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Abstract

This work is concerned with the structure theory of totally disconnected locally
compact groups. In a first part, we develop a generalization of Burger—-Mozes uni-
versal groups acting on regular trees locally like a given permutation group of finite
degree. This generalization arises through prescribing the local action on vertex
neighbourhoods of a given radius and results in an equally rich and manageable
class of groups acting on trees. As an application, we characterize Banks—Elder—
Willis k-closures of groups that act locally transitively on the regular tree Ty with
an involutive inversion. Our construction also offers a new perspective on the long
standing Weiss conjecture in the context of which we recover several known results.
Finally, the framework of generalized universal group yields a local-to-global type
characterization of the elements which the quasi-center of a non-discrete subgroup
of Aut(T;) may contain in terms of the group’s local action. Most importantly,
we show that this characterization is sharp through explicit construction, thus an-
swering a question of Burger for more examples of closed non-discrete subgroups of
Aut(Ty) with non-trivial quasi-center.

The first part ends with a computation of prime localizations of a large class of
Burger-Mozes-type groups, including Burger—Mozes universal groups, Le Boudec
groups with almost prescribed local action and Lederle’s coloured Neretin groups.

The second part contains two works, joint with H. Gléckner and T. Bywaters,
and T. Bywaters respectively. Both contribute to Willis theory which studies totally
disconnected locally compact groups from the point of view of their endomorphisms.
First, we extend results about how the scale and tidy subgroups behave when pass-
ing to subgroups or quotients from automorphisms to endomorphisms. Secondly,
we offer a geometric characterization of the scale and tidy subgroups associated
to endomorphisms, as well as a new tidying procedure in terms of graphs. This is
based on prior work of Moller in the case of automorphisms.



Zusammenfassung

Diese Arbeit befasst sich mit der Strukturtheorie total unzusammenhéngender
lokalkompakter Gruppen. Der erste Teil entwickelt eine Verallgemeinerung der uni-
versellen Burger—-Mozes-Gruppen, die lokal wie eine gegebene Permutationsgruppe
endlichen Grades auf reguldren Baumen wirken. Besagte Verallgemeinerung basiert
auf der Festlegung der lokalen Wirkung auf Knotenumgebungen eines vorgegeben
Radius, und resultiert in einer gleichermaflen reichhaltigen und handlichen Klasse
von Gruppen, die auf Baumen wirken. Eine erste Anwendung besteht in der Charak-
terisierung der Banks—Elder—Willis k-Abschliisse von Gruppen, die lokal transitiv
auf dem reguliren Baum T, wirken und eine involutorische Kanteninversion en-
thalten. Unsere Konstruktion bietet auflerdem eine neue Perspektive auf die lang
bestehende Weiss’sche Vermutung, in dessen Kontext wir einige bekannte Resul-
tate wiedergewinnen. Schliefilich erlangen wir im Rahmen der verallgemeinerten
universellen Gruppen eine Charakterisierung der Elemente, die das Quasi-Zentrum
einer nicht-diskreten Untergruppe von Aut(7,) enthalten kann, in Abhingigkeit
von der lokalen Wirkung. Es sei betont, dass sich besagte Charakterisierung durch
explizite Konstruktion als strikt erweist. Damit beantworten wir eine Frage von
Burger nach neuen Beispielen von abgeschlossenen, nicht-diskreten Untergruppen
von Aut(7T,;) mit nicht-trivialem Quasi-Zentrum.

Der erste Teil endet mit der Berechnung der Primlokalisierungen einer grofien
Klasse von Gruppen des Burger—-Mozes Typ. Dies umfasst die universellen Burger—
Mozes-Gruppen, Le Boudec-Gruppen mit fast iiberall vorgeschriebener lokaler Wir-
kung, und Lederle’s gefirbte Versionen von Neretin’s Gruppe.

Der zweite Teil enthélt zwei Zusammenarbeiten mit H. Gléckner und T. Bywa-
ters beziehungsweise T. Bywaters. Beide leisten einen Beitrag zur Willis-Theorie,
die total unzusammenhingende lokalkompakte Gruppen vom Standpunkt ihrer
Endomorphismen aus studiert. Zuerst erweitern wir Resultate, die das Verhalten
zentraler Konzepte beim I"Jbergang zu Untergruppen oder Quotienten betreffen,
von Automorphismen zu Endomorphismen. Anschlieflend entwickeln wir eine ge-
ometrische Beschreibung derselben Konzepte. Dies basiert auf einer bestehenden
Arbeit von Méller fiir den Fall von Automorphismen.
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Introduction and Main Results

In a broad sense, this work is concerned with the structure theory of locally
compact groups. A locally compact group G is an extension of its connected com-
ponent Gy by the totally disconnected quotient G/Gy:

Consequently, the study of general locally compact groups splits into connected and
totally disconnected such groups via topological group extensions.

Connected locally compact groups are inverse limits of Lie groups by the sem-
inal solution of Hilbert’s fifth problem due to Gleason [Gle52], Yamabe [Yam53],
Montgomery—Zippin [MZ52] and others. As such, the methods of Lie theory have
successfully contributed to their understanding.

Totally disconnected locally compact (t.d.l.c.) groups are nowhere near as well
understood as their connected counterparts and exhibit a wealth of phenomena.

Nevertheless, recent developments such as [Wil94], [BMO00a], [CMT11], [Wes15],
[RW15], [Wil15] and [CRW17] hint at the potential for a general structure theory.

This thesis advances said emerging theory in two largely independent parts.
The first one is concerned with the structure theory of groups acting on trees
after Burger—Mozes, see [BMO00a] and [BMOOb]. These groups form a particularly
important class of t.d.l.c. groups for both theoretical and practical reasons.

Part 2 contributes to Willis theory, initiated in [Wil94]. This theory studies
t.d.l.c. groups from the point of view of their endomorphisms and has lead to
numerous unexpected applications. Whereas Chapter [V] contains joint work with
T. Bywaters and H. Glockner, Chapter [VI] constitutes joint work with T. Bywaters.

Burger—Mozes Theory and Universal Groups

Every (totally disconnected) locally compact group can be viewed as a directed
union of compactly generated open subgroups. Among compactly generated t.d.l.c.
groups, automorphism groups of trees stand out for the following reason: Every
compactly generated t.d.l.c. group G acts vertex-transitively on a regular graph
[ of finite degree d with compact normal kernel K, known as the Schreier graph
or Cayley-Abels graph, see e.g. Section 11.3]. In particular, the universal
cover of I is the d-regular tree T;; and one obtains G/ K as a quotient of a cocompact
subgroup G of Aut(Ty) due to the short exact sequence

1 ——m (1) G G/K -1,

Let Q be a set of cardinality d > 3 and let T; = (V, E) denote the d-regular tree,
following Serre’s notation [Ser03]. Then Aut(Ty) is a (compactly generated) t.d.l.c.
group when equipped with the permutation topology for its action on V. For a
subgroup H < Aut(Ty) and a vertex z € V', we let H, denote the stabilizer of z in
H. Tt induces a permutation group on the set E(x) := {e € E | o(e) = z} of edges
issuing from x. We say that H is locally “P” if for every z € V said permutation
group satisfies property “P”, e.g. being transitive, quasiprimitive or 2-transitive.
Refer to Section [l for details about permutation groups.

ix



X INTRODUCTION AND MAIN RESULTS

In [BMO0Oa], Burger—Mozes develop a remarkable structure theory of closed,
non-discrete, locally quasiprimitive subgroups of Aut(T}), which resembles the the-
ory of semisimple Lie groups, see Section [

This structure theory is complemented with a particularly accessible class of
examples of subgroups of Aut(T;) with prescribed local properties: Let [ : E —
be a labelling of Ty, i.e. I, :=l|g() : E(x) — Q is a bijection for every z € V' and
I(e) =1(e) for all e € E. Then the map

o Aut(Ty) x V — Sym(Q), (g,2) = lgzogol;?

captures the local action of g at © € V. Now, given F' < Sym(Q2), a subgroup of
Aut(T,) all of whose local actions are in F' can be defined as follows.

Definition. Let F < Sym(Q). Set U(F) := {g € Aut(Ty) |Vz € V : 0(g,z) € F}.
The following list of properties of U(F") underlines its utility.

Proposition [[12] ([BMO00a) Section 3.2]). Let F' < Sym(f2). Then U(F) is
(i) closed in Aut(Ty),

) vertex-transitive,
) compactly generated,
v) locally permutation isomorphic to F,
) edge-transitive if and only if F' is transitive, and
) discrete in Aut(T}) if and only if F is semiregular.

For transitive F', the group U(F') is maximal up to conjugation among vertex-
transitive subgroups of Aut(T};) that locally act like F', hence the term universal.

Proposition [[.14] ((BM0Oa, Proposition 3.2.2]). Let H <Aut(T,) be locally transi-
tive and vertex-transitive. Then there is a labelling of T such that H <U(F') where
F < Sym(9) is permutation isomorphic to the action of H on balls of radius 1.

The universal groups defined above are a central tool in the study of more
general subgroups Aut(7}), such as projections of lattices I' < Aut(Ty, ) x Aut(Ty,)
which are investigated in and |[Rat04].

We generalize the universal groups by prescribing the local action on balls of a
given radius £ € N, the Burger-Mozes construction corresponding to the case k = 1.
Namely, fix a tree By, which is isomorphic to a ball of radius £ in the labelled tree
T, and let I¥ : B(x,k) — By be the unique label-respecting isomorphism. Then

ok s Aut(Ty) x V = Aut(Bap), (g,2) — 15, 0g0 (15"
is the natural generalization of the map o defined above to the k-local action.

Definition [LIl Let F < Aut(By,). Define
Up(F):={geAut(Ty) | Vz € V: or(g9,2) € F}.

Properties (i), (@) and () of U(F) carry over to Uj(F) in a straightforward
fashion, whereas (@) admits a natural generalization. Concerning (), there is a
natural discreteness condition (D) on F' < Aut(Bg) in terms of certain stabilizers
in F which holds if and only if Ug(F) is discrete, generalizing the case k = 1. See
Section I3l Property (ix), however, need not hold for k& > 2: The group Uy, (F(k))
need not be locally action isomorphic to F*). We define the following compatibility
condition, which can be viewed as an interchangeability condition on neighbouring
local actions with the appropriate point of view on F*), see Section [Tl

Definition[IL8l Let F <Aut(Bg,). Then F satisfies (C) if U (F') locally acts like F'.
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Numerous examples of subgroups of Aut(By ;) satisfying the compatibility con-
dition (C) and/or the discretenss condition (D) are given in Section [IBl

Next recall that the quasi-center of a topological group G, denoted by QZ(G),
consists of those elements whose centralizer in G is open. It plays a major role in
the Burger-Mozes Structure Theorem

Proposition[IL16l Let F < Aut(Bg,). If F satisfies (D) then QZ(Uy(F)) = Uy(F).
Otherwise QZ(U(F)) = {id}.

We prove an analogue of the universality statement (Proposition [14)), which
not only provides maximality but also a description of the k-closures

H(k) = {g S Aut(Td) | Vz eV Elh;,; € H: g|B(m,k) = hCL‘|B(m,k)}

of locally transitive groups H < Aut(Ty) containing an involutive inversion, i.e. an
inversion of order 2; the notion of k-closures was introduced by Banks—Elder—Willis
in [BEWT5] as a tool to construct simple t.d.l.c. groups, see Section 2.3l

Theorem [[I.23] Let H < Aut(Ty) be locally transitive and contain an involutive
inversion. Then there is a labelling of Ty such that

Uy (FD) > Up(FP) > . U (F®) > ... > H > Uy ({id})

where F(F) < Aut(Byg,) is action isomorphic to the action of H on balls of radius k.
Furthermore, H*) = U (F(*).

We show that the assumption that H contains an involutive inversion, which
combined with the local transitivity assumption is stronger than vertex-transitivity
assumption for the case k = 1, is necessary.

Combined with the independence properties P, (k € N) (see Section [MZ3),
introduced by Banks-Elder—Willis in as generalizations of Tits’ Inde-
pendence Property and satisfied by the Uy (F(*)), the universality theorem entails
the following characterization of universal groups.

Corollary 125 Let H < Aut(T4) be closed, locally transitive and contain an
involutive inversion. Then H = Uy (F®) if and only if H satisfies Property Pj.

Given F < Aut(Bg), let F := TF < Sym(Q) denote the projection of F to
Aut(Bg,1). Whereas we provide an abundance of possible actions F' “above” a given
F < Sym(f) in general, we also have the following rigidity.

Theorem[I1.22l Let F' < Sym() be 2-transitive with F, simple non-abelian for all
w € Q, and let F' < Aut(Bg) with 7F = F satisfy (C). Then Ug(F) equals either

Ua(D(F)),  Us(A(F)), or Uy(F).

Here, I'(F), A(F) < Aut(Bg,2) satisfy (C) and (D) and therefore yield discrete
universal groups. More examples of both discrete and non-discrete universal groups
are constructed in the case where either point stabilizers in F' are not simple or F'
is not primitive, see e.g. A(F,N),®(F,N),®(F,P) < Aut(Bg,2) in Section [IB.1]

We now present two more applications of universal groups.

On the Weiss Conjecture. The classical Weiss conjecture [WeiT8| states
that for a given locally finite tree T there are only finitely many conjugacy classes
of discrete, locally primitive and vertex-transitive subgroups of Aut(T"). This con-
jecture has been extended by Poto¢nik—Spiga—Verret in and impressive
partial results have been obtained by the same authors as well as Guidici-Morgan
[GM14]. The Weiss conjecture relates to universal groups through the following
combination of previous results.
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Corollary [L.27Let H<Aut(Ty) be discrete, locally transitive and contain an involu-
tive inversion. Then there is F(*)< Aut(By,;) with (C) and (D), and H =U(F(*).

This suggests to tackle the following weak version of the Weiss conjecture by
studying the subgroups of Aut(Bg,) satisfying (C) and (D).

Conjecture[[1.29. Let F' < Sym(Q) be primitive. Then there are only finitely many
conjugacy classes of discrete subgroups of Aut(7T,;) which locally act like F and
contain an involutive inversion.

Given a transitive group F < Sym(Q), let Hr denote the collection of sub-
groups of Aut(T;) which are discrete, locally act like F' and contain an involutive
inversion. Then the following definition is meaningful by the above Corollary.

Definition[IL30. Let F < Sym(f) be transitive. Define
dimon (F) = max min {keN ‘EIF('“) € Aut(Byy) with (C),(D) : H=U,(F®)}
HeHr
if the maximum exists and dimep (F) = oo otherwise.

Conjecture [1.29] is now equivalent to the assertion that dimecp (F') is finite for
every primitive permutation group F < Sym(Q). Using the framework of universal
groups we recover the following known results in Section [II5. T}

Proposition. Let F <Sym() and P <Sym(A) be transitive for |Q],|A| > 2. Then

(i) dimep(F) =1 if and only if F is regular.
(ii) dimep(F) = 2 if F, has trivial nilpotent radical for all w € Q.
(iii) dimep(FP) > 3.

Non-Trivial Quasi-Centers. The discreteness assertion of part (ii) in the
Burger—Mozes Structure Theorem follows from the fact that a non-discrete
locally quasiprimitive subgroup of Aut(Ty) cannot contain any non-trivial quasi-
central elliptic elements, see Proposition 1.2.1]. The framework of uni-
versal groups lends itself to complete this fact to the following theorem.

Theorem [[1.40l. Let H < Aut(Ty) be non-discrete. If H is locally

(i) transitive then QZ(H) contains no inversion.

(if) semiprimitive then QZ(H) contains no non-trivial edge-fixating element.
(iii) quasiprimitive then QZ(H) contains no non-trivial elliptic element.
(iv) k-transitive (k € N) then QZ(H) contains no hyperbolic element of length k.

More importantly, the proof of the above theorem suggests to use groups of
the form (), oy Ui (F™®) for appropriate local actions F(*) in order to ezplicitly
construct non-discrete subgroups of Aut(7T;) whose quasi-centers contain certain
types of elements. This leads to the following sharpness result.

Theorem [[L41]. There is a closed, non-discrete, compactly generated subgroup of
Aut(Ty) which is locally

(i) intransitive and contains a quasi-central inversion.
(ii) transitive and contains a non-trivial quasi-central edge-fixating element.
(iii) semiprimitive and contains a non-trivial quasi-central elliptic element.

(iv) (a) intransitive and contains a quasi-central hyperbolic element of length 1.

(b) quasiprimitive and contains a quasi-central hyperbolic element of length 2.

Part (ii) of this theorem can be strengthened to the following result which
shows that Burger—Mozes theory does not carry over to locally transitive groups.

Proposition [[L53l There is a closed non-discrete subgroup H < Aut(T,) which is
locally transitive and has non-discrete quasi-center.
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In a different direction, Banks-Elder-Willis list PGL(2,Q,) < Aut(7T},11) as an
example of a group with infinitely many distinct k-closures, see [BEW15|. Whereas
PGL(2,Q,) has trivial quasi-center because it is simple, the groups constructed in
the proof of the theorem above provide a wealth of examples with non-trivial quasi-
center. In fact, the following proposition shows that in certain cases such examples
have to be of the type constructed in the proof of the above theorem.

Proposition [L73l Let H < Aut(Ty) be closed, non-discrete, locally transitive and
contain an involutive inversion. Then H®¥) = Uy(F®) and H = (o Ur(F®),
where F(¥) < Aut(By,;) is action-isomorphic to the action of H on balls of radius .
If, in addition, QZ(H) # {id} then H has infinitely many distinct k-closures.

Prime Localizations of Burger—Mozes-type Groups

The concept of prime localization of a totally disconnected locally compact
group G was introduced by Reid in [Reil3|: Let p be prime. A local p-Sylow sub-
group of G is a maximal pro-p subgroup of a compact open subgroup of G. The
p-localization G(,) of G is defined as the commensurator Commg (S) of a local p-
Sylow subgroup S of G, equipped with the unique group topology which makes the
inclusion of S into G(,) = Commg(S) continuous and open. Reid shows that this
yields a dense, locally virtually pro-p subgroup of G whose isomorphism type and
G-conjugacy class do not depend on the choice of S. We refer the reader to
for general properties of prime localization and its applications.

Let FF < F' < Sym(f). We consider the Burger-Mozes group U(F) and two
locally isomorphic versions of it: The Le Boudec group G(F, F') acting on T,; almost
everywhere like F' and elsewhere like F”, and Lederle’s coloured Neretin groups N(F')
consisting of almost automorphisms of T, associated to U(F). See Section [H for
an introduction to these groups.

