. Given a

losed subgroup H � Aut(T

d

), Property P

(k)

is satis�ed by its k-losure

H

(k)

= fg 2 Aut(T

d

) j 8x 2 V (T

d

) 9h 2 H : gj

B(x;k)

= hj

B(x;k)

g:

Theorem I.5 ([BEW15, Theorem 7.3℄). Let H � Aut(T

d

). If H neither �xes an

end of T

d

nor stabilizes a proper subtree of T

d

setwise, then H satisfy Property P

k

and G

+

k

is either trivial or simple.
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3. Burger{Mozes Theory

In [BM00a℄, Burger{Mozes develop a remarkable struture theory of a ertain

lass of groups ating on graphs, resembling the theory of semisimple Lie groups.

In order to give the preise struture theorem we introdue further notation.

The fundamental de�nitions are meaningful in the setting of totally dison-

neted loally ompat groups: Let H be a t.d.l.. group. We de�ne H

(1)

to be the

intersetion of all losed normal oompat subgroups of H , and QZ(H) to be the

subgroup of elements whose entralizer in H is open in H . As a onsequene, both

H

(1)

and QZ(H) are topologially harateristi subgroups of H , i.e. they are pre-

served by ontinuous automorphisms of H . Alternatively, H

(1)

an be desribed

as the intersetion of all open subgroups of �nite index.

The next example shows that H

(1)

and QZ(H) play roles analogous to that of

the onneted omponent of the identity and the kernel of the adjoint representation

in Lie theory, f. [BM00a, Example 1.1.1.℄.

Example I.6. Let H be a semisimple p-adi matrix group. Then H

(1)

oinides

with the subgroup generated by unipotent elements and QZ(H) is given by the

kernel of the adjoint representation.

The de�nitions also readily imply that H

(1)

is losed. The next example shows

that QZ(H) need not be so.

Example I.7. LetH :=

Q

N

F where F is a �nite enterless group. ThenH

(1)

= fidg

as fidg is oompat in the ompat group H . Furthermore, QZ(H) is the diret

sum

L

N

F . In partiular, QZ(H) is dense in H .

Our third example relies on Setion II.4.1.

Example I.8. Let F � Sym(
) and H := U(F ) � Aut(T

d

). If F is transitive and

generated by point stabilizers then U(F )

+

has index 2 in U(F ) and is simple. Thus

H

(1)

= U(F )

+

. Furthermore, QZ(U(F )

+

) = fidg.

Reall that any disrete normal subgroup of a topologial group is entral. From

the de�nitions we an therefore dedue that every oompat normal subgroup of

H ontains H

(1)

and that QZ(H) ontains all disrete normal subgroups of H .

The subquotient H

(1)

=QZ(H

(1)

) of H therefore has a hane to be topologially

simple. Whereas Examples I.6 and I.7 show that nothing muh an be said about

the size of H

(1)

and QZ(H) in general, Burger{Mozes show that good ontrol

an be obtained in the ase of losed non-disrete subgroups of Aut(�), where �

is a onneted graph, satisfying ertain loal transitivity properties. The following

result summarizes their struture theory in the ase of regular trees to whih the

present work ontributes. It is a ombination of Proposition 1.2.1, Corollary 1.5.1,

Theorem 1.7.1 and Corollary 1.7.2 in [BM00a℄.

Theorem I.9. Let H � Aut(T

d

) be losed, non-disrete and loally quasiprimitive.

(i) H

(1)

is minimal losed normal oompat in H .

(ii) QZ(H) is maximal disrete normal, and non-oompat in H .

(iii) H

(1)

=QZ(H

(1)

)=H

(1)

=(QZ(H)\H

(1)

) admits minimal, non-trivial losed

normal subgroups; �nite in number, H-onjugate and topologially simple.

If, in addition, H is loally primitive then

(iv) H

(1)

=QZ(H

(1)

) is a diret produt of topologially simple groups.
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4. Burger{Mozes-type Groups

In this setion we introdue several lasses of groups ating on (regular) trees.

First, we onern ourselves with Burger{Mozes universal groups, introdued by

Burger{Mozes in [BM00a, Setion 3.2℄ as a omplement to their struture theory.

Chapter II develops a versatile generalization of these groups.

Seondly, we reall a loally isomorphi generalization of these groups due to

Le Boude [Bou16℄. Among his examples are t.d.l.. groups whih are virtually

simple and ontain no latties, i.e. disrete o�nite subgroups.

Finally, we introdue a reently developed generalization of Neretin's group

[Ner03℄ due to Lederle [Led17℄. She shows that most of these groups do not

ontain latties, generalizing the same result for Neretin's group [BCGM12℄.

In Chapter III, we ompute the p-loalizations of a large sublass of the three

types of Burger{Mozes groups and primes p.

Let 
 be a set of ardinality d � 3 and let T

d

= (V;E) denote the d-regular

tree. A labelling l of T

d

is a map l : E ! 
 suh that for every x 2 V the map

l

x

:= lj

E(x)

: E(x)! 
; y 7! l(y) is a bijetion and for all e 2 E we have l(e) = l(e).

4.1. Burger{Mozes Groups. The original introdution of Burger{Mozes

universal groups in [BM00a, Setion 3.2℄ has been expanded in the introdutory

artile [GGT16℄ whih we follow losely. Most results are generalized in Chapter II.

Consider the labelled tree T

d

introdued above. The loal ations of automor-

phisms are aptured by the map

� : Aut(T

d

)�X ! Sym(
); (g; x) 7! �(g; x) := l

gx

Æ g Æ l

�1

x

:

Given any permutation group F �Sym(
), we an de�ne a subgroup of Aut(T

d

)

all of whose loal ations are in F as follows.

De�nition I.10. Let F � Sym(
) and l a labelling of T

d

. De�ne

U

(l)

(F ) :=fg 2 Aut(T

d

) j 8x 2 V : �(g; x) 2 Fg:

The map � satis�es a oyle identity : For all g; h 2 Aut(T

d

) and x 2 V we have

�(gh; x) = �(g; hx)�(h; x). As a onsequene, U

(l)

(F ) is a subgroup of Aut(T

d

).

Passing to a di�erent labelling amounts to passing to a onjugate of U

(l)

(F )

inside Aut(T

d

). We therefore omit expliit referene to the labelling from here on.

Remark I.11. Let F � Sym(
). Elements of U(F ) are readily onstruted: Given

v; w 2 V (T

d

) and � 2 F , de�ne g : B(v; 1) ! B(w; 1) by setting g(v) = w and

�(g; v) = � . Given a olletion of permutations (�

!

)

!2


suh that �(!) = �

!

(!) for

all ! 2 
 there is a unique extension of g to B(v; 2) suh that �(g; v

!

) = �

!

where

v

!

2 S(v; 1) is the unique vertex with l(v; v

!

) = !. Then proeed iteratively.

The following proposition ollets several elementary properties of Burger{

Mozes groups. We refer the reader to [GGT16, Setion 4℄ for proofs. Alternatively,

a generalized version of this result is ontained in Setion II.1.

Proposition I.12. Let F � Sym(
). Then U(F ) is

(i) losed in Aut(T

d

),

(ii) vertex-transitive,

(iii) ompatly generated,

(iv) loally permutation isomorphi to F ,

(v) edge-transitive if and only if F is transitive, and

(vi) disrete in Aut(T

d

) if and only if F is semiregular.
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Part (iii) of Proposition I.12 relies on the following result whih we inlude for

future referene.

Lemma I.13. The group U

1

(fidg) is �nitely generated.

Proof. Fix x 2 V . For every ! 2 
, let �

!

2 U

1

(fidg) denote the unique label-

respeting inversion of the edge e

!

2 E with origin x and label !. Then U

1

(fidg) is

generated by f�

!

j ! 2 
g: Every element of U

1

(fidg) is determined by its image on

v, so the assertion follows from vertex-transitivity of hf�

!

j ! 2 
gi: Let y 2 V nfxg

and let (!

1

; : : : ; !

n

) be the labels appearing in the geodesi from x to y. Then

�

!

1

Æ � � � Æ �

!

n

2 U

1

(fidg) maps x to y. �

The name universal group is due to the following maximality statement whose

proof should be ompared with the proof of Theorem II.23.

Proposition I.14. LetH � Aut(T

d

) be loally transitive and vertex-transitive. Then

there is a labelling l of T

d

suh that H � U

(l)

(F ) where F � Sym(
) is ation

isomorphi to the ation of H on balls of radius 1.

Proof. Fix b 2 V and a bijetion l

b

: E(b) ! 
. Then the loal ation of H at b is

given by F := l

b

ÆH

b

j

E(b)

Æl

�1

b

. We now indutively de�ne a legal labelling l : E ! 


suh that H � U

(l)

(F ). Set lj

E(b)

:= l

b

and suppose indutively that l is de�ned

on E(b; n) :=

S

x2B(b;n�1)

E(x). To extend l to E(b; n+ 1), let x 2 S(b; n) and let

e

x

2 E be the unique edge with o(e

x

) = x and d(b; t(e

x

)) + 1 = d(b; x). Sine H is

vertex-transitive and loally transitive, there is an element �

e

x

2 H whih inverts

the edge e

x

. Using �

e

x

we may extend l to E(x) by setting lj

E(x)

:= l Æ �

e

x

.

To hek the inlusion H � U

(l)

(F ), let x 2 V and h 2 H . If (b; b

1

; : : : ; b

n

; x)

and (b; b

0

1

; : : : ; b

0

m

; h(x)) denote the unique redued paths from b to x and h(x), then

s := �

e

b

0

1

� � � �

e

b

0

m

�

e

h(x)

Æ h Æ �

x

�

e

b

n

� � � �

e

b

2

�

e

b

1

2 H

b

and we have �(h; x)=�(s; b) 2 F by the oyle identity satis�ed by the map �. �

4.2. Le Boude Groups. In [Bou16℄, Le Boude introdues groups ating

on T

d

loally like a given permutation group F � Sym(
) almost everywhere. The

preise de�nition reads as follows.

De�nition I.15. Let F �Sym(
). De�ne

G(F ) :=fg 2 Aut(T

d

) j �(g; x) 2 F for almost all x 2 V g:

Notie that U(F ) is a subgroup of G(F ). We equip G(F ) with the unique

group topology making the inlusion U(F )� G(F ) ontinous and open. It exists

essentially due to the fat that G(F ) ommensurates a ompat open subgroup

of U(F ), see [Bou16, Lemma 3.2℄. We state expliitly that this topology di�ers

from the subspae topology of Aut(T

d

), see e.g. Proposition I.18 below. However,

it entails that G(F ) is loally isomorphi to U(F ).

Given g 2 G(F ), a vertex v 2 V with �(g; v) 62 F is a singularity . The loal

ation at singularities is restrited as follows.

Lemma I.16 ([Bou16, Lemma 3.3℄). Let F � Sym(
) and g 2 G(F ) with a singu-

larity v 2 V . Then �(g; v) preserves the partition Fn
 of 
 into F -orbits setwise.

For F �Sym(
), the maximal subgroup of Sym(
) whih preserves the parti-

tion Fn
 =

F

i2I




i

setwise is the diret produt

b

F :=

Q

i2I

Sym(


i

). Combined

with Lemma I.16, this suggests the following extension of De�nition I.15.

De�nition I.17. Let F � F

0

�

b

F � Sym(
). Set G(F; F

0

) := G(F ) \ U(F

0

).
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We remark that G(F; F ) = U(F ) and G(F;

b

F ) = G(F ). In this sense, the groups

G(F; F

0

) interpolate between U(F ) and G(F ). Le Boude shows that for ertain

hoies of F and F

0

, the groups G(F; F

0

) are virtually simple and ontain no latties,

see [Bou16, Introdution℄. For future referene we inlude the following fat.

Proposition I.18. Let F� F

0

�

b

F � Sym(
) and b 2 V (T

d

). Then G(F; F

0

)

b

is non-

ompat and residually disrete.

Proof. The vertex stabilizer G(F; F

0

)

b

an be written as the (stritly) inreasing

union G(F; F

0

)

b

=

S

n2N

K

n

of the open sets K

n

, onsisting of the elements of

G(F; F

0

)

b

whose singularities are ontained in B(b; n). Hene it is non-ompat.

As to residual disreteness, an identity neighbourhood basis of G(F; F

0

)

b

on-

sisting of open normal subgroups is given by the olletion

�

G(F; F

0

)

B(b;n)

�

n2N

. �

4.3. Lederle Groups. As before, we onsider the d-regular tree T

d

= (V;E)

with a labelling and a base vertex b 2 V . Further, let F � Sym(
). In [Led17℄,

Lederle introdues a loally isomorphi version of U(F ) resembling Neretin's group

[Ner03℄ and thereby generalizes Neretin's onstrution.

Towards a preise de�nition, we reall the following from [Led17, Setion 3.2℄:

A �nite subtree T � T

d

is omplete if it ontains b and all its non-leaf verties have

valeny d. We denote the set of leaves of T by L(T ) � V (T

d

). Given a leaf v 2 L(T ),

let T

v

denote the subtree of T

d

spanned by v and those verties outside T whose

losest vertex in T is v. Then de�ne T

d

nT :=

F

v2L(T )

T

v

, a forest of jL(T )j trees.

Let H � Aut(T

d

). Given �nite omplete subtrees T; T

0

� T

d

with jL(T )j =

jL(T

0

)j, a forest isomorphism ' : T

d

nT ! T

d

nT

0

suh that for every v 2 L(T )

there is h

v

2 H with 'j

T

v

= h

v

j

T

v

is an H-honest almost automorphism of T

d

.

Two H-honest almost automorphisms of T

d

given by ' : T

d

nT

1

! T

d

nT

0

1

and  :

T

d

nT

2

! T

d

nT

0

2

are equivalent if there exists a �nite omplete subtree T � T

1

[ T

2

with 'j

T

d

nT

=  j

T

d

nT

. Notie that for any �nite omplete subtree T � T

1

there is a

unique �nite omplete subtree T

0

� T

0

1

and representative '

0

: T

d

nT ! T

d

nT

0

of ';

analogously for T

0

1

. Hene we may pik a �nite omplete subtree T � T

0

1

[ T

2

and

representatives of ' and  with odomain and domain equal to T

d

nT respetively,

thus allowing for a omposition of equivalene lasses of H-honest almost automor-

phisms. Lederle's oloured Neretin groups (original notation F(U(F ))) an now be

de�ned as follows.

De�nition I.19. Let F � Sym(
). Set

N(F ) := f['℄ j ' is a U(F )-honest almost autormorphism of T

d

g:

Observe that N(F ) \ Aut(T

d

) = G(F ). As before, there exists a unique group

topology on N(F ) suh that the inlusion U(F ) � N(F ) is open and ontinu-

ous. This is essentially due to the fat that N(F ) ommensurates a ompat open

subgroup of U(F ), see [Led17, Proposition 2.24℄.

We mention that most Lederle groups ontain no latties, see [Led17, The-

orem 1.2℄. This generalizes the same assertion for Neretin's group obtained in

[BCGM12℄. In this ontext, Lederle also produes new examples of loally om-

pat, ompatly generated, simple groups without latties.

Overall, we have the following ontinuous and open injetions, apturing that

all involved groups have isomorphi open subgroups:

U(F )

// //

G(F )

// //

N(F ):



CHAPTER II

Universal Groups

We present a generalization of Burger{Mozes universal groups that arises via

presribing the loal ation on balls of a given radius k 2 N around verties. The

Burger{Mozes onstrution orresponds to the ase k = 1. Whereas many prop-

erties of their onstrution arry over to this new setting in a straightforward

fashion, others require a more areful analysis. We proeed by exhibiting exam-

ples and (non)-rigidity phenomena of our onstrution. The universality statement

given in Theorem II.23 provides both a haraterization of the generalized universal

groups and the k-losures of groups that at loally transitively with an involutive

inversion on the d-regular tree. The disrete ase disussed in Setion 5, utilizes

Theorem II.23 to suggest a new approah to the Weiss onjeture stating that for a

given loally �nite tree T there are only �nitely many onjugay lasses of disrete,

vertex-transitive and loally primitive subgroups of Aut(T ). It also shows that the

additional assumption in Theorem II.23 ompared to [BM00a, Proposition 3.2.2℄

is indeed neessary. Finally, Setion 7 applies the framework of universal groups to

groups ating with non-trivial quasi-enter. We haraterize the type of elements

that the quasi-enter of a non-disrete subgroup of Aut(T

d

) an have in terms of its

loal ation and expliitly onstrut groups with non-trivial quasi-enters to show

that said haraterization is sharp.

1. De�nition and Basi Properties

1.1. De�nition. Let 
 be a set of ardinality d � 3 and let T

d

= (V;E)

denote the d-regular tree. Reall that a labelling l of T

d

is a map l : E ! 
 suh

that for every x 2 V the map l

x

: E(x) ! 
; y 7! l(y) is a bijetion and for all

e 2 E we have l(e) = l(e).

Given k 2 N, �x a labelled tree B

d;k

with

enter b whih is isomorphi to a ball of radius k

in T

d

and whose labelling arises from a labelling

of T

d

via suh an isomorphism. For example, B

3;2

may be as on the side. Then for every x 2 V ,

there is a unique label-respeting isomorphism

l

k

x

: B(x; k)! B

d;k

:

b

b

b

b

b

1

2

3

b

b

2

3

b

b

1

3

b

b
2

1

These maps allow us to apture the k-loal ations of automorphisms via the map

�

k

: Aut(T

d

)�X ! Aut(B

d;k

); (g; x) 7! �

k

(g; x) := l

k

gx

Æ g Æ (l

k

x

)

�1

:

De�nition II.1. Let F � Aut(B

d;k

) and l a labelling of T

d

. De�ne

U

(l)

k

(F ) := fg 2 Aut(T

d

) j 8x 2 V : �

k

(g; x) 2 Fg:

The following lemma states that the maps �

k

satisfy a oyle identity whih

immediately implies that U

(l)

k

(F ) is a subgroup of Aut(T

d

) for every F � Aut(B

d;k

).

Lemma II.2. Let x 2 V and g; h 2 Aut(T

d

). Then �

k

(gh; x) = �

k

(g; hx)�

k

(h; x).

11
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Proof. We readily ompute

�

k

(gh; x) =l

k

(gh)x

Æ gh Æ (l

k

x

)

�1

= l

k

(gh)x

Æ g Æ h Æ (l

k

x

)

�1

=

= l

k

(gh)x

Æ g Æ (l

k

hx

)

�1

Æ l

k

hx

Æ h Æ (l

k

x

)

�1

= �

k

(g; hx)�

k

(h; x):

for all x 2 V and all g; h 2 Aut(T

d

). �

1.2. Basi Properties. Note that the group U

(l)

1

(F ) of De�nition II.1 for

F � Aut(B

d;1

)

�

=

Sym(
) oinides with the Burger{Mozes universal group U

(l)

(F )

introdued in [BM00a, Se. 3.2℄ and Setion 4.1. Several basi properties of the

latter arry over to our generalized situation. First of all, passing between labellings

of T

d

amounts to onjugating in Aut(T

d

).

Lemma II.3. For every quadruple (l; l

0

; x; x

0

) of labellings l; l

0

of T

d

and verties

x; x

0

2 V , there is a unique automorphism g 2 Aut(T

d

) with gx = x

0

and l

0

= l Æ g.

Proof. Set gx := x

0

. Now assume indutively that g is uniquely determined on

B(x; n) (n 2 N

0

) and let v 2 S(x; n). Then g is also uniquely determined on E(v)

by the requirement l

0

= l Æ g, namely gj

E(v)

:= lj

�1

E(gv)

Æ l

0

j

E(v)

. �

Corollary II.4. Let F � Aut(B

d;k

). Further, let l and l

0

be labellings of T

d

. Then

the groups U

(l)

k

(F ) and U

(l

0

)

k

(F ) are onjugate in Aut(T

d

).

Proof. Choose x 2 V . Let � 2 Aut(T

d

) denote the automorphism of T

d

assoiated

to (l; l

0

; x; x) by Lemma II.3, then U

(l)

k

(F ) = �U

(l

0

)

k

(F )�

�1

. �

In the following, we shall therefore omit the referene to an expliit labelling.

Proposition II.5. Let F � Aut(B

d;k

). Then U

k

(F ) is a

(i) losed subgroup of Aut(B

d;k

), and

(ii) vertex-transitive.

Proof. As to (i), note that if g =2 U

k

(F ) then �

k

(g; x) =2 F for some x 2 V . In this

ase, the open neighbourhood fh 2 Aut(T

d

) j hj

B(x;k)

= gj

B(x;k)

g of g in Aut(T

d

)

is also ontained in the omplement of U

k

(F ).

For (ii), let x; x

0

2 V and let g 2 Aut(T

d

) be the automorphism of T

d

assoiated

to (l; l; x; x

0

) by Lemma II.3. Then g 2 U

k

(F ) as �

k

(g; v) = id 2 F for all v 2 V . �

The following result is now a onsequene of Proposition II.5 and Lemma I.13.

Corollary II.6. Let F � Aut(B

d;k

). Then U

k

(F ) is a ompatly generated, totally

disonneted, loally ompat Hausdor� group.

Proof. The group U

k

(F ) is totally disonneted loally ompat Hausdor� as a

losed subgroup of Aut(T

d

). To show ompat generation, �x x 2 V . Then U

k

(F )

is generated by the join of the ompat set U

k

(F )

x

and the �nite generating set

of U

1

(fidg) = U

k

(fidg) � U

k

(F ) given in the proof of Lemma I.13: Indeed, for

� 2 U

k

(F ) pik � in the �nitely generated, vertex-transitive subgroup U

1

(fidg) of

U

k

(F ) suh that �(�x) = x. Then �� 2 U

k

(F )

x

and the assertion follows. �

Proposition II.7. Let F � Aut(B

d;k

). Then U

k

(F ) satis�es Property P

k

.

Proof. Let e 2 E. Clearly, U

k

(F )

e

k
� U

k

(F )

e

k

;T

y

�U

k

(F )

e

k

;T

x

. Conversely, onsider

g 2 U

k

(F )

e

k and de�ne g

y

2 Aut(T

d

) and g

x

2 Aut(T

d

) by

�

k

(g

y

; v) =

(

�

k

(g; v) v 2 V (T

x

)

id v 2 V (T

y

)

and �

k

(g

x

; v) =

(

id v 2 V (T

x

)

�

k

(g; v) v 2 V (T

y

)

respetively. Then g

y

2 U

k

(F )

e

k

;T

y

, g

x

2 U

k

(F )

e

k

;T

x

and g = g

y

Æ g

x

. �
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2. Compatibility and Disreteness

We now generalize parts (iv) and (vi) of Proposition I.12 to the generalized

setting. This results in a ompatibility ondition (C) and a disreteness ondition

(D) on subgroups F � Aut(B

d;k

) that hold if and only if the assoiated universal

group loally ats like F and is disrete respetively.

2.1. Compatibility. First, we ask whether U

k

(F ) loally ats like F , that

is whether the ations U

k

(F )

x

y B(x; k) and F y B

d;k

are isomorphi for every

x 2 V . Whereas this always holds for k = 1 by Lemma II.3 it need not be true for

k � 2, see Example II.9, the issue being (non)-ompatibility among elements of F .

The ondition developed in this setion allows for omputations. A more pratial

version from a theoretial viewpoint follows in Setion 3.

We introdue the following notation for verties in the labelled tree (T

d

; l):

Given x 2 V and w = (!

1

; : : : ; !

n

) 2 


n

(n 2 N

0

), set x

w

:= 

x;w

(n) where



x;w

: Path

(w)

n

:=

b b b b

0 1 2

: : :

n

w

1

w

2

! T

d

is the unique label-respeting morphism sending 0 to x 2 V . If w is the empty

word, set x

w

:= x. Whenever admissible, we also adopt this notation in the ase

of B

d;k

and its labelling. In partiular, S(x; n) is in natural bijetion with the set




(n)

:= f(!

1

; : : : ; !

n

) 2 


n

j 8k 2 f1; : : : ; n� 1g : !

k

6= !

k+1

g.

Now, let x 2 V and suppose that � 2 U

k

(F )

x

realizes a 2 F at x, that is

�j

B(x;k)

= (l

k

x

)

�1

Æ a Æ l

k

x

:

Then given the ondition that �

k

(�; x

!

) be in F for all ! 2 
, we obtain the

following neessary ondition on F for U

k

(F ) to at like F at x 2 V :

8a 2 F 8! 2 
 : 9a

!

2 F : (l

k

x

)

�1

Æ a Æ l

k

x

j

S

!

= (l

k

�x

!

)

�1

Æ a

!

Æ l

k

x

!

j

S

!

where S

!

:= B(x; k) \ B(x

!

; k) � T

d

. Set T

!

:= l

k

x

(S

!

) � B

d;k

. Then the above

ondition an be rewritten as

8a 2 F 8! 2 
 : 9a

!

2 F : a

!

j

T

!

= l

k

�x

!

Æ (l

k

x

)

�1

Æ a Æ l

k

x

Æ (l

k

x

!

)

�1

j

T

!

:

Now observe the following: First of all, �x

!

depends only on a. Seondly, the subtree

T

!

of B

d;k

does not depend on x, and thirdly, �

!

:= l

k

x

j

T

!

Æ (l

k

x

)

�1

j

T

!

is the unique

non-trivial, involutive and label-respeting automorphism of T

!

, given by

�

!

:= l

k

x

�

�

T

!

Æ (l

k

x

!

)

�1

�

�

T

!

: T

!

! S

!

! T

!

; b

w

7! x

!w

7! b

!w

for admissible words w. Hene the above ondition may be rewritten as

(C) 8a 2 F 8! 2 
 : 9a

!

2 F : a

!

j

T

!

= �

a(!)

Æ a Æ �

!

:

In this situation we shall say that a

!

is ompatible with a in diretion !.

Proposition II.8. Let F � Aut(B

d;k

). Then U

k

(F ) loally ats like F if and only if

F satis�es the ompatibility ondition (C).

Proof. By the above, ondition (C) is neessary. To show that it is also suÆient,

let v 2 V and a 2 F . We aim to de�ne an automorphism � 2 U

k

(F ) whih realizes

a at v. This fores us to set

�j

B(v;k)

:= (l

k

v

)

�1

Æ a Æ l

k

v

:

Now, assume indutively that � is de�ned onsistently on B(v; n) in the sense that

�

k

(�; x) 2 F for all x 2 B(v; n) with B(x; k) � B(v; n). In order to extend � to

B(v; n + 1), let x 2 S(v; n � k + 1) and let ! 2 
 be the unique label suh that

x

!

2 S(v; n � k). Applying ondition (C) to the pair ( := �

k

(�; x

!

); !) provides
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an element 

!

2 F suh that

(l

k

�x

!

)

�1

Æ  Æ l

k

x

!

�

�

S

!

= (l

k

�x

)

�1

Æ 

!

Æ l

k

x

�

�

S

!

where S

!

:= B(x; k) \ B(x

!

; k) and we have realized

�

!

as l

k

x

!

�

�

T

!

Æ (l

k

x

)

�1

�

�

T

!

and �

(!)

as l

k

�x

�

�

T

(!)

Æ (l

k

�x

i

)

�1

�

�

T

(!)

:

Now extend � onsistently to B(v; n+1) by setting �j

B(x;k)

:= (l

k

�x

)

�1

Æ

!

Æ l

k

x

. �

Example II.9. Let 
 := f1; 2; 3g and a 2 Aut(B

3;2

) the element whih swaps the

leaves x

12

and x

13

of B

3;2

. Then F := hai = fid; ag does not ontain an element

ompatible with a in diretion 1 2 
 and hene does not satisfy ondition (C).

To make the veri�ation of ondition (C) viable, we reord the following redu-

tion to generating sets: For a; b 2 F � Aut(B

d;k

) and  := ab 2 F we have



!

j

T

!

= �

(!)

Æ a Æ b Æ �

!

=

�

�

(!)

Æ a Æ �

b(!)

�

Æ

�

�

b(!)

Æ b Æ �

!

�

=

�

�

a(b(!))

Æ a Æ �

b(!)

�

Æ

�

�

b(!)

Æ b Æ �

!

�

Thus if C

F

(a; !) denotes the set of elements in F whih are ompatible with a 2 F

in diretion ! 2 
 then C

F

(ab; !) � C

F

(b; a!)C

F

(a; !). It therefore suÆes to

hek ondition (C) on a generating set of F .

Given S � 
, we also de�ne the ompatibility set C

F

(a; S) :=

T

!2S

C

F

(a; !),

the set of elements in F whih are ompatible with a 2 F in all diretions from S.

As a onsequene, we obtain the following desription of the loal ation of

U

k

(F ) if F does not satisfy ondition (C).

Corollary II.10. Let F � Aut(B

d;k

). Then F has a unique maximal subgroup C(F )

whih satis�es ondition (C). Furthermore, U

k

(F ) = U

k

(C(F )).

Proof. By the above, C(F ) :=hH � F j H satis�es (C)i�F satis�es ondition (C).

Clearly, it is the unique maximal suh subgroup of F .

By de�nition, U

k

(C(F )) � U

k

(F ). Conversely, suppose g 2 U

k

(F )nU

k

(C(F )).

Then there is x 2 V suh that �

k

(g; x) 2 FnC(F ) and the group

C(F ) � hC(F ); f�

k

(g; x) j x 2 V gi � F

satis�es ondition (C), too, as an be seen by setting �

k

(g; x)

!

:= �

k

(g; x

!

). This

ontradits the maximality of C(F ). �

Remark II.11. Let F � Aut(B

d;k

) satisfy (C). Elements of U

k

(F ) are readily on-

struted: Given v; w 2 V (T

d

) and a 2 F , de�ne g : B(v; k) ! B(w; k) by set-

ting g(v) = w and �(g; v) = a. Given a olletion of ations (a

!

)

!2


suh that

a

!

2 C(�; !) for all ! 2 
 there is a unique extension of g to B(v; k+1) suh that

�

k

(g; v

!

) = a

!

. Proeed iteratively.

2.2. Disreteness. The group F � Aut(B

d;k

) also determines whether or

not U

k

(F ) is disrete. In fat, the following proposition generalizes the fat that a

Burger-Mozes universal group is disrete if and only if its loal ation is semiregular.