For a large family of the above groups, we determine local p-Sylow subgroups
in terms of a p-Sylow subgroup of F'. By definition of the topologies, any local p-
Sylow subgroup of U(F) is also a local p-Sylow subgroup of G(F, F') and N(F). Let
T C Ty denote a finite subtree. The following proposition provides local p-Sylow
subgroups of U(F) in the case where the operations of taking a p-Sylow subgroup
and taking point stabilizers commute for F'.

Proposition[[IL1] Let F <Sym() and F(p) < F a p-Sylow subgroup. Then U(F(p))r
is a p-Sylow subgroup of U(F)r if and only if so is F(p), < F,, for all w € Q.

After collecting criteria and examples for the above situation we determine gen-
eral subgroups of the p-localization of Burger-Mozes-type groups which we use to
identify said p-localization as a group of the same type in certain cases. Recalling
that U(F) = G(F, F), the following theorem addresses both the Burger-Mozes uni-
versal group U(F) and the Le Boudec groups G(F, F'). Tt amends Lemma
4.2]. We let F' denotes the maximal subgroup of Sym({2) preserving the partition
F\Q setwise.

Theorem L8l Let F < F' < F < Sym(Q) and F(p) < F a p-Sylow subgroup
of F'. Assume that we have F\Q2 = F(p)\Q and N (F(p).,) = F(p). for all w € Q.
Then G(F, F')(, = G(F(p), F").

Theorem[IIL9l Let F <Sym(§2) and F(p) < F a p-Sylow subgroup. If F\Q=F(p)\Q
and N (F(p).) = F(p). for all w € Q then N(F),) = N(F(p)).
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Extending Willis Theory

In [Wil94], Willis advances the structure theory of totally disconnected locally
compact groups by introducing the notions of scale of an automorphism of a t.d.l.c.
group and tidiness of compact open subgroups for the same automorphism. Being
the first major advance in the theory of t.d.l.c. groups for decades, it reignited the

hope for a general structure theory of the latter and unexpectedly answered ques-
tions in fields as diverse as random walks and ergodic theory [DSW06], [TRW96],

[PW03], arithmetic groups [SW13] and Galois theory [CHO9J.

This theory was further developed in [Wil01], [Wil04], [BW06], [W1il07] and
[BMW12], among others. We highlight that, searching for the most general natural

setting of tidiness and the scale, the definitions were generalized to endomorphisms
in [Wil15]. For the precise definition, recall that any t.d.l.c. group admits a neigh-
bourhood basis of compact open subgroups by work of van Dantzig [vD31]. For a
modern treatment, see [HR12, (7.7)]. Given a topological group G, we let End(G)
denote the semigroup of continuous homomorphisms from G to itself.

Definition. Let G be a t.d.l.c. group and a € End(G). The scale of a is
sa(a) =min {[a(U) : «(U) NU] | U < G compact open}.
A compact open subgroup U < G is minimizing for o if [a(U) : a(U) N U] = s(a).

It is a cornerstone of Willis theory that U is mimimizing for « if and only if
it has a certain structure, which is phrased in terms of the following subgroups
of G. Put Up := U. For n € Ny, we define U_,, = (;_, @ *(U) and, inductively,
Up+1 :=U Na(U,). Now set

Upi= (YU, U = (U= ﬁof’“(U),
k=0

n€Ny n€Ny
Uy = U a™(Uy) and U__ := U a "(U-).
n€Np n€Np

The subgroup U is tidy above for o if U = UL U_, and tidy below for o if U__ is
closed. It is tidy for « if it is both tidy above and tidy below for a. Note that this
definition of being tidy below deviates from [Wil15l Definition 9] but turns out to
be equivalent for tidy above subgroups, see [Will15l Proposition 9].

Theorem ([Wil15, Theorem 2]). Let G be a t.d.l.c. group, & € End(G) and U < G
compact open. Then U is minimizing for « if and only if it is tidy for a.

Willis complements this theorem with an algorithm, a tidying procedure, which
turns an arbitrary compact open subgroup of G into one tidy for a.

Whereas statements about automorphisms in this theory frequently utilize con-
tinuous invertibility and produce important dual statements by passing to the in-
verse, statements about endomorphisms often need to be formulated differently and
require different techniques of proof. The present work goes through this process
for two aspects of the theory.

Scale and Tidiness for Subgroups and Quotients. This section presents
joint work with T. Bywaters and H. Glockner, see [BGT16), Section 8].

It is natural to ask how the notions of scale and tidiness introduced above
behave with respect to taking subgroups and quotients of the given group. For
automorphisms, this was studied in [Wil01]. Our first result states that, in the case
of endomorphisms, restricting to a closed invariant subgroup can only decrease the
scale and thereby generalizes [Wil01], Proposition 4.3].
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Theorem V.3l Let G be a t.d.l.c. group, a € End(G) and H < G closed with
a(H)<H. Then sp(aln) < sg(a).

Concerning quotients, we generalize [Wil01], Proposition 4.7]. Given a € End(G)
and H <G with a(H) < H, we let @€ End(G/H) be the endomorphism induced by a.

Theorem[\8 Let G be a t.d.l.c. group, a € End(G) and HG closed with a(H) < H.
Then sg(alm)sq/a(@) divides sg(a).

Equality holds for example in the following case, where

_ _ IHzn)nen, : To =z, Vn € N: ax,) =xp1
par- (a) = {m €d and {z, | n € No} is precompact )

Proposition V.10l Let G be a t.d.l.c. group, @ € End(G) and H < par™ (a) closed
such that a(H) = H. Further, let N < H be closed with «(N) = N. Denote by @
the endomorphism induced by a|z on H/N. Then sg(alr) = sy (@)sn(a|n).

Scale and Tidiness via Graphs. The results presented in this section con-
stitute joint work with T. Bywaters, namely [BTL17].

An important contribution to Willis theory was made by Moller in [Mol02],
who, in the case of automorphisms, characterized the notions of scale and tidiness
in terms of certain graphs associated to the data (G, «, U). This lead to geometric
proofs of known results and provided a new, geometric tidying procedure, as well
as a spectral radius type formula for the scale.

We adapt Moller’s definitions to the case of endomorphisms. Let G be a t.d.l.c.
group. Further, let a be a continuous endomorphism of G and U a compact open
subgroup of G. Using a certain graph associated to the data (G,a,U) we give a
geometric proof of existence of a subgroup of U which is tidy above for o ([Wil15)],
Proposition 3]), as well as the tidiness below condition ([Will5, Proposition 8]).
Combining both yields the following characterization of the scale and tidiness, re-
sembling [Mol02, Lemma 3.1] and [Mol02] Theorem 3.4], see Lemma [VI.I] and
Theorem VLTl

For i €Ny, define v_;:=a~(U) €P(G) and a rooted directed graph I'y by

VIy)={uv_; |u € Uiy, i € No}, E([4)={(uv_j,uv_;—1) |u €U, i € No}.

Theorem. Let G be a t.d.l.c. group, @ € End(G) and U < G compact open.
(i) If {v_; | i € Np} is finite then there is a compact open subgroup U of G with
a(U) < U and which is tidy for @ and s(a) = 1.
(ii) If {v—; | i € No} is infinite then U is tidy for « if and only if the graph I'; is a
directed tree, rooted at vg with contant in-valency (excluding the root) equal
to 1 and constant out-valency. In this case, s(a) equals said out-valency.

We use this theorem to establish a new, geometric tidying procedure for the
case of endomorphisms, see Theorem [VI.26] Tt features yet another graph defined in
terms of the data (G, a, U) which admits an action of Uy, a fundamental subgroup
of G associated to a and U, see Section [[VIIl Most of the work goes into showing
that this graph admits a quotient with a connected component isomorphic to a
regular rooted tree. The stabilizer of its root turns out to be tidy for a.

Theorem and associated constructions result in a geometric proof of
the fact [Wil15] Theorem 2] that tidiness is equivalent to being minimizing, see
Theorem [VI.34l Using the aforementioned ideas, we obtain a tree representation
theorem for a certain natural subsemigroup of End(G) associated to «, analogous
to [BW04], Theorem 4.1] for the case of automorphisms.

Finally, we give a simple way to construct endomorphisms of non-compact
t.d.l.c groups from certain endomorphisms of compact groups.
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CHAPTER I

Preliminaries

This chapter collects the necessary preliminaries about permutation groups,
groups acting on trees, Burger-Mozes theory and Burger-Mozes type groups. We
provide references at the beginning of each section.

1. Permutation Groups

Let © be a set. In this section, we collect definitions and results around the

group of bijections of Q, denoted Sym(Q). Refer to [DM96], [Pra96] and [GM16]

for more details about the various classes of permutation groups to be introduced.

1.1. Definitions and Examples. Let F' < Sym(f2). The degree of F is |(].
For w € , the stabilizer of w in F is F,, := {o € F | ow = w}. The subgroup
of F generated by its point stabilizers is denoted by F™ := ({F,, | w € Q}). The
permutation group F'is semiregular, or free, if F,, = {id} for all w € Q; equivalently,
if Ft is trivial. It is transitive if its action on ) is transitive, and regular if it is
both semiregular and transitive.

Let F' < Sym(Q) be transitive. The rank of F' is the number rank(F) := |F\Q?|
of orbits of the diagonal action o - (w,w') := (ow,ow') of F on Q2. Equivalently,
rank(F) = |F,\Q| for all w € Q. Note that the diagonal A(Q) = {(w,w) |w € Q}
is always an orbit of the diagonal action F ~ Q2. The permutation group F is
2-transitive if rank(F) = 2. In other words, it acts transitively on Q?\A(Q).

We now define several relevant classes of permutation groups in between the
classes of transitive and 2-transitive permutation groups. Let F' < Sym(Q2). A par-
tition P : Q = | |;c; Qi of Q is preserved by F, or F-invariant, if for all 0 € F we
have {0€; | i € I} = {Q; | i € I}. The partition of Q as  itself, as well as the
partition into singletons are trivial. A map a : Q@ — F is constant with respect to P
if a(w) = a(w') whenever w,w' € Q; for some i € T.

The permutation group F' is primitive if it is transitive and preserves no non-
trivial partition of Q, and imprimitive otherwise. Given a normal subgroup N of
F, the partition of ) into N-orbits is F-invariant. Consequently, every normal sub-
group of a primitive group is transitive. A permutation group is quasiprimitive if it
is transitive and all its non-trivial normal subgroups are transitive. Finally, a per-
mutation group is semiprimitive if it is transitive and all its normal subgroups are
either transitive or semiregular. The following chain of implications among prop-
erties of permutation groups is immediate from the definitions. We list examples

illustrating that each implication is strict. In doing so we refer to the GAP library
of small transitive groups [GAP17].
2-transitive = primitive = quasiprimitive = semiprimitive = transitive
Ag, Dy Tr(]_Z, 33) ~ As Cy > O, Dy > CoyxCy

Note that every transitive permutation group of prime degree is necessarily primi-
tive as all elements of an F-invariant partition have the same order, and that every
simple transitive group is necessarily quasiprimitive.
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1.2. Permutation Topology. Given a faithful action of a group H on a
discrete set X, or, equivalently, a subgroup H < Sym(X), there is a natural topology
on H, termed permutation topology, which makes the action map continuous. For
example, we equip the automorphism group of a tree with the permutation topology
for its action on the vertex set of the tree, see Section

As a reference for the following, see e.g. [Mol10]. Let X be a set and consider
G := Sym(X). The basic open sets for the permutation topology on G are

Uy ={9€G|Vie{l,...,n}: g(z;) = v}
withn € Nand z = (z1,...,20),y = (y1,...,yn) € X"
The permutation topology turns G into a topological group. It is Hausdorff and

totally disconnected as the following two lemmas show. Recall that a topological
space is zero-dimensional if it admits a basis consisting of closed open sets.

Lemma 1.1. A Hausdorff and zero-dimensional space X is totally disconnected.

Proof. Let x € X. To see that no element y € Y is contained in the connected
component of z it suffices to find disjoint closed open sets containing z and y
respectively. Given that X is Hausdorff there are open sets separating = and y.
Each contains a closed open set by definition of zero-dimensionality. O

We remark that a locally compact Hausdorff space is zero-dimensional if and
only if it is totally disconnected, see [ATOS].

Lemma 1.2. Let X be a set. Then Sym(X) is Hausdorff and zero-dimensional.

Proof. To see that Sym(X) is Hausdorff, let g, h € Sym(X) be distinct. Then there
is x € X such that g(z) # h(z), to the effect that U, 4.,y and U, () are disjoint
open sets containing g and h respectively.

For zero-dimensionality, note that the sets U, for z,y € X" and n € N are
open by definition. Now consider g € Sym(X)\U,,,. Then there is ¢ € {1,...,n}
such that g(z;) # y: and U, 4,y C Sym(X)\U,,, contains g. That is, the comple-
ment of U, , is open. Hence the assertion. O

We now show that the permutation topology makes the action map continuous.

Lemma 1.3. Let X be a set equipped with the discrete topology. Then the action
map @ : Sym(X) x X — X given by (g, ) — g(z) is continuous.

Proof. Let Y C X (be open). Then ®~1(Y) = {(g,z) € Sym(X) x X | g(x) € Y}.
Hence, if (g,2) € ® ' (Y") then so is the open set Uy 4(z) X {2} containing (g,z). O

Finally, we characterize compact subsets of Sym(X).

Proposition 1.4. Let X be a set and H < Sym(X). Then H is compact if and only
if H < Sym(X) is closed and all its orbits are finite.

Proof. If H is compact, then H is closed in Sym(X) as Sym(X) is Hausdorff.
Furthermore, Hx = ®|f,(,} is compact because ® is continuous and hence finite.

Conversely, assume that H < Sym(X) is closed and has finite orbits (X;);cr-
Then H < [];c; Sym(X;). Since every X; is finite, Sym(X;) is compact and hence
so is [[;c; Sym(X;) by Tychonoff’s theorem. Therefore, the conclusion follows if
we show that the inclusion map [];; Sym(X;) — Sym(X) is continuous. Indeed,
an intersection Uy , N [],c; Sym(X;) restricts only finitely many factors and hence
gives rise to an open subset of the product topology. O
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2. Generalities of Groups Acting On Trees

In this section, we first recall Serre’s notation and definitions in the
context of graphs and trees, and then collect generalities about automorphisms of
trees. We conclude with an important simplicity criterion.

2.1. Definitions and Notation. A graph I is a tuple (V, E) consisting of a
vertexr set V and an edge set E, together with a fixed-point-free involution of F,
denoted by e — €, and maps o,t : E — V, providing the origin and terminus of
an edge, such that o(€) = t(e) and t(€) = o(e) for all e € E. Given e € E, the pair
{e,€} is a geometric edge. For x € V, we let E(z) := 0 '(z) = {e € E | o(e) = z}
be the set of edges issuing from z. The wvalency of x € V is |E(z)|. A vertex of
valency 1 is a leaf. A morphism between graphs I'y = (Vi, Ey) and Ty = (13, Es)
is a pair (ay,ar) of maps ay : Vi — Vi and ag : By — E, preserving the graph
structure, i.e. ay(o(e)) = o(ag(e)) and ay (t(e)) = t(ag(e)) for all e € E.

For n € N, let Path, denote the graph with vertex set {0,...,n} and edge
set {(k,k+1),(k,k+1)|ke{0,....,n—1}}. A path of length n in a graph I is a
morphism v from Path,, to I'. It can be identified with (e, ...,e,) € E(T')", where
er is the image of (k — 1,k) € E(Path,) for all £ € {1,...,n}. In this case, 7y is a
path from o(e1) to t(en).

Similarly, let Pathy, and Pathyz denote the graphs with vertex sets Ny and
Z, and edge sets {(k,k+1),(k,k+1) |k € No} and {(k,k+1),(k,k+1) | ke Z}
respectively. A half-infinite path, or ray, in a graph I is a morphism v from Pathy,
to . It can be identified with (ex)ren € E(T)YN where e, = y(k—1,k) for all k € N.
In this case, v originates at, or issues from, o(e1). An infinite path, or line, in a
graph T" is a morphism v from Pathyz to T.

A pair (e, ers+1) = (ex,€x) in a path is a backtracking. A graph is connected if
any two of its vertices can be joined by a path. The maximal connected subgraphs
of a graph are its components.

A forest is a graph in which there are no non-backtracking paths (e, ..., ey)
with o(e1) = t(e,) (n € N). Consequently, a morphism of forests is determined
by the underlying vertex map. In particular, a path of length n € N in a forest is
determined by the images of the vertices of Path,,.

A tree is a connected forest. As a consequence of the above, the vertex set V
of a tree T' admits a natural metric: Given z,y € V', define d(z,y) as the minimal
length of a path from x to y. A tree in which every vertex has valency d € N is
d-reqular tree. It is unique up to isomorphism and denoted by T}.

Let T = (V, E) be a tree. For S C VUE, the subtree spanned by S is the unique
minimal subtree of T' containing S. For x € V and n € Ny, the subtree spanned
by {y € V | d(y,z) < n} is the ball of radius n around z, denoted by B(z,n).
Similarly, S(z,n) = {y € V | d(y,z) =n} is the sphere of radius n around z. For a
subtree T' C T, let 7 : V — V(T") denote the closest point projection, i.e. w(z) =y
whenever d(z,y) = min, ey (d(z, 2)). In the case of a single edge e = (v,w) € E, the
half-trees T, and T,, are the subtrees spanned by 7=!(v) and 7~ (w) respectively.

Two rays 71, vz : Pathy — T in T are equivalent, vy, ~ 7o, if there exist N, d € N
such that v1(n) = v2(n + d) for all n > N. The boundary, or set of ends, of T is
the set 0T of equivalence classes of rays in T.

2.2. Automorphism Groups. Let d > 3 and Ty = (V, E) the d-regular tree.
The group of automorphism Aut(Ty) of Ty, i.e. the group of bijective morphisms
from Ty to itself, is our foremost concern. Throughout this work, we equip Aut(7})
with the permutation topology for its (faithful) action on V(T}).
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2.2.1. Notation. Let H < Aut(Ty). Given a subtree T' C Ty, the pointwise
stabilizer of T in H is denoted by Hy. Similary, the setwise stabilizer of T in H
is denoted by Hyry. In the case where T is a single vertex x, the permutation
group that H, induces on S(z,1) is denoted by o < SymEE(m)). We say that
H is locally “P” if for every x € V the permutation group Hml) satisfies property
“P”, e.g. being tansitive, semiprimitive, quasiprimitive, primitive or 2-transitive.
Furthermore, H is locally k-transitive (k € N>3) if H, acts transitively on the set
of non-backtracking paths of length k issuing from x. It is locally oo-transitive if it
is locally k-transitive for all k£ € N.

The group Aut(Ty) acts on 9T, by g-[v] := [go~]. Given an end [y] € 3Ty, the
stabilizer of [y] in H is Hj,j ={h € H|hoy~~}.

We let TH =({H, |z € V(T,)}) denote the subgroup of H generated by vertex-
stabilizers and HT = ({H,|e € E(T;)}) the subgroup generated by edge-stabilizers.
For a subtree T C Ty and k € N, let T* denote the subtree of T spanned by
{x € V(Ty) | d(z,T) < k}. We set H"* =({Hx |e € E(T4)}). Then H™* =H* and

Ht*a9Ht*<9tH < H.
2.2.2. Classification of Automorphisms. On a high level, elements of Aut(Ty)

can be distinguished into three disjoint classes which we outline below. We refer
the reader to [GGT16), Section 2] for details. Let g € Aut(7T,). Define

Il(g) == min d(z,gr) and V(g):={z eV |d(z,gz)=1(9)}

If i(g) = 0 then g fixes a vertex. An automorphism of this kind is elliptic. Suppose
now that I(g) > 0. If V(g) is infinite then g is hyperbolic. Geometrically, it is a
translation of length I(g) along a line in Tj.

g

If V'(g) is finite then I(g) = 1 and g maps an edge e to € and is termed an inversion.

2.3. Independence and Simplicity. This section contains an important cri-
terion to obtain simple subgroups of Aut(T}). In its base case due to Tits [Tit70], it
applies to sufficiently large subgroups of Aut(7}) satisfying a certain independence
property. The generalized version we describe here is due to Banks—Elder—Willis

[BEW15]. As an alternative reference, see [GGT16].

Let ¢ denote a path in T, (finite, half-infinite or infinite). For every z € C' and
k € Ny, the pointwise stabilizer H of ¢* induces an action Hc(f) < Aut(r=(x))
on m 1 (x). We therefore obtain an injective homomorphism

o Ha - [ HY.
zeC
The subgroup H < Aut(Ty) satisfies Property P, (k € N) if wgk_l) is an isomor-
phism for every path ¢ in T;. We remark that in case H < Aut(Ty) is closed, it

suffices to check the above properties in the case where ¢ is a single edge. Given a
closed subgroup H < Aut(T}), Property P(*) is satisfied by its k-closure

H® = {g e Aut(Ty) |Vz € V(T2) Ih € H: glpar) = blBla }-

Theorem 1.5 ([BEW15l Theorem 7.3]). Let H < Aut(Ty). If H neither fixes an
end of T; nor stabilizes a proper subtree of Ty setwise, then H satisfy Property Py
and GT* is either trivial or simple.
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3. Burger—Mozes Theory

In [BMO00a), Burger-Mozes develop a remarkable structure theory of a certain
class of groups acting on graphs, resembling the theory of semisimple Lie groups.
In order to give the precise structure theorem we introduce further notation.

The fundamental definitions are meaningful in the setting of totally discon-
nected locally compact groups: Let H be a t.d.l.c. group. We define H(*) to be the
intersection of all closed normal cocompact subgroups of H, and QZ(H) to be the
subgroup of elements whose centralizer in H is open in H. As a consequence, both
H() and QZ(H) are topologically characteristic subgroups of H, i.e. they are pre-
served by continuous automorphisms of H. Alternatively, H(°) can be described
as the intersection of all open subgroups of finite index.

The next example shows that H(>) and QZ(H) play roles analogous to that of
the connected component of the identity and the kernel of the adjoint representation
in Lie theory, cf. Example 1.1.1.].

Ezample 1.6. Let H be a semisimple p-adic matrix group. Then H(*) coincides
with the subgroup generated by unipotent elements and QZ(H) is given by the
kernel of the adjoint representation.

The definitions also readily imply that H(>) is closed. The next example shows
that QZ(H) need not be so.

Ezample 1.7. Let H:=][y F where F is a finite centerless group. Then H(*) = {id}
as {id} is cocompact in the compact group H. Furthermore, QZ(H) is the direct
sum @y F. In particular, QZ(H) is dense in H.

Our third example relies on Section [TII4.11

Ezample 1.8. Let F < Sym(Q) and H := U(F) < Aut(Ty). If F is transitive and
generated by point stabilizers then U(F)T has index 2 in U(F) and is simple. Thus
H(®) = U(F)*. Furthermore, QZ(U(F)*t) = {id}.

Recall that any discrete normal subgroup of a topological group is central. From
the definitions we can therefore deduce that every cocompact normal subgroup of
H contains H(>) and that QZ(H) contains all discrete normal subgroups of H.
The subquotient H(°)/QZ(H(*)) of H therefore has a chance to be topologically
simple. Whereas Examples and show that nothing much can be said about
the size of H(*) and QZ(H) in general, Burger-Mozes show that good control
can be obtained in the case of closed non-discrete subgroups of Aut(I'), where T
is a connected graph, satisfying certain local transitivity properties. The following
result summarizes their structure theory in the case of regular trees to which the
present work contributes. It is a combination of Proposition 1.2.1, Corollary 1.5.1,
Theorem 1.7.1 and Corollary 1.7.2 in [BMO00a].

Theorem 1.9. Let H < Aut(Ty) be closed, non-discrete and locally quasiprimitive.

(i) H(*) is minimal closed normal cocompact in H.
(ii) QZ(H) is maximal discrete normal, and non-cocompact in H.
(iii) H(®)/QZ(H>))=H()/(QZ(H)NH>)) admits minimal, non-trivial closed
normal subgroups; finite in number, H-conjugate and topologically simple.
If, in addition, H is locally primitive then

(iv) H(®)/QZ(H(>®)) is a direct product of topologically simple groups.
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4. Burger—Mozes-type Groups

In this section we introduce several classes of groups acting on (regular) trees.
First, we concern ourselves with Burger—Mozes universal groups, introduced by
Burger—-Mozes in [BMO00al, Section 3.2] as a complement to their structure theory.
Chapter [[Il develops a versatile generalization of these groups.

Secondly, we recall a locally isomorphic generalization of these groups due to
Le Boudec [Boul6]. Among his examples are t.d.l.c. groups which are virtually
simple and contain no lattices, i.e. discrete cofinite subgroups.

Finally, we introduce a recently developed generalization of Neretin’s group
[Ner03] due to Lederle [Led17]. She shows that most of these groups do not
contain lattices, generalizing the same result for Neretin’s group [BCGM12].

In Chapter [T, we compute the p-localizations of a large subclass of the three
types of Burger—Mozes groups and primes p.

Let Q be a set of cardinality d > 3 and let T; = (V, E) denote the d-regular
tree. A labelling [ of Ty is a map [ : E — Q such that for every z € V the map
lo =g : E(x) = Q, y = I(y) is a bijection and for all e € E we have [(e) = [(€).

4.1. Burger—Mozes Groups. The original introduction of Burger—Mozes
universal groups in Section 3.2] has been expanded in the introductory
article [GGT16] which we follow closely. Most results are generalized in Chapter[[Il

Consider the labelled tree T, introduced above. The local actions of automor-
phisms are captured by the map

o Aut(Ty) x X — Sym(Q), (g,2) = o(g,2) := gz 0gol;".

Given any permutation group F'<Sym(Q), we can define a subgroup of Aut(7y)
all of whose local actions are in F' as follows.

Definition 1.10. Let F < Sym(Q) and [ a labelling of T,;. Define
UD(F):={g € Aut(Ty) |Vz € V : o(g,z) € F}.

The map o satisfies a cocycle identity: For all g, h € Aut(T,) and z € V' we have
o(gh,z) = (g, hz)o(h, ). As a consequence, UD (F) is a subgroup of Aut(Ty).

Passing to a different labelling amounts to passing to a conjugate of U (F)
inside Aut(Ty). We therefore omit explicit reference to the labelling from here on.

Remark 1.11. Let F < Sym(Q2). Elements of U(F') are readily constructed: Given
v,w € V(Ty) and 7 € F, define g : B(v,1) — B(w, 1) by setting g(v) = w and
o(g,v) = 7. Given a collection of permutations (7, ),eq such that 7(w) = 7, (w) for
all w € Q there is a unique extension of g to B(v,2) such that o(g,v,) = 7., where
vy € S(v,1) is the unique vertex with [(v,v,,) = w. Then proceed iteratively.

The following proposition collects several elementary properties of Burger—
Mozes groups. We refer the reader to [GGT16] Section 4] for proofs. Alternatively,
a generalized version of this result is contained in Section [Tl

Proposition 1.12. Let F' < Sym(Q). Then U(F') is

(i) closed in Aut(Ty),
) vertex-transitive,
) compactly generated,
v) locally permutation isomorphic to F,
) edge-transitive if and only if F' is transitive, and
) discrete in Aut(T}) if and only if F' is semiregular.
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Part (iii) of Proposition [L12] relies on the following result which we include for
future reference.

Lemma 1.13. The group Uy ({id}) is finitely generated.

Proof. Fix x € V. For every w € , let 1, € Uy({id}) denote the unique label-
respecting inversion of the edge e, € E with origin  and label w. Then Uy ({id}) is
generated by {1, | w € Q}: Every element of Uy ({id}) is determined by its image on
v, so the assertion follows from vertex-transitivity of ({i, | w € Q}): Let y € V\{x}
and let (w1,...,w,) be the labels appearing in the geodesic from z to y. Then
by, © - 01y, € Ur({id}) maps z to y. O

The name universal group is due to the following maximality statement whose
proof should be compared with the proof of Theorem [[I.23]

Proposition 1.14. Let H < Aut(Ty) be locally transitive and vertex-transitive. Then
there is a labelling [ of Ty such that H < U®(F) where F < Sym(Q) is action
isomorphic to the action of H on balls of radius 1.

Proof. Fix b € V and a bijection I, : E(b) — Q. Then the local action of H at b is
given by F' := 0 Hy| () OZb_l. We now inductively define a legal labelling [ : E — Q
such that H < UD(F). Set l|E@®) = Iy and suppose inductively that [ is defined
on E(b,n) :=U,ep(pn-1) E(z). To extend [ to E(b,n + 1), let € S(b,n) and let
er € E be the unique edge with o(e,) = = and d(b,t(e;)) + 1 = d(b, z). Since H is
vertex-transitive and locally transitive, there is an element 1., € H which inverts
the edge e,. Using 1., we may extend [ to E(z) by setting l|g(y) 1= o te, .

To check the inclusion H < UD(F), let 2 € V and h € H. If (b,by,...,b,,2)
and (b,b],...,b. , h(z)) denote the unique reduced paths from b to 2 and h(x), then

»¥m>

s = Leb,l " bey e © hotgte, - “Ley, bey, € H,

and we have a(h,z)=0(s,b) € F by the cocycle identity satisfied by the map o. O

4.2. Le Boudec Groups. In [Boul6|, Le Boudec introduces groups acting
on Ty locally like a given permutation group F' < Sym(Q) almost everywhere. The
precise definition reads as follows.

Definition 1.15. Let F <Sym(Q). Define
G(F):={g € Aut(Ty) | 0(g,z) € F for almost all x € V'}.

Notice that U(F) is a subgroup of G(F). We equip G(F) with the unique
group topology making the inclusion U(F) »— G(F') continous and open. It exists
essentially due to the fact that G(F) commensurates a compact open subgroup
of U(F), see [Boul6, Lemma 3.2]. We state explicitly that this topology differs
from the subspace topology of Aut(T}), see e.g. Proposition [[1§ below. However,
it entails that G(F) is locally isomorphic to U(F).

Given g € G(F), a vertex v € V with o(g,v) € F is a singularity. The local
action at singularities is restricted as follows.

Lemma 1.16 ([Boul6l, Lemma 3.3]). Let F' < Sym(f2) and g € G(F') with a singu-
larity v € V. Then o(g,v) preserves the partition F'\Q of Q into F-orbits setwise.

For F'<Sym(), the maximal subgroup of Sym((2) which preserves the parti-
tion F\Q = | |;.; Q; setwise is the direct product F':= [],.; Sym(£;). Combined
with Lemma [[16] this suggests the following extension of Definition [[.13]

Definition 1.17. Let F < F' < F < Sym(Q). Set G(F, F') := G(F) n U(F").
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We remark that G(F, F') = U(F) and G(F, F\) = G(F)). In this sense, the groups
G(F,F") interpolate between U(F) and G(F'). Le Boudec shows that for certain
choices of F' and F’, the groups G(F, F') are virtually simple and contain no lattices,
see Introduction]. For future reference we include the following fact.

Proposition 1.18. Let F< F' < F < Sym(Q) and b € V(T). Then G(F, F') is non-
compact and residually discrete.

Proof. The vertex stabilizer G(F, F'), can be written as the (strictly) increasing

union G(F, F')y = |, cny K of the open sets Ky, consisting of the elements of

G(F, F"), whose singularities are contained in B(b,n). Hence it is non-compact.
As to residual discreteness, an identity neighbourhood basis of G(F, F'), con-

sisting of open normal subgroups is given by the collection (G(F, FI)B(bm))neN' O

4.3. Lederle Groups. As before, we consider the d-regular tree T; = (V, E)
with a labelling and a base vertex b € V. Further, let F < Sym(Q). In [Led17],
Lederle introduces a locally isomorphic version of U(F) resembling Neretin’s group
and thereby generalizes Neretin’s construction.

Towards a precise definition, we recall the following from Section 3.2]:
A finite subtree T' C Ty is complete if it contains b and all its non-leaf vertices have
valency d. We denote the set of leaves of T by L(T) C V(Ty). Given aleaf v € L(T),
let T, denote the subtree of T; spanned by v and those vertices outside T" whose
closest vertex in 7" is v. Then define Ty\T := | |, (7 Tv, a forest of [L(T')] trees.

Let H < Aut(Ty). Given finite complete subtrees T, 7' C T,y with |L(T)| =
|L(T")|, a forest isomorphism ¢ : Ty\T — T4\T' such that for every v € L(T)
there is h, € H with ¢|y, = hy|r, is an H-honest almost automorphism of Ty.
Two H-honest almost automorphisms of T given by ¢ : T,\Th1 — T4\T| and ) :
Ti\T> — T;\Ty are equivalent if there exists a finite complete subtree T' D T7 U T
with @[\ 7 = |7, 7. Notice that for any finite complete subtree T' D T} there is a
unique finite complete subtree T' D T} and representative ¢’ : T,\T — Ty\T" of ¢;
analogously for T|. Hence we may pick a finite complete subtree 7' D T} U T and
representatives of ¢ and 1 with codomain and domain equal to T4\T respectively,
thus allowing for a composition of equivalence classes of H-honest almost automor-
phisms. Lederle’s coloured Neretin groups (original notation F(U(F'))) can now be
defined as follows.

Definition 1.19. Let F < Sym(2). Set
N(F) := {[¢] | ¢ is a U(F')-honest almost autormorphism of Ty}.

Observe that N(F) N Aut(T;) = G(F). As before, there exists a unique group
topology on N(F') such that the inclusion U(F) — N(F) is open and continu-
ous. This is essentially due to the fact that N(F') commensurates a compact open
subgroup of U(F), see [Led17, Proposition 2.24].

We mention that most Lederle groups contain no lattices, see [Led1T7, The-
orem 1.2]. This generalizes the same assertion for Neretin’s group obtained in
[BCGM12]. In this context, Lederle also produces new examples of locally com-
pact, compactly generated, simple groups without lattices.

Overall, we have the following continuous and open injections, capturing that
all involved groups have isomorphic open subgroups:

U(F) —— G(F) —— N(F)).



CHAPTER II

Universal Groups

We present a generalization of Burger-Mozes universal groups that arises via
prescribing the local action on balls of a given radius & € N around vertices. The
Burger—Mozes construction corresponds to the case £ = 1. Whereas many prop-
erties of their construction carry over to this new setting in a straightforward
fashion, others require a more careful analysis. We proceed by exhibiting exam-
ples and (non)-rigidity phenomena of our construction. The universality statement
given in Theorem [[[.23] provides both a characterization of the generalized universal
groups and the k-closures of groups that act locally transitively with an involutive
inversion on the d-regular tree. The discrete case discussed in Section [ utilizes
Theorem [[T.23] to suggest a new approach to the Weiss conjecture stating that for a
given locally finite tree T there are only finitely many conjugacy classes of discrete,
vertex-transitive and locally primitive subgroups of Aut(T"). It also shows that the
additional assumption in Theorem [[[.23] compared to [BMO00al, Proposition 3.2.2]
is indeed necessary. Finally, Section [Tl applies the framework of universal groups to
groups acting with non-trivial quasi-center. We characterize the type of elements
that the quasi-center of a non-discrete subgroup of Aut(7,;) can have in terms of its
local action and explicitly construct groups with non-trivial quasi-centers to show
that said characterization is sharp.

1. Definition and Basic Properties

1.1. Definition. Let Q be a set of cardinality d > 3 and let Ty, = (V, E)
denote the d-regular tree. Recall that a labelling [ of T; is a map [ : E — Q such
that for every z € V' the map I, : E(z) — Q, y — I(y) is a bijection and for all
e € E we have l(e) = [(e).

Given k € N, fix a labelled tree By with
center b which is isomorphic to a ball of radius &
in Ty and whose labelling arises from a labelling
of Ty via such an isomorphism. For example, B3 o
may be as on the side. Then for every z € V,
there is a unique label-respecting isomorphism

1¥ . B(x,k) = Bay.
These maps allow us to capture the k-local actions of automorphisms via the map
o Aut(Ty) x X — Aut(Bgg), (g,z) — or(g,z) := l';m ogo(IF)~1
Definition 11.1. Let F' < Aut(Bg,) and [ a labelling of T;. Define
Ugcl)(F) ={g € Aut(Ty) | Ve €V : o(g,x) € F}.

The following lemma states that the maps o satisfy a cocycle identity which
immediately implies that U;cl) (F) is a subgroup of Aut(T}) for every F' < Aut(Bg).

Lemma 11.2. Let € V and g, h € Aut(Ty). Then oy (gh,z) = ok (g, hx)oy(h, ).

11
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Proof. We readily compute
Ok (gh,x) :lécgh)x ogho (l];)il = l?gh)z ogoho (llac:)il =
= Uynys 090 (i)™ oliy o ho (I5)™! = ok(g, ha)ok (h, ).

for all x € V and all g,h € Aut(Ty). O

1.2. Basic Properties. Note that the group Ugl) (F) of Definition [T for
F < Aut(Bg,1) = Sym(Q) coincides with the Burger—Mozes universal group U (F)
introduced in [BMO00al, Sec. 3.2] and Section Il Several basic properties of the
latter carry over to our generalized situation. First of all, passing between labellings
of T; amounts to conjugating in Aut(Ty).

Lemma 11.3. For every quadruple (I,I’,z,z") of labellings [,I" of T; and vertices
x, 2’ € V, there is a unique automorphism g € Aut(Ty) with gz =2’ and I’ =1log.