Proposition II.12. Let F � Aut(B

d;k

) satisfy ondition (C). Then U

k

(F ) � Aut(T

d

)

is disrete if and only if F satis�es

(D) 8! 2 
 : F

T

!

= fidg:

Proof. Fix v 2 V . A subgroup H � Aut(T

d

) is non-disrete if and only if for every

n 2 N there is h 2 Hnfidg suh that hj

B(v;n)

= id.

Suppose that U

k

(F ) is non-disrete. Then there are n 2 N

�k

and � 2 U

k

(F )

suh that �j

B(v;n)

= id and �j

B(v;n+1)

6= id. Hene there is x 2 S(v; n� k+1) with
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a := �

k

(�; x) 6= id. In partiular, a 2 F

T

!

nfidg where ! is the label of the unique

edge e with o(e) = x and d(v; x) = d(v; t(e)) + 1.

Conversely, suppose that F

T

!

6= fidg for some ! 2 
. For every n 2 N

�k

,

we de�ne an automorphism � 2 U

k

(F ) with �j

B(v;n)

= id and �j

B(v;n+1)

6= id: If

�j

B(v;n)

= id, then �

k

(�; x) 2 F for all x 2 B(v; n � k). Next, hoose e 2 E with

x := o(e) 2 S(v; n� k + 1) and t(e) 2 S(v; n� k) suh that l(e) = !. We extend �

to B(x; k) by �j

B(x;k)

:= l

k

x

Æ s Æ (l

k

x

)

�1

where s 2 F

T

!

nfidg. Finally, we extend �

to T

d

using ondition (C). �

As we shall investigate the disrete ase later on in Setion 5, we de�ne ondition

(CD) on F � Aut(B

d;k

) to be the onjuntion of (C) and (D). The following

desription is then immediate from the above:

(CD) 8a 2 F 8! 2 
 : 9! a

!

2 F : a

!

j

T

!

= �

a(!)

Æ a Æ �

!

:

In this ase, an element of U

k

(F )

x

is determined by its ation on B(x; k). Hene

U

k

(F )

x

�

=

F for all x 2 V and U

k

(F )

(x;y)

�

=

F

(b;b

!

)

for all adjaent x; y 2 V with

l(x; y) = !. Also, F admits a unique map z : F �
! F; (a; !) 7! a

!

whih for all

a; b 2 F and ! 2 
 satis�es

(i) z(a; !) 2 C

F

(a; !),

(ii) z(ab; !) = z(a; b!)z(b; !), and

(iii) z(z(a; !); !) = a,

We shall refer to a map z as above as an involutive ompatibility oyle of F . In

partiular, z restrits to an automorphism z

!

:= z(�; !)j

F

(b;b

!

)

2 Aut(F

(b;b

!

)

) of

order at most 2 for every ! 2 
.

2.3. Group Struture. For

e

F � Aut(B

d;k

), let F := �

e

F � Sym(
) denote

the projetion of

e

F onto Aut(B

d;1

)

�

=

Sym(
). As an illustration, we reord that

the struture of U

k

(

e

F ) is partiularly simple if F is regular.

Proposition II.13. Let

e

F � Aut(B

d;k

) satisfy ondition (C). Suppose that F := �

e

F

is regular. Then U

k

(

e

F ) = U

1

(F )

�

=

F � Z =2Z.

Proof. Fix b 2 V . Sine F is transitive, U

k

(

e

F ) is generated by U

k

(

e

F )

b

and an invo-

lution � inverting an edge with origin b. Given � 2 U

k

(

e

F )

b

, regularity of F implies

that �

1

(�; x) = 

1

(�; b) 2 F for all x 2 V . The subgroups H

1

:= U

k

(

e

F )

b

�

=

F and

H

2

:= h�i of U

k

(

e

F ) generate a free produt within U

k

(F ) by the ping-pong lemma:

Put X

1

:= V (T

b

) and X

2

:= V (T

b

!

). Any non-trivial element of H

1

maps X

2

into

X

1

be regularity of F . Also, � 2 H

2

maps X

1

into X

2

by de�nition. �

More generally, Bass-Serre theory [Ser03℄ identi�es the universal groups U

k

(F )

as amalgamated free produts.

Proposition II.14. Let F � Aut(B

d;k

) with �F transitive satisfy (C) (and D). Then

U

k

(F )

�

=

U

k

(F )

x

�

U

k

(F )

(x;y)

U

k

(F )

fx;yg

 

�

=

F �

F

(b;b

!

)

(F

(b;b

!

)

)o Z =2Z)

!

for any edge (x; y) 2 E, where ! = l(x; y) and the ation of Z =2Z on F

(b;b

!

)

is

given by z

!

2 Aut(F

(b;b

!

)

).

Corollary II.15. Let F; F

0

� Aut(B

d;k

) satisfy (CD). If ' : F ! F

0

is an isomor-

phism suh that '(F

(b;b

!

)

) = F

0

(b;b

!

0

)

for some !; !

0

2 
, then U

k

(F )

�

=

U

k

(F

0

). �

Note that Corollary II.15 applies to onjugate subgroups of Aut(B

d;k

) with (CD).

2.4. The Burger{Mozes Subquotient. Here, we determine the Burger{

Mozes subquotient H

(1)

=QZ(H

(1)

) of Theorem I.9 for ertain universal groups.
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Proposition II.16. Let F � Aut(B

d;k

). If F satis�es (D) then QZ(U

k

(F )) = U

k

(F ).

Otherwise, QZ(U

k

(F )) = fidg.

Proof. If F satis�es (D) then U

k

(F ) is disrete and hene QZ(U

k

(F )) = U

k

(F ).

Conversely, if F does not satisfy (D) then Proposition II.7 implies that any half-tree

stabilizer in U

k

(F ) is non-trivial: Let T � T

d

be a half-tree. Then T 2 fT

x

; T

y

g for

an edge e := (x; y) 2 E. Sine U

k

(F ) is non-disrete and has satis�es Property P

k

by Proposition II.7, the stabilizer U

k

(F )

e

k
= U

k

(F )

e

k

;T

y

�U

k

(F )

e

k

;T

x

is non-trivial.

In partiular, either U

k

(F )

T

x

or U

k

(F )

T

y

is non-trivial. Then both are non-trivial

in view of the existene of label-respeting inversions. Hene so is U

k

(F )

T

.

Therefore, U

k

(F ) has Property H of M�oller{Vonk [MV12, De�nition 2.3℄ and

[MV12, Proposition 2.6℄ implies that U

k

(F ) has trivial quasi-enter. �

Proposition II.17. Let F � Aut(B

d;k

) with �F � Sym(
) semiprimitive satisfy (C)

but not (D). Then U

k

(F )

(1)

= U

k

(F )

+

k

.

Proof. The subgroup U

k

(F )

+

k

� U

k

(F ) is open, hene losed, and normal by

de�nition. Sine U

k

(F ) does not satisfy (D) it is also non-disrete. By Corollary

II.43, we onlude that U

k

(F )

+

k

� U

k

(F )

(1)

. However, sine U

k

(F ) satis�es Prop-

erty P

k

by Proposition II.7, the group U

k

(F )

+

k

is simple by Theorem I.5. Hene

U

k

(F )

+

k

= U

k

(F )

(1)

. �

In partiular, U

k

(F )

+

k

is a non-disrete, totally disonneted loally ompat

simple group in the ase of Proposition II.17. If �F is quasiprimitive, then U

k

(F )

+

k

is oompat in U

k

(F ) by [BM00a, Proposition 1.2.1℄ and therefore ompatly

generated by [M

�

S59℄.

Overall, we may reord U

k

(F )

(1)

=QZ(U

k

(F )

(1

)) = U

k

(F )

+

k

in the quasiprim-

itive ase, using [BM00a, Proposition 1.2.1 (4)℄.

3. Examples

In this setion, we onstrut various lasses of examples of subgroups of Aut(B

d;k

)

satisfying (C) or (CD), and prove a rigidity result for ertain loal ations.

First, we introdue a workable realization of Aut(B

d;k

) as well as the onditions

(C) and (CD). Essentially, we view an automorphism � of B

d;k

as the olletion

f�

k�1

(�; v) j v 2 B(b; 1)g: Let Aut(B

d;1

)

�

=

Sym(
) be the natural isomorphism

and for k � 2 identify Aut(B

d;k

) with its image under the map

Aut(B

d;k

)! Aut(B

d;k�1

)n

Y

!2


Aut(B

d;k�1

); � 7! (�

k�1

(�; b); (�

k�1

(�; b

!

))

!

)

where Aut(B

d;k�1

) ats on

Q

!2


Aut(B

d;k�1

) by permuting the fators aording

to its ation on S(b; 1)

�

=


. In addition, for every ! 2 
 onsider the map

p

!

: Aut(B

d;k

)! Aut(B

d;k�1

)�Aut(B

d;k�1

); � 7! (�

k�1

(�; b); �

k�1

(�; b

!

))

whose image we interpret as a relation on Aut(B

d;k�1

). The onditions (C) and (D)

for a subgroup F � Aut(B

d;k

) now read as follows.

(C) 8! 2 
 : p

!

(F ) is symmetri

(D) 8! 2 
 : p

!

j

�1

F

(id; id) = fidg

3.1. The ase k = 2. We �rst onsider the ase k = 2 whih suÆes in ertain

situations, see Theorem II.22. Consider the map  : Sym(
) ! Aut(B

d;2

) whih

maps a 2 Sym(
) to (a; (a; : : : ; a)) 2 Aut(B

d;2

) using the realization of Aut(B

d;2

)

de�ned above. Given F � Sym(
), the image

�(F ) := im(j

F

) = f(a; (a; : : : ; a)) j a 2 Fg

�

=

F
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is a subgroup of Aut(B

d;2

) isomorphi to F whih satis�es (CD). Indeed, its om-

patibility oyle is given by z : �(F ) � 
 ! �(F ); ((a); !) 7! (a). Notie that

�(F ) implements the restrition of the diagonal ation F y 


2

to 


(2)

�

=

S(b; 2).

Clearly, U

2

(�(F ))=f� 2 Aut(T

d

) j 9a 2 F : 8x 2 V : 

!

(�; x) = ag =: D(F ),

following the notation of [BEW15℄. Moreover, we have the following desription of

all subgroups F

(2)

�Aut(B

d;2

) whih satisfy (C), projet onto F and ontain �(F ).

Proposition II.18. Let F � Sym(
). Given K �

Q

!2


F

!

�

=

ker� � Aut(B

d;2

),

there is F

(2)

� Aut(B

d;2

) with (C) and �tting into the split exat sequene

1

//

K

//

�

//

F

(2)

�

/

F



o

//

1

if and only if K is invariant under the ation F y

Q

!2


F

!

given by

a � (a

!

)

!2


:= (aa

a

�1

(!)

)

!2


In the split situation of Proposition II.18 we also denote F

(2)

by �(K).

Proof. If there is an exat sequene as above then K�F

(2)

is invariant under on-

jugation by �(F ) � F

(2)

. Conversely, if K is invariant under the given ation, then

F

(2)

:= f(a; (aa

!

)

!

) j a 2 F; 8! 2 
 : a

!

2 F

!

g �ts into the sequene. Note that

F

(2)

ontains K and �(F ), and is a subgroup: For (a; (aa

!

)

!

); (b; (bb

!

)

!

) 2 F

(2)

,

(a; (aa

!

)

!

)(b; (bb

!

)

!

) = (ab; (aa

b(!)

bb

!

)) = (ab; (ab Æ b

�1

a

b(!)

bb

!

)

!

) 2 F

(2)

by assumption. In partiular, F

(2)

= h�(F );Ki. We now hek ondition (C) on

generators of F

(2)

. As before, (a) 2 C((a); !) for all a 2 F and ! 2 
. Further,

given k 2 K, we have (pr

!

k)k

�1

2 C(k; !) for all ! 2 
. �

Both the onstrution � and Proposition II.18 generalize to non-trivial involu-

tive ompatibility oyles of F . The following subgroups of Aut(B

d;2

) are of this

type: Let F � Sym(
) be transitive. Fix !

0

2 
 and let N � F

!

0

be normal.

Furthermore, �x elements f

!

2 F (! 2 
) satisfying f

!

(!

0

) = ! and de�ne

�(F;N) := f(a; (f

a(!)

f

�1

!

Æ f

!

a

!

0

f

�1

!

)

!

) j a 2 F; a

!

0

2 Ng

�

=

F �N;

�(F;N) := f(a; (a Æ f

!

a

(!)

!

0

f

�1

!

)

!

) j a 2 F; 8! 2 
 : a

(!)

!

0

2 Ng

�

=

F nN

d

:

Note that in the ase of �(F;N) we have hosen z(a; !) := f

a(!)

f

�1

!

for all a 2 F

and ! 2 
 but in general any involutive ompatibility oyle z of F for whih

�(F ) and f(id; (f

!

a

!

0

f

�1

!

)

!

) j ! 2 
g ommute works. The groups �(F;N) sat-

isfy (C) and the groups �(F;N) satisfy (CD). We abbreviate �(F ) := �(F; F

!

0

)

and �(F ) := �(F; F

!

0

). Notie that �(F ) an also be de�ned without assuming

transitivity of F , namely

�(F ) := f(a; (a

!

)

!

) j a 2 F; 8! 2 
 : a

!

2 C

F

(a; !)g

�

=

F n

Y

!2


F

!

It is then plain that U

2

(�(F )) = U

1

(F ) for every F � Sym(
). More generally,

assume that F � Sym(
) preserves a partition P : 
 =

F

i2I




i

. Set

�(F;P) := f(a; (a

!

)

!

) j a 2 F; a

!

2 C

F

(a; !) onstant w.r.t. Pg

�

=

F n

Y

i2I

F




i

:

The group �(F;P) satis�es (C) and plays a major role in Setion 7.

Example II.19. In this example we investigate Proposition II.18 for primitive dihe-

dral groups: Set F := D

p

� S

p

for some prime p � 3. Then F

i

�

=

(F

2

;+). Hene

U :=

Q

p

i=1

F

i

is a p-dimensional vetor spae over F

2

and the F -ation on it re-

dues to permuting oordinates. In ase 2 2 (Z =pZ)

�

is primitive we show that

there are only the following four F -invariant subspaes of U : The trivial subspae,

the diagonal subspae h(1; : : : ; 1)i, the whole spae and K := ker�

�

=

F

(p�1)

2

where
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� : U ! F

2

; (v

1

; : : : ; v

p

)

T

7!

P

p

i=1

v

i

. Notie that K is an F -invariant subspae be-

ause � is an F -invariant homomorphism. It is a onjeture of Artin that there are

in�nitely many suh primes, the list starting with 3, 5, 11, 13 : : :, see [Slo, A001122℄.

Suppose that W � U is F -invariant. It suÆes to show that K � W as soon

as W \ ker� ontains a non-trivial element w. To see this, we show that the or-

bit of w under the yli group h%i = C

p

� D

p

generates a (p � 1)-dimensional

subspae of K whih hene equals K: Indeed, the rank of the irulant matrix

C := (w; %w; %

2

w; : : : ; %

(p�1)

w) equals p�deg(gd(x

p

�1; f(x))) where f(x) 2 F

2

[x℄

is the polynomial f(x) = w

p

x

p�1

+� � �+w

2

x+w

1

, see e.g. [Day60, Corollary 1℄. The

polynomial x

p

�1 2 F

2

[x℄ fators into the irreduibles (x

p�1

+x

p�2

+� � �+x+1)(x�1)

by the assumption on p. Sine f has an even number of non-zero oeÆients, we

onlude that rank(C) = p� 1.

3.2. General ase. We now extend the onstrutions � and � to arbitrary k.

Given F � Aut(B

d;k

) with (C), de�ne the subgroup

�

k

(F ) := f(�; (�

!

)

!

) j � 2 F; 8! 2 
 : �

!

2 C

F

(�; !)g

of Aut(B

d;k+1

). Clearly, �

k

(F ) satis�es (C) and U

k+1

(�

k

(F )) = U

k

(F ). Conerning

the onstrution � we have the following.

Lemma II.20. Let F �Aut(B

d;k

) satisfy (C). Then there exists �

k

(F )�Aut(B

d;k+1

)

satisfying (CD) and suh that �

k

: �

k

(F ) ! F is an isomorphism if and only if F

admits an involutive ompatibility oyle.

Proof. If F admits an involutive ompatibility oyle z, de�ne

�

k

(F ) := f(�; (z(�; !))

!

) j � 2 Fg � Aut(B

d;k+1

):

Then 

k

: F ! �

k

(F ); � 7! (�; (z(�; !))

!

) is an isomorphism and the involutive

ompatibility oyle of �

k

(F ) is given by ez : (

k

(�); !) 7! 

k

(z(�; !)). Conversely,

if a group �

k

(F ) as above exists, set z : (�; !) 7! pr

!

�

�1

k

�. �

Let F �Aut(B

d;k

) with (C) and l > k. Set �

l

(F ) := �

l�1

Æ � � � Æ �

k

(F ) for an

impliit sequene of involutive ompatibility oyles and �

l

(F ) :=�

l�1

Æ� � �Æ�

k

(F ).

Example II.28 provides a group E � Aut(B

3;2

) that satis�es (C), admits an

involutive ompatibility oyle but does not satisfy (CD).

3.3. A rigid ase. For ertain F � Sym(
) the groups �(F ), �(F ) and �(F )

already yield all possible U

k

(

e

F ). The argument is based on Setions 3.4 and 3.5 of

[BM00a℄. The following lemma is due to M. Guidii by personal ommuniation.

Lemma II.21. Let F � Sym(
) be 2-transitive with F

!

simple non-abelian for all

! 2 
. Then every extension of F

!

(! 2 
) by F is equivalent to the diret produt.

Proof. Let 1! F

!

! F

(2)

! F ! 1 be an extension of F

!

by F . In partiular, F

!

an be regarded as a subgroup of F

(2)

and we may onsider the onjugation map

' : F

(2)

! Aut(F

!

). We show that K := ker' = C

F

(2)

(F

!

) � F

(2)

omplements

F

!

in F

(2)

. Sine F

!

is non-abelian, we have K\F

!

= fidg whene K�F

!

� F

(2)

.

Now onsider F

(2)

=(K �F

!

) � Out(F

!

) whih is solvable by Shreier's onjeture.

Sine F

(2)

=F

!

�

=

F is not solvable we onlude K 6= fidg. Now, by a theorem of

Burnside, every 2-transitive permutation group F is either almost simple or aÆne.

In the �rst ase, F is atually simple: LetN�F . Then F

!

\N�F

!

. Hene either

F

!

\N = fidg or F

!

\N = F

!

. Sine F is 2-transitive and hene primitive, every

normal subgroup ats transitively. In the �rst ase, N is regular whih ontradits

F being almost simple. Hene the seond ase holds and N = NF

!

= F . Now

F

(2)

=(K�F

!

) is a proper quotient of F and hene trivial. Therefore F

(2)

= K�F

!

and K

�

=

F

(2)

=F

!

�

=

F . In the seond ase, F = F

!

o C

d

p

(d 2 N) and fidg 6= K

�

=
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K � F

!

=F

!

� F ontains the unique minimal normal subgroup C

d

p

�K � F . Sine

F

!

�

=

F=C

d

p

is non-abelian simple whereas F

(2)

=(K � F

!

) is solvable, we onlude

that K 6= C

d

p

. But F=C

d

p

�

=

F

!

is simple, so K � F

!

= F

(2)

. �

Theorem II.22. Let F � Sym(
) be 2-transitive with F

!

simple non-abelian for all

! 2 
, and let

e

F � Aut(B

d;k

) with �

e

F = F satisfy (C). Then U

k

(

e

F ) equals either

U

2

(�(F )); U

2

(�(F )) or U

2

(�(F )) = U

1

(F ):

Proof. We may assume k � 2. Sine

e

F � Aut(B

d;k

) satis�es (C) so does the

restrition F

(2)

:= �

2

e

F � �(F ) � Aut(B

d;2

). Consider the projetion � : F

(2)

� F

and �x !

0

2 
. We have ker� �

Q

!2


F

!

�

=

F

d

!

0

and pr

!

ker� � F

!

0

for all ! 2 


beause F

(2)

satis�es (C). Sine F

!

0

is simple, ker� � F

(2)

and F is transitive

this implies that either pr

!

ker� = fidg for all ! 2 
 or pr

!

ker� = F

!

0

for

all ! 2 
. In the �rst ase, � : F

(2)

! F is an isomorphism and F

(2)

satis�es

(CD) whih implies F

(2)

= �(F ) and hene U

k

(

e

F ) = U

2

(�(F )) for some involutive

ompatibility oyle of F .

In the seond ase, Setion 3.4.3 of [BM00a℄ implies that ker� � F

d

!

0

is a

produt of subdiagonals preserved by the primitive ation of F on the index set

of F

d

!

0

. Therefore, either there is just one blok and ker�

�

=

F

!

0

, or all bloks

are singletons and ker�

�

=

F

d

!

0

. In the �rst ase, we onlude F

(2)

= �(F ) using

Lemma II.21 whih satis�es (CD) and therefore U

k

(

e

F ) = U

2

(�(F )).

Now assume that ker�

�

=

F

d

!

0

. We aim to show that

e

F = �

k

(F ) whih implies

U

k

(

e

F ) = U

2

(�(F )) = U

1

(F ). To this end, we introdue the following notation:

Given ! 2 
 and B

d;k

, set S

n

(b; !) = fx 2 S(b; n) j d(x; b) = d(x; b

!

) + 1g for

n � k, a(n) := jS

n

(b; !)j and (n) := jS(b; n)j. Further, let F

(n)

� Aut(B

d;n

)

(n 2 N) denote the loal ations of U

k

(

e

F ).

First of all, note that U

k

(

e

F ) is non-disrete by the Thompson-Wielandt Theo-

rem, see [BM00a, Theorem 2.1.1℄: The group �(F )

T

!

�

=

F

d�1

!

0

annot be a p-group

given that F

!

0

is simple non-abelian. Thus K

n

:= stab

F

(n)

(B(b; n� 1)) � F

(n�1)

!

0

is non-trivial for all n 2 N.

We now indutively prove that F

(n)

ats transitively on S(b; n) for all n 2 N

whih holds for n = 2. Sine F

(n+1)

satis�es (C), the projetion onto eah fator

of K

n+1

� F

(n)

!

0

is subnormal in F

!

0

. Sine F

!

0

is simple, F

(n)

ats transitively

on S(b; n) by the indution hypothesis, and K

n+1

is non-trivial this implies that

pr

x

K

n+1

= F

!

0

for all x 2 S(b; n). Hene F

(n+1)

ats transitively on S(b; n + 1).

Thus U

k

(

e

F ) is loally 1-transitive.

We now indutively prove that F

(n)

= �

n�1

(F

(n�1)

) for all n 2 N. This holds

for n = 2. As a onsequene of the above argument, K

n+1

is a produt of subdiag-

onals preserved by the transitive ation of F

(n+1)

on S(b; n). The assoiated blok

deomposition (B

j

)

j2J

of S(b; n) satis�es jB

j

\S

n

(b; !)j � 1 for all j 2 J and ! 2 
:

SineK

n

�

=

F

(n�1)

!

0

by the indution hypothesis we onludeK

n+1

j

S

n+1

(b;!)

�

=

F

a(n)

!

0

beause K

n+1

= stab

F

(n+1)

(B(b; n))�stab

F

(n+1)

(B(b

!

; n�1))

�

=

K

n

. However, any

suh blok deomposition has to be the deomposition into singletons: Assume that

jB

j

j � 2 for some j 2 J and hoose !; !

0

2 
 suh that B

j

\ S

n

(b; !) = x and

B(j) \ S

n

(b; !

0

) = x

0

. Further, hoose y 2 S

n

(b; !

0

)nfx

0

g. Then y 2 B

j

0

for some

j

0

2 Jnj. Sine U

k

(F

(k)

) is loally 1-transitive, there is a 2 F

(n+1)

suh that

ax = x and ax

0

= y. However, this implies aB

j

= B

j

and aB

j

= B

j

0

whih

ontradits the assumption j 6= j

0

. �

See [BM00a, Example 3.3.1℄ for examples of permutation groups satisfying

the assumptions of Theorem II.22. If F does not have simple point stabilizers or

preserves a non-trivial partition, further universal groups are given by U

2

(�(F;N)),

U

2

(�(F;N)) and U

2

(�(F;P)), see Setion 3.1.
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4. Universality

Let

e

F � Aut(B

d;k

) satisfy (C). Suppose that F := �

e

F is transitive. Then

U

k

(

e

F ) � Aut(T

d

) is loally transitive, satis�es Property P

k

and ontains an in-

volutive inversion. In this setion we show that these properties haraterize lo-

ally transitive universal groups and thereby determine the k-losures of all loally

transitive groups ontaining an involutive inversion. Reall that the k-losure of

H � Aut(T

d

) is the group

H

(k)

:= fg 2 Aut(T

d

) j 8x 2 V : 9h 2 H : gj

B(x;k)

= hj

B(x;k)

g:

Theorem II.23. Let H � Aut(T

d

) be loally transitive and ontain an involutive

inversion. Then there is a labelling l of T

d

suh that

U

1

(F

(1)

) � U

2

(F

(2)

) � � � �U

k

(F

(k)

) � � � � � H � U

1

(fidg)

where F

(k)

� Aut(B

d;k

) is ation isomorphi to the ation of H on balls of radius k.

Furthermore, H

(k)

= U

k

(F

(k)

).

Proof. We �rst onstrut a labelling l of T

d

suh thatH � U

(l)

1

(fidg): Fix b 2 V and

hoose a bijetion l

b

: E(b) ! 
. The assumptions provide an involutive inversion

�

!

2 H of the edge (b; b

!

) for eah ! 2 
. Using these, we de�ne the announed

labelling indutively: Set lj

E(b)

:= l

b

. Assume that l is de�ned on E(b; n) and for

e 2 E(b; n+ 1) put l(e) := l(�

!

(e)) if b

!

is part of the unique redued path from b

to o(e). Sine the �

!

(! 2 
) have order 2, we have �

1

(�

!

; x) = id for all ! 2 
 and

x 2 V . Thus hf�

!

j ! 2 
gi = U

(l)

1

(fidg) � H .

Now let h 2 H and x 2 V . Further, let (b; b

1

; : : : ; b

n

; x) and (b; b

0

1

; : : : ; b

0

m

; h(x))

be the unique redued paths from b to x and h(x) respetively. Sine U

(l)

1

(fidg) � H ,

the latter in partiular ontains the unique label-respeting inversion �

e

about every

edge e in the above paths. Then

s := �

�1

(b

0

1

;b)

� � � �

�1

(b

0

m

;b

0

m�1

)

�

�1

(h(x);b

0

m

)

Æ h Æ �

(x;b

n

)

� � � �

(b

2

;b

1

)

�

(b

1

;b)

2 H

stabilizes b and the oyle identity implies for every k 2 N:

�

k

(h; x) = �

k

(�

(h(x);b

0

m

)

� � � �

(b

0

1

;b)

Æ s Æ �

�1

(b

1

;b)

� � � �

�1

(x;b

n

)

; x) = �

k

(s; b) 2 F

(k)

:

where F

(k)

� Aut(B

d;k

) is de�ned by l

k

b

ÆH

b

j

B(b;k)

Æ(l

k

b

)

�1

. The remaining assertions

are now immediate from [BEW15, Theorem 5.4℄. �

Remark II.24. Retain the notation of Theorem II.23. By Proposition I.14, there

is a labelling l of T

d

suh that U

(l)

1

(F

(1)

) � H regardless of the minimal order of

an inversion. This labelling may be distint from the one of Theorem II.23 whih

fails without assuming the existene of an involutive inversion: For example, a

vertex-stabilizer of the group G

1

2

of Example II.28 is ation isomorphi to �(S

3

)

but G

1

2

6� U

(l)

2

(�(S

3

)) for any labelling l beause (G

1

2

)

fb;b

i

g

�

=

Z =4Z whereas

U

(l)

2

(�(S

3

))

fb;b

i

g

�

=

�(S

3

)

(b;b

i

)

o Z =2Z

�

=

Z =2Z�Z =2Z

by Proposition II.14.

The following orollary of Theorem II.23 haraterizes universal groups as the

loally transitive subgroups of Aut(T

d

) whih ontain an involutive inversion and

satisfy an independene property.

Corollary II.25. Let H � Aut(T

d

) be losed, loally transitive and ontain an

involutive inversion. Then there is a labelling l of T

d

and a group F

(k)

� Aut(B

d;k

)

suh that H = U

k

(F

(k)

) if and only if H satis�es Property P

k

.
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Proof. If H = U

k

(F

(k)

) then H has Property P

k

by Proposition II.7. Conversely,

if H satis�es Property P

k

then H = H = H

(k)

= U

k

(F

(k)

) by virtue of [BEW15,

Theorem 5.4℄ and Theorem II.23. �

To omplement Theorem II.23 we reord the following riterion for ertain

disrete subgroups of Aut(T

d

) to ontain an involutive inversion.

Proposition II.26. LetH�Aut(T

d

) be disrete and loally transitive with odd order

point stabilizers. If H ontains an inversion then it ontains an involutive one.

Proof. Let k

0

2 N

0

be minimal suh that stabilizers in H of balls of radius k

0

about

edges in T

d

are trivial. Let � 2 H be an inversion of an edge e 2 E. Then �

2

2 H

e

.

Hene we are done if k

0

= 0. Otherwise the smallest integer n

1

2 N suh that

(�

2

)

n

1

2 H

B(1;e)

is odd by the assumptions on the loal ation of H . Iteratively, the

smallest integer n

k

2 N suh that (�

2

)

n

k

2 H

B(k;e)

is odd for every k � k

0

and we

onlude that �

n

k

0

is an involutive inversion. �

In Proposition II.26, we may for example assume that H be vertex-transitive.

Combined with loal transitivity this implies the existene of an inversion.

Primitive permutation groups with odd order point stabilizers were lassi�ed

in [LS91℄. For instane, they inlude PSL(2; q) for all q � 3 mod 4.

5. The Disrete Case

In this setion we study the universal group onstrution in the disrete ase.

This provides Remark II.24 showing that the assumptions of Theorem II.23 are

neessary and o�ers a new approah to the long standing Weiss onjeture, stating

in partiular that there are only �nitely many onjugay lasses of disrete, vertex-

transitive, loally primitive subgroups of Aut(T

d

).