Proof. Set gr := x'. Now assume inductively that g is uniquely determined on

B(z,n) (n € Np) and let v € S(z,n). Then g is also uniquely determined on E(v)
by the requirement I' = [ o g, namely g|g () := l|;3%gv) ol'l pu)- 0

Corollary 11.4. Let F' < Aut(Bg,;). Further, let [ and I’ be labellings of T;. Then
the groups U;cl) (F) and U;cl )(F) are conjugate in Aut(Ty).

Proof. Choose z € V. Let 7 € Aut(T%) denote the automorphism of Ty associated

to (I,I',z,z) by Lemma [L3] then U,(cl (F) = TU](CII)(F)T_l. O

In the following, we shall therefore omit the reference to an explicit labelling.

Proposition 11.5. Let F' < Aut(Bg,). Then Ui (F) is a

(i) closed subgroup of Aut(Bg), and
(ii) vertex-transitive.

Proof. As to (i), note that if g ¢ Ui (F) then o4(g,z) ¢ F for some z € V. In this
case, the open neighbourhood {h € Aut(Ty) | h|p(2,k) = 9lB(2,k)} Of g in Aut(Ty)
is also contained in the complement of U (F).

For (ii), let z, 2" € V and let g € Aut(Ty) be the automorphism of T, associated
to (I,1,z,2") by Lemmalll3l Then g € Ui (F) as ox(g,v) =id € Fforallv € V. O

The following result is now a consequence of Proposition [[I.5] and Lemma [[13

Corollary 11.6. Let F' < Aut(Bgy). Then U (F') is a compactly generated, totally
disconnected, locally compact Hausdorff group.

Proof. The group Ug(F) is totally disconnected locally compact Hausdorff as a
closed subgroup of Aut(Ty). To show compact generation, fix x € V. Then U (F)
is generated by the join of the compact set Ug(F), and the finite generating set
of Ui ({id}) = Ur({id}) < Uy(F) given in the proof of Lemma Indeed, for
a € Ug(F) pick g in the finitely generated, vertex-transitive subgroup U; ({id}) of
Uk (F) such that B(ax) = z. Then Ba € Ug(F), and the assertion follows. O

Proposition 11.7. Let F' < Aut(Bg,). Then U (F) satisfies Property Pj.

Proof. Let e € E. Clearly, Ug(F)ex D Ug(F)er 1, - Up(F)cr 1, . Conversely, consider
g € Up(F)r and define g, € Aut(T,) and g, € Aut(Ty) by

_Jor(g,v) veV(T,) _Jid veV(Ty)
71 (9y,v) = {id v e V(T,) and ow(gz,v) = {Jk(g,v) ve V(T

respectively. Then g, € Uy (F)er 1, 9o € U (F)er 7, and g = gy 0 gar. O
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2. Compatibility and Discreteness

We now generalize parts (iv) and (vi) of Proposition to the generalized
setting. This results in a compatibility condition (C) and a discreteness condition
(D) on subgroups F' < Aut(Bqy) that hold if and only if the associated universal
group locally acts like F' and is discrete respectively.

2.1. Compatibility. First, we ask whether Ui (F') locally acts like F', that
is whether the actions Uy(F'), ~ B(z,k) and F ~ By are isomorphic for every
x € V. Whereas this always holds for ¥ = 1 by Lemma [[I.3] it need not be true for
k > 2, see Example[[L9, the issue being (non)-compatibility among elements of F'.
The condition developed in this section allows for computations. A more practical
version from a theoretical viewpoint follows in Section [B

We introduce the following notation for vertices in the labelled tree (Ty,1):
Given z € V and w = (wy,...,wy) € Q" (n € Ny), set Ty := Yg,w(n) where

w1 w2

Yo ¢ Path(®) := D o Ty

0 1 2 n

is the unique label-respecting morphism sending 0 to x € V. If w is the empty
word, set z,, := x. Whenever admissible, we also adopt this notation in the case
of By and its labelling. In particular, S(z,n) is in natural bijection with the set
Q) = {(wi,...,wn) €EQ* |VEE{L,...,n —1}: Wy # Wkt )

Now, let # € V and suppose that « € Uy (F), realizes a € F at x, that is

alp@r =5 oaolk.

Then given the condition that op(c,z,) be in F for all w € Q, we obtain the
following necessary condition on F' for Ui (F) to act like F at z € V:

Va€ FYweQ: Ja, €F: (5 oaolls, =k, ) oa, 0l |s,
where S, := B(z,k) N B(zy,,k) C Ty. Set T, := I1¥(S,) C Byy. Then the above
condition can be rewritten as

Va€ FYweQ: 3a, € F: ayln, =15, o(5) " oaollo(lt )7g,.

ax,

Now observe the following: First of all, ax,, depends only on a. Secondly, the subtree
T, of By does not depend on z, and thirdly, ¢, := I¥|T= o (I¥)~!|7, is the unique
non-trivial, involutive and label-respecting automorphism of T,, given by
T _

by ‘= l];| O(l];w) 1|Tu:Tw_)Sw_)Tw7 bw'_)xww'_)b“-’w
for admissible words w. Hence the above condition may be rewritten as
(C) Vo€ FYweN: Ja, € F: ay|r, = tow)oaoL,.
In this situation we shall say that a,, is compatible with a in direction w.

Proposition I1.8. Let F < Aut(Bg,). Then Uy (F) locally acts like F' if and only if
F satisfies the compatibility condition (Cl).

Proof. By the above, condition (C]) is necessary. To show that it is also sufficient,
let v € V and a € F. We aim to define an automorphism « € Uy (F') which realizes
a at v. This forces us to set

alpr = (8) toaoll.

Now, assume inductively that « is defined consistently on B(v,n) in the sense that
orp(a,x) € F for all z € B(v,n) with B(z,k) C B(v,n). In order to extend a to
B(v,n +1),let z € S(v,n —k + 1) and let w € Q be the unique label such that
z, € S(v,n — k). Applying condition (C)) to the pair (¢ := oy (,x,),w) provides
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an element ¢, € F' such that
(loa,) tocoly |g = (a,) "t ocuoly

where S, := B(x, k) N B(z,,k) and we have realized

5.

T, _
Ly as l’;w| o (II;) 1|Tu and le(w) A8 l’éz Ty

Now extend a consistently to B(v,n+ 1) by setting | (s 1) 1= (I1%,) "t oc,0lk. O

Ezample 11.9. Let Q := {1,2,3} and a € Aut(Bs2) the element which swaps the
leaves 12 and 13 of Bso. Then F := (a) = {id,a} does not contain an element
compatible with a in direction 1 €  and hence does not satisfy condition ().

To make the verification of condition (C)) viable, we record the following reduc-
tion to generating sets: For a,b € F < Aut(Bgy) and ¢ := ab € F we have

CulT, = te(w) ©@ 060ty = (te(w) © a0 tywy) © (thw) 0 b0 L)
= (ta(b()) © @2 Th(w)) © (1) 0 Do L)
Thus if Cr(a,w) denotes the set of elements in F' which are compatible with a € F
in direction w € Q then Cp(ab,w) O Cp(b,aw)Cr(a,w). It therefore suffices to
check condition (C)) on a generating set of F.

Given S C Q, we also define the compatibility set Cr(a,S) := (), Cr(a,w),
the set of elements in F' which are compatible with a € F' in all directions from S.

As a consequence, we obtain the following description of the local action of
Ui (F) if F does not satisfy condition (C)).

Corollary 11.10. Let F' < Aut(Bg,). Then F has a unique maximal subgroup C'(F')
which satisfies condition (C)). Furthermore, Uy (F) = Ug(C(F)).

Proof. By the above, C(F):=(H < F | H satisfies () < F satisfies condition (C).
Clearly, it is the unique maximal such subgroup of F'.

By definition, Uy (C'(F)) < Ug(F). Conversely, suppose g € Uy (F)\Ug(C(F)).
Then there is z € V such that o4 (g,z) € F\C(F') and the group

C(F) s (C(F),{ok(g,z) |z €V}) < F

=

satisfies condition ([C)), too, as can be seen by setting oy (g, ), := or(g, z,)- This
contradicts the maximality of C'(F). O

Remark 11.11. Let F < Aut(By,) satisfy (C). Elements of Uy (F) are readily con-
structed: Given v,w € V(Ty) and a € F, define g : B(v, k) — B(w,k) by set-
ting g(v) = w and o(g,v) = a. Given a collection of actions (a,),cq such that
ay, € C(a,w) for all w € Q there is a unique extension of g to B(v, k + 1) such that
or(g,vs) = a,. Proceed iteratively.

2.2. Discreteness. The group F < Aut(Bgy) also determines whether or
not Ui (F') is discrete. In fact, the following proposition generalizes the fact that a
Burger-Mozes universal group is discrete if and only if its local action is semiregular.

Proposition 11.12. Let F' < Aut(Bg,,) satisfy condition (C)). Then Uy (F) < Aut(Ty)
is discrete if and only if F' satisfies

(D) YweQ: Fr, ={id}.
Proof. Fix v € V. A subgroup H < Aut(Ty) is non-discrete if and only if for every
n € N there is h € H\{id} such that h|p(, ) = id.

Suppose that Ui (F) is non-discrete. Then there are n € N> and a € Ug(F)
such that a|p(y,n) = id and a|p(y pt1) # id. Hence there is € S(v,n — &k + 1) with
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a := op(a,x) # id. In particular, a € Fr,\{id} where w is the label of the unique
edge e with o(e) = z and d(v,z) = d(v, t(e)) + 1.

Conversely, suppose that Fr, # {id} for some w € Q. For every n € N>y,
we define an automorphism a € Uy (F) with a|p(,,n) = id and a|p(y,ni1) 7# id: If
@|B(v,n) = id, then oy (o, z) € F for all z € B(v,n — k). Next, choose e € E with
xz:=o(e) € S(v,n —k+1) and t(e) € S(v,n — k) such that I(e) = w. We extend «
to B(z,k) by a|pk) =150 so (I¥)~! where s € Fr,\{id}. Finally, we extend «
to Ty using condition ((C)). O

As we shall investigate the discrete case later on in Section[5], we define condition
(CD) on F < Aut(Bgy) to be the conjunction of (C) and (D). The following
description is then immediate from the above:

(CD) Va € FYweQ: Fa, € F: aylr, = tgw)0aot,.

In this case, an element of Uy (F), is determined by its action on B(z, k). Hence
Up(F), = F for all 2 € V and Ug(F)(4,y) = Fp,) for all adjacent z,y € V with
[(xz,y) = w. Also, F' admits a unique map 2z : F x Q = F, (a,w) + a,, which for all
a,b € F and w € (Q satisfies

(i) z(a,w) € Cr(a,w),

(il) z(ab,w) = z(a,bw)z(b,w), and

(iii) z(z(a,w),w) = aq,
We shall refer to a map z as above as an involutive compatibility cocycle of F. In
particular, 2 restricts to an automorphism 2, = 2(—,w)|F,,,, € Aut(Fp,)) of
order at most 2 for every w € Q.

2.3. Group Structure. For F< Aut(Bgg), let F:= TF < Sym(9) denote
the projection of F' onto Aut(Bg,1) = Sym(f2). As an illustration, we record that
the structure of Uy (F) is particularly simple if F' is regular.

Proposition 11.13. Let F< Aut(Bg,,) satisfy condition (C). Suppose that F := rF
is regular. Then Uy (F) = Uy (F) 2 FxZ [2Z.

Proof. Fix b € V. Since F is transitive, Uy (F) is generated by Uy (F); and an invo-
lution ¢ inverting an edge with origin b. Given a € U (F)y, regularity of F' implies
that o1(a,z) = ¢;(a,b) € F for all z € V. The subgroups H; := Ug(F), = F and
Hs := (1) of Ug(F) generate a free product within Uy (F) by the ping-pong lemma:
Put Xy := V(T}) and X5 := V(T},). Any non-trivial element of H; maps X, into
X, be regularity of F. Also, 1 € Hy maps X; into X» by definition. O

More generally, Bass-Serre theory identifies the universal groups Uy (F)
as amalgamated free products.

Proposition 11.14. Let F < Aut(Bg,) with 7F transitive satisfy (C)) (and[D)). Then

Up(F) 2 Up(F)e * Up(F) {2y} (g F x (Fp,)) * Z/QZ)>
Uk (F)(2,9) Flob,)

for any edge (z,y) € E, where w = I(x,y) and the action of Z /27 on F, ;) is

given by 2z, € Aut(Fyp,))-

Corollary 11.15. Let F,F' < Aut(Bgy) satisfy (CD). If ¢ : F — F' is an isomor-

phism such that p(F,,)) = F(’b,b N for some w,w’ € Q, then U (F) 2 Ug(F'). O
Note that Corollary[[L.I5lapplies to conjugate subgroups of Aut(Bg,x) with (CDJ).

2.4. The Burger—Mozes Subquotient. Here, we determine the Burger—
Mozes subquotient H () /QZ(H(*)) of Theorem [[J for certain universal groups.
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Proposition 11.16. Let F' < Aut(Ba,,). If F satisfies (D)) then QZ(Uy (F)) = Ug(F).
Otherwise, QZ(Ug(F)) = {id}.

Proof. If F satisfies (D)) then Ug(F) is discrete and hence QZ(Ug(F)) = Ug(F).
Conversely, if F' does not satisfy (D)) then Proposition [L7implies that any half-tree
stabilizer in Ui (F') is non-trivial: Let T' C Ty be a half-tree. Then T € {T,, T, } for
an edge e := (z,y) € E. Since Ui (F) is non-discrete and has satisfies Property P
by Proposition [LT] the stabilizer Ug (F)ex = Ug(F)r 1, - U (F)ex 7, is non-trivial.
In particular, either Uy (F)r, or Ui (F)7, is non-trivial. Then both are non-trivial
in view of the existence of label-respecting inversions. Hence so is Uy (F) 7.
Therefore, Uy, (F) has Property H of Moller—Vonk [MV12], Definition 2.3] and
[MV12] Proposition 2.6] implies that Ug(F) has trivial quasi-center. O

Proposition 11.17. Let F < Aut(Bg,) with 7F < Sym(Q) semiprimitive satisfy (C])
but not (D). Then Uy (F)(®) = U (F)*tx.

Proof. The subgroup Uy (F)™* < Ug(F) is open, hence closed, and normal by
definition. Since Uy (F) does not satisfy (D)) it is also non-discrete. By Corollary
[[T.43, we conclude that Uy (F)T* > Uy (F)(°). However, since Uy (F) satisfies Prop-
erty P by Proposition [L7, the group U (F)** is simple by Theorem Hence
U (F) T = Uy (F) ). O

In particular, Ui (F)** is a non-discrete, totally disconnected locally compact
simple group in the case of Proposition [LT7 If 7 F is quasiprimitive, then Uy (F)**
is cocompact in Ug(F) by [BMO0Oa, Proposition 1.2.1] and therefore compactly

generated by .
Overall, we may record U (F)(*) /QZ(U(F)(*)) = Uy (F)** in the quasiprim-
itive case, using [BM0Oa), Proposition 1.2.1 (4)].

3. Examples

In this section, we construct various classes of examples of subgroups of Aut(Bg,x)
satisfying (C) or (CDJ), and prove a rigidity result for certain local actions.

First, we introduce a workable realization of Aut(By ) as well as the conditions
(C) and (CD)). Essentially, we view an automorphism a of By as the collection
{ok—1(,v) | v € B(b,1)}: Let Aut(Bg,1) = Sym(2) be the natural isomorphism
and for k > 2 identify Aut(Bg) with its image under the map

Aut(Bd,k) — Aut(Bd,k,l) X H Aut(Bd’k,l), o = (kal(a, b), (ok,l(a, bw))w)
weN
where Aut(Bgx—1) acts on [] .o Aut(Bgr—1) by permuting the factors according
to its action on S(b,1) = Q. In addition, for every w € Q consider the map
Puw - Aut(Bd,k) — Aut(Bd’k,l) X Aut(Bd,k,l), o= (ok,l(a, b),ak,l(a, bw))

whose image we interpret as a relation on Aut(Bg,x—1). The conditions ([C)) and (D)
for a subgroup F' < Aut(Bg,) now read as follows.
(©) Yw e Q: p,(F) is symmetric
(D) Yw € Q: p,|pt(id,id) = {id}

3.1. The case k = 2. We first consider the case & = 2 which suffices in certain
situations, see Theorem Consider the map v : Sym(2) — Aut(Bg,2) which
maps a € Sym(Q) to (a,(a,...,a)) € Aut(Bg,2) using the realization of Aut(Bg,2)
defined above. Given F' < Sym(Q2), the image

I(F) :=im(y|r) = {(a,(a,...,a)) |la € F} 2 F
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is a subgroup of Aut(Bg,2) isomorphic to F' which satisfies (CDI). Indeed, its com-
patibility cocycle is given by z : T'(F) x Q@ — T'(F), (y(a),w) — v(a). Notice that
['(F) implements the restriction of the diagonal action F' ~ Q2 to Q) = §(b, 2).
Clearly, Ux(T(F))={a € Aut(Ty) | Ja€ F: Yz €V : ¢c,(a,z) = a} =: D(F),
following the notation of [BEW15]. Moreover, we have the following description of
all subgroups F?) < Aut(Bg») which satisfy ({), project onto F' and contain I'(F).