The following straightforward onsequene of Theorem II.23 identi�es ertain

groups relevant to the Weiss onjeture as universal groups for loal ations satis-

fying ondition (CD).

Corollary II.27. Let H � Aut(T

d

) be disrete, loally transitive and ontain an in-

volutive inversion. Then there is k 2 N and a labelling l of T

d

suh thatH = U

(l)

k

(F

k

)

where F

k

� Aut(B

d;k

) is ation isomorphi to the ation of H on balls of radius k.

Proof. Note that disreteness of H implies Property P

k

for every k 2 N suh that

stabilizers in H of balls of radius k in T

d

are trivial and apply Corollary II.25. �

Hene studying the lass of groups given in Corollary II.27 redues to studying

subgroups of Aut(B

d;k

) (k 2 N) whih satisfy (CD). By Corollary II.15, any two

onjugate suh groups yield isomorphi universal groups. In this sense, it suÆes

to examine onjugay lasses of subgroups of Aut(B

d;k

). This an be done ompu-

tationally using the desription of onditions (C) and (D) developed in Setion 2,

using e.g. GAP [GAP17℄.

Example II.28. Consider the ase d = 3. By [Tut47℄, [Tut59℄ and [DM80℄, there

are, up to onjugay, seven disrete, vertex-transitive and loally transitive sub-

groups of Aut(T

3

). We denote them by G

1

, G

2

, G

1

2

, G

3

, G

4

, G

1

4

and G

5

. They have

known amalgamated free produt struture and presentation. A subsript n indi-

ates that the respetive group ats regularly on non-baktraking paths of length

n in T

3

, and determines the isomorphism lass of the (�nite) vertex stabilizer whih

is of order 3 � 2

n�1

. The respetive group ontains an involutive inversion if and

only if it has no supersript. The minimal order of an inversion in G

1

2

and G

1

4

is

4. See also [CL89℄. By Corollary II.27, the groups G

n

(n 2 f1; : : : ; 5g) are of the

form U

k

(F ). We reover their loal ations in the following table of onjugay lass
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representatives of subgroups

e

F of Aut(B

3;2

) and Aut(B

3;3

) whih satisfy ondition

(C) and projet onto a transitive subgroup of S

3

. The list is omplete for k = 2,

and for k = 3 in the ase of (CD).

Desription of

e

F k �

e

F j

e

F j (CD) i...

�(A

3

) 2 A

3

3 Yes

�(S

3

) 2 S

3

6 Yes

�(S

3

) 2 S

3

12 Yes

�(K) 2 S

3

24 No No

E 2 S

3

24 No Yes

�(S

3

) 2 S

3

48 No No

Desription of

e

F k �

2

e

F j

e

F j (CD) i...

�

2

(E) 3 E 24 Yes

�

2

(E) 3 E 48 Yes

The olumn labelled \i..." reords whether the respetive group admits an involu-

tive ompatibility oyle whih an be determined omputationally in [GAP17℄.

Reall that this is automati if (CD) is satis�ed. The kernel K stems from Ex-

ample II.19. The split example �(K), after Proposition II.18, is isomorphi to an

exeptional group termed E but the two are not onjugate within Aut(B

3;2

).

Using the above, we onlude G

1

= U

1

(A

3

), G

2

= U

2

(�(S

3

)), G

3

= U

2

(�(S

3

)),

G

4

= U

3

(�

2

(E)) and G

5

= U

3

(�

2

(E)). It appears likely that the groups G

1

2

and G

1

4

an be desribed as universal groups with presribed loal ation on balls around

edges, in whih one prevents involutive inversions to begin with.

5.1. On theWeiss Conjeture. The long standingWeiss onjeture [Wei78℄

states that for a given loally �nite tree T there are only �nitely many onjugay

lasses of disrete, vertex-transitive, loally primitive subgroups of Aut(T ). It is

typially studied from the point of view of �nite graphs. See Poto�ni{Spiga{Verret

[PSV12℄ for a desription and a generalization of the onjeture to semiprimitive

loal ation. Promising partial results were obtained in the same artile as well as

by Guidii{Morgan in [GM14℄.

Corollary II.27 suggests to restrit to disrete, loally primitive subgroups of

Aut(T

d

) ontaining an involutive inversion.

Conjeture II.29. Let F � Sym(
) be primitive. Then there are only �nitely many

onjugay lasses of disrete subgroups of Aut(T

d

) whih loally at like F and

ontain an involutive inversion.

Given a transitive group F � Sym(
), let H

F

denote the olletion of sub-

groups of Aut(T

d

) whih are disrete, loally at like F and ontain an involutive

inversion. Then the following de�nition is meaningful by Corollary II.27.

De�nition II.30. Let F � Sym(
) be transitive. De�ne

dim

CD

(F ) := max

H2H

F

min

n

k2N j9F

(k)

2Aut(B

d;k

) with (CD) : H=U

k

(F

(k)

)

o

if the maximum exists and dim

CD

(F ) =1 otherwise.

Conjeture II.29 is equivalent to the statement that dim

CD

(F ) is �nite whenever

F � Sym(
) is primitive.

The remainder of this setion is devoted to determining the dimension of er-

tain lasses of permutation groups. As a start, transitive permutation groups of

dimension 1 are readily haraterized.
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Lemma II.31. Let F � Sym(
) be transitive. Then dim

CD

(F ) = 1 if and only if F

is regular.

Proof. If F is regular, then dim

CD

(F ) = 1 by Proposition II.13. Conversely, if

dim

CD

(F ) = 1 then neessarily U

2

(�(F )) = U

1

(F ). Hene �(F )

�

=

�(F ) whih

implies that F

!

is trivial for all ! 2 
. That is, F is regular. �

The next proposition provides a large lass of primitive groups of dimension 2.

For its proof, we �rst reord the following relations between various harateris-

ti subgroups of a �nite group. Reall that the sole of a group is the subgroup

generated by its minimal normal subgroups. These form a diret produt.

Lemma II.32. LetG be a �nite group. Then the following statements are equivalent.

(i) The sole so(G) has no abelian fator.

(ii) The solvable radial O

1

(G) is trivial.

(iii) The nilpotent radial Fit(G) is trivial.

Proof. If so(G) has no abelian fator then O

1

(G) is trivial: A non-trivial solvable

normal subgroup of G would ontain a solvable minimal normal subgroup of G

whih is neessarily abelian. Hene (i) implies (ii). Statement (ii) implies (iii) by

de�nition. Finally, if so(G) has an abelian fator then G has a (minimal) normal

abelian and hene nilpotent subgroup. Thus (iii) implies (i). �

Proposition II.33. Let F � Sym(
) be primitive non-regular and assume that F

!

has trivial nilpotent radial for all ! 2 
. Then dim

CD

(F ) = 2.

Proof. Suppose that F

(2)

� Aut(B

d;2

) has (C) and that

1! ker� ! F

(2)

�

�! F ! 1

is exat. Fix !

0

2 
. Then ker� �

Q

!2


F

!

�

=

F

d

!

0

. Sine F

(2)

has (C) we get

pr

!

ker� � F

!

0

for all ! 2 
. Sine F is transitive these projetions furthermore

oinide with the same N �F

!

0

. Now onsider F

(2)

T

!

= kerpr

!

j

ker�

� ker� for some

! 2 
. Either F

(2)

T

!

is trivial in whih ase F

(2)

has (CD) or F

(2)

T

!

is non-trivial.

In the latter ase, suppose that N

!;!

0

:= pr

!

0

F

(2)

T

!

is non-trivial for some !

0

2 
.

Then N

!;!

0

is subnormal in F

!

0

as fidg 6= N

!;!

0

� N � F

!

0

. As a onsequene,

N

!;!

0

has trivial nilpotent radial sine F

!

0

does. Hene the Thompson-Wielandt

Theorem [Tho70℄, [Wie71℄ (f. [BM00a, Theorem 2.1.1℄) implies that there is no

F

(k)

� Aut(B

d;k

) (k � 3) with �

2

F

(k)

= F

(2)

and (CD). Therefore dim

CD

(F ) � 2.

Lemma II.31 implies that equality holds. �

We now list several lasses of permutation groups that Proposition II.33 in-

ludes; see [LPS88℄ for a statement of the O'Nan-Sott lassi�ation theorem of

�nite primitive groups to whih the following types refer.

(i) A

n

, S

n

(n � 6) ating on f1; : : : ; ng (whih are of almost simple type (AS)).

(ii) Primitive groups of twisted wreath type (TW).

(iii) Primitive groups of type (HS).

This follows from ombining Lemma II.32 with the following observations: For every

F 2 fA

n

; S

n

j n � 6g, point stabilizers have sole isomorphi to the simple non-

abelian group A

n�1

. Point stabilizers in primitive groups of type (TW) have trivial

solvable radial by [DM96, Theorem 4.7B℄, and point stabilizers in primitive groups

of type (HS) have simple non-abelian sole, see [LPS88℄.

Example II.34. By Example II.28, we have dim

CD

(S

3

) � 3 and it was shown in

[DM80℄ that in fat dim

CD

(S

3

) = 3. Computationally onstruting involutive

ompatibility oyles one an show that dim

CD

(F ) � 3 for the dihedral groups

F 2 fD

4

; D

6

g and their natural permutation ations.
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To ontrast the primitive ase, we show that non-trivial transitive wreath prod-

uts have dimension at least 3. The proof illustrates the use of involutive ompati-

bility oyles. Reall that for F � Sym(
) and P � Sym(�) the wreath produt

F o P := F

j�j

o P admits a natural imprimitive permutation ation on 
�� given

by ((a

�

)

�

; �) � (!; �

0

) := (a

�(�

0

)

!; ��

0

) with bloks 
� � =

F

�2�


� f�g.

Proposition II.35. Let 
 and � be �nite sets suh that j
j; j�j � 2. Furthermore,

let F � Sym(
) and P � Sym(�) be transitive. Then dim

CD

(F o P ) � 3.

Proof. We de�ne a subgroup W (F; P ) � Aut(B


��;2

) whih projets onto F o P ,

satis�es (C), does not satisfy (CD) but admits an involutive ompatibility oyle.

This suÆes by Lemma II.20. For � 2 �, let �

�

denote the �-th embedding of F

into F o P =

�

Q

�2�

F

�

o P . Reall the map  from Setion 3.1 and onsider



�

: F ! Aut(B


��;2

); a 7! (�

�

(a); ((�

�

(a))

(!;�)

; (id)

(!;�

0

6=�)

));



(2)

�

: F ! Aut(B


��;2

); a 7! (id; ((id)

(!;�)

; (�

�

(a))

(!;�

0

6=�)

)):

Furthermore, let � denote the embedding of P into F o P . We de�ne

W (F; P ) := h

�

(a); 

(2)

�

(a); (�(%)) j � 2 �; a 2 F; % 2 P i:

In order to show that W (F; P ) admits an involutive ompatibility oyle, we �rst

determine its group struture. Consider the subgroups

V := h

�

(a) j � 2 �; a 2 F i and V := h

(2)

�

(a) j � 2 �; a 2 F i:

Then W (F; P ) = hV; V ;�(�(P ))i. Now observe that V

�

=

F

j�j

and V

�

=

F

j�j

om-

mute, interset trivially and are normalized by �(�(P )) whih permutes the fators

of eah produt. Therefore

W (F; P )

�

=

(V � V )o P

�

=

(F

j�j

� F

j�j

)o P:

An involutive ompatibility oyle z of W (F; P ) may now be de�ned by setting

z(

�

(a); (!; �

0

)) :=

(



�

(a) � = �

0



(2)

�

(a) � 6= �

0

; z(

(2)

�

(a); (!; �

0

)) :=

(



(2)

�

(a) � = �

0



�

(a) � 6= �

0

for all � 2 �, a 2 F and % 2 P and z((�(%)); (!; �)) := (�(%)). Note that the map

z extends to an involutive ompatibility oyle of V �V �W (F; P ) whih in turn

extends to W (F; P ). �

Atually, muh more than Proposition II.35 holds true for partiular wreath

produts. For instane, there is the following well-known onstrution, .f. [MSV14℄.

Proposition II.36. Let m � 2. Then dim

CD

(S

m

o S

2

) =1.

Proof. We give a family of 2m-regular �nite graphs (�

n

)

n�3

whose automorphism

groups yield amalgams with the right properties: Let C(m;n) be the graph with

vertex set f1; : : : ;mg � f1; : : : ; ng where (i; j) is onneted to (i

0

; j

0

) via an edge if

and only j

0

2 fj � 1g (ylially). For example, C(3; 8) is given below.

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Then G

m;n

:= Aut(C(m;n))

�

=

S

m

oD

n

. If (v; w) is any edge of

C(m;n) then the vertex stabilizer G

m;n

v

�

=

S

n�1

m

o S

2

has the

1-loal ation S

2

m

o S

2

= S

m

o S

2

. Furthermore, the subgroup

D

n

� G

m;n

provides an involutive inversion of (v; w). Via the

oset onstrution, the amalgam

G

m;n

v

�

G

m;n

(v;w)

G

m;n

fv;wg

yields a disrete group

e

G

m;n

ating vertex-transitively on T

2m

= (V;E) with loal

ation S

m

oS

2

and an involutive inversion. Let (x; y) 2 E(T

2m

) lie over (v; w). Then

j

e

G

m;n

x

j = jG

m;n

v

j tends to in�nity as n does. Thus dim

CD

(S

m

o S

2

) =1. �
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6. A Bipartite Version

We now present a bipartite version of the universal groups introdued in Se-

tion 1. It plays a ritial role in the proof of Theorem II.41 below. Retain the

notation of Setion 1, let V = V

1

tV

2

be a regular bipartition of V (T

d

), and b 2 V

1

.

6.1. De�nition and Basi Properties. The groups to be de�ned are sub-

groups of Aut(T

d

)

+

� Aut(T

d

), the maximal subgroup of Aut(T

d

) preserving the

bipartition V = V

1

tV

2

. Alternatively, it an be desribed as the subgroup generated

by all point stabilizers, or all edge-stabilizers.

De�nition II.37. Let F

(2k)

� Aut(B

d;2k

). De�ne

BU

2k

(F

(2k)

) := f� 2 Aut(T

d

)

+

j 8v 2 V

1

(T

d

) : �

2k

(�; v) 2 F

(2k)

g:

Note that BU

2k

(F

(2k)

) is a subgroup of Aut(T

d

)

+

thanks to Lemma II.2 and

the assumption that it is a subset of Aut(T

d

)

+

.

As before, BU

2k

(F

(2k)

) is a losed subgroup of Aut(T

d

) and transitive on both

V

1

and V

2

. We also reover ompat generation and thereby the following.

Lemma II.38. Let F

(2k)

� Aut(B

d;2k

). Then BU

2k

(F

(2k)

) is a ompatly generated,

totally disonneted loally ompat group.

Proof. The group BU

2k

(F

(2k)

) is totally disonneted and loally ompat as a

losed subgroup of Aut(T

d

). Compat generation relies on the Lemma II.39 below,

showing that BU

2

(fidg) = U

1

(fidg) \ Aut(T

d

)

+

is �nitely generated. Given that

it is also transitive on V

1

(and V

2

) we onlude that BU

2k

(F

(2k)

) is ompatly

generated by BU

2k

(F

(2k)

)

b

and the �nite generating set of the V

1

-transitive group

BU

2

(fidg) given in Lemma II.39. �

Given v 2 V (T

d

) and w 2 


(2)

, let t

(v)

w

2 Aut(T

d

) denote the unique label-

preserving translation with t

(v)

w

(v) = v

w

.

Lemma II.39. The group BU

2

(fidg) is �nitely generated by ft

(b)

w

jw2


(2)

g.

Proof. Argue by indution on k 2 N that b an be mapped to b

w

for any w 2 


(2k)

by a unique element of hft

w

j w 2 


(2)

gi � U

1

(fidg) \ Aut(T

d

)

+

, using the fat

that eah t

w

is label-preserving.

Now, let h 2 U

1

(fidg)\ Aut(T

d

)

+

be non-trivial. Sine Aut(T

d

)

+

= Aut(T

d

)

+

,

the element h is hyperboli of even length. Pik v 2 V

1

on the axis of h. Then there

is t 2 hft

w

j w 2 


(2)

gi suh that t(b) = v and t

�1

ht is a hyperboli element whose

axis ontains b. Thus t

�1

ht 2 hft

w

j w 2 


(2)

gi by the above and so is h. �

6.2. Compatibility and Disreteness. In order to desribe the ompatibil-

ity and disreteness ondition in the bipartite setting, we �rst introdue a workable

realization of Aut(B

d;2k

) (k 2 N), similar to the one given at the beginning of

Setion 3. Let Aut(B

d;1

)

�

=

Sym(
) and Aut(B

d;2

) be as before. For k � 2, we

indutively identify Aut(B

d;2k

) with its image under

Aut(B

d;2k

)! Aut(B

d;2(k�1)

)n

Y

w2


(2)

Aut(B

d;2(k�1)

)

� 7! (�

2(k�1)

(�; b); (�

2(k�1)

(�; b

w

))

w

))

where Aut(B

d;2(k�1)

) ats on 


(2)

by permuting fators aording to its ation on

S(b; 2)

�

=




(2)

. In addition, onsider the map pr

w

: Aut(B

d;2k

) ! Aut(B

d;2(k�1)

),

� 7! �

2(k�1)

(�; b

w

) for every w 2 


(2)

, as well as

p

w

: Aut(B

d;2k

)! Aut(B

d;2(k�1)

)�Aut(B

d;2(k�1)

); � 7! (�

2(k�1)

(�); pr

w

(�))
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For k � 2, onditions (C) and (D) for F � Aut(B

d;2k

) now read as follows.

(C) 8� 2 F 8w 2 


(2)

9�

w

2 F : �

2(k�1)

(�

w

) = pr

w

(�); pr

w

(�

w

) = �

2(k�1)

(�)

(D) 8w 2 


(2)

: p

w

j

�1

F

(id; id) = fidg

For k = 1 we have, using the maps p

!

(! 2 
) as in Setion 3,

(C) 8� 2 F 8w = (!

1

; !

2

) 2 


(2)

9�

w

2 F : pr

!

2

(�

w

) = pr

!

1

�:

(D) 8! 2 
 : p

!

j

�1

F

(id; id) = fidg:

The disreteness onditions are proven as in Proposition II.12. We do not introdue

new notation for any of the above as the ontext always implies whih ondition is to

be onsidered. The de�nition of the ompatibility sets C

F

(�; S) for F � Aut(B

d;2k

)

and S � 


(2)

arries over from Setion 2 in a straightforward fashion.

Similar to the non-bipartite ase, given F � Aut(B

d;2k

) with (C), we set

	

2k

(F ) :=f(�; (�

w

)

w2


(2)

) j� 2 F; 8w 2 


(2)

: �

w

2 C

F

(�;w)g � Aut(B

d;2(k+1)

):

Then 	

2k

(F ) � Aut(B

d;2(k+1)

) satis�es (C) and BU

2(k+1)

(	

2k

(F )) = BU

2k

(F ).

Given l > k, we also set 	

2l

(F ) := 	

2(l�1)

Æ � � � Æ	

2k

(F ), .f. Setion 3.2.

More examples of bipartite universal groups are ontained in Setion 7.5 below.

7. Non-Trivial Quasi-Centers

We now apply the framework of universal groups to the study of subgroups

of Aut(T

d

) with non-trivial quasi-enter, motivated by Burger{Mozes theory as

outlined in Setion 3 of Chapter I and questions about latties in produts of trees

as studied in [BM00b℄ and [Rat04℄, spei�ally [Rat04, Conjeture 2.63℄.

The disreteness assertion of part (ii) in Theorem I.9 follows from the fat

that a non-disrete loally quasiprimitive subgroup of Aut(T

d

) annot ontain any

non-trivial quasi-entral ellipti elements by [BM00a, Proposition 1.2.1℄. We now

omplete this fat to the following loal-to-global type haraterization of the quasi-

entral elements a subgroup of Aut(T

d

) an ointain in terms of its loal ation.

Theorem II.40. Let H � Aut(T

d

) be non-disrete. If H is loally

(i) transitive then QZ(H) ontains no inversion.

(ii) semiprimitive then QZ(H) ontains no non-trivial edge-�xating element.

(iii) quasiprimitive then QZ(H) ontains no non-trivial ellipti element.

(iv) k-transitive (k 2 N) then QZ(H) ontains no hyperboli element of length k.

The assertions of Theorem II.40 are sharp in the following sense.

Theorem II.41. There is a losed, non-disrete, ompatly generated subgroup of

Aut(T

d

) whih is loally

(i) intransitive and ontains a quasi-entral inversion.

(ii) transitive and ontains a non-trivial quasi-entral edge-�xating element.

(iii) semiprimitive and ontains a non-trivial quasi-entral ellipti element.

(iv) (a) intransitive and ontains a quasi-entral hyperboli element of length 1.

(b) quasiprimitive and ontains a quasi-entral hyperboli element of length 2.

Proof. (Theorem II.40). Fix a labelling of T

d

and let H � Aut(T

d

) be non-disrete.

For (i), assume that H is loally transitive and � 2 QZ(H) inverts the edge

(b; b

!

) 2 E(T

d

). By de�nition, the entralizer of � in H is open. Hene there is

n 2 N suh that H

B(b;n)

ommutes with �. Thus for all h 2 H

B(b;n)

and k 2 N:

�

k

(�; b)�

k

(h; b) = �

k

(�; hb)�

k

(h; b) = �

k

(�h; b)

= �

k

(h�; b) = �

k

(h; �b)�

k

(�; b) = �

k

(h; b

!

)�

k

(�; b):
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Therefore, �

k

(h; b

!

) = �

k

(�; b)�

k

(h; b)�

k

(�; b)

�1

for all k 2 N. Now, sine H is non-

disrete, we may assume without loss of generality that H

B(b;n)

ats non-trivially on

B(b; n+1). Let h

0

2 H

B(b;n)

nH

B(b;n+1)

. Then there is !

0

2 
 with �

n

(h

0

; b

!

0

) 6= id.

Furthermore, sine H is loally transitive, there is g 2 H

b

with g

�1

b

!

= b

!

0

. For

the element gh

0

g

�1

2 H

B(b;n)

we have �

n

(gh

0

g

�1

; b) = id but

�

n

(gh

0

g

�1

; b

!

) = �

n

(g; h

0

g

�1

b

!

)�

n

(h

0

; g

�1

b

!

)�

n

(g

�1

; b

!

)

= �

n

(g; g

�1

b

!

)�

n

(h

0

; b

!

0

)�

n

(g

�1

; b

!

)

= �

n

(g; g

�1

b

!

)�

n

(h

0

; b

!

0

)�

n

(g; g

�1

b

!

)

�1

6= id

beause �

n

(h

0

; b

!

0

) 6= id by assumption. This ontradits the assumption that �

ommutes with H

B(b;n)

elaborated above. Hene the assertion.

Part (ii) is based on a variation of [BM00a, Lemma 1.4.2℄ given in Proposition

II.42 below and the observation [BM00a, 1.3.5℄ aording to whih a non-disrete

group H � Aut(T

d

) annot have o�nite quasi-enter. Hene part (i) of Proposition

II.42 applies and QZ(H) ats freely on E(T

d

).

Part (iii) follows from [BM00a, Lemma 1.4.2℄ and [BM00a, 1.3.5℄. The losed-

ness assumption of [BM00a, Proposition 1.2.1℄ is unneessary for its seond part.

For part (iv), assume that H is loally k-transitive and that � 2 QZ(H) is a

translation of length k. Let b 2 V be a vertex on the axis of � . Then �b = b

w

for some path w = (!

1

; : : : ; !

k

) 2 


(k)

. By de�nition, the entralizer of � in H is

open. Hene there is n 2 N

�k

suh that H

B(b;n)

ommutes with � . Thus for all

h 2 H

B(b;n)

and l 2 N:

�

l

(�; b)�

l

(h; b) = �

l

(�; hb)�

l

(h; b) = �

l

(�h; b)

= �

l

(h�; b) = �

l

(h; �b)�

l

(�; b) = �

l

(h; b

w

)�

l

(�; b):

Therefore, �

l

(h; b

w

) = �

l

(�; b)�

l

(h; b)�

l

(�; b)

�1

for all l 2 N. Now, sine H is non-

disrete, there is m 2 N

�n

suh that H

B(b;m)

ats non-trivially on B(b;m+1). Let

h

0

2 H

B(b;m)

nH

B(b;m+1)

and de�ne l via k+ l = m+1. Then there is w

0

2 


(k)

suh

that �

l

(h

0

; b

w

0

) 6= id. Furthermore, sine H is loally k-transitive there is g 2 H

b

with g

�1

b

w

0

= b

w

. Then gh

0

g

�1

2 H

B(b;m)

satis�es �

l

(gh

0

g

�1

; b) = id but

�

l

(gh

0

g

�1

; b

w

) = �

l

(g; h

0

g

�1

b

w

)�

l

(h

0

; g

�1

b

w

)�

l

(g

�1

; b

w

)

= �

l

(g; g

�1

b

w

)�

l

(h

0

; b

w

0

)�

l

(g

�1

; b

w

)

= �

l

(g; g

�1

b

w

)�

l

(h

0

; b

w

0

)�

l

(g; g

�1

b

w

)

�1

6= id

beause �

l

(h

0

; b

w

0

) 6= id by assumption. This ontradits the assumption that �

ommutes with H

B(b;m)

� H

B(b;n)

elaborated above. Hene the assertion. �

The following result referened to in the proof of Theorem II.40 generalizes

[BM00a, Proposition 1.4.2℄ to semiprimitive ations.

Proposition II.42. Let H � Aut(T

d

) be loally semiprimitive and N �H . De�ne

V

1

(N) := fx 2 V (T

d

) j N

x

y S(x; 1) is transitive and not semiregularg

V

2

(N) := fx 2 V (T

d

) j N

x

y S(x; 1) is semiregularg.

Then one of the following holds.

(i) V (T

d

) = V

2

(N) and N ats freely on E(T

d

).

(ii) V (T

d

) = V

1

(N) and N ats transitively on the set of geometri edges of T

d

.

(iii) V (T

d

) = V

1

(N) t V

2

(N) is an H-invariant bipartition of V (T

d

) and B(x; 1)

is a fundamental domain for the ation of N on T

d

for any x 2 V

2

(N).

Proof. Sine H is loally semiprimitive, we have V (T

d

) = V

1

(N) t V

2

(N). If N

does not at freely on E(T

d

) then there is an edge e 2 E(T

d

) with N

e

6= fidg

and onsequently an N

e

-�xed vertex x 2 V (T

d

) for whih N

x

y S(x; 1) is not
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semiregular and hene transitive. Then V

1

(N) 6= ;. Now, either V

2

(N) = ; in whih

ase N is loally transitive and we are in ase (ii), or V

2

(N) 6= ;. Being loally

transitive, H ats transitively on the set of geometri edges it thus has at most two

orbits in V (T

d

). Given that both V

1

(N) and V

2

(N) are non-empty and H-invariant,

they onstitute exatly said orbits. Sine any pair of adjaent verties (x; y) is a

fundamental domain for the H-ation on V (T

d

), we onlude that if y 2 V

2

(N)

then x 2 V

1

(N). Thus every leaf of B(y; 1) is in V

1

(N) and we are in ase (iii) by

[BM00a, 1.3.1℄. �

We also inlude the natural generalization of [BM00a, Proposition 1.2.1 3)℄.

Corollary II.43. Let H � Aut(T

d

) be loally semiprimitive and N�H losed. Then

either N is disrete and N � QZ(H), or N is oompat and H

(1)

� N .

Proof. By Proposition II.42, the losed normal subgroup N of H is either disrete

or oompat. The assertion hene follows from the de�nitions and the fat that

every disrete normal subgroup of a topologial group is entral. �

Before proeeding to the proof of Theorem II.41, we omplement part (iv) of

Theorem II.40 with the following result inspired by [BM00a, Proposition 3.1.2℄

and [Rat04, Conjeture 2.63℄.

Proposition II.44. Let H � Aut(T

d

) be non-disrete and loally semiprimitive. If all

orbits of H y �T

d

are unountable then QZ(H) ontains no hyperboli elements.

Proof. Let S � �T

d

be the olletion of �xed points of hyperboli elements in

QZ(H). Sine QZ(H) � H , the set S is H-invariant. Also, QZ(H) is disrete by

Theorem II.40 and therefore ountable as a subgroup of the seond-ountable group

H whih inherits seond-ountability from Aut(T

d

). We onlude that S is ountable

and therefore empty in view of the assumption. �

Theorem II.41 is proven by onstrution in the onseutive setions. Whereas

parts (i) to (iv) (a) all rely on a onstrution of the form H :=

T

k2N

U

k

(F

(k)

)

for appropriate loal ations F

(k)

� Aut(B

d;k

), part (iv) (b) utilizes the bipartite

version of the universal groups developed in Setion 6. All setions appear similar

at �rst glane but vary in detail.

7.1. Theorem II.41 (i). For ertain intransitive F � Sym(
) we onstrut a

group H(F ) � Aut(T

d

) whih is losed, non-disrete, ompatly generated, vertex-

transitive, loally ats like F and ontains a quasi-entral involutive inversion.

Let F � Sym(
). Assume that the partition Fn
 =

F

i2I




i

of 
 into F -orbits

has at least three elements and F




i

6= fidg for all i 2 I .

Fix an orbit 


0

of size at least 2 and !

0

2 


0

. De�ne ations F

(k)

� Aut(B

d;k

)

for k 2 N indutively by F

(1)

:= F and

F

(k+1)

:=f(�; (�

!

)

!

) j� 2 F

(k)

; �

!

2 C

F

(k)

(�; !) is onstant w.r.t. Fn
; �

!

0

=�g:

Proposition II.45. The ations F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) Every � 2 F

(k)

is self-ompatible in diretions from 


0

.

(ii) The ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In partiular, the group F

(k)

satis�es (C).

(iii) The ompatibility set C

F

(k)

(id;


i

) is non-trivial for all 


i

6= 


0

.

In partiular, the group F

(k)

does not satisfy (D).

Proof. We prove all three properties simultaneously by indution: For k = 1, the

assertions (i) and (ii) are trivial. The third translates to F




i

being non-trivial for
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all 


i

6= 


0

whih is an assumption. Now, assume that all properties hold for F

(k)

.

Then the de�nition of F

(k+1)

is meaningful beause of (i) and it is a subgroup of

Aut(B

d;k+1

) beause F preserves Fn
. Assertion (i) is now evident. Statements (ii)

arries over from F

(k)

to F

(k+1)

. So does (iii) sine jFn
j � 3. �

De�nition II.46. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The group H(F ) is vertex-transitive, ompatly generated and ontains an in-

volutive inversion beause U

1

(fidg) � H(F ). Also, H(F ) is losed as an intersetion

of losed sets. The 1-loal ation of H is given by F = F

(1)

beause D(F ) � H(F ).

Lemma II.47. Let F be as above. Then H(F ) is non-disrete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily

onstruted using Proposition II.45: Consider �

n

:= id 2 F

(n)

. By parts (i) and (iii)

of Proposition II.45 as well as the de�nition of F

(n+1)

, there is a non-trivial element

�

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying parts (i) and (ii) of Proposition

II.45 repeatedly, we obtain non-trivial elements �

k

2 F

(k)

for all k � n + 1 with

�

k

�

k+1

= �

k

for all k � n + 1. Set �

k

:= id 2 F

(k)

for all k � n and de�ne

h 2 Aut(T

d

)

b

by �xing b and setting �

k

(h; b) := �

k

2 F

(k)

. Sine F

(l)

� �

l

(F

(k)

)

for all k � l we onlude that h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.48. Let F be as above. Then QZ(H(F )) ontains an involutive in-

version.

Proof. Fix b 2 V (T

d

). We show that QZ(H(F )) ontains the label-preserving in-

version �

!

of the edge (b; b

!

) for all ! 2 


0

: Indeed, let h 2 H(F )

B(b;1)

and ! 2 


0

.

Then h�

!

(b) = b

!

= �

!

h(b) and

�

k

(h�

!

; b) = �

k

(h; �

!

b)�

k

(�

!

; b) = �

k

(h; b

!

) = �

k

(�

!

; hb)�

k

(h; b) = �

k

(�

!

h; b)

for all k 2 N sine h 2 U

k+1

(F

(k+1)

). That is, �

!

ommutes with H(F )

B(b;1)

. �

7.2. Theorem II.41 (ii). For ertain transitive F � Sym(
) we onstrut a

group H(F ) � Aut(T

d

) whih is losed, non-disrete, ompatly generated, vertex-

transitive, loally ats like F and has non-disrete quasi-enter.

Let F � Sym(
) be transitive. Assume that F preserves a non-trivial partition

P = (


i

)

i2I

of 
 and F




i

6= fidg for all i 2 I . Further, suppose that F

+

is abelian

and preserves P setwise.

Example II.49. Let F

0

� Sym(
) be regular abelian and P � Sym(�) be regular.

Then F := F

0

o P � Sym(
� �) satis�es the above properties as F

+

=

Q

�2�

F

0

.

De�ne ations F

(k)

� Aut(B

d;k

) for k 2 N indutively by F

(1)

:= F and

F

(k+1)

:= f(�; (�

!

)

!

) j � 2 F

(k)

; �

!

2 C

F

(k)

(�; !) onstant w.r.t. Pg

for all k 2 N. Then we have the following.

Proposition II.50. The ations F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) The ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In partiular, the group F

(k)

satis�es (C).

(ii) The ompatibility set C

F

(k)

(id;


i

) is non-trivial for all i 2 I .

In partiular, the group F

(k)

does not satisfy (D).

(iii) The group F

(k)

\ �

k

(F

+

) is abelian.

Proof. We prove all three properties simultaneously by indution: For k = 1, asser-

tion (i) is trivial whereas (iii) is an assumption. The seond translates to F




i

being

non-trivial for all i 2 I whih is an assumption. Now, assume that all properties
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hold for F

(k)

. Then the de�nition of F

(k+1)

is meaningful beause of (i) and it is a

subgroup of Aut(B

d;k

) beause F preserves P. Statement (ii) arries over from F

(k)

to F

(k+1)

. Finally, (iii) follows indutively beause F

+

preserves P setwise. �

De�nition II.51. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The group H(F ) is vertex-transitive, ompatly generated and ontains an in-

volutive inversion beause U

1

(fidg) � H(F ). Also, H(F ) is losed as an intersetion

of losed sets. The 1-loal ation of H is given by F = F

(1)

beause D(F ) � H(F ).

Lemma II.52. Let F be as above. Then H(F ) is non-disrete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily

onstruted using Proposition II.50: Consider �

n

:= id 2 F

(n)

. By part (ii) of

Proposition II.50 and the de�nition of F

(n+1)

, there is a non-trivial �

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying part (i) of Proposition II.50 repeatedly, we obtain

non-trivial elements �

k

2 F

(k)

for all k � n+1 with �

k

�

k+1

= �

k

for all k � n+1.

Set �

k

:= id 2 F

(k)

for all k � n and de�ne h 2 Aut(T

d

)

b

by �xing b and setting

�

k

(h; b) := �

k

2 F

(k)

. Beause F

(l)

� �

l

(F

(k)

) for all k � l we onlude that

h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.53. Let F be as above. Then QZ(H(F )) is non-disrete.

Proof. The group H(F )

B(b;1)

is a subgroup of the group H(F

+

)

b

whih is abelian

by part (iii) of Proposition II.50. In other words, QZ(H(F )) ontains H(F )

B(b;1)

and is therefore non-disrete. �

Remark II.54. Without assuming loal transitivity one an ahieve abelian point

stabilizers, following the onstrution of the previous setion. This annot happen

for non-disrete loally transitive groups H � Aut(T

d

) whih are vertex-transitive

as the following argument shows: By Proposition I.14, the group H is ontained in

U(F ) where F � Sym(
) is the loal ation of H . If H

b

is abelian, then so is F .

Sine any transitive abelian permutation group is regular we onlude that U(F )

and hene H are disrete. In this sense, the onstrution of this setion is eÆient.

7.3. Theorem II.41 (iii). For ertain semiprimitive F � Sym(
) we on-

strut a group H(F ) � Aut(T

d

) whih is losed, non-disrete, ompatly generated,

vertex-transitive, loally ats like F and whose quasi-enter ontains a non-trivial

ellipti element.

Let F � Sym(
) be semiprimitive. Assume that F preserves a non-trivial

partition P : 
 =

F

i2I




i

of 
. Further, suppose that F




i

6= fidg for all i 2 I and

that F ontains a non-trivial entral element � whih preserves P setwise.

Example II.55. Using the GAP library of small transitive groups [GAP17℄, on-

sider e.g. Tr(8; 23)

�

=

GL(2; 3) with blok system ff1; 5g; f2; 6g; f3; 7g; f4; 8gg and

enter h(1; 5)(2; 6)(3; 7)(4; 8)i. It is semiprimitive and has non-trivial blok �xators.

Example II.56. Transitive F satisfying the above assumptions an be onstruted

as follows. Let F

0

� Sym(


0

) be transitive, non-regular with Z(F

0

) 6= fidg and

P � Sym(�) transitive for j�j � 2. Then F := F

0

o P � Sym(


0

� �) preserves the

partition 
 := 


0

�� =

F

�2�




0

and any diagonal element with entry from Z(F

0

)

does so setwise. The rest follows from the assumptions on F

0

and P .

De�ne ations F

(k)

� Aut(B

d;k

) for k 2 N indutively by F

(1)

:= F and

F

(k+1)

:= f(�; (�

!

)

!

) j � 2 F

(k)

; �

!

2 C

F

(k)

(�; !) onstant w.r.t Pg

for all k 2 N. Then we have the following.
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Proposition II.57. The ations F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) The ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In partiular, the group F

(k)

satis�es (C).

(ii) The ompatibility set C

F

(k)

(id;


i

) is non-trivial for all i 2 I .

In partiular, the group F

(k)

does not satisfy (D).

(iii) The element 

k

(�) 2 Aut(B

d;k

) is entral in F

(k)

.

Proof. We prove all three properties simultaneously by indution: For k = 1, asser-

tion (i) is trivial whereas (iii) is an assumption. The seond translates to F




i

being

non-trivial for all i 2 I whih is an assumption. Now, assume that all properties

hold for F

(k)

. Then the de�nition of F

(k+1)

is meaningful beause of (i) and it is

a subgroup of Aut(B

d;k+1

) beause F preserves P. Statement (ii) arries over from

F

(k)

to F

(k+1)

. Finally, (iii) follows indutively beause � and hene �

�1

preserves

P setwise: For e� = (�; (�

!

)

!

) 2 F

(k+1)

we have



k+1

(�)e�

k+1

(�)

�1

= (

k

(�)�

k

(�)

�1

; (

k

(�)�

�

�1

(!)



k

(�)

�1

)

!

): �

De�nition II.58. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The group H(F ) is vertex-transitive, ompatly generated and ontains an in-

volutive inversion beause U

1

(fidg) � H(F ). Also, H(F ) is losed as an intersetion

of losed sets. The 1-loal ation of H is given by F = F

(1)

beause D(F ) � H(F ).

Lemma II.59. Let F be as above. Then H(F ) is non-disrete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily

onstruted using Proposition II.57: Consider �

n

:= id 2 F

(n)

. By part (ii) of

Proposition II.57 and the de�nition of F

(n+1)

, there is a non-trivial �

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying part (i) of Proposition II.57 repeatedly, we obtain

non-trivial elements �

k

2 F

(k)

for all k � n+1 with �

k

�

k+1

= �

k

for all k � n+1.

Set �

k

:= id 2 F

(k)

for all k � n and de�ne h 2 Aut(T

d

)

b

by �xing b and setting

�

k

(h; b) := �

k

2 F

(k)

. Beause F

(l)

� �

l

(F

(k)

) for all k � l we onlude that

h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.60. Retain the above notation. Then QZ(H(F )) ontains a non-

trivial ellipti element.

Proof. By Proposition II.57, the element d(�) whih �xes b and whose 1-loal ation

is � everywhere ommutes with H(F )

b

. Hene d(�) 2 QZ(H(F )). �

Remark II.61. We remark that the argument presented in this setion annot be

made work in the quasiprimitive ase beause a quasiprimitive group F � Sym(
)

with non-trivial enter neessarily equals its enter and is regular: Reall that

Z(F ) � F . Hene Z(F ) is transitive as soon as it is non-trivial by quasiprimi-

tivity. It now suÆes to show that F

!

is trivial for all ! 2 
: Suppose a 2 F

!

moves !

0

2 
 and let z 2 Z(F ) be suh that z(!) = !

0

. Then za(!) = !

0

6= az(!),

ontraditing the assumption that z 2 Z(F ).

7.4. Theorem II.41 (iv) (a). For ertain intransitive F � Sym(
) we on-

strut a group H(F ) � Aut(T

d

) whih is losed, non-disrete, ompatly generated,

vertex-transitive, loally ats like F and ontains a quasi-entral hyperboli element

of length 1.

Let F � Sym(
). Assume that the partition Fn
 = t

i2I




i

of 
 has at least

three elements and Z(F ) 6= fidg. Choose a non-trivial element � 2 Z(F ) and

!

0

2 


0

with �(!

0

) 6= !

0

. Assume further that F




i

6= fidg for all 


i

6= 


0

.
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De�ne ations F

(k)

� Aut(B

d;k

) for k 2 N indutively by F

(1)

:= F and

F

(k+1)

:=f(�; (�

!

)

!

) j� 2 F

(k)

; �

!

2 C

F

(k)

(�; !) is onstant w.r.t. Fn
; �

!

0

=�g:

Proposition II.62. The ations F

(k)

� Aut(B

d;k

) (k 2 N) de�ned above satisfy:

(i) Every � 2 F

(k)

is self-ompatible in diretions from 


0

.

(ii) The ompatibility set C

F

(k)

(�;


i

) is non-empty for all � 2 F

(k)

and i 2 I .

In partiular, the group F

(k)

satis�es (C).

(iii) The ompatibility set C

F

(k)

(id;


i

) is non-trivial for all 


i

6= 


0

.

In partiular, the group F

(k)

does not satisfy (D).

(iv) The element 

k

(�) 2 Aut(B

d;k

) is entral in F

(k)

.

Proof. We prove all four properties simultaneously by indution: For k = 1, the

assertions (i) and (ii) are trivial. The third translates to F




i

being non-trivial for

all 


i

6= 


0

whih is an assumption, as is ommutativity. Now, assume that all

properties hold for F

(k)

. Then the de�nition of F

(k+1)

is meaningful beause of (i)

and it is a subgroup of Aut(B

d;k

) beause F preserves Fn
. Assertion (i) is now

evident. Statements (ii), (iii) and (iv) readily arry over from F

(k)

to F

(k+1)

. �

De�nition II.63. Retain the above notation. De�ne H(F ) :=

T

k2N

U

k

(F

(k)

).

The groupH(F ) is vertex-transitive, ompatly generated and ontains an invo-

lutive inversion beause U

1

(fidg) � H(F ). Also, H(F ) is losed as the intersetion

of all its k-losures. The 1-loal ation of H is given by F = F

(1)

as D(F ) � H .

Lemma II.64. Let F be as above. Then H(F ) is non-disrete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; n) for a given n 2 N is readily

onstruted using Proposition II.62: Consider �

n

:= id 2 F

(n)

. By parts (i) and (iii)

of Proposition II.62 as well as the de�nition of F

(n+1)

, there is a non-trivial element

�

n+1

2 F

(n+1)

with �

n

�

n+1

= �

n

. Applying parts (i) and (ii) of Proposition

II.62 repeatedly, we obtain non-trivial elements �

k

2 F

(k)

for all k � n + 1 with

�

k

�

k+1

= �

k

for all k � n + 1. Set �

k

:= id 2 F

(k)

for all k � n and de�ne

h 2 Aut(T

d

)

b

by �xing b and setting �

k

(h; b) := �

k

2 F

(k)

. Sine F

(l)

� �

l

(F

(k)

)

for all k � l we onlude that h 2

T

k2N

U

k

(F

(k)

) = H(F ). �

Proposition II.65. Let F � Sym(
) be as above. Then QZ(H(F )) ontains a hy-

perboli element of length 1.

Proof. Fix b 2 V (T

d

) and let � be as above. Consider the line L through b with

edge labels

: : : ; �

�2

!

0

; �

�1

!

0

; !

0

; �!

0

; �

2

!

0

; : : :

De�ne t 2 D(F ) by t(b) = b

!

0

and �

1

(t; x) = � for all x 2 V (T

d

). Then t is a

translation of length 1 along L. Furthermore, t ommutes with H(F )

B(b;1)

: Indeed,

let g 2 H(F )

B(b;1)

. Then (gt)(b) = t(b) = (tg)(b) and

�

k

(gt; b) = �

k

(g; tb)�

k

(t; b) = �

k

(t; b)�

k

(g; b) = �

k

(t; gb)�

k

(g; b) = �

k

(tg; b)

for all k 2 N beause �

k

(t; b) = 

k

(�) 2 Z(F

(k)

) and g 2 U

k+1

(F

(k+1)

)

B(b;1)

. �

7.5. Theorem II.41 (iv) (b). For ertain quasiprimitive F � Sym(
) we

onstrut a group H(F ) � Aut(T

d

) whih is losed, non-disrete, ompatly gen-

erated, loally ats like F and whose quasi-enter ontains a hyperboli element of

length 2.

Let F � Sym(
) be quasiprimitive. Assume that F preserves a non-trivial

partition P : 
 =

F

i2I




i

. Further, suppose that F




i

6= fidg and F

!

i

y 


i

nf!

i

g is

transitive for all i 2 I and !

i

2 


i

.
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Example II.66. Using the GAP library of small transitive groups [GAP17℄, on-

sider e.g. Tr(12; 33)

�

=

A

5

, Tr(14; 10)

�

=

PSL(3; 2) or Tr(15; 10)

�

=

S

5

, all of whih

are quasiprimitive. The former two have bloks of size 2, the latter has bloks of

size 3. Its point stabilizers at transitively on the remainder of the respetive blok.

An orbit for the ation of �(F ) on S(b; 2)

�

=




(2)

is given by




(2)

0

:= f(!

1

; !

2

) j 9i 2 I : !

1

; !

2

2 


i

g � 


(2)

:

Indeed, let �=(a; (a

!

)

!

) 2 �(F ) and (!

1

; !

2

) 2 


(2)

0

. Then �(!

1

; !

2

)=(a!

1

; a

!

1

!

2

)

is in 


(2)

0

beause a and a

!

1

agree on !

1

. Note that if w = (!

1

; !

2

) 2 


(2)

0

then so

is w := (!

2

; !

1

). The subgroup of �(F ) onsisting of those elements whih are

self-ompatible with respet 


(2)

0

is given by

F

(2)

:= f(a; (a

!

)

!

) j a 2 F; a

!

2 C

F

(a; !) onstant w.r.t. Pg:

Then de�ne indutively for k 2 N:

F

(2(k+1))

:= f(�; (�

w

)

w

) j � 2 F

(2k)

; �

w

2 C

F

(�;w); 8w 2 


(2)

0

: �

w

= �g

Proposition II.67. The ations F

(2k)

� Aut(B

d;2k

) (k 2 N) de�ned above satisfy:

(i) Every � 2 F

(2k)

is self-ompatible in diretions from 


(2)

0

.

(ii) The ompatibility set C

F

(2k)

(�;w) is non-empty for all �2F

(2k)

and w2


(2)

.

In partiular, the group F

(2k)

satis�es (C).

(iii) The ompatibility set C

F

(2k)

(id; w) is non-trivial for all w 2 


(2)

.

In partiular, the group F

(2k)

does not satisfy (D).

Proof. We prove all three properties simultaneously by indution: For k = 1, as-

sertion (i) holds by onstrution of F

(2)

, as do (ii) and (iii). Now assume that all

properties hold for F

(2k)

. Then the de�nition of F

(2(k+1))

is meaningful beause

of (i) and it is a subgroup beause F

(2)

preserves 


(2)

0

. Also, F

(2(k+1))

satis�es (i)

beause 


(2)

0

is inversion-losed and statements (ii), (iii) arry over from F

(2k)

. �

De�nition II.68. Retain the above notation. De�ne H(F ) :=

T

k2N

BU

(l)

2k

(F

(2k)

).

The group H(F ) is losed as an intersetion of losed sets and ompatly gen-

erated by H(F )

b

and a �nite generating set of BU

2

(fidg)

+

, see Lemma II.39. For

verties in V

1

, the 1-loal ation is F beause �

2k

(F ) � F

(2k)

. For verties in V

2

the 1-loal ation is F

+

= F as �

2

(F ) � F

(2)

.

Lemma II.69. Let F be as above. Then H(F ) is non-disrete.

Proof. A non-trivial element h 2 H(F ) �xing B(b; 2n) for a given n 2 N is readily

onstruted using Proposition II.45: Consider �

2n

:= id 2 F

(2n)

. By parts (i)

and (iii) of Proposition II.45 and the de�nition of F

(2(n+1))

, there is a non-trivial

element �

2(n+1)

2 F

(2(n+1))

with �

2n

�

2(n+1)

= �

2n

. Applying parts (i) and (ii)

of Proposition II.67 repeatedly, we obtain non-trivial elements �

2k

2 F

(2k)

for all

k � n + 1 with �

2k

�

2(k+1)

= �

2k

for all k � n + 1. Set �

2k

:= id 2 F

(2k)

for all

k � n and de�ne h 2 Aut(T

d

)

b

by �xing b and setting �

2k

(h; b) := �

2k

2 F

(2k)

. Sine

F

(2l)

�	

2l

(F

(2k)

) for all k� l we onlude that h 2

T

k2N

BU

2k

(F

(2k)

) = H(F ). �

Proposition II.70. Let F be as above. Then QZ(H(F )) ontains a hyperboli ele-

ment of length 2.

Proof. Fix b 2 V (T

d

) and let w = (!

1

; !

2

) 2 


(2)

0

. Consider the line L through b

with edge labels : : : ; !

1

; !

2

; !

1

; !

2

; : : :. De�ne t 2 D(F ) by t(b)=b

w

and �

1

(t; x)=id

for all x 2 V (T

d

). Then t is a translation of length 2 along L. Furthermore, t

ommutes with H(F )

B(b;2)

: Indeed, let g 2 H(F )

B(b;2)

. Then gt(b) = t(b) = tg(b)
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and for all k 2 N:

�

2k

(gt; b) = �

2k

(g; tb)�

2k

(t; b) = �

2k

(g; b

w

)

= �

2k

(g; b) = �

2k

(t; gb)�

2k

(g; b) = �

2k

(tg; b)

as �

l

(t; x) = id for all l 2 N and x 2 V (T

d

), and g 2 BU

2(k+1)

(F

(2(k+1))

)

B(b;2)

. �

7.6. Limitations. We argue that the onstrution of Setion 7.5 does not

easily arry over to primitive loal ations. Reall that for a transitive permutation

group F � Sym(
) one de�nes rank(F ) := jFn


2

j, where F ats on 


2

diagonally,

and that rank(F ) = 2 if and only if F is 2-transitive.

Lemma II.71. Let F � Sym(
). Then j�(F )n


(2)

j = rank(F )� 1.

Proof. Notie that 


(2)

= 


2

n� where � denotes the diagonal in 


2

. Given that

�(F ) � �(F ) we therefore onlude j�(F )n


(2)

j � j�(F )n


(2)

j = rank(F )�1. The

orbits of �(F ) and �(F ) are in fat the same: Let � := (a; (a

!

)

!2


) 2 �(F ). Then

we have �(!

1

; !

2

) = (a!

1

; a

!

1

!

2

) 2 f(a!

1

; aF

!

1

!

2

)g � �(F )(!

1

; !

2

). �

In partiular, a permutation group has to have rank at least 3 in order to

be eligible for the onstrution of the previous setion. The smallest non-regular

primitive permutation group of rank 3 is D

5

� S

5

. However, we also have the

following obstrution to non-disreteness.

Proposition II.72. Let F � Sym(
) be primitive and let 


(2)

0

be an orbit for the

ation of �(F ) on 


(2)

�

=

S(b; 2). The subgroup of elements in �(F ) whih are

self-ompatible in diretions from 


(2)

0

is preisely �(F ).

Proof. Every element of �(F ) is self-ompatible in every diretion from 


(2)

. Con-

versely, assume that (a; (a

!

)

!

) 2 �(F ) is self-ompatible in all diretions from 


(2)

0

.

Then a

!

1

= a

!

2

whenever w := (!

1

; !

2

) 2 


(2)

0

. This indues a non-trivial equiv-

alene relation on 
 whih is F -invariant beause �(F ) � �(F ): If (!

1

; !

2

) 2 


(2)

0

then (a)(!

1

; !

2

) = (a!

1

; a!

2

) 2 


(2)

0

for all a 2 F . Sine F is primitive, it is the

universal relation, i.e. all a

!

(! 2 
) oinide. Hene (a; (a

!

)

!

) 2 �(F ). �

7.7. Groups with In�nitely Many Distint k-losures. Given a prime

p, Banks{Elder{Willis list PGL(2;Q

p

) � Aut(T

p+1

) as an example of a group with

in�nitely many distint k-losures, see [BEW15℄. Whereas PGL(2;Q

p

) has trivial

quasi-enter beause it is simple, the groups onstruted in the proof of Theorem

II.41 provide examples with non-trivial quasi-enter. Indeed, we have the following.

Proposition II.73. Let H � Aut(T

d

) be losed, non-disrete, loally transitive and

ontain an involutive inversion. Then H

(k)

= U

k

(F

(k)

) and H =

T

k2N

U

k

(F

(k)

),

where F

(k)

�Aut(B

d;k

) is ation-isomorphi to the ation of H on balls of radius k.

If, in addition, QZ(H) 6= fidg then H has in�nitely many distint k-losures.

Proof. We have H

(k)

= U

k

(F

(k)

) by Theorem II.23. Then H =

T

k2N

U

k

(F

(k)

) by

[BEW15, Proposition 3.4℄. Hene, if H had only �nitely many distint k-losures,

the sequene (H

(k)

)

k2N

of subgroups of Aut(T

d

) is eventually onstant equal to,

say, H

(n)

= U

n

(F

(n)

) � H whih is non-disrete beause H is and therefore has

trivial quasi-enter by Proposition II.16. �



CHAPTER III

Prime Loalizations of Burger{Mozes-type Groups

This setion is based on [Tor17℄. We determine the p-loalization of Burger{

Mozes-type groups, i.e. the groups U(F ), G(F; F

0

) and N(F ) disussed in Chapter I,

for a large lass of permutation groups F � F

0

� Sym(
) and primes p.

The onept of prime loalization of a totally disonneted loally ompat

group G was introdued by Reid in [Rei13℄: Let p be prime. A loal p-Sylow sub-

group of G is a maximal pro-p subgroup of a ompat open subgroup of G. The

p-loalization G

(p)

of G is de�ned as the ommensurator Comm

G

(S) of a loal p-

Sylow subgroup S of G, equipped with the unique group topology whih makes the

inlusion of S into G

(p)

= Comm

G

(S) ontinuous and open. We refer the reader to

[Rei13℄ for general properties of prime loalization and its appliations, of whih

we highlight the sale funtion introdued by Willis in [Wil94℄.

1. Loal Sylow Subgroups

This setion is onerned with determining loal Sylow subgroups of the Burger{

Mozes-type groups. Throughout, 
 denotes a set of ardinality d 2 N

�3

and p is a

prime. We onsider the d-regular tree T

d

= (V;E) with a �xed labelling and base

vertex b 2 V . Furthermore, T denotes a �nite subtree of T

d

.

Note that it suÆes to onsider U(F ): Any loal Sylow subgroup of U(F ) is

also a loal Sylow subgroup of G(F; F

0

) and N(F ) by de�nition of the topologies.

In a sense, the following proposition provides loal p-Sylow subgroups of U(F )

in the ase where the operations of taking a p-Sylow subgroup and taking point

stabilizers ommute for F . It is the basis of all subsequent statements about the

p-loalization of Burger{Mozes-type groups and amends [Rei13, Lemma 4.2℄.

Proposition III.1. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. Then U(F (p))

T

is a p-Sylow subgroup of U(F )

T

if and only if so is F (p)

!

�F

!

for all ! 2 
.

Proof. First, assume that T onsists of a single vertex b 2 V . The sphere S(b; k) � V

of radius k around b 2 V is, via the given labelling, in natural bijetion with

P

k

:= fw = (!

1

; : : : ; !

k

) 2 


k

j 8i 2 f1; : : : ; k � 1g : !

i+1

6= !

i

g:

The restrition of U(F ) to S(b; k) yields a subgroup of Sym(S(b; k)) of ardinality

given by

�

�

U(F )

b

j

S(b;1)

�

�

= jF j and

�

�

U(F )

b

j

S(b;k+1)

�

�

=

�

�

U(F )

b

j

S(b;k)

�

�

�

Q

w2P

k

jF

!

k

j.

The maximal powers of p dividing

�

�

U(F )

b

j

S(b;k)

�

�

and

�

�

U(F (p))

b

j

S(b;k)

�

�

are hene

equal for all k 2 N

0

if and only if F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
.

Similarly, when T is not a single vertex, the size of the restrition of U(F )

T

to

a suÆiently larger subtree is a produt of the jF

!

j involving all ! 2 
. �

For transitive F � Sym(
), it suÆes to hek the above riterion for one

hoie of a p-Sylow subgroup F (p) of F and all ! 2 
. We now identify lasses

of permutation group and values of p to whih Proposition III.1 applies. For the

symmetri and alternating groups we have the following, omplete desription.

35
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Proposition III.2. Let F = Sym(
) or F = Alt(
) and F (p) � F a p-Sylow

subgroup. Further, let p

s

(s 2 N

0

) be the maximal power of p dividing d. Then

F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
 if and only if either

(i) p > d, or

(ii) s � 1 and p

s+1

> d, or

(iii) F = Alt(
) and (d; p) = (3; 2).

Proof. If p > d then F (p) is trivial and so is any p-Sylow subgroup of F

!

. Now

assume p � d and onsider the following diagram of subgroups of F and indies.

F

d

i

i

i

i

i

i

i

k

V

V

V

V

V

V

V

F

!

S

S

S

S

S

F (p)

p

r

!

j

j

j

j

j

F (p)

!

For every ! 2 
 we have [F : F

!

℄ = jF � !j = d

and [F (p) : F (p)

!

℄ = jF (p) � !j = p

r

!

for some

r

!

2 N

0

. Note that p - k by de�nition. Now ex-

amine the equation d � [F

!

: F (p)

!

℄ = k � p

r

!

.

If F (p) is trivial then F = Alt(
) and p is even, hene (iii). Now assume that

F (p) is non-trivial. Then there is ! 2 
 suh that r

!

� 1. Thus, if p - d, then

p j [F

!

: F (p)

!

℄ and hene F (p)

!

is not a p-Sylow subgroup of F

!

. We onlude

that the ondition s � 1 is neessary. Note that the biggest p

r

!

(! 2 
) whih

ours is given by the biggest power of p whih is smaller than or equal to d due to

the iterated wreath produt struture of F (p). As p - k we onlude (ii).

Conversely, suppose s � 1 and p

s+1

� d. If p is odd, or F = Sym(
) and p

is even, then F (p) is a diret produt of s-fold iterated wreath produts and the

maximum power of p dividing [F (p) : F (p)

!

℄ and [F : F

!

℄ is p

s

in both ases. The

same index assertions hold for F = Alt(
) and p even. �

For a general permutation group F � Sym(
) and ! 2 
 we have

jF (p) � !j =

jF (p)j

jF (p)

!

j

=

jF (p)j � [F

!

: F (p)

!

℄

jF

!

j

=

[F

!

: F (p)

!

℄

[F : F (p)℄

� jF � !j:

by the orbit-stabilizer theorem. In partiular, we onlude the following.

Proposition III.3. Let F � Sym(
) and F (p) � F a p-Sylow subgroup. Assume

that Fn
 = F (p)n
. Then F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
. �

Proposition III.4. Let j
j = p

n

and F � Sym(
) transitive. Also, let F (p) � F be

a p-Sylow subgroup. Then so is F (p)

!

� F

!

for all ! 2 
 and F (p) is transitive.

Proof. In this ase, the above equation is jF (p) �!j = ([F

!

: F (p)

!

℄=[F : F (p)℄) � p

n

.