Proposition 11.18. Let F' < Sym(Q). Given K < ] .o F, = kerm < Aut(By,2),
there is F(? < Aut(Bg,2) with (C)) and fitting into the split exact sequence

I%K%F@)%F%l

if and only if K is invariant under the action F ~ [] F,, given by

w€eQ
a- (aw)wGQ = (aaa_l(w))wGQ
In the split situation of Proposition [LI8 we also denote F(?) by X(K).
Proof. If there is an exact sequence as above then K <I F'®) is invariant under con-
jugation by I'(F) < F(®). Conversely, if K is invariant under the given action, then

2 = {(a, (aa,),) |a € F, Yw € Q : a, € F,} fits into the sequence. Note that
F® contains K and T'(F), and is a subgroup: For (a, (aa,),), (b, (bb,).,) € F?),

(a (aaw)w)(b (bb ) ) = (ab (aab(w)bb )) = (aba (ab ° bilab(w)bbw)w) € F(2)

by assumption. In particular, F(?) = (I'(F), K). We now check condition (C) on
generators of F?). As before, y(a ) C(y(a),w) for all a € F and w € Q. Further,
given k € K, we have v(pr,, k)k Le O(k,w) for all w € Q. O

Both the construction T' and Proposition [[L1] generalize to non-trivial involu-
tive compatibility cocycles of F. The following subgroups of Aut(Bg2) are of this
type: Let F' < Sym(f2) be transitive. Fix wp € Q and let N < F,,, be normal.
Furthermore, fix elements f, € F' (w € Q) satisfying f,(wp) = w and define

A(F,N) = {(a, (fa@) [ © fotuw fo)w) | a € F, ay, € N} = F x N,
O(F,N) == {(a,(ao foal® fo)) |a € F, Vo € Q: a¥) € N} = F x N
Note that in the case of A(F N) we have chosen z(a,w) = fo()f; ' foralla € F
and w € 2 but in general any involutive compatibility cocycle z of F' for which
[(F) and {(id, (foauw,f;')w) | w € 2} commute works. The groups ®(F, N) sat-
isfy (C) and the groups A(F, N) satisfy (CD]). We abbreviate A(F) := A(F, F,,)
and ®(F) := ®(F, F,,). Notice that ®(F') can also be defined without assuming

transitivity of F', namely

O(F) :={(a,(as).) |a € F, Vw € Q: a, € Cp(a,w)} = F x [[ F.
wEeR
It is then plain that Us(®(F)) = Uy (F) for every F' < Sym(Q). More generally,
assume that F' < Sym(Q2) preserves a partition P: Q = | |,_; Q;. Set
o(F,P) :={(a,(ay)y) |a € F, a, € Cr(a,w) constant w.r.t. P} = F x HFQ
iel
The group ®(F,P) satisfies ([C) and plays a major role in Section [7l

Ezxample 11.19. In this example we investigate Proposition for primitive dihe-
dral groups: Set F := D, < S, for some prime p > 3. Then F; = (F5,+). Hence
U :=T[._, Fi is a p-dimensional vector space over F» and the F-action on it re-
duces to permuting coordinates. In case 2 € (Z /pZ)* is primitive we show that
there are only the following four F-invariant subspaces of U: The trivial subspace,
the diagonal subspace ((1,...,1)), the whole space and K := ker o = ng_l) where



18 II. UNIVERSAL GROUPS

0:U = Fs, (vi,...,0p)7 = 37 | v;. Notice that K is an F-invariant subspace be-
cause o is an F-invariant homomorphism. It is a conjecture of Artin that there are
infinitely many such primes, the list starting with 3,5, 11, 13. .., see A001122].

Suppose that W < U is F-invariant. It suffices to show that K < W as soon
as W N kero contains a non-trivial element w. To see this, we show that the or-
bit of w under the cyclic group (9) = C, < D, generates a (p — 1)-dimensional
subspace of K which hence equals K: Indeed, the rank of the circulant matrix
C = (w, ow, o*w, . .., 0P~ Dw) equals p— deg(ged(z? — 1, f(z))) where f(x) € Fy[z]
is the polynomial f(z) = wyzP~' +- - -+wsz+ws, see e.g. Corollary 1]. The
polynomial zP —1 € F»[z] factors into the irreducibles (zP 1 +2P 2+ - -+2+1)(z—1)
by the assumption on p. Since f has an even number of non-zero coefficients, we
conclude that rank(C) =p — 1.

3.2. General case. We now extend the constructions I' and ® to arbitrary k.
Given F < Aut(Bg,,) with (C), define the subgroup

O(F) :={(o,(aw)y) | € F, Yw e Q: a, € Crla,w)}

of Aut(Bg,g+1). Clearly, ®(F) satisfies (C) and Uy (P (F)) = Ug(F). Concerning
the construction I' we have the following.

Lemma 11.20. Let F' < Aut(By,) satisfy (C)). Then there exists Ty, (F) < Aut(Bg,k+1)
satisfying (CD)) and such that m : Ty (F) — F is an isomorphism if and only if F
admits an involutive compatibility cocycle.

Proof. If F admits an involutive compatibility cocycle z, define
Li(F) :={(, (2(,w))w) | @ € F} < Aut(Ba pt1)-

Then 7 : F — Ty (F), a — (a,(2(a,w)),) is an isomorphism and the involutive
compatibility cocycle of T'y(F) is given by Z : (yx(a),w) — v (2(a,w)). Conversely,
if a group T'y(F) as above exists, set z : (a,w) = pr, 7} ' q. O

Let F < Aut(By,y) with (C) and [ > k. Set T/(F):=T;_; 0 -+ o[, (F) for an
implicit sequence of involutive compatibility cocycles and ®!(F):=®;_;0---0®(F).

Example [I.228 provides a group E < Aut(Bs2) that satisfies ({), admits an
involutive compatibility cocycle but does not satisfy (CDJ).

3.3. A rigid case. For certain F' < Sym((2) the groups I'(F'), A(F') and ®(F)
already yield all possible Ug(F'). The argument is based on Sections 3.4 and 3.5 of
[BMO0Oa]. The following lemma is due to M. Guidici by personal communication.

Lemma 11.21. Let F < Sym(Q) be 2-transitive with F,, simple non-abelian for all
w € Q. Then every extension of F, (w € Q) by F is equivalent to the direct product.

Proof. Let 1 — F,, — F® — F — 1 be an extension of F,, by F. In particular, F,,
can be regarded as a subgroup of F(® and we may consider the conjugation map
¢ : F® — Aut(F,). We show that K := kerp = Cpe) (F,) < F®) complements
F, in F®_ Since F,, is non-abelian, we have K NF, = {id} whence K x F, < F2),
Now consider F(?) /(K x F,) < Out(F,,) which is solvable by Schreier’s conjecture.
Since F(®)/F, = F is not solvable we conclude K # {id}. Now, by a theorem of
Burnside, every 2-transitive permutation group F' is either almost simple or affine.

In the first case, F' is actually simple: Let N <F'. Then F,,NN <F,,. Hence either
F,NN={id} or F,NN = F,,. Since F is 2-transitive and hence primitive, every
normal subgroup acts transitively. In the first case, N is regular which contradicts
F' being almost simple. Hence the second case holds and N = NF, = F. Now
F® /(K x F,) is a proper quotient of F and hence trivial. Therefore F(*) = K x F,,
and K = F(?)/F, = F. In the second case, F = F, x Cf (d e N) and {id} # K =
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K F,/F, < F contains the unique minimal normal subgroup C’d < K < F. Since
= F/C{ is non-abelian simple whereas F® /(K x F,) is solvable we conclude
that K # C’d But F/C? = F,, is simple, so K x F,, = F?). a

Theorem I1.22. Let F' < Sym(Q) be 2-transitive with F,, simple non-abelian for all
w €N, and let F < Aut(Bgy) with 7F = F satisfy (). Then Ug(F) equals either

Ua(C(F)),  Us(A(F)) or Ux(®(F)) = Us(F).

Proof. We may assume k > 2. Since F < Aut(Ba,,) satisfies (C) so does the
restriction F(?) := myF < ®(F) < Aut(Bd 2) Consider the projection 7 : F(?) — F
and fix wg € Q. We have ker <[] cq Flo = F and pr, kerm < F,,, for all w € Q
because F( satisfies (). Since F,, is 51mp1e kerm < F(® and F is transitive
this implies that either pr,kerm = {id} for all w € Q or pr kerm = F,, for
all w € Q. In the first case, 7: F®) — F is an isomorphism and F®) gatisfies
([CD) which implies F(*) = I'(F) and hence U, (F) = Uy(T'(F)) for some involutive
compatibility cocycle of F.

In the second case, Section 3.4.3 of implies that kerm < F¢ is a
product of subdiagonals preserved by the primitive action of F' on the index set
of Fd Therefore, either there is just one block and kerm 2 F,, , or all blocks
are smgletons and kerm = Fd In the first case, we_conclude F®) = A(F) using
Lemma [L.27] which satisfies (IEDD and therefore Uk( F) = Ux(A(F)).

Now assume that kerm = FZ . We aim to show that F' = ®*(F) which implies
Ui (F) =Us(®(F)) = Uy (F). To this end, we introduce the following notation:
Given w € Q and By, set Sy(b,w) = {z € S(b,n) | d(z,b) = d(ac b,) + 1} for
n < k, a(n) := |Sy(b,w)| and c(n) := |S(b,n)|. Further, let F(™ < Aut(By,)
(n € N) denote the local actions of Uy (F).

First of all, note that Uy (F) is non-discrete by the Thompson-Wielandt Theo-
rem, see Theorem 2.1.1]: The group ®(F)r, = F2~' cannot be a p- grou;))
given that F,,, is simple non-abelian. Thus K, := stabp)(B(b,n — 1)) < Fwon !
is non-trivial for all n € N.

We now inductively prove that F(™) acts transitively on S (b,n) for alln € N
which holds for n = 2. Since F("+1) satisfies (), the projection onto each factor
of Kpyq < Fjg") is subnormal in F,,,. Since F,, is simple, F(® acts transitively
on S(b,n) by the induction hypothesis, and K1 is non-trivial this implies that
pr, Kny1 = F,, for all z € S(b,n). Hence F("*Y) acts transitively on S(b,n + 1).
Thus Ug(F) is locally co-transitive.

We now inductively prove that F(™ = &, ,(F™~ 1) for all n € N. This holds
for n = 2. As a consequence of the above argument, K, is a product of subdiag-
onals preserved by the transitive action of F("+) on S(b,n). The associated block
decomposition (B; )Jej of S(b,n) satisfies |[B;NS,(b,w)| < Lforallj € Jand w €
Since K,, = Ff,on by the induction hypothesis we conclude K y1]s, . (5,w) = Fj§”)
because Ky, 4+1 = stabpm+1) (B(b,n)) dstabpm+1 (B(by,,n—1)) = K,,. However, any
such block decomposition has to be the decomposition into singletons: Assume that
|Bj| > 2 for some j € J and choose w,w’ € Q such that B; N S,(b,w) = z and
B(j) N Sn(b,w') = 2'. Further, choose y € S,(b,w')\{z'}. Then y € Bj for some
j' € J\j. Since U(F®) is locally co-transitive, there is a € F(™+1) such that
arx = z and az’ = y. However, this implies aB; = B; and aB; = Bj which
contradicts the assumption j # j'. O

See Example 3.3.1] for examples of permutation groups satisfying
the assumptions of Theorem [1.22] If F' does not have simple point stabilizers or
preserves a non-trivial partition, further universal groups are given by Uz (A(F, N)),

Uy (®(F,N)) and Ux(®(F,P)), see Section B.I1
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4. Universality
Let F < Aut(Byy) satisfy (C). Suppose that F := «F is transitive. Then

Uk (F) < Aut(Ty) is locally transitive, satisfies Property P, and contains an in-
volutive inversion. In this section we show that these properties characterize lo-
cally transitive universal groups and thereby determine the k-closures of all locally
transitive groups containing an involutive inversion. Recall that the k-closure of

H < Aut(Ty) is the group
H® = {ge Auwt(Ty) |Ve € V:3h € H: glp@ar) = hl@r}-

Theorem 11.23. Let H < Aut(Ty) be locally transitive and contain an involutive
inversion. Then there is a labelling I of Ty such that

UL (FD) > Up(F®) > - Uy (FW) > - > H > Uy ({id})

where F(F) < Aut(Byg,) is action isomorphic to the action of H on balls of radius k.
Furthermore, H*) = U (F(*).

Proof. We first construct a labelling [ of T;; such that H > Ugl) ({id}): Fixb € V and
choose a bijection I, : E(b) — Q. The assumptions provide an involutive inversion
tw € H of the edge (b,b,,) for each w € Q. Using these, we define the announced
labelling inductively: Set I| ) := lp. Assume that [ is defined on F(b,n) and for
e € E(byn+1) put l(e) := (1o (e)) if b, is part of the unique reduced path from b
to o(e). Since the ¢, (w € Q) have order 2, we have o1 (i,,x) = id for all w € Q and
z € V. Thus ({1, |w e Q}) = UV ({id}) < H.

Now let h € H and x € V. Further, let (b,by1,...,b,,2) and (b,b},...,b, ,h(x))
be the unique reduced paths from b to 2 and h(z) respectively. Since ng) ({id}) < H,
the latter in particular contains the unique label-respecting inversion ¢, about every
edge e in the above paths. Then

1 1 -1
’
1

S = o) b ) () ) O PO Habe) T e b U ) € H

(b
stabilizes b and the cocycle identity implies for every k € N:
o1 (hy @) = ok (t(n(z),br,) = Lby b) © S © L(bi,b) "'L(;l,bn)ax) = o (s,b) € F¥.

where F(¥) < Aut(B) is defined by IfoHy|pv,kyo(I§) ™" . The remaining assertions
are now immediate from [BEW15| Theorem 5.4]. O

Remark 11.24. Retain the notation of Theorem [[[.23 By Proposition [[14] there
is a labelling I of Ty such that Ugl) (F(U) > H regardless of the minimal order of
an inversion. This labelling may be distinct from the one of Theorem [I.23] which
fails without assuming the existence of an involutive inversion: For example, a
vertex-stabilizer of the group G} of Example [[28 is action isomorphic to I'(S3)
but G} £ Ugl) (T'(S3)) for any labelling I because (G})p,5,3 = Z /4 Z whereas

UL (T(S5)) gy = T(Ss) o) X 2 J2Z = T [2Tx T, |27,
by Proposition [[L.14l

The following corollary of Theorem [T.23] characterizes universal groups as the
locally transitive subgroups of Aut(7,;) which contain an involutive inversion and
satisfy an independence property.

Corollary 11.25. Let H < Aut(Ty) be closed, locally transitive and contain an
involutive inversion. Then there is a labelling [ of Ty and a group F®) < Aut(Bg)
such that H = Uy (F®) if and only if H satisfies Property Pj.
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Proof. If H = U, (F™)) then H has Property P;, by Proposition [LZ Conversely,
if H satisfies Property P, then H = H = H®) = U, (F®) by virtue of [BEW15,
Theorem 5.4] and Theorem [1.23] O

To complement Theorem [[1.23] we record the following criterion for certain
discrete subgroups of Aut(7y) to contain an involutive inversion.

Proposition 11.26. Let H <Aut(T}) be discrete and locally transitive with odd order
point stabilizers. If H contains an inversion then it contains an involutive one.

Proof. Let kg € Nog be minimal such that stabilizers in H of balls of radius k¢ about
edges in Ty are trivial. Let ¢ € H be an inversion of an edge e € E. Then % € H,.
Hence we are done if kg = 0. Otherwise the smallest integer n; € N such that
(1) e Hp1,) is odd by the assumptions on the local action of H. Iteratively, the
smallest integer nj € N such that (:2)™ € Hp(k,e) is odd for every k < ko and we
conclude that (%o is an involutive inversion. |

In Proposition [[.26] we may for example assume that H be vertex-transitive.
Combined with local transitivity this implies the existence of an inversion.

Primitive permutation groups with odd order point stabilizers were classified
in [LS91]. For instance, they include PSL(2, q) for all ¢ = 3 mod 4.

5. The Discrete Case

In this section we study the universal group construction in the discrete case.
This provides Remark showing that the assumptions of Theorem [[[.23 are
necessary and offers a new approach to the long standing Weiss conjecture, stating
in particular that there are only finitely many conjugacy classes of discrete, vertex-
transitive, locally primitive subgroups of Aut(Ty).

The following straightforward consequence of Theorem [[I.23] identifies certain
groups relevant to the Weiss conjecture as universal groups for local actions satis-

fying condition (CDJ).

Corollary 11.27. Let H < Aut(Ty) be discrete, locally transitive and contain an in-
volutive inversion. Then there is £ € N and alabelling [ of T; such that H = U,(Cl) (Fy)
where Fj, < Aut(Bg,;) is action isomorphic to the action of H on balls of radius k.

Proof. Note that discreteness of H implies Property Py for every k € N such that
stabilizers in H of balls of radius k in Ty are trivial and apply Corollary [1.251 [

Hence studying the class of groups given in Corollary [[L.27 reduces to studying
subgroups of Aut(By ) (k € N) which satisfy (CDJ). By Corollary [L15] any two
conjugate such groups yield isomorphic universal groups. In this sense, it suffices
to examine conjugacy classes of subgroups of Aut(Bg,). This can be done compu-
tationally using the description of conditions (C) and (D)) developed in Section 2

using e.g. GAP [GAP17].

Example 11.28. Consider the case d = 3. By [Tut47], [Tut59] and [DMB80], there
are, up to conjugacy, seven discrete, vertex-transitive and locally transitive sub-
groups of Aut(T3). We denote them by G, G2, G}, Gz, G4, G} and G5. They have
known amalgamated free product structure and presentation. A subscript n indi-
cates that the respective group acts regularly on non-backtracking paths of length
n in T3, and determines the isomorphism class of the (finite) vertex stabilizer which
is of order 3 - 2"~'. The respective group contains an involutive inversion if and
only if it has no superscript. The minimal order of an inversion in G} and G} is
4. See also [CL89]. By Corollary [[.27, the groups G,, (n € {1,...,5}) are of the
form Uy (F'). We recover their local actions in the following table of conjugacy class
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representatives of subgroups F of Aut(B3 ) and Aut(Bs 3) which satisfy condition
(@) and project onto a transitive subgroup of Ss. The list is complete for k = 2,
and for k = 3 in the case of (CD).

=
5
N

F| | (CD) | i.c.c.

Description of F |

@(Ag) 2 A3 3 Yes
I'(Ss3) 2| S3 | 6 | Yes
A(S3) 2 53 12 Yes
S(K) 2] S; | 24| No | No
E 2| S3 | 24 No Yes
d(S;) 2| S; | 48| No | No
Description of F' | k | o F | |F| | (CD) | ic.c.
'y (E) 3| E | 24| Yes
Ay (E) 3| E | 48 | Yes

The column labelled “i.c.c.” records whether the respective group admits an involu-
tive compatibility cocycle which can be determined computationally in [GAP17].
Recall that this is automatic if ([CDJ) is satisfied. The kernel K stems from Ex-
ample The split example ¥(K), after Proposition [LI8] is isomorphic to an
exceptional group termed E but the two are not conjugate within Aut(Bs »).

Using the above, we conclude G; = Uy (A3), G2 = Ux(['(S3)), Gs = Uy (A(S3)),
G4 =U3(T2(E)) and G5 = U3(Ay(E)). It appears likely that the groups G3 and G}
can be described as universal groups with prescribed local action on balls around
edges, in which one prevents involutive inversions to begin with.

5.1. On the Weiss Conjecture. The long standing Weiss conjecture [Wei78|
states that for a given locally finite tree T there are only finitely many conjugacy
classes of discrete, vertex-transitive, locally primitive subgroups of Aut(T). It is
typically studied from the point of view of finite graphs. See Poto¢nic—Spiga—Verret
[PSV12| for a description and a generalization of the conjecture to semiprimitive
local action. Promising partial results were obtained in the same article as well as
by Guidici-Morgan in [GM14].

Corollary suggests to restrict to discrete, locally primitive subgroups of
Aut(Ty) containing an involutive inversion.

Conjecture 11.29. Let F < Sym(Q) be primitive. Then there are only finitely many
conjugacy classes of discrete subgroups of Aut(7T,;) which locally act like F and
contain an involutive inversion.