As always, jF (p) � !j is a power of p and bounded by j
j = p

n

. Sine p does not

divide [F : F (p)℄ the above implies that p does not divide [F

!

: F (p)

!

℄. �

2. Prime Loalizations

This setion is onerned with the p-loalizations of Burger{Mozes-type groups.

Reall that for groups H � G one de�nes the ommensurator of H in G by

Comm

G

(H) := fg 2 G j [H : H \ gHg

�1

℄ <1 and [gHg

�1

: gHg

�1

\H ℄ <1g:

The p-loalization of a totally disonneted loally ompat group G is de�ned as

the ommensurator Comm

G

(S) of a loal p-Sylow subgroup S of G, equipped with

the unique group topology that makes the inlusion of S into G

(p)

:= Comm

G

(S)

ontinuous and open. Then the inlusion Comm

G

(S)! G is ontinuous.

The following lemma due to Caprae{Monod [CM11, Setion 4℄ and Caprae{

Reid{Willis [CRW17, Corollary 7.4℄ is ruial for the subsequent statements of

this setion. See also [Wes15℄.

Lemma III.5. Let G be residually disrete, loally ompat and totally dison-

neted. Further, let K � G be ompat. Then Comm

G

(K) =

S

L�

o

K

N

G

(L).
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Proof. Every element of G whih normalizes an open subgroup ofK ommensurates

K beause open subgroups of K have �nite index in K given that K is ompat.

Conversely, let g 2 Comm

G

(K) and onsider H := hK; gi. Then H is a om-

patly generated open subgroup of Comm

G

(K) and hene a ompatly generated,

totally disonneted loally ompat group in its own right. It inherits residual dis-

reteness from Comm

G

(K) whih injets ontinuously into the residually disrete

group G. By [CM11, Corollary 4.1℄, H has an identity neighbourhood basis of

ompat open normal subgroups. Hene g normalizes an open subgroup of K. �

Now, let F � F

0

�

b

F � Sym(
). In the ase of Proposition III.1, the following

proposition identifes ertain subsets of the p-loalization of G(F; F

0

) and thereby

expands [Rei13, Lemma 4.2℄ given that U(F ) = G(F; F ). We establish the following

notation: Given partitions P := (P

i

)

i2I

of V and H = (H

j

)

j2J

of H � Sym(
), let

�

P

(H) := fg 2 Aut(T

d

) j 8i 2 I : 9j 2 J : 8v 2 P

i

: �(g; v) 2 H

j

g

denote the set of automorphisms of T

d

whose loal permutations at the verties of

a given element of P all ome from the same element of H.

Proposition III.6. Let F �F

0

�

b

F �Sym(
) and F (p)�F a p-Sylow subgroup suh

that F (p)

!

� F

!

is a p-Sylow subgroup for all ! 2 
. Set S := U(F (p))

b

. Then

Comm

G(F;F

0

)

(S) = hU(fidg);Comm

G(F;F

0

)

b

(S)i

� hG(F (p); F

0

); f�

V=L

(N

F

(F (p))=F (p)) j L � S opengi:

Proof. By Proposition III.1, the group S is a loal p-Sylow subgroup of U(F ) and

hene of G(F; F

0

). We �rst show that G(F; F

0

)

(p)

ontains U(fidg). Indeed, given

g 2 U(fidg) we have gSg

�1

= U(F (p))

g(b)

. Thus S\gSg

�1

= U(F (p))

(b;g(b))

whih

has �nite index in both S = U(F )

b

and gSg

�1

= U(F (p))

g(b)

by the orbit-stabilizer

theorem. Sine U(fidg) ats vertex-transitively on T

d

we onlude

Comm

G(F;F

0

)

(S) = hU(fidg);Comm

G(F;F

0

)

b

(S)i:

Now, the vertex stabilizer G(F; F

0

)

b

is residually disrete by Proposition I.18.

Hene, by Lemma III.5, the ommensurator Comm

G(F;F

0

)

b

(S) is the union of the

normalizers in G(F; F

0

)

b

of open subgroups of S = U(F (p))

b

. For example, we

may onsider L

n

:= U(F (p))

B(b;n)

�

o

S for every n 2 N. The normalizer of L

n

in G(F; F

0

)

b

ontains those elements of G(F (p); F

0

)

b

all of whose singularities are

ontained in B(b; n). Taking the union over all n 2 N and using vertex-transitivity

of G(F (p); F

0

) in the sense that G(F (p); F

0

) = hG(F (p); F

0

)

b

;U(fidg)i we onlude

that Comm

G(F:F

0

)

(S) ontains G(F (p); F

0

) as a topologial subgroup. Alternatively,

use [Bou16, Lemma 3.2℄. Now, note that for all g; s 2 Aut(T

d

) and v 2 V we have

�(gsg

�1

; v) = �(g; sg

�1

v)�(s; g

�1

v)�(g

�1

; v)

= �(g; sg

�1

v)�(s; g

�1

v)�(g; g

�1

v)

�1

:

Hene if g 2 �

V=L

(N

F

(F (p))=F (p)), i.e. the oset �(g; v)F (p) � N

F

(F (p)) is on-

stant on L-orbits, then gLg

�1

� U(F (p)) whene g 2 Comm

G(F;F

0

)

(S). �

Remark III.7. Whereas the next result provides onditions on F � Sym(
) whih

ensure U(F )

(p)

= G(F (p); F ) and we have U(F )

(p)

= U(F ) for semiregular F by

Proposition I.12, it may happen that G(F (p); F ) � U(F )

(p)

� U(F ). Indeed, if

for every ! 2 
 there is an element a

!

2 F

!

suh that for all � 2 
 we have

F (p)

�

\ a

!

F (p)

�

a

�1

!

= fidg then there is an element g 2 U(F )

B(b;1)

suh that for

S := U(F (p))

B(b;1)

we have S \ gSg

�1

= fidg and therefore g =2 U(F )

(p)

: Choose

the loal permutation of g at v 2 V (T

d

) to be a

!

whenever d(v; b) = d(v; b

!

) + 1.

If in addition N

F

(F (p))  F (p) then the assertion holds by virtue of Proposition

III.6. For instane, these assumptions are satis�ed for F = S

6

and p = 3.
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Theorem III.8. Let F � F

0

�

b

F � Sym(
) and F (p) � F a p-Sylow subgroup of F .

Assume that we have Fn
 = F (p)n
 and N

F

0

!

(F (p)

!

) = F (p)

!

for all ! 2 
.

Then G(F; F

0

)

(p)

= G(F (p); F

0

).

If F does not �x a point of 
 and Fn
 = F (p)n
 then p divides j
j. By

Proposition III.3 the same assumption implies that the point stabilizers in F (p) are

p-Sylow subgroups of the respetive point stabilizers in F . In the ase F = F

0

, the

theorem asks that these be self-normalizing.

Proof. (Theorem III.8). By Proposition III.1 and Proposition III.6 it suÆes to

show that Comm

G(F;F

0

)

b

(U(F (p))

b

)=G(F (p); F

0

)

b

. By Proposition III.6, the group

G(F (p); F

0

)

b

is a subgroup of said ommensurator.

Now suppose g 2 Comm

G(F;F

0

)

b

(U(F (p))

b

) � G(F; F

0

)

b

. Given that G(F; F

0

)

b

is residually disrete by Proposition I.18, the element g normalizes an open subgroup

L � U(F (p))

b

by virtue of Lemma III.5. If g has only �nitely many loal permuta-

tions in F

0

nF (p) then g 2 G(F (p); F

0

)

b

. Otherwise, the above implies that there is

n 2 N suh that gU(F (p))

B(b;n)

g

�1

� L � U(F (p))

b

and g has a loal permutation

in F

0

nF (p) on S(b; n). Then onstrut h 2 G(F (p); F

0

) with loal permutations in

F (p) on spheres of radius at least n and suh that h

�1

g �xes B(b; n) pointwise as

follows: Set hj

B(b;n�1)

:= g and use the assumption F

0

n
 = Fn
 = F (p)n
 to ex-

tend h to all T

d

using F (p) only. Then h

�1

g has a loal permutation in F

0

!

nF (p)

!

for some ! 2 
 on S(b; n) and (h

�1

g)U(F (p))

B(b;n)

(h

�1

g)

�1

� L � U(F (p))

b

.

However, this ontradits the assumption N

F

0

!

(F (p)

!

) = F (p)

!

for all ! 2 
. �

Theorem III.8 an be used to determine the p-loalization of Lederle's oloured

Neretin group N(F ) under similar assumptions.

Theorem III.9. Let F �Sym(
) and F (p)�F a p-Sylow subgroup. If Fn
=F (p)n


and N

b

F

!

(F (p)

!

) = F (p)

!

for all ! 2 
 then N(F )

(p)

= N(F (p)).

Proof. By Proposition III.1, the group S := U(F (p))

b

is a loal Sylow subgroup

of N(F ). Also, by [Led17, Proposition 2.24℄, we have N(F (p)) � Comm

N(F )

(S).

Now, let g 2 Comm

N(F )

(S) and let g : T

d

nT ! T

d

nT

0

be a representative of g

as an U(F )-honest almost automorphism. Given that Fn
 = F (p)n
 there is a

U(F (p))-honest almost automorphism h 2 N(F (p)) � Comm

N(F )

(S) with repre-

sentative h : T

d

nT

0

! T

d

nT suh that hg : T

d

nT ! T

d

nT �xes the leaves of T

and therefore extends to an autormorphism of T

d

�xing T . Furthermore, on eah

onneted omponent of T

d

nT , the automorphism hg 2 N(F ) \ Aut(T

d

) oinides

with an element of U(F ). Hene, using Proposition II.7, we have hg 2 U(F ) whene

hg 2 Comm

N(F )\Aut(T

d

)

(S) = Comm

G(F )

(S) = G(F )

(p)

= G(F (p)) � N(F (p)):

by Theorem III.8. Given that h 2 N(F (p)) we onlude g 2 N(F (p)) as required. �

Proposition III.6 suggests that Theorem III.8 might hold as soon as F (p) is

self-normalizing in F

0

. This is not the ase as the following remark shows.

Remark III.10. Theorem III.8 does not hold if the ondition N

F

0

!

(F (p)

!

)=F (p)

!

for all ! 2 
 is replaed with N

F

0

(F (p)) = F (p): There are transitive, non-regular

permutation groups F � Sym(
) and primes p suh that Fn
 = F (p)n
 and

N

F

(F (p)) = F (p) for whih F (p) is regular. In partiular, N

F

!

(F (p)

!

)  F (p)

!

.

In this ase, U(F (p))

b

is a loal p-Sylow subgroup of U(F ) by Proposition III.3.

However, U(F (p))

b

�

=

F (p) is �nite and hene U(F )

(p)

= U(F )  G(F (p); F ).

A small example of this situation is a ertain F

�

=

S

4

� S

8

and the prime

p = 2, namely put F := h(123)(456); (14)(25)(37)(68)i. Here, F (2) is regular and

self-normalizing in F of order 8.
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Contributions to Willis Theory





CHAPTER IV

Preliminaries

1. Willis Theory

In this hapter we reall entral de�nitions of Willis theory and ollet results

around them. Let G be a t.d.l.. group. In [Wil94℄, Willis introdued the notions

of sale of an automorphism of G and tidiness of a ompat open subgroup of G

for a given automorphism of G.

Searhing for the most general natural setting of tidiness and the sale, the

de�nitions were generalized to endomorphisms in [Wil15℄: Let G be a t.d.l.. group

and � 2 End(G). Note that [�(U) : �(U)\U ℄ 2 N for every ompat open subgroup

U � G beause �(U) is ompat and �(U) \ U is open in �(U). The sale of � is

s(�) = min

�

[�(U) : �(U) \ U ℄ j U � G ompat open

	

:

A ompat open subgroup U � G is minimizing if [�(U) : �(U) \ U ℄ = s(�).

It is a ornerstone of Willis theory that a ompat open subgroup of G is

minimizing for � if and only if it has a ertain struture. This struture is phrased

in terms of the following subgroups of G, see [Wil94℄ and [Wil15℄ for more ontext.

Put U

0

:= U . For n 2 N

0

, we de�ne U

�n

=

T

n

k=0

�

�k

(U) and, indutively, the

groups U

n+1

:= U \ �(U

n

). Now set

U

+

:=

\

n2N

0

U

n

; U

�

:=

\

n2N

0

U

�n

=

1

\

k=0

�

�k

(U);

U

++

:=

[

n2N

0

�

n

(U

+

) and U

��

:=

[

n2N

0

�

�n

(U

�

):

Both from a theoretial and mnemoni point of view, the following desriptions

of the above subgroups are important: Let x 2 G. The �-trajetory of x is the

sequene (�

n

(x))

n2N

0

in G. An �-regressive trajetory of x is a sequene (x

n

)

n2N

0

in G suh that x

0

= x and �(x

n

) = x

n�1

for all n 2 N. Consequently, we have the

following verbal desriptions of the subgroups de�ned above.

U

�

=

�

elements of U whose

�-trajetory is ontained in U

�

;

U

+

=

�

elements of U whih admit an

�-regressive trajetory ontained in U

�

;

U

��

=

�

elements of G whose �-trajetory

is eventually ontained in U

�

:

U

++

=

�

elements of G whih admit an �-regressive

trajetory eventually ontained in U

�

;

The subgroup U is tidy above for � if U = U

+

U

�

, and tidy below for � if U

��

is

losed. It is tidy for � if it is both tidy above and tidy below for �. Note that this

de�nition of being tidy below deviates from [Wil15, De�nition 9℄ but turns out to

be equivalent in the ase of tidy above subgroups, see [Wil15, Proposition 9℄.

The announed ornerstone of Willis theory now reads as follows.
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Theorem IV.1 ([Wil15, Theorem 2℄). Let G be a t.d.l.. group, � 2 End(G) and

U � G ompat open. Then U is minimizing for � if and only if it is tidy for �.

We have �(U

+

)�U

+

and �(U

�

)�U

�

. It an be shown that s(�)=[�(U

+

) : U

+

℄

if U � G is tidy for � 2 End(G), and [U

�

: �(U

�

)℄ = s(�

�1

) in ase � 2 Aut(G).

For future referene, we inlude the following result whih onstitutes an endo-

morphism version of the equality

�

k

 

n

\

i=m

�

i

(U)

!

=

n+k

\

i=m+k

�

i

(U)

whih holds for an automorphism � 2 Aut(G), U � G ompat open andm;n; k2Z.

Lemma IV.2 ([Wil15, Lemma 2℄). Retain the above notation. For all n;m 2 N:

(i) U

�n�m

= (U

�n

)

�m

, and

(ii) �

k

(U

�n

) =

(

U

k

\ U

k�n

0 � k � n

�

k�n

(U

n

) k � n

, and

(iii) (U

�n

)

k

= U

k

\ U

�n

for all k � 0 and (U

�n

)

+

= U

+

\ U

�n

.

Complementing Theorem IV.1, Willis provides an algorithm, the tidying proe-

dure, whih, starting from an arbitrary ompat open subgroup of U � G, produes

a ompat open subgroup of G whih is tidy for �.

Algorithm IV.3 ([Wil15, Setion 7℄). Let U � G be ompat open and � 2 End(G).

(i) There exists n 2 N suh that U

�n

is tidy above for �.

Replaing U with U

�n

we may assume that U is tidy above for �.

(ii) De�ne L

U

:= U

++

\ U

��

and L

U

:= L

U

.

(iii) Set

e

U := fx 2 U : xL

U

� L

U

Ug.

(iv) Then

e

UL

U

is a ompat open subgroup of G whih is tidy for �.

If, in Algorithm IV.3, the subgroup U � G is already tidy for �, then

e

UL

U

= U .

We remark that L

U

of Algorithm IV.3 is given by

L

U

= fx 2 G j 9y 2 U

+

9m;n 2 N with �

m

(y) = x and �

n

(x) 2 U

�

g:

We ontinue with the introdution of further relevant subgroups of G assoiated

to an endomorphism � 2 End(G). The identity element of G is denoted by e.

(a) The nub of � is given by

nub(�) :=

\

fU � G j U is ompat open and tidy for �g:

It is a ompat subgroup of G whih by [Wil15, Proposition 12℄ aptures the

obstrution for there to be an identity neighbourhood basis of tidy subgroups.

(b) The ontration groups

on(�) := fx 2 G j lim

n!1

�

n

(x) = e 2 Gg and

on

�

(�) := fx 2 G j 9(x

n

)

n2N

0

�-regressive for x with lim

n!1

x

n

= e 2 Gg:

play a partiularly important role in the general theory of t.d.l.. groups, see

e.g. [BW04℄, [BGT16℄ and [CRW17℄. They are �-invariant subgroups of G

but not neessarily losed in G.

() The relevane of the paraboli subgroups

par(�) := fx 2 G j f�

n

(x) j n 2 N

0

g is preompatg and

par

�

(�) := fx 2 G j x admits a preompat �-regressive trajetoryg
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stems from the fat that par

�

(�) admits a quotient on whih � indues an

automorphism, see [Wil15, Proposition 20℄. They are losed and �-invariant

subgroups of G. Note that on(�) � par(�) and on

�

(�) � par

�

(�).

(d) The normal subgroup of said quotient is the bounded iterated kernel

bik(�) := fx 2 par

�

(�) j �

n

(x) = e for some n 2 Ng:

It is a onsequene of [Wil15, Proposition 20℄ that any two �-regressive traje-

tories of elements of par

�

(�) di�er only by elements of bik(�): Let x 2 par

�

(�)

and suppose that (x

n

)

n2N

0

and (x

0

n

)

n2N

0

are �-regressive trajetories of x. Then

x

0

n

x

�1

n

2 bik(�) for all n 2 N

0

.

We remark that bik(�) � nub(�) � par(�) \ par

�

(�) by [Wil15, Proposition 20℄.

2. Direted Graphs

Chapter VI makes use of the permutation topology introdued in Setion I.1.2

as well as direted graphs. Here, we reall notation around the latter, largely fol-

lowing M�oller [M�ol02℄.

A direted graph � is a tuple (V (�); E(�)) onsisting of a vertex set V (�) and an

edge set E(�) � V (�)� V (�) n f(u; u) j u 2 V (�)g. We let pr

1

; pr

2

: E(�)! V (�)

denote the projetions onto the �rst and seond fator, the origin and terminus

of an edge. Let � be a direted graph. An ar of length k 2 N from v 2 V (�) to

v

0

2 V (�) is a tuple (v = v

0

; : : : ; v

k

= v

0

) of distint verties of � suh that (v

i

; v

i+1

)

in an edge in � for all i2f0; : : : ; k � 1g. Two verties v; w 2 �(V ) are adjaent if

either (v; w) 2 E(�) or (w; v) 2 E(�). A path of length k 2 N from v 2 V (�) to

v

0

2 V (�) is a tuple (v = v

0

; : : : ; v

k

= v

0

) of distint verties of � suh that either

(v

i

; v

i+1

) or (v

i+1

; v

i

) is an edge in � for all i 2 f0; : : : ; k � 1g. The direted graph

� is onneted if for all v; w 2 V (�) there is a path from v to w. It is a tree if it

is onneted and has no non-trivial yles, i.e. tuples (v

0

; : : : ; v

k

) with k � 3 and

suh that (v

0

; : : : ; v

k�1

) and (v

k�1

; v

k

) 2 E(�) are both paths and v

k

= v

0

. Two

in�nite paths in � are equivalent if they interset in an in�nite path. When � is a

tree, this is an equivalene relation on in�nite paths and the boundary �� of � is

the set of these equivalene lasses.

For the following, let v 2 V (�). Set in

�

(v) := fw 2 V (�) j (w; v) 2 E(�)g

and out

�

(v) := fw 2 V (�) j (v; w) 2 E(�)g. The in-valeny of v 2 V (�) is the

ardinality of in

�

(v) and the out-valeny of v 2 V (�) is the ardinality of out

�

(v).

The direted graph � is loally �nite if all its verties have �nite in- and out-valeny.

A direted line in � is a sequene (v

i

)

i2Z

of distint verties suh that either

(v

i

; v

i+1

) is an edge for every i 2 Z, or (v

i

; v

i�1

) is an edge for every i 2 Z.

For a subset A � V (�), the subgraph of � spanned by A is the direted graph

with vertex set A and edge set f(v; w) 2 E(�) j v; w 2 Ag.

The set of desendants of v2V (�) is des

�

(v) :=fw 2 V (�) j9 ar from v to wg.

For A � V (�), set des

�

(A) :=

S

v2A

des

�

(v). A direted tree � is rooted at

v

0

2 V (�) if � = des(v

0

), in whih ase j in

�

(v)j = 1 for all verties v 6= v

0

and

j in

�

(v

0

)j = 0. The de�nition of being regular is altered for rooted trees: A direted

tree rooted at v

0

is regular if j out(v)j is onstant for v 2 V (�).

A morphism between direted graphs �

1

= (V

1

; E

1

) and �

2

= (V

2

; E

2

) is a

pair (�

V

; �

E

) of maps �

V

: V

1

! V

2

and �

E

: E

1

! E

2

preserving the graph

struture, i.e. �

V

(pr

1

(e)) = pr

1

�

E

(e) and �

V

(pr

2

(e)) = pr

2

�

E

(e) for all e 2 E

1

.

An automorphism of a direted graph � = (V;E) is a morphism � = (�

V

; �

E

) from

� to itself suh that �

V

and �

E

are bijetive and � admits an inverse morphism.





CHAPTER V

Tidiness and Sale for Subgroups and Quotients

This setion ontains joint work with T. Bywaters and H. Gl�okner, namely

[BGT16, Setion 8℄. We generalize several results of [Wil01℄ about how tidy sub-

groups and the sale behave with respet to taking subgroups and quotients from

automorphisms to endomorphisms. This an be seen as a parallel to the study of

topologial entropy given in [BV16℄. Generally speaking, the proofs follow the same

basi struture as those for automorphisms but hanges need to be made to aom-

modate for the additional ompliations that arise in the ase of endomorphisms.

1. Subgroups

We �rst explore the e�et of taking subgroups on tidiness and the sale. The

following two lemmas show that tidy subgroups behave well when passing to sub-

groups. Lemma V.2 is applied in Theorem V.3 whih onerns the sale.

Lemma V.1. LetG be a t.d.l.. group, �2End(G) andH�G losed with �(H)�H .

Further, letW � G be ompat open. Then there exists N 2 N

0

suh thatW

�n

\H

is tidy above for �j

H

, for all n � N .

Proof. Sine �(H) � H we onlude that H \W

�n

equals

H \

n

\

k=0

�

�k

(W )=fw2H j8k 2 f1; : : : ; ng : �

k

(w) 2Wg

=fw2H j8k 2 f1; : : : ; ng : �

k

(w) 2W \Hg=

n

\

k=0

(�j

H

)

�k

(H\W ):

whih is tidy above for �j

H

by [Wil15, Proposition 3℄ for large n. �

Lemma V.2. LetG be a t.d.l.. group, �2End(G) andH�G losed with �(H)�H .

Further, let U � G be ompat open and tidy for �. Set V := U \H . Then there

is N 2 N suh that V

�N

is tidy for �j

H

.

Proof. Note that V is a ompat open subgroup of H . By [Wil15, Proposition 3℄

there is N 2 N suh that V

�N

is tidy above for �j

H

. Sine U is minimizing, the

same proposition implies that U

�N

is tidy for �. By Lemma V.1, replaing U by

U

�N

, we may assume that V is tidy above for �j

H

. To see that this V is tidy, we

show that L

V

� V where L

V

is given in Algorithm IV.3. Sine V � H is losed

this implies that L

V

= L

V

� V and hene V is tidy below and therefore tidy for

�j

H

by [Wil15, Proposition 8℄. First, note that

V

�

=

\

n�0

V

�n

= U

�

\H

Also, sine V

+

is the olletion of all elements in V that admit an �-regressive

trajetory in V = U \H , it follows that V

+

� U

+

\H . Now, suppose that x 2 L

V

.

Then x 2 H and there are y 2 V

+

and m;n 2 N suh that �

m

(y) = x and

�

n

(y) 2 V

�

. By the above, y 2 U

+

and �

n

(y) 2 U

�

. Therefore, x 2 L

U

\H . Sine

U is tidy for � we have L

U

� U and thus onlude x 2 U \ H = V . This shows

L

V

� V as required. �
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Theorem V.3. Let G be a t.d.l.. group and � 2 End(G). Furher, let H � G be

losed with �(H)�H . Then s

H

(�j

H

) � s

G

(�). Furthermore, if H�G and U � G is

ompat open and tidy for � suh that U \H is tidy for �j

H

, then �((U \H)

+

)U

+

is a subgroup of G and s

H

(�j

H

) = [�((U \H)

+

)U

+

: U

+

℄:

Proof. By Lemma V.2 there is a ompat open subgroup U � G whih is tidy for

� and suh that V := U \H is tidy for �j

H

. In partiular, s

H

(�j

H

) = [�(V

+

) : V

+

℄

and s

G

(�) = [�(U

+

) : U

+

℄. De�ne ' : �(V

+

)=V

+

! �(U

+

)=U

+

by '(uV

+

) := uU

+

for all uV

+

2 �(V

+

)=V

+

. Then ' is well-de�ned as V

+

� U

+

. For the �rst laim

it suÆes to show that ' is injetive. Indeed, assume that '(uV

+

) = '(vV

+

) for

some uV

+

; vV

+

2 �(V

+

)=V

+

. Then it follows that x := v

�1

u 2 �(V

+

) \ U

+

where

�(V

+

) = �((U \ H)

+

) � H . It is now a onsequene of [Wil15, Lemma 1℄ that

x 2 U \H \ �(V

+

) = V \ �(V

+

) = V

+

.

For the seond laim, suppose that H is normal in G. It suÆes to show that

�((U \ H)

+

)U

+

= U

+

�((U \ H)

+

): Indeed, this implies that �((U \ H)

+

)U

+

is

a group in whih ase the assertion follows from the previous paragraph. Now,

(U \H)

0

:= U \H is normal in U

0

:= U and (U \H)

n+1

:= �((U \H)

n

)\U \H is

normal in U

n+1

:= �(U

n

)\U for eah n 2 N

0

by the following indutive argument:

By the indutive hypothesis, (U\H)

n

is normal in U

n

. Hene �((U\H)

n

) is normal

in �(U

n

). Sine U \H is normal in U , it follows that �((U \H)

n

)\U \H is normal

in �(U

n

) \ U whih ompletes the indution. As a onsequene,

(U \H)

+

:=

\

n2N

0

(U \H)

n

is normal in U

+

:=

\

n2N

0

U

n

:

Let u 2 U

+

. Pik w 2 U

+

with �(w) = u. Applying � to (U \H)

+

w = w(U \H)

+

,

we dedue that �((U \H)

+

)u = u�((U \H)

+

). �

2. Quotients

We now turn our attention to quotients. Again, we �rst onsider tidy subgroups

and then apply our �ndings to gain insight into the sale. Our �rst lemma provides

ontrol over �-regressive trajetories. We let L

U

and

e

U be as in Algorithm IV.3.

Lemma V.4. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open as

well as tidy above for �. Then U \

e

UL

U

=

e

U .

Proof. By de�nition

e

U � U \

e

UL

U

as

e

U � U and

e

U �

e

UL

U

. Now, let x 2 U\

e

UL

U

.

We need to show xL

U

� L

U

U . Indeed, xL

U

�

e

UL

U

L

U

=

e

UL

U

� L

U

U . �

There are examples of automorphisms [Wil01℄ and assoiated tidy below sub-

groups whih do not behave well when passing to quotients. Lemma V.6 shows that

although we annot expet a tidy below subgroup to be tidy below when passing to

a quotient, the original subgroup an be hosen so that the quotient is as lose as

possible to being tidy below using Algorithm IV.3. The proof of LemmaV.6 relies

on the following result whih is immediate from the proof of [Wil15, Lemma 16℄.

Lemma V.5. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open as

well as tidy above for �. Let u 2

e

U . Then u

�

2

e

U

�

for any u

�

2 U

�

with u = u

+

u

�

.

Lemma V.6. Let G be a t.d.l.. group, �2End(G) and H�G losed with �(H)�H .

Denote by � the endomorphism indued by � on G=H and by q : G ! G=H the

quotient map. Then there is a ompat open subgroup U of G suh that

(i) U tidy for �,

(ii) U \H is tidy for �j

H

, and

(iii) q(U) is tidy above for �, and L

q(U)

q(U) = q(U)L

q(U)

.
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Proof. Applying Lemma V.2, hoose V � G ompat open and tidy for � and suh

that V \H is tidy for �j

H

. Then q(V ) is tidy above for �: On the one hand

q(V

�

) = q

0

�

\

n�0

�

�n

(V )

1

A

�

\

n�0

q(�

�n

(V )) =

\

n�0

�

�n

(q(V )) = q(V )

�

:

Also, V

+

=fx 2 V jx admits an �-regressive trajetory in V g. Thus q(V

+

) � q(V )

+

as �-regressive trajetories desend to the quotient. Combined, we onlude

q(V ) = q(V

+

V

�

) = q(V

+

)q(V

�

) � q(V )

+

q(V )

�

:

That is, q(V ) is tidy above for �. Now de�ne U := V \ q

�1

(q(V )e), where q(V )e

is as in Algorithm IV.3. Then q(U) = q(V )e and hene q(U) is tidy above for �

by [Wil15, Lemma 16℄. In addition, by applying [Wil15, Proposition 6 (3)℄ we see

that L

q(U)

= L

q(V )e

= L

q(V )

. It follows from [Wil15, Lemma 13℄ and q(U) = q(V )e

that q(U)L

q(U)

= L

q(U)

q(U). Furthermore, V \H � ker q � q

�1

(q(V )e). Hene

U \H = V \H \ q

�1

(q(V )e) = V \H

is tidy for �j

H

.

It remains to show that U is tidy for �. We begin by proving that U is tidy above

for �. Let u 2 U . Then sine V is tidy above, u = v

+

v

�

for some v

�

2 V

�

and we aim

to show that v

�

2 U

�

. Note that q(u) = q(v

+

)q(v

�

) with q(v

�

) 2 q(V

�

) � q(V )

�

.

Sine q(u) 2 q(V )e, we dedue q(v

�

) 2 (q(V )e)

�

by Lemma V.5. Sine �

n

(v

�

) 2 V

�

and �

n

(q(v

�

)) 2 (q(V )e)

�

for all n � 0 we have q(�

n

(v

�

)) 2 (q(V )e)

�

. Therefore,

the orbit of v

�

2V \q

�1

(q(V )e)= U stays in U and we onlude v

�

2U

�

.

As to v

+

, hoose an �-regressive trajetory (v

i

)

i2N

0

for v

+

ontained in V

+

. We

show that this sequene is ontained within U . It is lear that v

0

= v

+

2 U . Suppose

for the purpose of indution that v

n

2 U . Applying [Wil15, Lemma 15℄ we see that

q(v

n

) 2 q(U) \ q(V

+

) � q(V )e\ q(V )

+

= (q(V )e)

+

. There exists w 2 (q(V )e)

+

with

�(w) = q(v

n

) = �(q(v

n+1

)):

Now w, q(v

n

) and q(v

n+1

) are elements of par

�

(�). By [Wil15, Proposition 20℄,

there is b 2 bik(�) suh that q(v

n+1

) = wb. Sine q(V )eL

q(V )

is tidy, b 2 q(V )eL

q(V )

.

Hene q(v

n+1

) 2 q(V )eL

q(V )

. By Lemma V.4, q(v

n+1

) 2 q(V )e whene v

n+1

2 U .

Indutively, v

i

2 U for all i 2 N

0

and so v

+

2 U

+

.

To see that U is tidy below, note that V is tidy below and U � V . Hene

L

U

� V

+

\ V

�

. Clearly, q(V

+

\ V

�

) � L

q(V )

and so q(V

+

\ V

�

) � q(V )e. Hene

V

+

\ V

�

� U . As a onsequene, L

U

� U whih implies that U is tidy below, see

[Wil15, Proposition 8℄. �

In the following lemma, we fator the subgroup used to alulate the sale.

Later on, we turn this into a fatorization of the sale itself.

Lemma V.7. Let G be a t.d.l.. group, �2End(G) and H�G losed with �(H)�H .

Denote by � the endomorphism indued by � on G=H . Then there is a losed

subgroup J of G with �((H \ U)

+

)U

+

� J � �(U

+

) and s

G=H

(�) = [�(U

+

) : J ℄:

Proof. Let U satisfy the onlusions of Lemma V.6 and let q : G ! G=H denote

the quotient map. Then q(U)L

q(U)

is tidy for � and

s

G=H

(�) = [�(q(U)

+

)L

q(U)

: q(U)

+

L

q(U)

℄

using [Wil15, Proposition 4, Proposition 6 (2)℄. Now onsider the map

�(q(U)

+

)=(�(q(U)

+

) \ q(U)

+

L

q(U)

)! �(q(U)

+

L

q(U)

)=q(U)

+

L

q(U)

given by

g(�(q(U)

+

) \ q(U)

+

L

q(U)

) 7! g(q(U)

+

L

q(U)

):
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This map is well-de�ned as �(q(U)

+

) \ q(U)

+

L

q(U)

) � q(U)

+

L

q(U)

. It is injetive

beause any two elements in the domain whih have the same image have oset

representatives whih di�er by an element in �(q(U)

+

) \ q(U)

+

L

q(U)

. To see sur-

jetivity, simply note that �(L

q(U)

) � L

q(U)

� q(U

+

)L

q(U)

by [Wil15, Lemma 6℄.

This shows

s

G=H

(�) = [�(q(U)

+

)L

q(U)

: q(U)

+

L

q(U)

℄

= [�(q(U)

+

) : �(q(U)

+

) \ q(U)

+

L

q(U)

℄:(1)

We know that �(q(U)

+

) \ q(U)

+

L

q(U)

is losed in G=H beause � and q are on-

tinuous, U is ompat and L

q(U)

is losed. Set

J := q

�1

�

�(q(U)

+

) \ q(U)

+

L

q(U)

�

\ �(U

+

):

By the above, J � �(U

+

) is losed. To see �((H \ U)

+

)U

+

� J , note that

(2) q(�((H \ U)

+

)U

+

) = q(U

+

) � q(U)

+

� �(q(U)

+

) \ q(U)

+

L

q(U)

=: S

beause �((H \ U)

+

)U

+

= U

+

�((H \ U)

+

) and �((H \ U)

+

) is ontained in H .

The formula

x:(yS) := q(x)yS for x 2 �(U

+

) and y 2 q(U

+

)

de�nes a transitive ation of �(U

+

) on X := �(q(U

+

))=S as q(�(U

+

)) = �(q(U

+

)).

Sine S 2 X has stabilizer q

�1

(S)\�(U

+

) = J under the ation, the Orbit Stabilizer

Theorem (as in [Rob96, 1.6.1 (i)℄) shows that

�(U

+

) : J ℄ = jX j = [�(q(U

+

)) : S℄:

Combining this with (2) and (1) we obtain s

G=H

(�) = [�(U

+

) : J ℄. �

Theorem V.8. LetG be a t.d.l.. group, �2End(G) andH�G losed with �(H)�H .

Then s

H

(�j

H

)s

G=H

(�) divides s

G

(�).

Proof. Let U satisfy the onlusions of Lemma V.6. By Lemma V.7 there is a losed

subgroup J of G suh that

U

+

� �((U \H)

+

)U

+

� J � �(U

+

):

Reall that by Theorem V.3, the set �((U \ H)

+

)U

+

is indeed a subgroup of G.

Applying Lemma V.7 and Theorem V.3 yields

s

G

(�) = [�(U

+

) : U

+

℄

= [�(U

+

) : J ℄[J : �((U \H)

+

)U

+

℄[�((U \H)

+

)U

+

: U

+

℄

= s

G=H

(�)[J : �((U \H)

+

)U

+

℄s

H

(�j

H

):

whih ompletes the proof. �

We end this setion by onsidering the speial ase of nested subgroups inside

par

�

(�) for whih we ahieve equality in Theorem V.8.

Lemma V.9. Let G be a t.d.l.. group, � 2 End(G) and H � par

�

(�) losed suh

that �(H) = H . Then par

�

(�j

H

) = H .

Proof. Suppose x 2 H . We an �nd an �-regressive trajetory (x = x

0

; x

1

; : : :)

whih is ontained in some ompat set K. Sine �(H) = H we an hoose another

�-regressive trajetory (x = y

0

; y

1

; : : :) suh that y

n

2 H for all n 2 N. Therefore

y

n

; x

n

2 par

�

(�) and hene x

�1

n

y

n

2 bik(�) for all n 2 N. Thus y

n

2 x

n

bik(�)

whih is ontained in K bik(�). Sine both K and bik(�) are ompat, K bik(�)

is ompat and hene K bik(�) \ H is a ompat subset of H . This shows that

(y

0

; y

1

; : : :) is bounded and hene x 2 par

�

(�j

H

). �
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The following result is known for automorphisms [DS91, Proposition 3.21 (2)℄.

Its proof utilizes the modular funtion whih is not de�ned for endomorphisms.

Instead we onsider the fatoring of the sale given by Theorem V.8.

Proposition V.10. Let G be a t.d.l.. group, � 2 End(G) and H � par

�

(�) losed

suh that �(H) = H . Further, let N �H be losed with �(N) = N . Denote by �

the endomorphism indued by �j

H

on H=N . Then

s

H

(�j

H

) = s

H=N

(�)s

N

(�j

N

):

Proof. For simpliity, we write � for �j

H

as the enveloping group will play no

further role. By Lemma V.9, par

�

(�) = H and so if U � H is ompat open as

well as tidy for �, then U = U

+

by [Wil15, Proposition 11℄.

By Lemma V.2, we may assume that U \N is tidy for �j

N

. Let q : H ! H=N

denote the quotient map. Choose U � H ompat open and satisfying onditions

of Lemma V.6 with respet to N . From the proof of Theorem V.8 we have

s

H

(�) = s

H=N

(�)[J : �((U \N)

+

)U

+

℄s

N

(�j

N

);

where J is given in the proof of Lemma V.6 by

J = q

�1

(�(q(U)

+

) \ q(U)

+

L

q(U)

) \ �(U

+

):

It suÆes to show J � �((U \N)

+

)U

+

. Sine q(U

+

) � q(U)

+

, as seen in the proof

of Lemma V.6, and U

+

= U we have q(U

+

) � q(U)

+

� q(U) = q(U

+

); whih gives

equality throughout. Thus J = q

�1

�

�(q(U)) \ q(U)L

q(U)

�

\�(U). Sine q(U) is an

open identity neighbourhood, we obtain

q(U)L

q(U)

= q(U)L

q(U)

= q(U)L

q(U)

:

Suppose that x 2 q

�1

(q(U)L

q(U)

). Then we an write x = ul for some u 2 U and

l 2 q

�1

(L

q(U)

). Consider q(l) = lN 2 L

q(U)

. There exists n 2 N with

�

n

(lN) = �

n

(l)N 2 q(U):

This implies �

n

(l)m 2 U for some m 2 N . Then �

n

(l)m has an �-regressive

trajetory ontained in U = U

+

. Using that fat that N is assumed to satisfy

�(N) = N , hoose m

0

2 N suh that �

n

(m

0

) = m.

Sine [Wil15, Proposition 20℄ implies that any two elements in the preimage

of an element of par

�

(�) = H are equal modulo bik(�), we have lm

0

2 U bik(�) by

omparing �

n

(lm

0

) = �

n

(l)m with the �-regressive trajetory for �

n

(l)m ontained

in U . But U is tidy and so bik(�) � U . Hene l 2 UN and thus x 2 UN . This

shows that J � UN \�(U). Suppose now that x 2 UN \�(U). Then we an write

x = un where u 2 U and n 2 N . Choose �-regressive trajetories

(u = u

0

; u

1

; : : :), (un = v

0

; v

1

; : : :), and (n = n

0

; n

1

; : : :)

suh that u

i

; v

i+1

2 U for all i � 0 and n

i

2 N for all i 2 N. Now, notie that

(un = u

0

n

0

; u

1

n

1

; : : :) is also an �-regressive trajetory. For all i � 1 we have

u

i

n

i

2 v

i

bik(�). Noting that bik(�) � U , we have n

i

2 U for all i � 1. Then

n

1

2 (U \ N)

+

and so n = n

0

= �(n

1

) 2 �((U \ N)

+

). As x = un, this shows

x 2 U�((U \N)

+

) = �((U \N)

+

)U (with equality by Theorem V.3). �





CHAPTER VI

Tidiness and Sale via Graphs

This setion ontains joint work with T. Bywaters, namely [BT17℄. We study

Willis' theory of totally disonneted loally ompat groups and their endomor-

phisms in a geometri framework using graphs. This leads to new interpretations

of tidy subgroups and the sale funtion. Foremost, we obtain a geometri tidy-

ing proedure whih applies to endomorphisms as well as a geometri proof of the

fat that tidiness is equivalent to being minimizing for a given endomorphism. Our

framework also yields an endomorphism version of the Baumgartner-Willis tree

representation theorem. We onlude with a onstrution of new endomorphisms

of totally disonneted loally ompat groups from old via HNN-extensions.

1. Charaterization of Tidy Subgroups

Let G be a totally disonneted, loally ompat group and let � 2 End(G).

In this setion, we haraterize the ompat open subgroups U of G whih are tidy

for � in terms of ertain direted graphs. In doing so we generalize several results

of [M�ol02℄ from onjugation automorphisms to general endomorphisms.

Frequently, we restrit to the ase where the set f�

�i

(U) j i 2 N

0

g is in�nite

and hene all �

�i

(U) (i 2 N

0

) are distint. The �nite ase orresponds to M�oller's

periodiity ase [M�ol02, Lemma 3.1℄ and is overed by the following lemma.

Lemma VI.1. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open. If

f�

�i

(U) j i 2 N

0

g is �nite then there is N 2 N

0

suh that V :=

T

N

k=0

�

�k

(U) = U

�

satis�es �(V ) � V and is tidy for �.

Proof. If f�

�i

(U) j i 2 N

0

g is �nite, then U

�

=

T

k2N

0

�

�i

(U) is an intersetion

of �nitely many open subgroups. Say U

�

=

T

N

k=0

�

�k

(U)=:V . Then V � G is

ompat open and �(V ) � V . We onlude V = V

�

. Hene V is tidy above for �.

Sine V = V

�

� V

��

we also dedue that V

��

is open and hene losed. Thus V

is also tidy below for �. �

1.1. Tidiness Above. We reover the fat that for every ompat open sub-

group U � G there is n2N

0

suh that U

�n

=

T

n

k=0

�

�n

(U) is tidy above for �.

Consider the graph � de�ned as follows: Set v

�i

:= �

�i

(U) 2 P(G) for i 2 N

0

,

where P(G) denotes the power set of G. Now set

V (�) := fgv

�i

j g 2 G; i 2 N

0

g and E(�) := f(gv

�i

; gv

�i�1

) j g 2 G; i 2 N

0

g:

Note that G ats on � by automorphisms via left multipliation. For this ation,

we ompute the stabilizer G

v

�i

= �

�i

(U) (i � 0), as well as

G

fv

�m

jm�0g

=

\

m�0

�

�m

(U) = U

�

:

We now reprove [Wil15, Lemma 4℄ in terms of the graph �.

Lemma VI.2. Retain the above notation. Suppose that U

N

v

�1

= U

+

v

�1

for some

N 2 N. Then U

�n

v

�n�1

= (U

�n

)

+

v

�n�1

for all n � N .

51
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Proof. By de�nition, (U

�n

)

+

v

�n�1

� U

�n

v

�n�1

. Now, let w 2 U

�n

v

�n�1

. Then

there is u 2 U

�n

suh that w = uv

�n�1

. We obtain �

n

(u) 2 �

n

(U

�n

) whih equals

U

n

by Lemma IV.2 and is ontained in U

N

sine n � N . Hene, by assumption,

there is u

+

2 U

+

suh that �

n

(u)v

�1

= u

+

v

�1

. By de�nition of U

+

, we may pik

u

0

+

2 U

+

\ U

�n

suh that u

+

v

�1

= �

n

(u

0

+

)v

�1

. Then u

0

+

2 (U

�n

)

+

as by Lemma

IV.2 we have U

+

\ U

�n

= (U

�n

)

+

. We onlude that u

0

+

v

�n�1

= uv

�n�1

sine

u

0

+

u

�1

2 U

�n�1

� G

v

�n�1

by the following argument: We have u

0

+

u

�1

2 U

�n

by

de�nition and u

0

+

u

�1

2 �

�n�1

(U) by the subsequent omputation:

�

n+1

(u

0

+

u

�1

) = �

n+1

(u

0

+

)�

n+1

(u

�1

) = �(u

+

�

n

(u

�1

)) 2 U

sine, by onstrution, u

+

�

n

(u)

�1

2 G

v

�1

= �

�1

(U). �

The following Lemma will be used to prove analogues of Theorems 2.1 and 2.3

from [M�ol02℄.

Lemma VI.3. Retain the above notation. Fix N 2 N and onsider the following:

(i) U

N

v

�1

= U

+

v

�1

.

(ii) For every u 2 U

�N

there is u

+

2 U

+

\ U

�N

with u

+

v

i

= uv

i

for all i � 0.

(iii) The subgroup U

�N

is tidy above for �.

Then (i) implies (ii), and (ii) implies (iii).

Proof. To see (i) implies (ii) let u 2 U

�N

. By indution, we onstrut a sequene

(u

n

)

n2N

ontained in U

+

\ U

�N

suh that u

n

v

i

= uv

i

for all i 2 f�N � n; : : : ; 0g.

Then, as U

+

\U

�N

is ompat, (u

n

)

n2N

has an aumulation point u

+

2 U

+

\U

�N

.

We onlude that for any given n 2 N, we have

u

�1

k

u

+

2 G

v

�n

= �

�n

(U)

for large enough k 2 N beause �

�n

(U) is open. That is, given n 2 N we have

u

+

(v

�n

) = u

k

(v

�n

) = u(v

�n

):

for suÆiently large k 2 N.

Now, by (i), Lemma VI.2 and Lemma IV.2, we may pik u

1

2 U

+

\ U

�N

suh

that u

1

v

�N�1

= uv

�N�1

. Next, assume that u

n

has been onstruted for some

n 2 N. Then uu

�1

n

(v

i

) = v

i

for all i 2 f�N � n; : : : ; 0g. That is,

u

�1

n

u 2

n+N

\

i=0

�

�i

(U) = U

�N�n

:

By Lemma VI.2, there exists x 2 (U

�N�n

)

+

suh that u

�1

n

uv

�N�n�1

= xv

�N�n�1

.

By assumption, u

n

2 U

+

\U

�N

and, by Lemma VI.2, x 2 (U

�N�n

)

+

=U

+

\U

�N�n

.

Hene u

n

x 2 U

+

\ U

�N

. Also, u

n

x(v

i

) = u(v

i

) for all i 2 f�N � n� 1; : : : ; 0g. We

may therefore set u

n+1

:= u

n

x.

To see that (ii) implies (iii) we use that, by assumption, for every u 2 U

�N

there is u

+

2 U

+

\U

�N

suh that u and u

+

agree on v

i

for all i � 0. Set u

�

:= u

�1

+

u.

Then u

�

v

i

= v

i

for all i � 0. Hene u

�

2 G

fv

m

jm�0g

= U

�

and

U

�N

= (U

+

\ U

�N

)U

�

= (U

�N

)

+

(U

�N

)

�

by Lemma IV.2 as required. �

Theorem VI.4. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

Then there is N 2 N suh that U

N

v

�1

= U

+

v

�1

, and U

�N

is tidy above for �.

Proof. First note that U

+

v

�1

� U

m

v

�1

� U

n

v

�1

for all 0 � n � m sine the sets

U

n

(n 2 N

0

) are nested. Thus it suÆes to show that U

N

v

�1

� U

+

v

�1

for some

N 2 N. Towards a ontradition, assume that U

+

v

�1

( U

n

v

�1

for all n 2 N, i.e.

there is w

n

2 V (�) suh that w

n

2 U

n

v

�1

for all n 2 N but w

n

62 U

+

v

�1

. Then
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there is a sequene (u

n

)

n2N

ontained in U suh that u

n

2 U

n

and u

n

v

�1

= w

n

.

Sine U is ompat, the sequene (u

n

)

n2N

has an aumulation point u

+

in U . This

aumulation point has to be ontained in U

+

: Indeed, pik a subsequene (u

n

k

)

k2N

of (u

n

)

n2N

onverging to u

+

. Then for any given m 2 N, we have u

n

k

2 U

m

for

almost all k. Sine U

m

is losed we onlude that u

+

2 U

m

for every m 2 N. Hene

u

+

2

\

m2N

U

m

= U

+

:

Furthermore, if u

+

v

�1

= w, then beause u

+

u

�1

n

k

is ontained in the open set

G

v

�1

for large enough k 2 N we must have w = w

k

for suÆiently large k 2 N.

We onlude that w

k

2 U

+

v

�1

for suÆiently large k 2 N and thus we have a

ontradition. Now, U

�N

is tidy above for � by Lemma VI.3. �

Theorem VI.5. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

Then the following statements are equivalent.

(i) Uv

�1

= U

+

v

�1

.

(ii) For every u 2 U there is u

+

2 U

+

suh that u

+

v

i

= uv

i

for all i � 0.

(iii) The subgroup U is tidy above for �.

Proof. Note that (i) implies (ii) and (ii) implies (iii) by Lemma VI.3 for N = 0.

Now, if (iii) holds, then Uv

�1

= U

+

U

�

v

�1

= U

+

v

�1

as U

�

� G

v

�1

. �

Proposition VI.6. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open

as well as tidy above for �. Then

[U

�n

: U

�n�1

℄ = [U : U

�1

℄ = [�

�n

(U) : �

�n�1

(U) \ �

�n

(U)℄

for all n 2 N.

Proof. Let u2U

�n

nU

�n�1

. Then �

n

(u)2UnU

�1

. Hene [U

�n

: U

�n�1

℄� [U : U

�1

℄.

Conversely, if u 2 UnU

�1

then u admits a representative in U

+

by Theorem VI.5.

Let (u

n

)

n

be an �-regressive sequene of u ontained in U . Then u

n

2 U

�n�1

nU

�n

.

Hene equality holds. The same argument applies to the right hand equality. �

The following equality is used in Setion 4.

Lemma VI.7. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open as

well as tidy above for �. Then [�(U) : U \ �(U)℄ = [�(U

+

) : U

+

℄.

Proof. Note that

�(U)(U \ �(U)) = �(U

+

)�(U

�

)(U \ �(U)) = �(U

+

)(U \ �(U))

as �(U

�

) � U . Thus

[�(U) : U \ �(U)℄ = [�(U

+

) : U \ �(U) \ �(U

+

)℄ = [�(U

+

) : U \ �(U

+

)℄:

Sine U \ �(U

+

) = U

+

, the desired equality follows. �

1.2. Tidiness Below. In this setion we present a geometri proof for the

ommonly used riterion that identi�es a ompat open and tidy above subgroup

U � G as tidy below if U

��

\ U = U

�

, f. [Wil15, Proposition 8℄.

First, reall that U

++

=

S

i2N

0

�

i

(U

+

) and U

��

=

S

i2N

0

�

�i

(U

�

). In terms of

the graph � introdued in Setion 1.1, we have

U

��

=

[

n2N

G

fv

�m

jm��ng

:

Lemma VI.8. Let G be a t.d.l.. group, � 2 End(G) and U � G be ompat open

as well as tidy above for �. Then

(i) the group U

��

� G is losed if and only if U

��

\ U = U

�

, and

(ii) if U

��

is losed then U

++

\ U = U

+

.
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Proof. For (i), �rst assume that U

��

\ U = U

�

. Then U

��

\ U is losed. Sine U

is losed, this implies that U

��

is losed, see [HR12, 5.37℄.

Now suppose that U

��

\ U 6= U

�

. By de�nition, U

�

� U

��

\ U . Hene there

exists u 2 U = G

v

0

with u 2 G

fv

m

jm��ng

for some n 2 N but u 62 U

�

= G

fv

m

jm�0g

.

Then there is l 2 N with 0 < l < n and suh that uv

�l

6= v

�l

. Sine U is tidy above,

we may deompose u = u

+

u

�

for some u

+

2 U

+

and u

�

2 U

�

. Hene, replaing u

with uu

�1

�

, we may assume that u 2 U

+

.

Choose an �-regressive trajetory (u

j

)

j2N

of u ontained in U

+

. De�ne a se-

quene (x

i

)

i2N

ontained in U

��

\U

+

� U as follows: Set x

1

:= u and x

i+1

:= x

i

u

in

.

We ollet the relevant properties of the sequenes (u

j

)

j2N

and (x

i

)

i2N

in the fol-

lowing lemma, see below for an illustration of the seond sequene.

Lemma VI.9. The sequenes (u

j

)

j2N

and (x

i

)

i2N

have the following properties.

(a) For all j 2 N: u

j

2 G

fv

m

jm��n�jg

\G

fv

m

j�j�m�0g

\ U

+

� U

��

\ U

+

.

(b) For all i 2 N: x

i

2 G

fv

m

jm��ing

\ U

+

� U

��

\ U

+

.

() For all j 2 N: u

j

62 G

v

�l�j

.

(d) For all i 2 N and 0 � j � i� 1: x

i

62 G

v

�l�jn

and x

i+1

v

�l�jn

= x

i

v

�l�jn

.

Proof. For (a), note that �

j

(u

j

) = u 2 G

fv

m

jm��ng

=

T

k�n

�

�k

(U) by assump-

tion and therefore u

j

2 �

�j

�

T

k�n

�

�k

(U)

�

=

T

k�n+j

�

�k

(U) = G

fv

m

jm��n�jg

.

For the seond part, simply reall that (u

j

)

j

is an �-regressive trajetory of u

ontained in U

+

; in partiular, u

j

2 U

+

and �

m

(u

j

) 2 U

+

� U for all 0 � m � j.

Therefore, u

j

2 �

�m

(U) = G

v

�m

for all 0 � m � j.

Part (b) follows from (a) given that x

i+1

= x

i

u

in

= uu

n

� � �u

(i�1)n

u

in

.

For part (), reall that we have u 62 �

�l

(U) = G

v

�l

by assumption and there-

fore u

j

62 �

�l�j

(U) = G

v

�l�j

.

In order to prove part (d), we argue by indution: The element x

1

= u satis�es

x

1

62 G

v

�l

by part (). Also x

2

v

�l

= x

1

v

�l

beause x

�1

1

x

2

= u

�1

uu

n

= u

n

and

u

n

2 G

fv

m

j�n�mg

by part (a). Now assume the statement holds true for i 2 N and

onsider x

i+1

= x

i

u

in

. Then x

i+1

62 G

v

�l�in

beause u

in

62 G

v

�l�in

by part (a)

whereas x

i

2 G

v

�l�in

by part (b). Also, x

i+1

v

�l�jn

= x

i

v

�l�jn

for all 0 � j � i�1

sine x

i+1

= x

i

u

in

and u

in

2 G

fv

m

j�in�mg

by part (a). �

By Lemma VI.9, the sequene (x

i

)

i2N

� U

��

\U

+

� U has the following shape,

analogous to [M�ol02, Figure 1℄.

� � �

bbb

0

�l

�n

x

1

� � �

bbbbb

0

�l

�n

�l� n

�2n

x

2

� � �

bbbbbbbb

0

�l

�n

�l� n

�2n

�k(n + 1)

�kn

� � �

x

k

� � �

bbbbbbbb

0

�l

�n

�l� n

�2n

�k(n + 1)

�kn

� � �� � �

x

Now, sine U is ompat, the sequene (x

i

)

i2N

� U

��

\U

+

� U has an aumulation

point x 2 U . However, x 62 U

��

and hene U

��

is not losed.
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For part (ii), note that U

+

� U

++

\ U by de�nition. Hene, towards a on-

tradition, we assume that there is u 2 (U

++

\ U)nU

+

. Sine U is tidy above

we may deompose u = u

+

u

�

with u

+

2 U

+

and u

�

2 U

�

. Replaing u with

u

�1

+

u 2 (U

++

\ U)nU

+

we may hene assume u 2 U

�

.

Now, sine u 2 U

++

, there is an �-regressive trajetory (u

n

)

n2N

of u in G

suh that for some N 2 N we have u

n

2 U

+

for all n � N and u

N�1

62 U .

Consider the element u

N

2 U . For n � N we have �

n

(u

N

) = �

n�N

(u) 2 U

�

.

Hene u

N

2 U

��

\ U . However, u

N

62 U

�

: Indeed, u

N

62 G

v

�1

= �

�1

(U) beause

u

N�1

62 U . Therefore, by part (i), U

��

is not losed. �

1.3. Tidiness. Finally, we ombine the previous setions in order to hara-

terize tidiness in terms of a subgraph of the graph � introdued above. As before, let

G be a t.d.l.. group, � 2 End(G) and U � G ompat open. Reall the de�nition

v

�i

:=�

�i

(U) 2 P(G) for i 2 N

0

. We onsider the subgraph �

+

of � de�ned by

V (�

+

) := fuv

�i

j u 2 U; i 2 N

0

g; E(�

+

) := f(uv

�i

; uv

�i�1

) j u 2 U; i 2 N

0

g:

Note that the ation of U � G on � preserves �

+

� � and that �

+

= des(v

0

).

Lemma VI.10. Let G be a t.d.l.. group, � 2 End(G) and U � G. If U is tidy above

for � then U ats transitively on ars of a given length issuing from v

0

2 V (�

+

).

Proof. Given that out

�

+

(v

�n+1

) = [�

�n+1

(U) : �

�n+1

(U) \ �

�n

(U)℄ as well as

U

fv

�k

jk�n�1g

=U

�n+1

, this follows by indution from Proposition VI.6. �

We are now ready to haraterize tidiness of U in terms of �

+

when the set

fv

�i

j i 2 N

0

g is in�nite. Conerning the ase where fv

�i

j i 2 N

0

g is �nite,

Theorem VI.11 is omplemented by Lemma VI.1.

Theorem VI.11. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

Assume fv

�i

j i 2 N

0

g is in�nite. Then U is tidy for � if and only if �

+

is a direted

tree with onstant in-valeny 1, exluding v

0

, as well as onstant out-valeny.

Proof. First, assume that U is tidy for �. Notie that for a given i � 0, the in- and

out-valeny is onstant among the olletion of verties fuv

i

j u 2 Ug given that U

ats on �

+

by automorphisms.

Conerning in-valenies it therefore suÆes to show that eah v

�i

for i � 1

has in-valeny equal to one. Suppose otherwise, that is in(v

�i

) � 2 for some i � 1.

Then there is u 2 U

v

�i

� �

�i

(U) suh that uv

�i+1

6= v

�i+1

. By Theorem VI.5 we

may assume that u 2 U

+

. Now onsider u

0

:= �

i

(u) 2 U

++

\ U . Sine U is tidy

below, Lemma VI.8 shows that u

0

2 U

+

= U

++

\ U . But u 62 �

�i+1

(U) and hene

u

0

= �

i

(u) 62 �(U) � U

+

, a ontradition. Thus �

+

is a direted tree.

Conerning out-valenies, we may also restrit our attention to fv

�i

j i 2 N

0

g.

Note that out(v

0

) = jU

+

v

�1

j by Theorem VI.5 as U is tidy above. Furthermore,

out(v

�i

) = j(U\�

�i

(U))v

�i�1

j = j(U

+

\�

�i

(U))v

�i�1

j by the same theorem. Now,

sine �

+

is a tree and U

+

�xes v

0

, we obtain

out(v

�i

) = j(U

+

\ U

�i

)v

�i�1

j = j(U

�i

)

+

v

�i�1

j = jU

�i

v

�i�1

j

by Lemma VI.2. We onlude the argument by showing that

jU

�i

v

�i�1

j = jUv

�1

j = jU

+

v

�1

j:

On the one hand, we have jU

�i

v

�i�1

j � jUv

�1

j: Indeed, suppose u 2 U

�i

does not

�x v

�i�1

. Then �

i

(u) does not �x v

�1

. If it did, we would have �

i

(u) 2 �

�1

(U)

and hene u 2 �

�i�1

(U). On the other hand, jU

�i

v

�i�1

j � jUv

�1

j: Indeed, assume

u 2 U does not �x v

�1

, i.e. u 62 �

�1

(U). By Theorem VI.5, we may assume u 2 U

+

.