Given a transitive group F' < Sym(Q), let Hp denote the collection of sub-
groups of Aut(Ty) which are discrete, locally act like F' and contain an involutive
inversion. Then the following definition is meaningful by Corollary [[1.27]

Definition 11.30. Let F' < Sym(2) be transitive. Define
dimep (F):= max min {keN |3F®) € Aut(By,) with (CD) : H:Uk(F(’“))}
if the maximum exists and dimep (F) = oo otherwise.
Conjecture[[[.29is equivalent to the statement that dimcp (F) is finite whenever
F < Sym() is primitive.

The remainder of this section is devoted to determining the dimension of cer-
tain classes of permutation groups. As a start, transitive permutation groups of
dimension 1 are readily characterized.
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Lemma I1.31. Let F' < Sym(f2) be transitive. Then dimcp (F) = 1if and only if F
is regular.

Proof. If F is regular, then dimcp(F) = 1 by Proposition [L13] Conversely, if
dimep (F) = 1 then necessarily Uz (A(F)) = Uy (F). Hence I'(F) =2 A(F) which
implies that F,, is trivial for all w € Q. That is, F is regular. O

The next proposition provides a large class of primitive groups of dimension 2.
For its proof, we first record the following relations between various characteris-
tic subgroups of a finite group. Recall that the socle of a group is the subgroup
generated by its minimal normal subgroups. These form a direct product.

Lemma 11.32. Let G be a finite group. Then the following statements are equivalent.

(i) The socle soc(G) has no abelian factor.
(ii) The solvable radical O (@) is trivial.
(iii) The nilpotent radical Fit(G) is trivial.

Proof. 1f soc(G) has no abelian factor then O, (@) is trivial: A non-trivial solvable
normal subgroup of G would contain a solvable minimal normal subgroup of G
which is necessarily abelian. Hence (i) implies (ii). Statement (ii) implies (iii) by
definition. Finally, if soc(G) has an abelian factor then G has a (minimal) normal
abelian and hence nilpotent subgroup. Thus (iii) implies (i). O

Proposition 11.33. Let F < Sym(Q) be primitive non-regular and assume that F,,
has trivial nilpotent radical for all w € . Then dimep (F) = 2.

Proof. Suppose that F?) < Aut(Bgy) has ([C) and that

1o kerr = F® 5 Fp 51

is exact. Fix wo € Q. Then kerm <[], cq Fo = F¢ . Since F® has (@) we get
pr kerm < F,,, for all w € €. Since F' is transitive these projections furthermore
coincide with the same N < F,,,. Now consider F;i) = ker pr,, |ker » < ker 7w for some
w € Q. Either Fq(wi) is trivial in which case F(*) has (CD) or FT? is non-trivial.
In the latter case, suppose that N, ./ := pr,, Fq(wi) is non-trivial for some w' € .
Then N, .- is subnormal in F,, as {id} # N, . <N < F,,. As a consequence,
N, has trivial nilpotent radical since F,,, does. Hence the Thompson-Wielandt
Theorem [Tho70], (cf. Theorem 2.1.1]) implies that there is no
F®) < Aut(Bgy) (k> 3) with my F*®) = F(2) and (CD). Therefore dimep (F) < 2.
Lemma [[L31] implies that equality holds. O

We now list several classes of permutation groups that Proposition [L.33] in-
cludes; see for a statement of the O’Nan-Scott classification theorem of
finite primitive groups to which the following types refer.

(i) An, Sy (n > 6) acting on {1,...,n} (which are of almost simple type (AS)).

(ii) Primitive groups of twisted wreath type (TW).

(iii) Primitive groups of type (HS).
This follows from combining Lemma[[L.32] with the following observations: For every
F € {A,,S, | n > 6}, point stabilizers have socle isomorphic to the simple non-
abelian group A,,_;. Point stabilizers in primitive groups of type (TW) have trivial
solvable radical by [DM96], Theorem 4.7B], and point stabilizers in primitive groups
of type (HS) have simple non-abelian socle, see [LPS88].

Ezample 11.34. By Example [I.28 we have dimcp(S3) > 3 and it was shown in
[DM80] that in fact dimcp(S3) = 3. Computationally constructing involutive
compatibility cocycles one can show that dimep(F) > 3 for the dihedral groups
F € {D4, D¢} and their natural permutation actions.
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To contrast the primitive case, we show that non-trivial transitive wreath prod-
ucts have dimension at least 3. The proof illustrates the use of involutive compati-
bility cocycles. Recall that for F < Sym(Q2) and P < Sym(A) the wreath product
F P := FIAl x P admits a natural imprimitive permutation action on € x A given
by ((ax)x, o) - (w,X') == (ay(xyw, o)) with blocks Q x A = [ |yo, @ x {A}.

Proposition 11.35. Let Q and A be finite sets such that |Q],|A| > 2. Furthermore,
let F' < Sym(Q) and P < Sym(A) be transitive. Then dimcp(F? P) > 3.

Proof. We define a subgroup W (F, P) < Aut(Bgaxa,2) which projects onto F P,
satisfies (), does not satisfy (CD) but admits an involutive compatibility cocycle.
This suffices by Lemma For A\ € A, let 1) denote the A-th embedding of F'
into F1 P = ([]yep F) » P. Recall the map + from Section BT and consider

niF = Aut(Baxa,2), a = (ix(a), (ea(@))w,n)s (id)w,n£x)),
N F = Aut(Baxa2), @ (id, () o), (@) wovzn)-
Furthermore, let + denote the embedding of P into F'1 P. We define

W(F, P) = (ya(a),7\ (a),7(t(0)) | N €A, a € F, 0 € P).

In order to show that W (F, P) admits an involutive compatibility cocycle, we first
determine its group structure. Consider the subgroups

Vi=(m@|AeA acF) and V=) |A€A, acF).

Then W (F, P) = (V,V,T(1(P))). Now observe that V = FIAl and V = FIM com-
mute, intersect trivially and are normalized by T'(¢(P)) which permutes the factors
of each product. Therefore

W(F,P)= (V xV)x P (FA x FIAY « P,
An involutive compatibility cocycle z of W (F, P) may now be defined by setting

m@)  A=N YW@ rA=x
(@) @.X) = { @), @, X)) = AT

v (@) A#EA Ya(a) A#£A
forall A € A, a € F and ¢ € P and 2(7(:(0)), (v, A)) :== 7((0)). Note that the map
z extends to an involutive compatibility cocycle of V' x V' < W(F, P) which in turn
extends to W (F, P). O

Actually, much more than Proposition [L.35] holds true for particular wreath
products. For instance, there is the following well-known construction, c.f. [MSV14].

Proposition 11.36. Let m > 2. Then dimcp (S, 1 S2) = oo.

Proof. We give a family of 2m-regular finite graphs (I';,),>3 whose automorphism
groups yield amalgams with the right properties: Let C(m,n) be the graph with
vertex set {1,...,m} x {1,...,n} where (4, j) is connected to (i, j') via an edge if
and only j' € {j £ 1} (cyclically). For example, C'(3,8) is given below.

Then G™™ := Aut(C(m,n)) = S, 1D,. If (v, w) is any edge of
C(m,n) then the vertex stabilizer G™" = S"=1 » S, has the
1-local action SZ, x Sy = Sy, 1 Sa. Furthermore, the subgroup
D,, < G™™ provides an involutive inversion of (v, w). Via the
coset construction, the amalgam

Grr e Gl

qmn

(v,w)

yields a discrete group Gmn acting vertex-transitively on Ts,, = (V, E) with local
action S, 1S2 and an involutive inversion. Let (z,y) € E(Ty,) lie over (v, w). Then
|GZ»™| = |G| tends to infinity as n does. Thus dimep (Sp, 1.S2) = 0. O
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6. A Bipartite Version

We now present a bipartite version of the universal groups introduced in Sec-
tion [ Tt plays a critical role in the proof of Theorem [[L41] below. Retain the
notation of Section[I] let V' = V; UV; be a regular bipartition of V' (T,), and b € V;.

6.1. Definition and Basic Properties. The groups to be defined are sub-
groups of TAut(T;) < Aut(Ty), the maximal subgroup of Aut(Ty) preserving the
bipartition V' = V3 UV5. Alternatively, it can be described as the subgroup generated
by all point stabilizers, or all edge-stabilizers.

Definition 11.37. Let F(¥) < Aut(Bg ). Define
BU (FCR) := {a € TAut(Ty) | Vv € Vi(Ty) : oor(a,v) € FEPY,

Note that BUyy(F?*) is a subgroup of *Aut(7,) thanks to Lemma and
the assumption that it is a subset of TAut(Ty).

As before, BUyy, (F(?%)) is a closed subgroup of Aut(T}) and transitive on both
Vi and V,. We also recover compact generation and thereby the following.

Lemma 11.38. Let F(?*) < Aut(Bgax). Then BUyy (F(2%)) is a compactly generated,
totally disconnected locally compact group.

Proof. The group BUsa(F?%) is totally disconnected and locally compact as a
closed subgroup of Aut(Ty). Compact generation relies on the Lemma below,
showing that BUy({id}) = U;({id}) N TAut(T},) is finitely generated. Given that
it is also transitive on V; (and V3) we conclude that BUsy(F(*¥) is compactly
generated by BUyy (F(**)), and the finite generating set of the Vi-transitive group
BU,({id}) given in Lemma O

Given v € V(Ty) and w € Q?) let W) e Aut(T;) denote the unique label-
preserving translation with ) (V) = Uy

Lemma 11.39. The group BU,({id}) is finitely generated by {tq(ﬂb) |lweQ®},

Proof. Argue by induction on k € N that b can be mapped to by, for any w € Q%)
by a unique element of ({t,, | w € Q®}) < Uy ({id}) N tAut(Ty), using the fact
that each t,, is label-preserving.

Now, let h € Uy ({id}) N TAut(Ty) be non-trivial. Since TAut(T;) = Aut(Tq)T,
the element h is hyperbolic of even length. Pick v € V; on the axis of h. Then there
ist € ({ty | w € QP}) such that t(b) = v and t~'ht is a hyperbolic element whose
axis contains b. Thus ¢t 'ht € ({t,, | w € Q}) by the above and so is h. a

6.2. Compatibility and Discreteness. In order to describe the compatibil-
ity and discreteness condition in the bipartite setting, we first introduce a workable
realization of Aut(Bgor) (K € N), similar to the one given at the beginning of
Section Bl Let Aut(Bg1) =2 Sym(Q) and Aut(Bgz) be as before. For k > 2, we
inductively identify Aut(Bg,2x) with its image under

Aut(Byar) = Aut(Byog—1)) X [ Aut(Bgag—1))
weN(2)
a = (oak—1) (@, b), (O2k-1)(, bw))w))
where Aut(Bg»;—1)) acts on Q) by permuting factors according to its action on
S(b,2) = Q3. In addition, consider the map pr,, : Aut(Bgar) — Aut(Bgak-1)),
a > o1y (@, by) for every w € Q) as well as

Pw : Aut(Bazk) = Aut(Bgak—1)) X Aut(Byak-1)), @+ (Tak-1)(a),pr,(a))
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For k > 2, conditions (C) and (D) for F' < Aut(Bg,2x) now read as follows.
(C) Vae FYwe Q® Ja, € F: Tah—1)(0w) = Pry(a), pPrglaw) = Tog_1)(a)

(D) Vw € Q@ 1 p,|p(id,id) = {id}

For k =1 we have, using the maps p,, (w € Q) as in Section [3]

(C) Va € F Yw = (w1, ws) € Q? Ja,, € F: pr,, (o) = pr,, a.
(D) Yw e Q: p,|pt(id,id) = {id}.

The discreteness conditions are proven as in Proposition[L.12l We do not introduce
new notation for any of the above as the context always implies which condition is to
be considered. The definition of the compatibility sets Cr(c, S) for F' < Aut(Bg,ax)
and S C Q® carries over from Section @in a straightforward fashion.

Similar to the non-bipartite case, given F' < Aut(By2x) with (), we set
Uop (F):={(a, () peqo) |a € F, Yw € QP 1 a,, € Cp(a,w)} < Aut(Bga(rir))-

Then Uy (F) < Aut(Bd’2(k+1)) satisfies (]CD and BU2(k+1)(‘I’2k(F)) = BUg(F).
Given [ > k, we also set U?(F) := ¥y_q)0--- 0 Uyy(F), c.f. Section B2

More examples of bipartite universal groups are contained in Section below.

7. Non-Trivial Quasi-Centers

We now apply the framework of universal groups to the study of subgroups
of Aut(T;) with non-trivial quasi-center, motivated by Burger—-Mozes theory as
outlined in Section [B] of Chapter [[land questions about lattices in products of trees
as studied in and [Rat04], specifically Conjecture 2.63].

The discreteness assertion of part (ii) in Theorem follows from the fact
that a non-discrete locally quasiprimitive subgroup of Aut(T};) cannot contain any
non-trivial quasi-central elliptic elements by [BM00al, Proposition 1.2.1]. We now
complete this fact to the following local-to-global type characterization of the quasi-
central elements a subgroup of Aut(7,;) can cointain in terms of its local action.

Theorem 11.40. Let H < Aut(T,;) be non-discrete. If H is locally

(i) transitive then QZ(H) contains no inversion.

(ii) semiprimitive then QZ(H) contains no non-trivial edge-fixating element.
(iii) quasiprimitive then QZ(H) contains no non-trivial elliptic element.
(iv) k-transitive (k € N) then QZ(H) contains no hyperbolic element of length k.

The assertions of Theorem [[1.40] are sharp in the following sense.

Theorem 11.41. There is a closed, non-discrete, compactly generated subgroup of
Aut(Ty) which is locally

(i) intransitive and contains a quasi-central inversion.

(ii) transitive and contains a non-trivial quasi-central edge-fixating element.

(iii) semiprimitive and contains a non-trivial quasi-central elliptic element.

(iv) (a) intransitive and contains a quasi-central hyperbolic element of length 1.
(b) quasiprimitive and contains a quasi-central hyperbolic element of length 2.

Proof. (Theorem [[I.40). Fix a labelling of T, and let H < Aut(T};) be non-discrete.
For (i), assume that H is locally transitive and ¢ € QZ(H) inverts the edge
(b,b,) € E(T4). By definition, the centralizer of + in H is open. Hence there is
n € N such that Hpg(, ) commutes with ¢. Thus for all h € Hp,,) and k € N:
Uk(La b)ok (h7 b) = Uk(La hb)ok (ha b) = Uk([’ha b)
= Uk(hl'a b) = Ok (h7 Lb)ok (1’7 b) = Ok (ha bw)ak(La b)
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Therefore, o, (h, b,) = ok (¢, b)or (h, b)or(1,b) * for all k € N. Now, since H is non-
discrete, we may assume without loss of generality that Hp;,,) acts non-trivially on
B(b,n+1). Let h' € Hp(y,0)\HB(5,n+1)- Then there is w' € Q with o, (h',b.) # id.
Furthermore, since H is locally transitive, there is ¢ € Hy with ¢~ 'b, = b,. For
the element gh'g~" € Hp, ) we have o,(gh’g~",b) = id but

O'n(ghlg_labw) = Un(gahlg_lbw)a'n(hlag_lbw)an(g_labw)
= Un(gagilbw)an(h,a bw’)on(gila bw)
= O'n(gag_lbw)o'n(hla bw’)o'n(g:g_lbw)_l #id

because o, (h',b,) # id by assumption. This contradicts the assumption that ¢
commutes with Hpj, ) elaborated above. Hence the assertion.

Part (ii) is based on a variation of [BM00al Lemma 1.4.2] given in Proposition
below and the observation [BM00al 1.3.5] according to which a non-discrete
group H < Aut(T,) cannot have cofinite quasi-center. Hence part (i) of Proposition
applies and QZ(H) acts freely on E(T}).

Part (iii) follows from Lemma 1.4.2] and 1.3.5]. The closed-
ness assumption of [BMO0Oal Proposition 1.2.1] is unnecessary for its second part.

For part (iv), assume that H is locally k-transitive and that 7 € QZ(H) is a
translation of length k. Let b € V be a vertex on the axis of 7. Then 76 = b,
for some path w = (w1,...,w) € Q¥). By definition, the centralizer of 7 in H is
open. Hence there is n € N> such that Hp,,) commutes with 7. Thus for all
h e HB(b,n) and [ € N:

o (Ta b)ol(ha b) =0 (Ta hb)ol(ha b) = O'I(Tha b)
=0y (th b) = Ul(hv Tb)o-l (Ta b) = Ul(ha bw)o-l (Ta b)
Therefore, o;(h,by,) = o;(1,b)a;(h,b)oy(r,b) ! for all I € N. Now, since H is non-
discrete, there is m € N>, such that Hp(, ) acts non-trivially on B(b,m +1). Let
W' € Hp(p,m)\Hp(b,m+1) and define [ via k+1 = m+ 1. Then there is w' € Q") such
that o;(h',by) # id. Furthermore, since H is locally k-transitive there is g € Hy
with g='by = by. Then gh'g™' € Hp, ) satisfies o7(gh'g™",b) = id but
o1 (gh,g_la bw) = ou(g, hlg_lbw)a'l(hla g_lbw)al (g—l, bw)
=0y (ga gilbw)al(hla bw’)ol (gila bw)
= Ul(gag_lbw)o'l(hla bw’)Ul(gag_lbw)_l # id

because o;(h',by) # id by assumption. This contradicts the assumption that 7
commutes with Hpy, ) < Hp(p,n) elaborated above. Hence the assertion. Ol

The following result referenced to in the proof of Theorem [[I.40] generalizes
[BMO0Oa, Proposition 1.4.2] to semiprimitive actions.

Proposition 11.42. Let H < Aut(T,) be locally semiprimitive and N < H. Define
Vi(N) :={x € V(T4) | Ny ~ S(z,1) is transitive and not semiregular}
Vo(N) :={x € V(T4) | Ny ~ S(z,1) is semiregular}.

Then one of the following holds.

(i) V(Tq) = Vo(N) and N acts freely on E(Ty).
(ii) V(T4) = Vi(N) and N acts transitively on the set of geometric edges of Tj.
(i) V(Ty) = Vi(N) U Va(N) is an H-invariant bipartition of V(Ty) and B(z, 1)
is a fundamental domain for the action of N on Ty for any x € V2(N).
Proof. Since H is locally semiprimitive, we have V(Ty) = Vi(N) U Vo(N). If N

does not act freely on E(Ty) then there is an edge e € E(T;) with N, # {id}
and consequently an N.-fixed vertex z € V(T,;) for which N, ~ S(z,1) is not
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semiregular and hence transitive. Then Vi (N) # 0. Now, either V5(N) = 0 in which
case N is locally transitive and we are in case (ii), or Vo(IN) # 0. Being locally
transitive, H acts transitively on the set of geometric edges it thus has at most two
orbits in V(Ty). Given that both V; (N) and V2 (N) are non-empty and H-invariant,
they constitute exactly said orbits. Since any pair of adjacent vertices (z,y) is a
fundamental domain for the H-action on V(Ty), we conclude that if y € V5(N)
then z € V1(N). Thus every leaf of B(y,1) is in Vi (N) and we are in case (iii) by

1.3.1]. O
We also include the natural generalization of [BMO0O0al, Proposition 1.2.1 3)].

Corollary 11.43. Let H < Aut(T,) be locally semiprimitive and N < H closed. Then
either N is discrete and N < QZ(H), or N is cocompact and H(®) < N.

Proof. By Proposition [I.42] the closed normal subgroup N of H is either discrete
or cocompact. The assertion hence follows from the definitions and the fact that
every discrete normal subgroup of a topological group is central. O

Before proceeding to the proof of Theorem [L4T], we complement part (iv) of
Theorem [L.40] with the following result inspired by Proposition 3.1.2]
and Conjecture 2.63].

Proposition 11.44. Let H < Aut(Ty) be non-discrete and locally semiprimitive. If all
orbits of H m 9T, are uncountable then QZ(H) contains no hyperbolic elements.

Proof. Let S C 9T, be the collection of fixed points of hyperbolic elements in
QZ(H). Since QZ(H) < H, the set S is H-invariant. Also, QZ(H) is discrete by
Theorem [[L.40 and therefore countable as a subgroup of the second-countable group
H which inherits second-countability from Aut(Ty). We conclude that S is countable
and therefore empty in view of the assumption. O

Theorem [[L.41] is proven by construction in the consecutive sections. Whereas
parts (i) to (iv) (a) all rely on a construction of the form H := [,y U (F)
for appropriate local actions F¥) < Aut(By), part (iv) (b) utilizes the bipartite
version of the universal groups developed in Section [6l All sections appear similar
at first glance but vary in detail.

7.1. Theorem [IT.41] (i). For certain intransitive F' < Sym(f2) we construct a
group H(F) < Aut(T,) which is closed, non-discrete, compactly generated, vertex-
transitive, locally acts like F' and contains a quasi-central involutive inversion.

Let F' < Sym(). Assume that the partition F\Q = | |,_; Q; of £ into F-orbits
has at least three elements and Fg, # {id} for all i € I.

iel

Fix an orbit Qy of size at least 2 and wy € Q. Define actions F*) < Aut(Bqg.)
for k € N inductively by F(!) := F and

F*D =, (a)w) |a € F®) | a, € Cpo (o, w) is constant w.r.t. F\Q, a,, =a}.
Proposition 11.45. The actions F(*) < Aut(By;) (k € N) defined above satisfy:

(i) Every a € F(® is self-compatible in directions from €.
(ii) The compatibility set Cpa) (c, €2;) is non-empty for all & € F(*) and i € I.
In particular, the group F*) satisfies (C).
(iii) The compatibility set Crw) (id, §2;) is non-trivial for all ; # Q.
In particular, the group F(*) does not satisfy (D).

Proof. We prove all three properties simultaneously by induction: For k& = 1, the
assertions (i) and (ii) are trivial. The third translates to Fg, being non-trivial for
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all Q; # Qo which is an assumption. Now, assume that all properties hold for F(*),
Then the definition of F(*+1) is meaningful because of (i) and it is a subgroup of
Aut(Bg +1) because F preserves F'\(). Assertion (i) is now evident. Statements (ii)
carries over from F®) to F(:+1) So does (iii) since |F\Q| > 3. O

Definition 11.46. Retain the above notation. Define H(F) := [, oy Uy (FH),

The group H(F) is vertex-transitive, compactly generated and contains an in-
volutive inversion because Uy ({id}) < H(F'). Also, H(F) is closed as an intersection
of closed sets. The 1-local action of H is given by F = F(!) because D(F) < H(F).

Lemma 11.47. Let F be as above. Then H(F') is non-discrete.

Proof. A non-trivial element h € H(F) fixing B(b,n) for a given n € N is readily
constructed using Proposition [L45t Consider a,, := id € F(™). By parts (i) and (iii)
of Proposition[[T45] as well as the definition of F("+1) there is a non-trivial element
any1 € FOP) with mpani1 = a,. Applying parts (i) and (ii) of Proposition
repeatedly, we obtain non-trivial elements oy, € F*®) for all & > n + 1 with
mrape1r = ap for all k > n 4+ 1. Set o := id € F®) for all k < n and define
h € Aut(Ty), by fixing b and setting o (h,b) := ay € F*). Since F() < &!(F(k))
for all k < we conclude that h € (o Ur(F*)) = H(F). O

Proposition 11.48. Let F be as above. Then QZ(H (F)) contains an involutive in-
version.

Proof. Fix b € V(Ty). We show that QZ(H(F')) contains the label-preserving in-
version ¢, of the edge (b,b,,) for all w € Qo: Indeed, let h € H(F)p,1) and w € Q.
Then he, (b) = b, = 1,h(b) and

Uk(hl,w,b) = O'k(h, wa)(]k(l,w,b) = O'k(h,bw) = O'k([,w,hb)dk(h,b) = Uk(l,wh,b)

for all k € N since h € Uy, 1 (F*+1). That is, 1, commutes with H(F)pp,1y. O

7.2. Theorem [[I.41] (ii). For certain transitive F' < Sym(Q) we construct a
group H(F) < Aut(T,) which is closed, non-discrete, compactly generated, vertex-
transitive, locally acts like F' and has non-discrete quasi-center.

Let F < Sym(f2) be transitive. Assume that F' preserves a non-trivial partition
P = (Qi)ier of Q and Fo, # {id} for all i € I. Further, suppose that F'* is abelian
and preserves P setwise.

Ezample 11.49. Let F' < Sym(f2) be regular abelian and P < Sym(A) be regular.
Then F := F'} P < Sym(Q x A) satisfies the above properties as F™ =[], ., F".

Define actions F¥) < Aut(Bg) for k € N inductively by F(!) := F and
F*HD = {(a, (o)) | a € F®) | o, € Cpo (o, w) constant w.r.t. P}
for all k£ € N. Then we have the following.

Proposition 11.50. The actions F(*) < Aut(By;) (k € N) defined above satisfy:

(i) The compatibility set Cpu) (a, ;) is non-empty for all @ € F*) and i € I.
In particular, the group F*) satisfies (C).
(if) The compatibility set Cpam,)(id, ;) is non-trivial for all ¢ € I.
In particular, the group F(*) does not satisfy (D).
(iii) The group F¥) N ®*(F+) is abelian.

Proof. We prove all three properties simultaneously by induction: For k = 1, asser-
tion (i) is trivial whereas (iii) is an assumption. The second translates to Fg, being
non-trivial for all i € I which is an assumption. Now, assume that all properties
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hold for F*). Then the definition of F(**1) is meaningful because of (i) and it is a
subgroup of Aut(Bg,) because F preserves P. Statement (i) carries over from F(*)
to F(*+1) Finally, (iii) follows inductively because F* preserves P setwise. O

Definition 11.51. Retain the above notation. Define H(F) := [, oy Uy (FH),

The group H(F) is vertex-transitive, compactly generated and contains an in-
volutive inversion because Uy ({id}) < H(F'). Also, H(F) is closed as an intersection
of closed sets. The 1-local action of H is given by F = F(!) because D(F) < H(F).

Lemma 11.52. Let F be as above. Then H(F') is non-discrete.

Proof. A non-trivial element h € H(F) fixing B(b,n) for a given n € N is readily
constructed using Proposition Consider a,, := id € F(", By part (ii) of
Proposition and the definition of F(»*1)  there is a non-trivial a4 € F"t)
with Tpant1 = an. Applying part (i) of Proposition repeatedly, we obtain
non-trivial elements ay € F* for all k > n + 1 with T, = o for all k > n+1.
Set oy, :=id € F® for all k < n and define h € Aut(Ty); by fixing b and setting
ok (h,b) = oy, € F®), Because F) < &/ (F®*) for all k < [ we conclude that
h € Nien U (F®) = H(F). O

Proposition 11.53. Let F be as above. Then QZ(H(F')) is non-discrete.

Proof. The group H(F)pg,1) is a subgroup of the group H(FT), which is abelian
by part (iii) of Proposition [L50l In other words, QZ(H (F')) contains H(F)pg,1)
and is therefore non-discrete. O

Remark I1.54. Without assuming local transitivity one can achieve abelian point
stabilizers, following the construction of the previous section. This cannot happen
for non-discrete locally transitive groups H < Aut(7y) which are vertex-transitive
as the following argument shows: By Proposition [[.14] the group H is contained in
U(F) where F' < Sym(2) is the local action of H. If H, is abelian, then so is F.
Since any transitive abelian permutation group is regular we conclude that U(F)
and hence H are discrete. In this sense, the construction of this section is efficient.

7.3. Theorem [[I.47] (iii). For certain semiprimitive F' < Sym(Q) we con-
struct a group H(F) < Aut(T;) which is closed, non-discrete, compactly generated,
vertex-transitive, locally acts like F' and whose quasi-center contains a non-trivial
elliptic element.

Let F < Sym(Q2) be semiprimitive. Assume that F preserves a non-trivial
partition P : Q = [ |;.; Q; of Q. Further, suppose that Fo, # {id} for all i € I and
that F' contains a non-trivial central element 7 which preserves P setwise.

Ezample T11.55. Using the GAP library of small transitive groups [GAP17], con-
sider e.g. Tr(8,23) = GL(2, 3) with block system {{1,5},{2,6},{3,7},{4,8}} and
center ((1,5)(2,6)(3,7)(4,8)). It is semiprimitive and has non-trivial block fixators.

Example 11.56. Transitive F' satisfying the above assumptions can be constructed
as follows. Let F' < Sym(Q') be transitive, non-regular with Z(F') # {id} and
P < Sym(A) transitive for |[A| > 2. Then F := F'} P < Sym()' x A) preserves the
partition Q := Q' x A = |, ., ©' and any diagonal element with entry from Z(F")
does so setwise. The rest follows from the assumptions on F’ and P.

Define actions F*) < Aut(Bgy,) for k € N inductively by F(!) := F and
F*HD = L, (o,)0) | € F® | ay, € Cpa (o, w) constant w.r.t P}
for all k£ € N. Then we have the following.
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Proposition 11.57. The actions F(*) < Aut(By;) (k € N) defined above satisfy:

(i) The compatibility set Cpu) (a, ;) is non-empty for all @ € F*) and i € I.
In particular, the group F*) satisfies (C).
(ii) The compatibility set Cpa (id, ;) is non-trivial for all i € I.
In particular, the group F*) does not satisfy (D).
(iii) The element v (7) € Aut(Bgy) is central in F(*).

Proof. We prove all three properties simultaneously by induction: For k = 1, asser-
tion (i) is trivial whereas (iii) is an assumption. The second translates to Fg, being
non-trivial for all i € I which is an assumption. Now, assume that all properties
hold for F*), Then the definition of F(*+1) is meaningful because of (i) and it is
a subgroup of Aut(By +1) because F preserves P. Statement (ii) carries over from
F®) to F(:+1) Finally, (iii) follows inductively because 7 and hence 7! preserves
P setwise: For @ = (a, (a),) € F*HD we have

Va1 (M) aVr41 (1) ™" = (v (M) ave (7)™, (Ve (T) =10y 16(T) ™) O

Definition 11.58. Retain the above notation. Define H(F) := [, oy Uy (FHR),

The group H(F) is vertex-transitive, compactly generated and contains an in-
volutive inversion because Uy ({id}) < H(F). Also, H(F) is closed as an intersection
of closed sets. The 1-local action of H is given by F = F1) because D(F) < H(F).

Lemma 11.59. Let F' be as above. Then H(F') is non-discrete.

Proof. A non-trivial element h € H(F') fixing B(b,n) for a given n € N is readily
constructed using Proposition Consider a,, := id € F("), By part (ii) of
Proposition and the definition of F("*1) there is a non-trivial a4 € F"+)
with m,an4+1 = . Applying part (i) of Proposition repeatedly, we obtain
non-trivial elements ay, € F* for all k > n + 1 with Trap41 = ap forallk > n+1.
Set ay :=1id € F(® for all k¥ < n and define h € Aut(Ty), by fixing b and setting
or(h,b) := ap, € F*¥) . Because F() < ®(F*)) for all k < [ we conclude that
h € Nien Un(F®) = H(F). O

Proposition 11.60. Retain the above notation. Then QZ(H(F')) contains a non-
trivial elliptic element.

Proof. By Proposition[[I.57, the element d() which fixes b and whose 1-local action
is 7 everywhere commutes with H(F),. Hence d(1) € QZ(H(F)). O

Remark 11.61. We remark that the argument presented in this section cannot be
made work in the quasiprimitive case because a quasiprimitive group F < Sym(2)
with non-trivial center necessarily equals its center and is regular: Recall that
Z(F) 4 F. Hence Z(F) is transitive as soon as it is non-trivial by quasiprimi-
tivity. It now suffices to show that F, is trivial for all w € Q: Suppose a € F,
moves w' € Q and let z € Z(F) be such that z(w) = w'. Then za(w) = W' # az(w),
contradicting the assumption that z € Z(F).

7.4. Theorem [[I.41] (iv) (a). For certain intransitive F' < Sym({2) we con-
struct a group H(F') < Aut(T,) which is closed, non-discrete, compactly generated,
vertex-transitive, locally acts like F' and contains a quasi-central hyperbolic element
of length 1.

Let F < Sym(€). Assume that the partition F\Q = U;crQ; of Q has at least
three elements and Z(F) # {id}. Choose a non-trivial element 7 € Z(F) and
wo € Qo with 7(wy) # wo. Assume further that Fg, # {id} for all Q; # Q.
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Define actions F*) < Aut(Bgy,) for k € N inductively by F(Y) := F and
FED = {(q, (a)w) |a € F®) | ay, € Cpo (o, w) is constant w.r.t. F\Q, a,, =a}.
Proposition T1.62. The actions F(*) < Aut(By ) (k € N) defined above satisfy:

(i) Every a € F(® is self-compatible in directions from €.
(ii) The compatibility set. Cpa) (a, €;) is non-empty for all a € F(*) and i € I.
In particular, the group F*) satisfies (C).
(iii) The compatibility set Crw) (id, §2;) is non-trivial for all ©; # Q.
In particular, the group F*) does not satisfy (D).
(iv) The element v;(7) € Aut(B,) is central in F(®).

Proof. We prove all four properties simultaneously by induction: For k£ = 1, the
assertions (i) and (ii) are trivial. The third translates to Fg, being non-trivial for
all ; # Qo which is an assumption, as is commutativity. Now, assume that all
properties hold for F(¥), Then the definition of F(*+1) is meaningful because of (i)
and it is a subgroup of Aut(Bg,) because F preserves F\Q. Assertion (i) is now
evident. Statements (ii), (iii) and (iv) readily carry over from F*) to F(k+1) ]

Definition 11.63. Retain the above notation. Define H(F) := [, oy Uy (FR),

The group H (F') is vertex-transitive, compactly generated and contains an invo-
lutive inversion because Uy ({id}) < H(F). Also, H(F) is closed as the intersection
of all its k-closures. The 1-local action of H is given by F = F(') as D(F) < H.

Lemma 11.64. Let F be as above. Then H(F') is non-discrete.

Proof. A non-trivial element h € H(F') fixing B(b,n) for a given n € N is readily
constructed using Proposition [L62 Consider oy, := id € F(™. By parts (i) and (iii)
of Proposition[[T.62 as well as the definition of F("*+1) there is a non-trivial element
Ane1 € FOMY with 7,041 = an. Applying parts (i) and (ii) of Proposition
repeatedly, we obtain non-trivial elements oy, € F®) for all & > n + 1 with
mrape1r = ap for all k > n+ 1. Set o := id € F®) for all k < n and define
h € Aut(T,), by fixing b and setting oy, (h,b) := oy, € F*), Since F() < & (F*)
for all k < we conclude that h € oy Ur(F*)) = H(F). O

Proposition 11.65. Let F' < Sym(Q) be as above. Then QZ(H(F)) contains a hy-
perbolic element of length 1.

Proof. Fix b € V(Ty) and let 7 be as above. Consider the line L through b with
edge labels

- ,T_QwO,T_le,wO,Two,T2w0, ..
Define t € D(F) by t(b) = by, and o1(t,z) = 7 for all x € V(Ty). Then ¢ is a
translation of length 1 along L. Furthermore, ¢ commutes with H (F)g(,1): Indeed,
let g € H(F)ps,1)- Then (gt)(b) = t(b) = (tg)(b) and

O (gtv b) = 0Ok (ga tb)o-k (t7 b) = 0Ok (t7 b)gk (ga b) = 0Ok (t7 gb)O'k (ga b) = 0k (tga b)
for all k € N because oy, (t,b) = (1) € Z(F®)) and g € Upyr (F* g qy. O

7.5. Theorem [I.41] (iv) (b). For certain quasiprimitive F' < Sym({) we
construct a group H(F') < Aut(Ty) which is closed, non-discrete, compactly gen-
erated, locally acts like F' and whose quasi-center contains a hyperbolic element of
length 2.

Let F < Sym(Q2) be quasiprimitive. Assume that F' preserves a non-trivial
partition P : Q = [ |;.; €. Further, suppose that Fo, # {id} and F,, ~ Q;\{w;} is
transitive for all ¢ € I and w; € ;.
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Ezample 11.66. Using the GAP library of small transitive groups [GAP17], con-
sider e.g. Tr(12,33) = As, Tr(14,10) = PSL(3,2) or Tr(15,10) = Ss, all of which
are quasiprimitive. The former two have blocks of size 2, the latter has blocks of
size 3. Its point stabilizers act transitively on the remainder of the respective block.

An orbit for the action of ®(F) on S(b,2) = Q(3) is given by
Q(()Z) = {(wi,w2) |FET: w,wr €} C 02,

Indeed, let a=(a, (a,)w) € ®(F) and (w1,w=) € 962). Then a(w,ws) = (aw1, Gy, w2)

isin 902 because a and a,, agree on w;. Note that if w = (w1, ws2) € Q' then so

is W := (w2,w1). The subgroup of ®(F') consisting of those elements which are
- . 2) . .

self-compatible with respect " is given by

F® = {(a,(ay).) | a € F,a, € Cr(a,w) constant w.r.t. P}.
Then define inductively for k € N:
FCED) = L, (aw)w) | @ € FP ay, € Cr(a,w), Yo € 962) Doy =al
Proposition T1.67. The actions F(*¥) < Aut(Bg ) (k € N) defined above satisfy:

(i) Every a € F(?%) is self-compatible in directions from Q(()Q).
(ii) The compatibility set Cpn (a, w) is non-empty for all « € F(?*) and we Q).
In particular, the group F(?%) satisfies (C).
(iii) The compatibility set Cper) (id, w) is non-trivial for all w € Q).
In particular, the group F(?*) does not satisfy (D).