Pik an �-regressive trajetory (u

j

)

j2N

0

of u in U . Then �

i+1

(u

i

) = �(u) 62 U and

hene u

i

62 �

�i�1

(U), i.e. u

i

does not �x v

�i�1

.
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Now assume that �

+

has all the stated properties. Sine �

+

is a tree, we have

U

��

\U � U

�

while the reverse inlusion holds by de�nition. Hene U

��

is losed

by Lemma VI.8 and U is tidy below. Combining the onstant out-valeny assump-

tion with the fat that �

+

is a tree we obtain the equality jUv

�1

j = jU

�i

v

�i�1

j.

Next, jU

�i

v

�i�1

j = jU

i

v

�1

j sine jU

i

v

�1

j � jUv

�1

j and due to the following observa-

tion: If u 2 U

�i

is suh that uv

�i�1

6= v

�i�1

then �

i

(u) 2 �

i

(U

�i

) = U

i

by Lemma

IV.2 and �

n

(u)v

�1

6= v

�1

. Thus jU

i

v

�1

j � jU

�i

v

�i�1

j. Overall, jUv

�1

j = jU

i

v

�1

j.

Finally, to see that the above implies jUv

�1

j = jU

+

v

�1

j, let u 2 U . Then for

every i 2 N there is u

i

2 U

i

with uv

�1

= u

i

v

�1

. The sequene (u

i

)

i2N

is ontained

in U and hene admits a onvergent subsequene. Any suh subsequene onverges

to an element u

+

2

T

i�0

U

i

= U

+

whih oinides with u on v

�1

. Theorem VI.5

now implies that U is tidy above. �

The following Lemma is a useful test of tidiness as it relies only on alulating

inverse images and indies. It is, in a sense, an algebrai way to see if �

+

satis�es the

requirements of Theorem VI.11. We apply it multiple times in upoming setions.

Lemma VI.12. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

Then U is tidy for � if and only if [U : U\�

�n

(U)℄=[U : U\�

�1

(U)℄

n

for all n2N.

Proof. First, assume that U is tidy for �. If fv

�i

j i 2 N

0

g is �nite, then for some

N 2 N

0

we have [U

�N

: U

�N�1

℄ = 1 by Lemma VI.1 and Proposition VI.6 shows

that 1 = [U : U \ �

�1

(U)℄ whih implies �

�1

(U) � U . Therefore �

�n

(U) � U for

all n 2 N and the assertion follows. Now assume that fv

�i

j i 2 N

0

g is in�nite.

Then �

+

is a rooted direted tree with onstant out-valeny d and we obtain

[U : U \ �

�n

(U)℄ = [U

v

0

: U

v

0

\ U

v

�n

℄ = jUv

�n

j = d

n

= [U : U \ �

�1

(U)℄

n

by the orbit-stabilizer theorem as desired.

Conversely, assume that [U : U\�

�n

(U)℄ = [U : U\�

�1

(U)℄

n

for all n 2 N and

onsider the graph �

+

. We have d := out(v

0

) = [U

v

0

: U

v

0

\U

v

�1

℄ = [U : U\�

�1

(U)℄

as before. By de�nition of �

+

, the out-valeny of any other vertex is at most d. But

jUv

�n

j = [U

v

0

: U

v

0

\ U

v

�n

℄ = [U : U \ �

�n

(U)℄ = [U : U \ �

�1

(U)℄

n

= d

n

by assumption. Thus, every vertex has out-valeny equal to d. Hene �

+

is a tree

of onstant in-valeny 1, exluding v

0

, and U is tidy for � by Theorem VI.11. �

2. A Graph-Theoreti Tidying Proedure

Let G be a totally disonneted, loally ompat group and let � 2 End(G).

We show that there is a ompat open subgroup of G whih is tidy for �.

The proof is algorithmi: Starting from an arbitrary ompat open subgroup

we onstrut a loally �nite graph �

++

. A ertain quotient, inspired by [M�ol00℄,

of this graph has a onneted omponent isomorphi to a regular rooted tree whih

admits an ation of a subgroup of G. The stabilizer of the root in this tree is the

desired tidy subgroup.

For the remainder of the setion, �x U � G ompat open. Refering to Lemma

VI.1, we shall assume throughout that f�

�i

(U) j i 2 N

0

g is in�nite. By Theorem

VI.4 we may also assume that U is tidy above for �.

2.1. The Graph �

++

. Consider the graph �

++

de�ned by

V (�

++

)=fuv

�i

j u 2 U

++

, i 2 N

0

g; and

E(�

++

)=f(uv

�i

; uv

�i�1

) j u 2 U

++

, i 2 N

0

g:

The following remark will be used in the proof of Theorem VI.26.
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Remark VI.13. Note that �

++

is a subgraph of �. Also, if U is tidy above for �,

the graphs �

+

and � have the same out-valeny by Theorem VI.5. Consequently,

des

�

(v

0

) = �

+

� des

�

++

(v

0

) � des

�

(v

0

) = �

+

. Hene des

�

++

(v

0

) = �

+

.

The following Lemma will help to identify verties in �

++

as (un)equal. It is

immediate from the assumption that f�

�i

(U) j i 2 N

0

g is in�nite and the fat that

left osets of distint subgroups are distint.

Lemma VI.14. Retain the above notation and let u

0

v

�i

, u

1

v

�j

2 V (�

++

) � P(G).

If u

0

v

�i

= u

1

v

�j

then i = j. �

Note that U

++

ats on �

++

by automorphisms. We now de�ne an injetive

graph endomorphism of �

++

that appears frequently. Let uv

i

2 V (�

++

) where

u 2 U

++

. Sine �(U

++

) = U

++

, there exists u

0

2 U

++

suh that �(u

0

) = u. De�ne

�(uv

i

) = u

0

v

i�1

. The following proposition summarizes the properties of � and

inludes justi�ation that � is a well-de�ned.

Proposition VI.15. Retain the above notation. The map � is a graph isomorphism

from �

++

to �(�

++

) where

V (�(�

++

)) = fuv

�i

j u 2 U

++

, i 2 Ng; and

E(�(�

++

)) = f(uv

�i

; uv

�i�1

) j u 2 U

++

, i 2 Ng:

Proof. We �rst show � is well-de�ned. Suppose u

0

v

�i

; u

1

v

�i

2 V (�

++

) represent

the same vertex. Then u

�1

0

u

1

2�

�i

(U). Choose w

0

; w

1

2 U

++

with �(w

i

) = u

i

for

i 2 f0; 1g. Then �(w

�1

0

w

1

) = u

�1

0

u

1

2 �

�i

(U) and so w

�1

0

w

1

2 �

�i�1

(U). This

implies w

0

v

�i�1

= w

1

v

�i�1

. By Lemma VI.14, this is enough to show that setting

�(u

0

v

�i

) = w

0

v

�i�1

is well-de�ned.

To see that � is injetive suppose that �(u

0

v

�i

) = �(u

1

v

�i

). Then there are w

0

and w

1

suh that w

0

v

�i�1

= w

1

v

�i�1

and �(w

i

) = u

i

(i 2 f0; 1g). In partiular,

w

�1

0

w

1

2 �

�i�1

(U) and so �(w

�1

0

w

1

) = u

�1

0

u

1

2 �

�i

(U). Thus u

0

v

�1

= u

1

v

�i

.

As to V (�(�

++

)) we have, V (�(�

++

)) � fuv

�i

j u 2 U

++

; i 2 Ng by de�nition

as �(U

++

) = U

++

. Equality follows from Lemma VI.14.

To see that � preserves the edge relation, let (uv

�i

; uv

�i�1

) 2 E(�

++

). Choose

u

0

2 U

++

with �(u

0

)=u. Then (�(uv

�i

); �(uv

�i�1

))=(u

0

v

�i�1

; u

0

v

�i�2

) 2 E(�

++

).

Thus � is a graph morphism.

Again, we have E(�(�

++

)) � f(uv

�i

; uv

�i�1

) j u 2 U

++

, i 2 Ng by de�nition

as �(U

++

) = U

++

and equality by Lemma VI.14. �

The following two results apture ar-transitivity of the ation of U

++

on �

++

.

Lemma VI.16. Retain the above notation. Let 

0

and 

1

be ars of equal length in

�

++

and with origin uv

0

(u 2 U

++

). Then there is g 2 U

++

suh that g

0

= 

1

.

Proof. Note that u

�1



i

(i 2 f0; 1g) is an ar with origin v

0

and thus is ontained in

des

�

++

(v

0

). Remark VI.13 and Lemma VI.10 show that there exists u

0

2 U

+

suh

that u

0

u

�1



0

= u

�1



1

. Then uu

0

u

�1

2 U

++

and g := uu

0

u

�1

serves. �

In the following, we write [v

0

; v

�k

℄ for the ar (v

0

; : : : ; v

�k

).

Proposition VI.17. Retain the above notation. Let 

0

and 

1

be ars in �

++

of

equal length. Then there are u 2 U

++

and n 2 N

0

with either u�

n



0

= 

1

or

u�

n



1

= 

0

. If 

0

and 

1

both terminate at v

�i

(i 2 N), we may hoose n = 0 and

u 2 U

++

\ U

��

.

Proof. Suppose 

0

originates at u

i

v

�i

0

and 

1

originates at u

1

v

�i

1

. Without loss

of generality assume i

0

� i

1

. Then �

i

0

�i

1

(

1

) originates at u

0

1

v

�i

0

= �

i

0

�i

1

(u

1

v

�i

1

)

for some u

0

1

2 U

++

. For the �rst assertion it therefore suÆes to show that for any
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two ars 

0

and 

1

originating at verties u

0

v

�i

and u

1

v

�i

(u

0

; u

1

2 U

++

), there

exists u 2 U

++

with u

0

= 

1

. Further still, by onsidering the image of 

1

under

multipliation by u

0

u

�1

1

, we an assume the u

0

= u

1

. Now we an extend 

j

to



0

j

by onatenating on the left with the path (u

0

v

0

; : : : ; u

0

v

�i

). By Lemma VI.16,

there exists u 2 U

++

suh that u

0

0

= 

0

1

. We must neessarily have u

0

= 

1

.

For the seond assertion, let  be an ar terminating in v

�k

. It suÆes to show

that there is g 2 U

++

\U

��

suh that g � [v

0

; v

�k

℄. Extending  if neessary, we

an assume without loss of generality that  originates at some uv

0

where u 2 U

++

.

We now onstrut g 2 U

++

\ U

��

suh that g = [v

0

; v

�k

℄. By Lemma VI.16,

there exists u

0

2 U

++

suh that u

0

 = [v

0

; v

�k

℄. Applying Lemma VI.16, for eah

n 2 N

0

there exist w

n

2 U

++

suh that

w

n

(v

0

; : : : ; v

�k

; u

0

v

�k�1

; : : : ; u

0

v

�k�n

) = [v

0

; v

�k�n

℄:

The sequene (w

n

)

n2N

is ontained in U as eah element �xes v

0

. It hene admits a

subsequene onverging to some w

0

2 U . Put g := w

0

u

0

2 U

++

. Sine the permuta-

tion topology is oarser than the topology on G, we get g(v

�l

) = v

�l

for all l � k.

That is, g 2 U

��

and g = [v

0

; v

�k

℄. �

Remark VI.18. Restriting Proposition VI.17 to the ase where 

0

and 

1

are single

verties we onlude that for any two verties u

0

; u

1

2 V (�

++

), there are n 2 N

0

and u 2 U

++

suh that either u�

n

(u

0

) = u

1

or u�

n

(u

1

) = u

0

.

We now show that �

++

is loally �nite. We will need the following Lemma whih

is a onsequene of [Wil15, Proposition 4℄ given that L

U

, see [Wil15, De�nition

5℄, is preisely U

++

\ U

��

.

Lemma VI.19. The losure of U

++

\ U

��

is ompat. �

The last assertion of the following proposition will be used to show that �

++

admits a well-de�ned \depth" funtion.

Proposition VI.20. Retain the above notation. The graph �

++

(i) has onstant out-valeny,

(ii) has onstant in-valeny among the verties fuv

�i

j u 2 U

++

; i 2 Ng,

(iii) satis�es that the in-valeny of uv

0

(u 2 U

++

) is 0,

(iv) is loally �nite, and

(v) satis�es that every ar from uv

�i

to u

0

v

�i�k

(u; u

0

2 U

++

; i; k 2 N

0

) has

length k.

Proof. If u

0

; u

1

2 V (�

++

), then by Remark VI.18 and swapping u

0

with u

1

if

neessary, there are g 2 U

++

and n 2 N

0

suh that g�

n

(u

0

) = u

1

. Proposition VI.15,

shows that j out(u

1

)j = j out(�

n

(u

0

))j, hene (i). Similarly, in(u) = in(g�

n

(u

0

)) if

neither u

0

and u

1

are of the form uv

0

for some u 2 U

++

and therefore (ii) holds.

The assertion that j in(uv

0

)j = 0 follows sine for every edge (u

0

v

�i

; u

0

v

�i�1

)

we have u

0

v

�i�1

6= uv

0

by Lemma VI.14.

For loal �niteness it now suÆes to show that both out(v

0

) and in(v

�1

) are

�nite. Note that by Remark VI.13 we have

j out(v

0

)j = jUv

�1

j = [U : U \ �

�1

(U)℄

whih is �nite by ompatness of U and ontinuity of �. To see that in(v

�1

) is

�nite, note that by Proposition VI.17 eah vertex of in(v

�1

) an be written as uv

0

where u 2 U

++

\ U

��

\ �

�1

(U). Conversely, any suh u yields a vertex in in(v

0

).

Thus

j in(v

�1

)j = [U

++

\ U

��

\ �

�1

(U) : U

++

\ U

��

\ �

�1

(U) \ U ℄:
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If u

0

; u

1

2 U

++

\U

��

\�

�1

(U) with u

0

u

�1

1

62 U then u

0

; u

1

2 U

++

\ U

��

\�

�1

(U)

a fortiori and u

0

u

�1

1

62 U . Thus

j in(v

�1

)j � [U

++

\ U

��

\ �

�1

(U) : U

++

\ U

��

\ �

�1

(U) \ U ℄:

Applying Lemma VI.19 and noting that �

�1

(U) is losed, U

++

\ U

��

\ �

�1

(U) is

ompat. Furthermore, sine U is open, we derive that U

++

\ U

��

\ �

�1

(U) \ U

is open in U

++

\ U

��

\ �

�1

(U). Thus in(v

�1

) is �nite.

For part (v), let  be an ar from uv

�i

to uv

�i�k

. Note that by Proposition

VI.17, there is g 2 U

++

with g � (v

0

; v

�1

; : : :). By Lemma VI.14, guv

�i

= v

�i

and

gu

0

v

�i�k

= v

�i�k

. Thus g = (v

�i

; : : : ; v

�k

) has length k and so does  beause

U

++

ats by automorphisms. �

2.2. The quotient T . The tidying proedure relies on identifying a ertain

quotient T of �

++

as a forest of regular rooted trees. To de�ne this quotient, we �rst

introdue a \depth" funtion  : V (�

++

)! N on �

++

as follows: For v 2 V (�

++

),

hoose an ar  originating from some uv

0

(u 2 U

++

) and terminating at v. Set

 (v) to be the length of . The following is immediate from Proposition VI.20.

Lemma VI.21.Retain the above notation. The map  is well-de�ned and  (uv

�i

)= i

for all u 2 U

++

and i 2 N

0

. �

By virtue of Lemma VI.21 we may de�ne the level sets V

k

:=  

�1

(k) � V (�

++

)

for k � 0 and the edge sets E

k

:= f(w;w

0

) 2 E(�

++

) j  (w

0

) = kg for k � 1. It is

a onsequene of Lemma VI.21 and Lemma VI.14 that (w;w

0

) 2 E

k

if and only if

there is u 2 U

++

suh that (w;w

0

) = (uv

�k+1

; uv

�k

). On V

k

(k � 1) we introdue

an equivalene relation by w � w

0

if w and w

0

belong to the same onneted

omponent of �

++

nE

k

. Similarly, for w;w

0

2 V

0

we put w � w

0

if they belong to

the same onneted omponent of �

++

. Write [w℄ for the olletion of verties w

0

with w � w

0

. Note that for every g 2 U

++

and k 2 N

0

we have gV

k

= V

k

and

gE

k

= E

k

. Sine the ation of U

++

on �

++

preserves onneted omponents we see

that w � w

0

if and only if gw � gw

0

. The following Lemma extends this to �.

Lemma VI.22. Retain the above notation and let k 2 N

0

. Then �(V

k

)=V

k+1

and

�(E

k

) = E

k+1

. Hene, for w;w

0

2V (�

++

) we have w�w

0

if and only if �(w)��(w

0

).

Proof. The assertions �(V

k

) = V

k+1

and �(E

k

) = E

k+1

are immediate from the

de�nitions. Suppose now that w;w

0

2 V

k

are in the same onneted omponent of

�

++

nE

k

. By Proposition VI.15, this an our if and only if �(w); �(w

0

) 2 V

k+1

are

in the same onneted omponent of �(�

++

) nE

k+1

. By Proposition VI.20 and the

de�nition of E

k+1

, the embedding �(�

++

) ! �

++

maps onneted omponents of

�(�

++

)nE

k+1

to onneted omponents of �

++

nE

k+1

and is surjetive on V

k+1

. �

Lemma VI.23. Retain the above notation. There is N 2 N suh that for every

v 2 des

�

++

(v

0

) with  (v) � N we have in(v) � des

�

++

(v

0

).

Proof. By Proposition VI.20, we an hoose u

0

; : : : ; u

k

2 U

++

\ �

�1

(U) suh that

in(v

�1

) = fu

0

v

0

; : : : ; u

k

v

0

g. Sine u

i

2 U

++

for all i 2 f0; : : : ; kg, we may pik

�-regressive trajetories (w

i

j

)

j2N

0

and N

i

2 N suh that w

i

0

= u

i

and w

i

n

2 U for

all n � N

i

. Set N = maxfN

i

j i 2 f0; : : : ; kgg+ 1.

Suppose n � N . To see that in(v

�n

) � des

�

++

(v

0

) note that by Proposition

VI.20 we have in(v

�n

) = �

n�1

(in(v

�1

)) = fw

i

n�1

v

�N+1

j i 2 f0; : : : ; kgg. Sine

n� 1 � N

i

for all i2f0; : : : ; kg, the path (w

i

n�1

v

0

; : : : ; w

i

n�1

v

�n+1

) is ontained in

des

�

++

(v

0

). This shows in(v

�n

) � des

�

++

(v

0

).

In general, let v 2 des

�

++

(v

0

) with  (v) = n � N . Applying Proposition

VI.17 to the ar (v

0

; : : : ; v

�n

) and any ar onneting v

0

to v, there is u 2 U \U

++



60 VI. TIDINESS AND SCALE VIA GRAPHS

suh that uv

�n

= v. Furthermore, u des

�

++

(v

0

) = des

�

++

(v

0

) as uv

0

= v

0

and it

follows that in(v) = u in(v

�n

) � des

�

++

(v

0

). �

Lemma VI.24. Retain the above notation. Then the equivalene lasses on �

++

indued by � have �nite onstant size.

Proof. By Proposition VI.17 and Lemma VI.22, it suÆes to show that a single

equivalene lass is �nite. Using Lemma VI.23, hoose N 2 N suh that for every

v 2 des

�

++

(v

0

) with  (v) � N we have in(v) � des(v

0

). We show that [v

�N

℄ �

des

�

++

(v

0

). Sine des(v

0

) \ V

k

is �nite for all k 2 N, this assertion will follow.

Suppose v 2 [v

�N

℄. Then v

�N

and v are in the same onneted omponent of

�

++

nE

N

. Hene there is a path from v

�N

to v ontained in �

++

nE

N

. Choosing ars

within this path and extending them to V

N

if neessary, we see that there are ver-

ties u

0

; : : : ; u

n

2 V

N

with u

0

= v

�N

, u

n

= v and des

�

++

(u

i

)\des

�

++

(u

i+1

) 6= ;.

We use indution to show that u

i

2 des

�

++

(v

0

). Clearly, u

0

= v

�N

2 des

�

++

(v

0

).

Suppose u

k

2 des

�

++

(v

0

) and let (w

0

; : : : ; w

l

) be an ar suh that w

0

= u

k+1

and

w

l

2 des

�

++

(u

k

)\des

�

++

(u

k+1

). Then w

l

2 des

�

++

(v

0

) and  (w

�l

) = N+l > N .

This implies w

l�1

2 in(w

l

) � des

�

++

(v

0

) by the hoie of N . Repeating this pro-

ess until we have u

k+1

= w

0

2 in(w

1

) � des

�

++

(v

0

) ompletes the indution. �

Now de�ne a direted graph T as the quotient of �

++

by the vertex equivalene

relation introdued above. In partiular, ([w℄; [w

0

℄) is an edge in T if and only if there

are representatives w 2 [w℄ and w

0

2 [w

0

℄ suh that (w;w

0

) is an edge in �

++

. The

following result ollets properties of T . For the statement, we let d

+

= j out

�

++

(v

0

)j

and d

�

= j in

�

++

(v

�1

)j. We let ' : �

++

! T denote the quotient map.

Lemma VI.25. Retain the above notation. The quotient T is a forest of regular

rooted trees of degree d

+

=d

�

. The map � and the ation of U

++

on �

++

desend

to T . Furthermore, we have the following.

(i) The map � is a graph morphism from T onto �(T ) where

V (�(T )) = f[uv

�i

℄ j u 2 U

++

; i 2 Ng; and

E(�(T )) = f([uv

�i

℄; [uv

�i�1

℄) j u 2 U

++

; i 2 Ng:

(ii) For every v 2 V (T ), the stabilizer (U

++

)

v

ats transitively on out

T

(v).

Proof. It is lear that if v 2 V (�

++

)\V

0

, then j in

T

([v℄)j = 0 sine j in

�

++

(u)j = 0 for

all u 2 V

0

. We now show that if v 2 �

++

nV

0

, then j in

T

([v℄)j=1. Sine j in

�

++

(v)j�1,

we have j in

T

([v℄)j � 1. Suppose now that (u

0

; [v℄) and (u

1

; [v℄) are edges in T .

Then there are representatives u

0

i

; w

0

i

2 V (�

++

) suh that u

0

i

2 [u

i

℄, w

i

2 [v℄ and

(u

0

i

; w

0

i

)2E(�

++

) for i2f0; 1g. In partiular,w

0

is in the same onneted omponent

of �

++

n E

 (w

0

)

as w

1

. Consequently, u

0

0

is in the same onneted omponent of

E

 (w

0

)�1

as u

0

1

. As  (u

0

0

) =  (w

0

) � 1 =  (w

1

) � 1 =  (u

0

1

), this shows that

u

0

= [u

0

0

℄ = [u

0

1

℄ = u

1

and so (u

0

; [v℄) = (u

1

; [v℄). Hene j in([v℄)j = 1.

The map � and the ation of U

++

on �

++

desend to T by Lemma VI.22

and the preeding paragraph. The assertions onerning � and �(T ) are immediate

from Proposition VI.15. The same Proposition implies u�

n

(in

T

(v)) = in

T

(u�

n

(v)).

Proposition VI.17 shows that an analogue of Remark VI.18 also holds for T . Hene

T is a forest of regular rooted trees and has onstant out-valeny.

Let d denote the out-valeny of T . As in [M�ol00, Lemma 5℄, we argue that

d = d

+

=d

�

. By Lemma VI.24, equivalene lasses of verties in �

++

have onstant

�nite order k 2 N. Given v 2 V (T ), let A := '

�1

(v). The d edges issuing from v

end in verties w

1

; : : : ; w

d

2 V (T ). Put B := '

�1

(fw

1

; : : : ; w

d

g). Then all edges in

�

++

ending in B originate in A beause T has in-valeny 1. The number of edges

issuing from A, whih is kd

+

, and the number of edges terminating in B, whih is

kdd

�

, are thus equal. Hene d = d

+

=d

�

.
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For (ii), let v 2 V (T ) and u

0

; u

1

2 out

T

(v). Pik representatives w

0

; w

0

0

; w

1

; w

0

1

in V (�

++

) suh that ([w

i

℄; [w

0

i

℄) = (v; u

i

) for i 2 f0; 1g and hoose g 2 U

++

suh

that g(w

0

; w

0

0

) = (w

1

; w

0

1

) by Proposition VI.17. Then gv = v and gu

0

= u

1

. �

Theorem VI.26. Let G be a t.d.l.. group and � 2 End(G). Then there exists a

ompat open subgroup V � G whih is tidy for �.

Proof. By Lemma VI.1 we may assume that fv

�i

j i 2 N

0

g is in�nite. Furthermore,

by Theorem VI.4, we may assume that U is tidy above for �.

For i 2 N

0

, let v

0

i

:= '(v

i

) 2 V (T ). In view of the fat that �

++

� �, onsider

V := G

fX

0

g

where X

0

:= [v

0

℄ � V (�

++

) is the equivalene lass of v

0

in �

++

. Then

V is open in the permutation topology oming from � as G

X

0

� V = G

fX

0

g

and

hene also open (and losed) in G. Sine X

0

is �nite by Lemma VI.24 we onlude

that V is ompat as it ontains the ompat group U as a �nite index subgroup.

We have des

�

++

(X

0

) = des

�

(X

0

) by Remark VI.13. Sine the group V pre-

serves des

�

(X

0

) it ats on des

�

++

(X

0

) by automorphisms.

It is lear that V preserves V

k

, E

k

and onneted omponents. So the ation

of V desends to T and V stabilizes v

0

0

2 V (T ). Note that (U

++

)

v

0

0

� V and so

iterated appliation of Lemma VI.25 shows that V ats transitively on verties of

�xed depth in T . Also, V

v

0

i

= V \ �

�i

(V ): Suppose g 2 V and gv

i

= uv

i

, where

u 2 U

++

. Then g

�1

u 2 �

�i

(U). Thus �

i

(g

�1

u) 2 U and so �

i

(g)v

0

= �

i

(u)v

0

.

Applying Lemma VI.22, we see that gv

i

� v

i

if and only if �

i

(g)v

0

� v

0

. Finally,

applying the orbit-stabilizer theorem and Lemma VI.25 we have

[V : V \ �

�n

(V )℄ = jV v

0

�n

j = (d

+

=d

�

)

n

= jV v

0

�1

j

n

= [V : V \ �

�1

(V )℄

n

:

for all n 2 N. Hene V is tidy for � by Lemma VI.12 �

Remark VI.27. Retain the above notation and assume that U is tidy. We argue

that in this ase �

++

and T oinide: It suÆes to show that jin(v)j = 1 for some

v = uv

�i

with i > 0 as Proposition VI.20 shows that the relation � on �

++

is trivial. By Remark VI.13 and Theorem VI.11, the graph des

�

++

(v

0

) = �

+

is

already a tree. Lemma VI.23 shows that there exists a vertex v with in(v) � �

+

.

Thus jin(v)j = 1.

The following lemma will be used in Setion 4.

Lemma VI.28. Suppose U is tidy for �. Then U

++

\ U

��

� U

+

\ U

�

� U .

Proof. Sine U is tidy for �, the graph �

++

is a forest of rooted trees by Remark

VI.27 . Note that for eah u 2 U

++

\U

��

, there exists i 2 N

0

suh that uv

�i

= v

�i

.

Hene U

++

\U

��

preserves des

�

++

(v

0

). Sine this is a tree with root v

0

, U

++

\U

��

is ontained within stab

G

(v

0

) = U . The laim now follows from Lemma VI.8. �

3. The Sale Funtion and Tidy Subgroups

In this setion we link the onept of tidy subgroups to the sale funtion

and thereby reover results of [Wil15℄ in a geometri manner. First, we make a

preliminary investigation into the intersetion of tidy subgroups. Let G be a t.d.l..

group, � 2 End(G) and U

(1)

; U

(2)

� G ompat open as well as tidy for �.

Proposition VI.29. Retain the above notation. Then

[U

(1)

: U

(1)

\ �

�1

(U

(1)

)℄ = [U

(2)

: U

(2)

\ �

�1

(U

(2)

)℄

To prove Proposition VI.29, we need some preparatory lemmas onerning in-

verse images of U

(1)

and U

(2)

. The �rst one omplements Lemma VI.1.
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Lemma VI.30. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open

and tidy above for �. If f�

�n

(U) j n 2 N

0

g is �nite then �(U) = U = �

�1

(U).

Proof. By assumption, the intersetion

T

1

k=0

�

�k

(U) has only �nitely many terms

and hene stabilizes eventually. For suÆiently large n 2 N

0

we therefore have

[U

�n

: U

�n�1

℄ = 1. By Proposition VI.6, we get for all m 2 N

0

that

1=[U

�n

: U

�n�1

℄=[U : U

�1

℄ = [U

�m

: U

�m�1

℄=[�

�m

(U) : �

�m

(U) \ �

�m�1

(U)℄:

For m = 1, we obtain [U : U

�1

℄ = [U : U \ �

�1

(U)℄ = 1 = [�

�1

(U) : U \ �

�1

(U)℄.

That is, �

�1

(U) � U and U � �

�1

(U) whih yields the assertion. �

The next lemma settles Proposition VI.29 when both f�

�n

(U

(1)

) j n 2 N

0

g

and f�

�n

(U

(2)

) j n 2 N

0

g are �nite.

Lemma VI.31. Retain the above notation. If f�

�n

(U

(i)

) j n 2 N

0

g is �nite for both

i 2 f1; 2g then [U

(1)

: U

(1)

\�

�1

(U

(1)

)℄=[U

(2)

: U

(2)

\�

�1

(U

(2)

)℄ and U

(1)

\U

(2)

is

tidy for �.

Proof. The �rst assertion follows from Lemma VI.30. By the same Lemma we have

�

�1

(U

(1)

\ U

(2)

) = �

�1

(U

(1)

) \ �

�1

(U

(2)

) = U

(1)

\ U

(2)

. Lemma VI.1 now entails

that (U

(1)

\ U

(2)

)

�

= U

(1)

\ U

(2)

is tidy for �. �

Retain the above notation and set V := U

(1)

\ U

(2)

. Consider the graph �

+

assoiated to V .

Lemma VI.32. Retain the above notation. Then either �

+

is a direted in�nite tree,

rooted at v

0

, with onstant in-valeny 1 exluding the root, or there exists n 2 N

0

suh that �

�n

(V )=�

�n�k

(V ) for all k 2 N

0

.

Proof. Note that if �

�n

(V ) = �

�n�1

(V ) then �

�n

(V ) = �

�n�k

(V ) for all k 2 N

0

.

Suppose instead that �

�n

(V ) 6= �

�n�1

(V ) for all n 2 N

0

. By Lemma VI.31 we

may assume, without loss of generality, that f�

�n

(U

(1)

) j n 2 N

0

g is in�nite. In

partiular, we may onsider the graph �

(1)

+

assoiated to U

(1)

whih is an in�nite

rooted tree by Theorem VI.11.

We have to show that �

+

does not ontain a yle, the in-valeny of v

0

2 V (�

+

)

is 0 and the in-valeny of every other vertex in �

+

is preisely 1. Note that every

vertex exluding v

0

has in-valeny at least 1: By assumption, v

�i

6= v

�i�1

for all

i 2 N. In partiular v

�i

2 in(v

�i�1

) for all i 2 N.

Now, suppose there is a yle (u

0

v

�i

; : : : ; u

n

v

�i�n

= u

0

v

�i

) in �

+

, where u

j

2

V for all j 2 f0; : : : ; ng. Then �

�i

(V ) = �

�i�n

(V ) and so (v

�i

; : : : ; v

�i�n

) is

a non-trivial yle. We aim to show that v

�i

has in-valeny at least 2 in this

ase. We an hoose u 2 �

�i�1

(V )n�

�i

(V ): If �

�i�1

(V ) � �

�i

(V ) then iterated

appliations of �

�1

show �

�i

(V )��

�i�1

(V )��

�i�n

(V )=�

�i

(V ), in ontradition

to the assumption. Sine �

�i�1

(V ) = �

�1

�

�i

(V ) = �

�1

�

�i�n

(V ), we also obtain

u 2 �

�i�n�1

(V )n�

�n�i

(V ). This implies that (uv

�i�n

; v

�i�n�1

) is an edge in �

+

whih is distint from (v

�n�i

; v

�n�i�1

).

Noting that if v

0

has non-zero in-valeny then we have a yle, it remains to

show that no vertex has in-valeny at least 2. We split into two ases: First, onsider

the ase where f�

�n

(U

(2)

) j n 2 N

0

g is �nite. Then �

�n

(U

(2)

) = U

(2)

for all n 2 N

0

by Lemma VI.30 and

j in

�

+

(v

i

)j = [�

�i

(V ) : �

�i

\ �

�i+1

(V )℄

= [�

�i

(U

(1)

) \ U

(2)

: �

�i

(U

(1)

) \ �

�i+1

(U

(1)

) \ U

(2)

℄

� [�

�i

(U

(1)

) : �

�i

(U

(1)

) \ �

�i+1

(U

(1)

)℄ = j in

�

(1)

+

(v

(1)

�i

)j = 1

for all i 2 N whih suÆes.
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In the ase where f�

�n

(U

(2)

) j n 2 N

0

g is in�nite, suppose for the sake of a

ontradition that uv

�n

2 V (�

+

) (n 2 N) has in-valeny at least 2. Choose ver-

ties wv

�n+1

; zv

�n+1

2 V (�

+

) suh that (wv

�n+1

; uv

�n

) and (zv

�n+1

; vv

�n

) are

distint edges in �

+

. Let '

i

: �

+

! �

(i)

+

(i 2 f1; 2g) be the graph morphism given

by '

i

(uv

�j

) = uv

(i)

�j

for all j 2 N

0

and u 2 V � U

(i)

. Sine eah vertex exluding

the root in �

(i)

+

has in-valeny 1, we have '

i

(wv

�n+1

) = '

i

(zv

�n+1

). This im-

plies w

�1

z 2 �

�n+1

(U

(1)

) \ �

�n+1

(U

(2)

) = �

�n+1

(V ). Thus wv

�n+1

= zv

�n+1

in

ontradition to the assumption. �

Set k

i

= [U

(i)

: V ℄ and d

i

= [U

(i)

: U

(i)

\ �

�1

(U

(i)

)℄.

Lemma VI.33. Retain the above notation. We have k

i

d

n

i

� jV v

�n

j � d

n

i

=k

i

. Also,

if f�

�i

(V ) j i 2 N

0

g is �nite then d

1

= 1 = d

2

.

Proof. Sine U

(i)

is tidy, either the graph �

(i)

+

is a tree with out-valeny d

i

by

Theorem VI.11, or f�

�i

(U

(i)

) j i 2 N

0

g is �nite and �(U

(i)

) = U

(i)

= �

�1

(U

(i)

) by

Lemma VI.30, whene d

i

= 1. In both ases, k

i

d

n

i

= k

i

jU

(i)

v

(i)

�n

j, as the following

arguments show: In the former ase this follows from Lemma VI.10, in the latter

we have v

(i)

�n

= v

(i)

0

whene jU

(i)

v

(i)

�n

j = 1. Next, we have

k

i

jU

(i)

v

(i)

�n

j = [U

(i)

: V ℄[U

(i)

: U

(i)

\ �

�n

(U

(i)

)℄:

Sine [�

�n

(U

(i)

) : �

�n

(V )℄ � [U

(i)

: V ℄ we obtain

k

i

jU

(i)

v

(i)

�n

j � [U

(i)

: U

(i)

\ �

�n

(U

(i)

)℄[�

�n

(U

(i)

) : �

�n

(V )℄

� [U

(i)

: U

(i)

\ �

�n

(U

(i)

)℄[�

�n

(U

(i)

) \ U

(i)

: U

(i)

\ �

�n

(V )℄

= [U

(i)

: U

(i)

\ �

�n

(V )℄

= jU

(i)

v

�n

j

where U

(i)

v

�n

is the orbit of v

�n

under the ation U

(i)

in P(G). Sine V � U

(i)

,

we have k

i

d

n

i

� jU

(i)

v

�n

j � jV v

�n

j whih is the �rst inequality.

Sine �

�n

(V ) = �

�n

(U

(1)

) \ �

�n

(U

(2)

) � �

�n

(U

(i)

), we have jV v

�n

j � jV v

(i)

�n

j

when onsidered as orbits in P(G). The orbit-stabilizer theorem now implies

jV v

(i)

�n

j =

[U

(i)

: V ℄[V : stab

V

(v

(i)

�n

)℄

[U

(i)

: V ℄

=

[U

(i)

: stab

V

(v

(i)

�n

)℄

k

i

�

[U

(i)

: stab

U

(i)

(v

(i)

�n

)℄

k

i

=

jUv

(i)

�n

j

k

i

=

d

n

i

k

i

;

as required. Finally, if f�

�i

(V ) j i 2 N

0

g is �nite, then �

�n

(V ) = �

�n�k

(V ) for

n suÆiently large and k 2 N

0

by Lemma VI.32. Thus (jV v

�n

j)

n2N

0

eventually

stabilizes. This implies d

i

= 1. �

Proof. (Proposition VI.29). By Lemma VI.33, we may assume that f�

�i

(V ) j i 2

N

0

g is in�nite. In this ase, Lemma VI.32 shows that �

+

is a rooted tree with root

v

0

. Let t

n

= j out

�

+

(v

�n

)j for n 2 N

0

. Sine �

+

is a rooted tree, t

n

= [V

�n

: V

�n�1

℄.

The sequene (t

n

)

n2N

0

is non-inreasing: Indeed, we have

t

n�1

= [V

�n+1

: V

�n

℄ � [V

�n

: V

�n�1

℄ = t

n

for all n 2 N by the following argument: If u; u

0

2 V

�n

with uV

�n�1

6= u

0

V

�n�1

,

then �(u) 2 �(V

�n

) � V

�n+1

by Lemma IV.2. Similarly �(u

0

) 2 V

�n+1

. However

sine u

�1

u

0

62 �

�n�1

(U), �(u

�1

)�(u

0

) 62 V

�n

.

Sine the sequene (t

n

)

n2N

0

is non-negative, non-inreasing and takes integer

values it is eventually onstant equal to some integer t. Sine �

+

is a tree, we have

jV v

�n

j =

Q

n�1

i=1

t

i

. Given that t

i

= t for almost all i2N

0

there is a onstant l 2 Q
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suh that jV v

�n

j = lt

n

for suÆiently large n. Then

k

i

d

n

i

� jV v

�n

j = lt

n

�

d

n

i

k

i

for large enough n 2 N and i 2 f1; 2g by the �rst laim. As a onsequene, we have

t = d

i

for i 2 f1; 2g whih implies the overall assertion. �

The following theorem links the onept of being tidy to the sale funtion.

Theorem VI.34. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

Then U is tidy for � if and only if U is minimizing for �. In this ase, we have

s(�) = j out

�

+

(v

0

)j.

Proof. Suppose that U is minimizing for �. If f�

�k

(U) j k 2 N

0

g is �nite then

s(�) = 1 by Lemma VI.1. Consequently, �(U) � U . Therefore, we have U = U

�

and U

��

� U

�

= U is open and hene losed.

Assume now that f�

�k

(U) j k 2 Ng is in�nite. First, we show that U is tidy

above for �. Suppose otherwise. Then by Theorem VI.4 and Lemma VI.3 there is

n 2 N suh that with v

�1

2 V (�) we have jU

n

v

�1

j = jU

+

v

�1

j � jUv

�1

j and so that

U

�n

is tidy above for �. Then

[�(U

�n

) : �(U

�n

) \ U

�n

℄ = [U

�n

: U

�n

\ �

�1

(U

�n

)℄ = [U

n

: U

n

\ �

�1

(U)℄

= jU

n

v

�1

j � jUv

�1

j = [U : U \ �

�1

(U)℄ = [�(U) : �(U) \ U ℄:

where the equalities follow by applying the appropriate power of � to the respetive

quotient, using Lemma IV.2. This ontradits the assumption that U is minimizing.

Now onsider the graph �

++

assoiated to U with out-valeny d

+

, and in-

valeny d

�

, exluding all v 2 V (�

++

) with  (v) = 0. Sine U is tidy above,

Theorem VI.5 and Remark VI.13 imply that

d

+

= jUv

�1

j = [U : U \ �

�1

(U)℄ = [�(U) : �(U) \ U ℄:

Let V denote the tidy subgroup onstruted from the graph �

++

assoiated to U

by Theorem VI.11. Then the quotient T of �

++

has out-valeny

d = [V : V \ �

�1

(V )℄ = [�(V ) : �(V ) \ V ℄:

Furthermore, d = d

+

=d

�

by Lemma VI.25. The fat that U is minimizing now

implies d

�

=1. It follows that �

+

is already a tree and U is tidy by Theorem VI.26.

Conversely, assume that U is tidy for �. Let V � G be a ompat open subgroup

whih is minimizing. Then V is tidy by the above and Proposition VI.29 implies

s(�)=[�(V ) : �(V )\V ℄=[V : V \�

�1

(V )℄=[U : U \�

�1

(U)℄=[�(U) : �(U)\U ℄:

That is, U is minimizing. �

Corollary VI.35. Let G be a t.d.l.. group and � 2 End(G). Then s(�

n

) = s(�)

n

.

Proof. By Theorem VI.26 there is a ompat open subgroup U � G whih is tidy

for �. Following Theorem VI.34 the group U is minimizing and therefore

s(�) = [�(U) : �(U) \ U ℄ = [U : U \ �

�1

(U)℄:

Sine U is also tidy for �

n

by Lemma VI.12 we onlude, using the same lemma, that

s(�

n

) = [�

n

(U) : �

n

(U)\U ℄ = [U : U \�

�n

(U)℄ = [U : U \�

�1

(U)℄

n

= s(�)

n

: �

M�oller's spetral radius formula [M�ol02, Theorem 7.7℄ for the sale may be

proven as in [Wil15, Proposition 18℄ but with referene to Theorem VI.26 for the

existene of tidy subgroups.

Theorem VI.36. Let G be a t.d.l.. group, � 2 End(G) and U � G ompat open.

Then s(�) = lim

n!1

[�

n

(U) : �

n

(U) \ U ℄

1=n

. �
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4. The Tree-Representation Theorem

In this setion, we prove an analogue of the following tree representation theo-

rem for automorphisms due to Baumgartner and Willis [BW04℄, see also [Hor15℄.

Theorem VI.37 ([BW04, Theorem 4.1℄). Let G be a t.d.l.. group, �2Aut(G) of

in�nite order and U�G ompat open as well as tidy for �. Then there is a regular

tree T of degree s(�) + 1 and a homomorphism ' : U

++

o h�i ! Aut(T ) suh that

(i) '(U

++

o h�i) �xes an end ! 2 �T and is transitive on �T n f!g,

(ii) the stabilizer of eah end in �T n f!g is onjugate to (U

+

\ U

�

)o h�i,

(iii) ker(') is the largest ompat normal subgroup N � U

++

with �(N) = N ,

(iv) '(U

++

) is the set of ellipti elements in '(U

++

o h�i).

To prove an analogous statement for endomorphisms, we let � 2 End(G) have

in�nite order and U � G ompat open as well as tidy for �. Let S := U

++

o h�i

be the topologial semidiret produt semigroup of the (semi)group U

++

� G and

the semigroup h�i � End(G), where End(G) is equipped with the ompat-open

topology and h�i ats ontinuously on U

++

by endomorphisms as �(U

++

) = U

++

,

see [CHK83, Theorem 2.9, Theorem 2.10℄. In partiular:

(1) Elements of S have the form (u; �

k

) for some u 2 U

++

and k 2 N

0

. We

identify (U

++

; id) with U

++

, and (id; h�i) with h�i.

(2) Composition in S is given by (u

0

; �

k

0

)(u

1

; �

k

1

) = (u

0

�

k

0

(u

1

); �

k

0

+k

1

).

(3) The topology on S is the produt topology on the set U

++

� h�i.

(4) The subsemigroup of S generated by (id; �) is isomorphi to (N;+) beause

� 2 End(G) has in�nite order.

We split the onstrution of the desired tree into the ases s(�)=1 and s(�) > 1.

First, assume s(�) > 1. Reall that v

�i

:= �

�i

(U) 2 P(G) for i � 0. We extend

this de�nition to positive indies by setting v

i

:= �

i

(U) 2 P(G) for all i 2 Z. The

following lemma shows that these verties are all distint.

Lemma VI.38. Retain the above notation. In partiular, assume s(�) > 1. Suppose

�

m

(U) = �

n

(U) for some n;m 2 Z. Then m = n.

Proof. For m;n � 0, an equality �

�m

(U) = �

�n

(U) with m 6= n implies that the

set f�

�k

(U) j k 2 N

0

g is �nite and hene s(�) = 1 by Lemma VI.1.

Now, let 0 � m < n. Then Lemma VI.7, Lemma VI.12 and Corollary VI.35

show that

s(�)

n

= [�

n

(U

+

) : U

+

℄

= [�

n

(U

+

) : �

m

(U

+

)℄[�

m

(U

+

) : U

+

℄

= [�

n

(U

+

) : �

m

(U

+

)℄s(�)

m

:

Sine m < n and s(�) > 1, we get [�

n

(U

+

) : �

m

(U

+

)℄ 6= 1. Hene there exists

u 2 �

n

(U

+

)n�

m

(U

+

) � �

n

(U). For the sake of a ontradition, suppose u 2 �

m

(U).

Sine U is tidy above, there exists u

�

2 U

�

suh that u = �

m

(u

+

)�

m

(u

�

). It

follows that �

m

(u

+

)

�1

u 2 �

n

(U

+

) � U

++

sine �

m

(U

+

) � �

n

(U

+

). Also, we have

�

m

(u

�

) 2 �

m

(U

�

) � U

�

� U

��

, and so applying Lemma VI.28,

�

m

(u

+

)

�1

u 2 U

++

\ U

��

� U

+

\ U

�

� �

m

(U

+

):

It follows that u 2 �

m

(U

+

), a ontradition. Thus u 62 �

m

(U) and �

n

(U) 6= �

m

(U).

Finally, suppose m < 0 < n and �

m

(U) = �

n

(U). Then �

m

(U) is a ompat

open subgroup whih is stabilized by �

n�m

. This shows s(�

n�m

) = 1 whih implies

s(�) = 1 by Corollary VI.35. This ontradits the assumption s(�) > 1. �
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We de�ne a direted graph �

++

by setting

V (�

++

) = fuv

i

j i 2 Z; u 2 U

++

g and E(�

++

) = f(uv

i

; uv

i�1

j i 2 Z; u 2 U

++

g:

Note that �

++

is a subgraph of �

++

and that U

++

ats on �

++

by automor-

phisms. We will show that the map �, de�ned in the paragraph preeding Propo-

sition VI.15, extends to an automorphism of �

++

. To do so, onsider the following

subgroups assoiated to �:

par

�

(�) := fx 2 G j there exists a bounded �-regressive trajetory for xg;

bik(�) := fx 2 par

�

(�) j �

n

(x) = e for some n 2 Ng:

It follows from [Wil15, Proposition 20℄, [Wil15, De�nition 12℄ and Theorem VI.34

that bik(�) � U . The same proposition implies that for u

1

; u

2

2 U

++

� par

�

(�)

with �(u

1

) = �(u

2

) we have u

�1

1

u

2

2 bik(�) � U .

Now de�ne � : �

++

! �

++

as follows: Given uv

i

2 V (�

++

), hoose u

0

2 U

++

suh that �(u

0

) = u and set �(uv

i

) = u

0

v

i�1

.

Proposition VI.39. Retain the above notation. Then � is an automorphism of �

++

.

Proof. We �rst show that � is well-de�ned: By Lemma VI.38, it suÆes to sup-

pose u

0

; u

1

; u

0

0

; u

0

1

2 U

++

and i 2 Z are suh that u

0

v

i

= u

1

v

i

, �(u

0

0

) = u

0

and

�(u

0

1

) = u

1

. Then u

�1

0

u

1

2 �

i

(U) and (u

0

0

)

�1

u

0

1

2 �

�1

(�

i

(U)) \ U

++

. For any

u

3

2 �

i�1

(U) with �(u

3

) = u

�1

0

u

1

we get ((u

0

0

)

�1

u

1

)

�1

u

3

2 bik(�) � �

i�1

(U)

as bik(�) � U and �(bik(�)) = bik(�). Hene (u

0

0

)

�1

u

1

2 �

i�1

(U). This shows

u

0

0

v

i�1

= u

0

1

v

i�1

, hene � is well-de�ned. To see that � is a bijetion on V (�

++

) note

�(�(u)v

i+1

) = uv

i

and that �

�1

de�ned by uv

i

7! �(u)v

i+1

is well-de�ned by the

following argument: If uv

i

= u

0

v

i

, then u

�1

u

0

2 �

i

(U) and �(u)

�1

�(u

0

) 2 �

i+1

(U).

Thus �(u)v

i+1

= �(u

0

)v

i+1

. �

Note that �

++

ontains �

++

as a subgraph and �

++

is a forest of rooted

regular trees by Remark VI.27. For v 2 V (�

++

), there is n 2 N

0

suh that �

n

(v) 2

V (�

++

). This shows that the in-valeny of v is 1. We �nd that �

++

is a regular

tree with onstant out-valeny s(�) by Theorem VI.11 and Remark VI.13. Sine

� is a translation in Aut(�

++

) we see that the subsemigroup generated by �

�1

is

isomorphi to (N;+).

De�ne ' : U

++

th�i ! Aut(�

++

) by '(u)(u

0

v

i

)=uu

0

v

i

for all u; u

0

2 U

++

and

'(�

k

) = �

�k

for all k 2 N

0

.

Lemma VI.40. Retain the above notation. The map ' extends to a ontinuous

semigroup homomorphism ' : S ! Aut(�

++

).

Proof. Note that ' extends separately both to a semigroup homomorphism of

U

++

, and the semigroup generated by �. To show that it extends to a semi-

group homomorphism of S it suÆes to show that '(�)'(u) = '(�(u))'(�). Then

'(u; �

n

) := '(u)'(�

n

) is well-de�ned for all u 2 U

++

and n 2 N

0

. Given a vertex

u

0

v

i

2 V (�

++

), we obtain as required:

'(�)'(u)u

0

v

i

= �

�1

(uu

0

v

i

) = �(uu

0

)v

i+1

= �(u)�

�1

(u

0

v

i

) = '(�(u))'(�)uv

i

:

To see that ' is ontinuous it suÆes to show that fx 2 S j '(x)w = w

0

g is open in

S for all w;w

0

2 V (�

++

). This follows from the fat that the stabilizer V of w

0

in

U

++

is an open subgroup of U

++

, so x is ontained in the open subset (V; id)x � S

and '((V; id)x)w = w

0

. �

We are now in a position to prove an analogue of Theorem VI.37 for endomor-

phisms.
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Theorem VI.41. Let G be a t.d.l.. group, � 2 End(G) of in�nite order, U � G

ompat open as well as tidy for �, and S := U

++

o h�i. Then there is a tree T

and a ontinuous semigroup homomorphism ' : S ! Aut(T ) suh that

(i) T has onstant valeny s(�) + 1,

(ii) '(S) �xes an end ! 2 �T and is transitive on �T n f!g,

(iii) ker(') is the largest ompat normal subgroup N � U

++

with �(N) = N ,

(iv) '(U

++

) is the set of ellipti elements of '(S).

Proof. First, assume s(�) > 1. Let T be the undireted graph underlying �

++

,

i.e. the graph with vertex set V (�

++

) and edge-relation the symmetri losure

of E(�

++

) � V (�

++

) � V (�

++

). The ontinuous semigroup homomorphism '

from S to Aut(�

++

) de�ned above indues a ontinuous semigroup homomorphism

S ! Aut(T ) for whih we use the same letter.

Part (i) is now immediate from the fat that every vertex in �

++

has out-

valeny s(�) and in-valeny 1.

For part (ii), let ! 2 �T be the end assoiated to the sequene (v

i

)

i2N

0

. Then

�(!) = !. If u 2 U

++

, then there exists an �-regressive trajetory for u eventually

ontained in U . That is u 2 �

n

(U) for all suÆiently large n 2 N whene uv

n

= v

n

for suÆiently large n. This shows that u! = !. Overall, we onlude '(S)! = !.

Now onsider the end �! 2 �T assoiated to the sequene (v

�i

)

i2N

0

. Given

another end !

0

2 �T de�ned by (u

k�i

v

k�i

)

i2N

0

for k 2 Z and a sequene (u

k�i

)

i2N

0

in U

++

, the sequene u

�1

k

�

k

!

0

represents an end !

00

2 �T originating from v

0

and

it suÆes to show that there is an element u 2 U

++

whih maps the sequene of

�! to that of !

00

. This is a onsequene of Lemma VI.16 by piking a onvergent

subsequene inside the ompat set U \ U

++

.

As to (iii), the kernel of ' onsists of those elements s 2 S suh that '(s) �xes

every vertex of T . That is,

ker(') = U

++

\

\

i2Z

\

u2U

++

u�

i

(U):

In partiular, ker(') is ompat and satis�es �(ker(')) = ker(') as �(U

++

) = U

++

.

Now, let N be any ompat normal subgroup of U

++

with �(N) = N . Then

'(N) � Aut(�

++

)

v

for some v 2 V (�

++

) beause '(N) is ompat by Lemma

VI.40. Sine N is normal in U

++

, we onlude that

'(N) = '(u)'(N)'(u)

�1

� '(N) \ Aut(�

++

)

'(u)v

� Aut(�

++

)

v;'(u)v

for all u 2 U

++

. Similarly, given that �(N) = N we have

'(N) = '(�(N))'(�)'(�)

�1

= '(�(N) Æ �)'(�)

�1

= '(� ÆN)'(�)

�1

= �

�1

'(N)� � Aut(�

++

)

v;�

�1

(v)

:

as well as

'(N) = '(�)

�1

'(�)'(N) = '(�)

�1

'(� ÆN)

= '(�)

�1

'(�(N))'(�) = �'(N)�

�1

� Aut(�

++

)

v;�(v)

:

As a onsequene, '(N) �xes every vertex in the orbit of v under the ation of the

group generated by '(S). This group ats vertex-transitively as it ontains '(U

++

)

and both � and �

�1

. This shows that '(N) �xes T , i.e. '(N) � ker'.

For part (iv), write s = (u; �

k

) (u 2 U

++

; k 2 N) for elements of S. Given that

'(�) = �

�1

, we neessarily have k = 0 in order for '(s) to �x a vertex, so s 2 U

++

.

Conversely, every element u 2 U

++

is ontained in �

n

(U) for all suÆiently large

n 2 N, so '(u) �xes v

n

for the same values of n.

Now, assume s(�) = 1. Then �(U

+

) = U

+

by Lemma VI.7. This shows that

U

++

= U

+

is a ompat subgroup with �(U

++

) = U

++

. Let T be the (undireted)
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tree with vertex set Z and i; j 2 V (T ) onneted by an edge whenever ji� jj = 1.

De�ne ' : S ! Aut(T ) by setting '(�) to be the translation of length 1 in the

diretion of ! := (i)

i2N

0

2 �T , and '(u) to be the identity automorphism of T for

all u 2 U

++

. Then ' satis�es all the onlusions of Theorem VI.41. �

Remark VI.42. The ation in Theorem VI.41 relates to Theorem VI.37 in the fol-

lowing manner: Results from [Wil15, Setion 9℄ show that if U is tidy for �, then

bik(�) � U

++

and the endomorphism � of U

++

= bik(�) indued by �j

U

++

is an

automorphism. Let q : U

++

! U

++

= bik(�) be the quotient map. Then q(U

+

) is

tidy for �, (q(U

+

))

++

= q(U

++

) and s(�) = s(�). Extend q to a semigroup homo-

morphism from S to q(U

++

) o h�i by setting q(�) = �. Also, let ' : S ! Aut(T )

be as in Theorem VI.41 and '

0

: q(U

++

) o h�i ! T

0

as in Theorem VI.37. Then

there exists a graph isomorphism  : T

0

! T suh that the diagram

S

'

//

q

��

Aut(T )

q(U

++

)o h�i

'

0

//

Aut(T

0

);

e

 

OO

where

e

 is onjugation by  , ommutes.

5. New Endomorphisms From Old

We onlude with a onstrution that produes new endomorphisms of totally

disonneted, loally ompat groups from old, inspired by [Wil15, Example 5℄.

Let G

1

and G

2

be totally disonneted ompat groups. Assume that there

are isomorphisms '

i

: G

i

! H

i

�

=

G

i

� G

i

(i 2 f1; 2g) of G

i

onto ompat open

subgroups H

i

� G

i

. Consider the HNN-extension G of G

1

� G

2

whih makes the

isomorphi subgroups H

1

�G

2

�

=

G

1

�G

2

�

=

G

1

�H

2

onjugate:

G := hG

1

�G

2

; t j ft

�1

(h

1

; g

2

)t = ('

�1

1

(h

1

); '

2

(g

2

)) j (h

1

; g

2

) 2 H

1

�G

2

gi:

Set U := G

1

�G

2

� G. Given that G ommensurates U , it admits a unique group

topology whih makes the inlusion of U into G ontinuous and open, see [Bou98,

Chapter III, x1.2, Proposition 1℄. Then G is a non-ompat t.d.l.. group whih

ontains U :=G

1

�G

2

as a ompat open subgroup. De�ne � 2 End(G) by setting

�(t) = t and �(g

1

; g

2

) = ('

1

(g

1

); g

2

) for all (g

1

; g

2

) 2 G

1

�G

2

. Then

�(t

�1

(h

1

; g

2

)t) = t

�1

('

1

(h

1

); g

2

)t = (h

1

; g

2

) = �('

�1

1

(h

1

); g

2

):

for all (h

1

; g

2

) 2 H

1

�G

2

and hene � indeed extends toG. Note that � is ontinuous:

Let V � G be open. Then so is V \ (H

1

\G

2

) and

�

�1

(V ) � �

�1

(V \ (H

1

\G

2

)) \ U

whih is open in U and therefore in G sine '

1

is ontinuous. Observe that s(�) = 1

as �(U) � U . Let � := 

t

Æ� 2 End(G) where 

t

: G! G; g 7! tgt

�1

is onjugation

by t. For (g

1

; h

2

) 2 G

1

�H

2

we have

(E) �(g

1

; h

2

) = t�(g

1

; h

2

)t

�1

= t('

1

(g

1

); h

2

)t

�1

= ('

2

1

(g

1

); '

�1

2

(h

2

))

We proeed to show that U is tidy for � and ompute s(�).

Lemma VI.43. Retain the above notation. Then U is tidy for � and s(�)=[G

2

: H

2

℄.

Proof. We proeed via Lemma VI.12. First, we show that �

�n

(U)\U =G

1

�'

n

2

(G

2

).

The inlusion G

1

� '

n

2

(G

2

) � �

�n

(U) \ U follows from equation (E). Suppose g 62

G

1

�'

n

2

(G

2

). We will show g 62 �

�n

(U)\U . If g 62 U , then we are done and so we may

write g = (g

1

; g

2

) 2 G

1

� (G

2

n '

n

2

(H

2

)). By equation (E), there exists 0 � m < n

suh that �

m

(g

1

; g

2

) 2 G

1

� (G

2

nH

2

). We therefore show that �

l

(g

0

1

; g

0

2

) 62 U for
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all l 2 N whenever (g

0

1

; g

0

2

) 2 G

1

� (G

2

nH

2

). Indeed, �

l

(g

1

; g

2

) = t

l

('

l

1

(g

1

); g

2

)t
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l
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1

(g

1
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2

)t
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l

1

(g

1

); g

2

)t

�1

� � � t

�1

(g

0�1

1

; g

0�1

2

) = 1;

ontraditing Britton's Lemma on words in HNN-extensions, see [Bri63, Lemma 4℄

or [LS15, Theorem 2.1℄.

We have shown that �

�n

(U) \ U = G

1

� '

n

2

(G

2

). Sine '

n

2

(G

2

) is a nested

series of subgroups for n 2 N, we have

[U : U \ �

�n
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1

�G

2

: G

1

� '

n

2

(G

2

)℄ = [G

2

: '

n

2

(G

2

)℄
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n�1

Y
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['

i

2

(G

2

) : '

i+1

(G

2
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2

: H

2

℄

n

:

Lemma VI.12 shows that U is tidy. By Lemma VI.43, we have

s(�) = [U : U \ �

�1

(U)℄ = [G

1

�G

2

: G

1

�H

2

℄ = [G

2

: H

2
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