Proof. We prove all three properties simultaneously by induction: For & = 1, as-
sertion (i) holds by construction of F(®), as do (ii) and (iii). Now assume that all
properties hold for F?¥), Then the definition of F(Z®*+1) is meaningful because
of (i) and it is a subgroup because F(® preserves Q. Also, FC(*+1) satisfies (i)
because 902 is inversion-closed and statements (ii), (iii) carry over from F¥) . [

Definition 11.68. Retain the above notation. Define H(F) := [, oy BU;Q (F2R)),

The group H(F) is closed as an intersection of closed sets and compactly gen-
erated by H(F), and a finite generating set of BUy({id})", see Lemma [[.39 For
vertices in V;, the 1-local action is F because I?*(F) < F**). For vertices in V3
the 1-local action is F* = F as [?(F) < F(?),

Lemma 11.69. Let F be as above. Then H(F') is non-discrete.

Proof. A non-trivial element h € H(F) fixing B(b,2n) for a given n € N is readily
constructed using Proposition Consider as, := id € F®?. By parts (i)
and (iii) of Proposition and the definition of F(2("+1) | there is a non-trivial
element ay(,41) € FQ0+D) with TonQa(nt1) = Qon- Applying parts (i) and (ii)
of Proposition repeatedly, we obtain non-trivial elements as, € F(2%) for all
k> n+ 1 with mpa2®+t) = qy for all k > n + 1. Set aqy, :=id € FZ*) for all
k < n and define h € Aut(Ty), by fixing b and setting oo (h, b) := oy, € F2k) Since
FCD <@2(FCR) for all k<l we conclude that h € oy BU2 (FCY) = H(F). O

Proposition 11.70. Let F be as above. Then QZ(H(F')) contains a hyperbolic ele-
ment of length 2.

Proof. Fix b € V(Ty) and let w = (wi,ws) € 982). Consider the line L through b
with edge labels . .., w1, w2, w1, ws,.... Define t € D(F) by t(b)=b,, and oy (t,z)=id
for all € V(Ty). Then t is a translation of length 2 along L. Furthermore, ¢
commutes with H(F)p2): Indeed, let g € H(F)p(,2)- Then gt(b) = t(b) = tg(b)
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and for all k € N:
021 (gt,b) = o2 (g, tb)oar (t,b) = 02k (g, buw)
= 021(9,b) = 02k (t, gb) o2k (9,b) = 021 (tg, b)
as oy(t,z) =id for all | € N and = € V(T}), and g € BUy(py1)(FCEED) g5y [

7.6. Limitations. We argue that the construction of Section does not
easily carry over to primitive local actions. Recall that for a transitive permutation
group F' < Sym(Q2) one defines rank(F) := |F\Q?|, where F acts on Q? diagonally,
and that rank(F) = 2 if and only if F' is 2-transitive.

Lemma TL71. Let F' < Sym(f). Then |®(F)\Q®| = rank(F) — 1.

Proof. Notice that Q) = Q?\ A where A denotes the diagonal in Q2. Given that
['(F) < ®(F) we therefore conclude |®(F)\Q®)| < |T(F)\Q?)| = rank(F) — 1. The
orbits of T'(F) and ®(F') are in fact the same: Let a := (a, (ay)yecn) € ®(F). Then
we have a(wi,ws2) = (aws, ay,w2) € {(aw1, aF,,w2)} C I'(F)(wr,ws). O

In particular, a permutation group has to have rank at least 3 in order to
be eligible for the construction of the previous section. The smallest non-regular
primitive permutation group of rank 3 is D5 < S5. However, we also have the
following obstruction to non-discreteness.

Proposition 11.72. Let F < Sym(Q) be primitive and let Q((f) be an orbit for the
action of ®(F) on Q2 2 §(b,2). The subgroup of elements in ®(F) which are
self-compatible in directions from 982) is precisely T'(F).

Proof. Every element of T'(F) is self-compatible in every direction from Q(*). Con-
versely, assume that (a, (a,),) € ®(F) is self-compatible in all directions from 962).
Then a,, = a,, whenever w := (w1, ws) € 962). This induces a non-trivial equiv-
alence relation on Q which is F-invariant because I'(F') < ®(F): If (wy,w=) € Q(()Q)
then y(a)(wr,ws) = (aws, aws) € Q(()Q) for all @ € F. Since F is primitive, it is the
universal relation, i.e. all a, (w € Q) coincide. Hence (a, (a,).) € T'(F). O

7.7. Groups with Infinitely Many Distinct k-closures. Given a prime
p, Banks-Elder-Willis list PGL(2,Q,) < Aut(7}4+1) as an example of a group with
infinitely many distinct k-closures, see [BEW15]. Whereas PGL(2,Q,) has trivial
quasi-center because it is simple, the groups constructed in the proof of Theorem
[[L47] provide examples with non-trivial quasi-center. Indeed, we have the following.

Proposition 11.73. Let H < Aut(Ty) be closed, non-discrete, locally transitive and
contain an involutive inversion. Then H*®) = U, (F*)) and H = Neen Uy (F5R),
where F(F) < Aut(Byg,) is action-isomorphic to the action of H on balls of radius k.
If, in addition, QZ(H) # {id} then H has infinitely many distinct k-closures.

Proof. We have H®) = U(F®) by Theorem [L23] Then H = oy Ux(F®)) by
[BEW15| Proposition 3.4]. Hence, if H had only finitely many distinct k-closures,
the sequence (H*)),cy of subgroups of Aut(T}) is eventually constant equal to,
say, H™ = U, (F(™) > H which is non-discrete because H is and therefore has
trivial quasi-center by Proposition O



CHAPTER III

Prime Localizations of Burger—Mozes-type Groups

This section is based on [Torl7]. We determine the p-localization of Burger—
Mozes-type groups, i.e. the groups U(F), G(F, F') and N(F) discussed in Chapter[I]
for a large class of permutation groups F' < F' < Sym(2) and primes p.

The concept of prime localization of a totally disconnected locally compact
group G was introduced by Reid in [Reil3]: Let p be prime. A local p-Sylow sub-
group of G is a maximal pro-p subgroup of a compact open subgroup of G. The
p-localization G, of G is defined as the commensurator Commg (S) of a local p-
Sylow subgroup S of G, equipped with the unique group topology which makes the
inclusion of S into G,y = Commg(S) continuous and open. We refer the reader to
[Reil3] for general properties of prime localization and its applications, of which
we highlight the scale function introduced by Willis in [W1il94].

1. Local Sylow Subgroups

This section is concerned with determining local Sylow subgroups of the Burger—
Mozes-type groups. Throughout, {2 denotes a set of cardinality d € N>3 and pis a
prime. We consider the d-regular tree Ty = (V, E) with a fixed labelling and base
vertex b € V. Furthermore, T denotes a finite subtree of T}.

Note that it suffices to consider U(F'): Any local Sylow subgroup of U(F) is
also a local Sylow subgroup of G(F, F') and N(F) by definition of the topologies.

In a sense, the following proposition provides local p-Sylow subgroups of U(F')
in the case where the operations of taking a p-Sylow subgroup and taking point
stabilizers commute for F'. It is the basis of all subsequent statements about the
p-localization of Burger—Mozes-type groups and amends [Reil3, Lemma 4.2].

Proposition 1I1.1. Let F'<Sym(Q2) and F(p) < F a p-Sylow subgroup. Then U(F(p))r
is a p-Sylow subgroup of U(F)r if and only if so is F(p), < F,, for all w € 0.

Proof. First, assume that T consists of a single vertex b € V. The sphere S(b, k) C V
of radius k around b € V is, via the given labelling, in natural bijection with

Pi={w=(wi,...,w) €W |Viec{l,....k—1}: wip1 # wi}.

The restriction of U(F) to S(b, k) yields a subgroup of Sym(S(b, k)) of cardinality
given by [U(F)slsp,y| = IF| and [U(F)s|s@ k)| = [UFE)blsor| - Twep, Fowl-
The maximal powers of p dividing |U(F)b|5(b’k)| and |U(F(p))b|5(b’k)| are hence
equal for all k € Ny if and only if F(p), < F, is a p-Sylow subgroup for all w € Q.

Similarly, when T is not a single vertex, the size of the restriction of U(F)r to
a sufficiently larger subtree is a product of the |F,, | involving all w € Q. O

For transitive F' < Sym(2), it suffices to check the above criterion for one
choice of a p-Sylow subgroup F(p) of F and all w € Q. We now identify classes
of permutation group and values of p to which Proposition [IL.I] applies. For the
symmetric and alternating groups we have the following, complete description.

35
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Proposition 1I1.2. Let F' = Sym(Q) or F = Alt(Q) and F(p) < F a p-Sylow
subgroup. Further, let p* (s € Np) be the maximal power of p dividing d. Then
F(p), < F, is a p-Sylow subgroup for all w €  if and only if either
(i) p>d, or
(ii) s > 1 and p**! > d, or
(i) F = Alt(Q) and (d,p) = (3,2).

Proof. If p > d then F(p) is trivial and so is any p-Sylow subgroup of F,,. Now
assume p < d and consider the following diagram of subgroups of F and indices.

. _F . For every w € Q we have [F : F,] = |F-w| =d

” _—— \F( ) and [F(p) : F(p),] = |F(p) - w| = p™ for some

Y~ _— P r, € Np. Note that p { k£ by definition. Now ex-
F(p), P amine the equation d- [F, : F(p),] =k - p™.

If F(p) is trivial then F' = Alt(Q) and p is even, hence (iii). Now assume that
F(p) is non-trivial. Then there is w € Q such that r, > 1. Thus, if p { d, then
p | [F, : F(p),] and hence F(p), is not a p-Sylow subgroup of F,,. We conclude
that the condition s > 1 is necessary. Note that the biggest p™ (w € Q) which
occurs is given by the biggest power of p which is smaller than or equal to d due to
the iterated wreath product structure of F'(p). As p t k we conclude (ii).
Conversely, suppose s > 1 and p**! > d. If p is odd, or F = Sym(f2) and p
is even, then F(p) is a direct product of s-fold iterated wreath products and the
maximum power of p dividing [F(p) : F(p),] and [F : F,] is p® in both cases. The
same index assertions hold for F' = Alt(2) and p even. O

For a general permutation group F < Sym(f2) and w € Q we have
F(p)-w] = L@ _F@I- [P Flp)o] _ [Fo : F(p).]
|F(p)o] |FL| [F: F(p)]

by the orbit-stabilizer theorem. In particular, we conclude the following,.

Proposition 111.3. Let F < Sym(2) and F(p) < F a p-Sylow subgroup. Assume
that F\Q = F(p)\Q2. Then F(p), < F, is a p-Sylow subgroup for all w € Q. O

Proposition 111.4. Let |Q] = p" and F < Sym(f?) transitive. Also, let F'(p) < F be
a p-Sylow subgroup. Then so is F(p), < F, for all w € Q and F(p) is transitive.

Proof. In this case, the above equation is |F'(p) - w| = ([F, : F(p)u]/[F : F(p)])-p™.
As always, |F(p) - w| is a power of p and bounded by Q2| = p". Since p does not
divide [F': F(p)] the above implies that p does not divide [F,, : F(p),]- O

2. Prime Localizations

This section is concerned with the p-localizations of Burger-Mozes-type groups.
Recall that for groups H < G one defines the commensurator of H in G by

Commg(H) :={9€G|[H:HNgHg '] <ocand [gHg ' : gHg ' N H] < o}.
The p-localization of a totally disconnected locally compact group G is defined as
the commensurator Comme (S) of a local p-Sylow subgroup S of G, equipped with

the unique group topology that makes the inclusion of S into G, := Commg(S5)
continuous and open. Then the inclusion Commeg(S) — G is continuous.

The following lemma due to Caprace-Monod [CM11], Section 4] and Caprace—
Reid-Willis [CRW17,, Corollary 7.4] is crucial for the subsequent statements of

this section. See also [Wes15|.

Lemma II1.5. Let G be residually discrete, locally compact and totally discon-
nected. Further, let K < G be compact. Then Commg(K) = ULSOK N¢g(L).
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Proof. Every element of G which normalizes an open subgroup of K commensurates
K because open subgroups of K have finite index in K given that K is compact.
Conversely, let ¢ € Commg(K) and consider H := (K, g). Then H is a com-
pactly generated open subgroup of Comme (K) and hence a compactly generated,
totally disconnected locally compact group in its own right. It inherits residual dis-
creteness from Comme (K) which injects continuously into the residually discrete
group G. By [CM11] Corollary 4.1], H has an identity neighbourhood basis of
compact open normal subgroups. Hence g normalizes an open subgroup of K. [J

Now,let F< F' < F < Sym(€). In the case of Proposition [TL] the following
proposition identifes certain subsets of the p-localization of G(F, F') and thereby
expands [Reil3, Lemma 4.2] given that U(F) = G(F, F'). We establish the following
notation: Given partitions P := (P;);er of V and H = (H;),es of H < Sym((), let

Cp(H):={g € Aut(Ty) |Viel: JjeJ: Yve P;: o(g,v) € H;}

denote the set of automorphisms of T; whose local permutations at the vertices of
a given element of P all come from the same element of H.

Proposition 111.6. Let F<F'<F< Sym(Q2) and F(p) <F a p-Sylow subgroup such
that F(p), < F, is a p-Sylow subgroup for all w € Q. Set S := U(F(p)),. Then

Commg(p, ) (S) = (U({id}), Comme g, 1), (5))
> (G(F(p), F'), {Tv/L(Nr(F(p))/F(p)) | L < S open}).

Proof. By Proposition [[IL1] the group S is a local p-Sylow subgroup of U(F) and
hence of G(F, F'). We first show that G(F, F')(,) contains U({id}). Indeed, given
g € U({id}) we have gSg~" = U(F(p))y(p)- Thus SNgSg~" = U(F(p))(s,4(s)) Which
has finite index in both S = U(F), and gSg~" = U(F(p))4(p) by the orbit-stabilizer
theorem. Since U({id}) acts vertex-transitively on T; we conclude

Commg(F’F/)(S) = <U({id}), COmmg(F’F/)b(S».
Now, the vertex stabilizer G(F,F"), is residually discrete by Proposition [[18
Hence, by Lemma [IL3] the commensurator Commg g, 51y, (S) is the union of the
normalizers in G(F, F'), of open subgroups of S = U(F(p))s. For example, we
may consider L, := U(F(p))p(,n) <o S for every n € N. The normalizer of L,
in G(F, F'), contains those elements of G(F(p), F'), all of whose singularities are
contained in B(b,n). Taking the union over all n € N and using vertex-transitivity
of G(F(p), F') in the sense that G(F(p), F') = (G(F(p), F')p, U({id})) we conclude
that Commg g 1) (S) contains G(F(p), F') as a topological subgroup. Alternatively,
use [Boul6l, Lemma 3.2]. Now, note that for all g, s € Aut(Ty) and v € V we have

a(gsg " v) = o(g,s9 'v)a(s,g 'v)a(g ", v)
=0(g,s97"v)a(s,g7 v)a(g, g7 v) 7"
Hence if g € Ty (Nr(F(p))/F(p)), i.e. the coset o(g,v)F(p) C Nr(F(p)) is con-
stant on L-orbits, then gLg~! C U(F(p)) whence g € Commg(r,r)(S). O

Remark III.7. Whereas the next result provides conditions on F' < Sym(€2) which
ensure U(F),y = G(F(p), F)) and we have U(F)(,) = U(F) for semiregular F' by
Proposition [T2} it may happen that G(F(p),F) < U(F)y < U(F). Indeed, if
for every w € ) there is an element a, € F, such that for all A € Q we have
F(p)x NayF(p)aa;' = {id} then there is an element g € U(F)p,1) such that for
S := U(F(p))p(v,1) we have SN gSg~" = {id} and therefore g ¢ U(F),): Choose
the local permutation of g at v € V(Ty) to be a, whenever d(v,b) = d(v,b,,) + 1.
If in addition Ng(F(p)) > F(p) then the assertion holds by virtue of Proposition

[IL6l For instance, these assumptions are satisfied for F' = Sg and p = 3.
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Theorem II1.8. Let F < F' < F < Sym(Q) and F(p) < F a p-Sylow subgroup of F.
Assume that we have F\Q = F(p)\Q and Np/ (F(p),) = F(p), for all w € Q.
Then G(F, F'),) = G(F(p), F').

If F' does not fix a point of @ and F\Q = F(p)\Q then p divides |©?|. By
Proposition [[IL.3] the same assumption implies that the point stabilizers in F(p) are
p-Sylow subgroups of the respective point stabilizers in F'. In the case F' = F', the
theorem asks that these be self-normalizing.

Proof. (Theorem [ILY). By Proposition [IL] and Proposition it suffices to
show that Commgp, gy, (U(F(p))s) =G(F(p), F')s. By Proposition[IIL6, the group
G(F(p), F")p is a subgroup of said commensurator.

Now suppose g € Commg g, ), (U(F(p))s) < G(F, F')y. Given that G(F, F"),
is residually discrete by Proposition[[. 18 the element g normalizes an open subgroup
L < U(F(p))p by virtue of Lemma [[IL5l If g has only finitely many local permuta-
tions in F'\ F(p) then g € G(F(p), F')p. Otherwise, the above implies that there is
n € N such that gU(F(p))p(s,n9~" € L C U(F(p))s and g has a local permutation
in F'\F(p) on S(b,n). Then construct h € G(F(p), F"') with local permutations in
F(p) on spheres of radius at least n and such that h~!g fixes B(b,n) pointwise as
follows: Set h|p(p,n—1) := g and use the assumption F'\Q = F\Q = F(p)\Q to ex-
tend h to all T; using F(p) only. Then h~'g has a local permutation in F'\F(p).,,
for some w € @ on S(b,n) and (h~'g)U(F(p))pv,n)(h tg)™" C L C U(F(p))s.
However, this contradicts the assumption N/ (F(p).) = F(p), forallw € Q. O

Theorem [[IL.8 can be used to determine the p-localization of Lederle’s coloured
Neretin group N(F') under similar assumptions.

Theorem 111.9. Let F <Sym(Q) and F(p) < F a p-Sylow subgroup. If F\Q=F(p)\Q
and N (F(p).) = F(p). for all w € Q then N(F),) = N(F(p)).

Proof. By Proposition [IL1l the group S := U(F(p))s is a local Sylow subgroup
of N(F). Also, by Proposition 2.24], we have N(F(p)) < Commyp)(S).
Now, let g € Commyp)(S) and let g : Tg\T — T4\T' be a representative of g
as an U(F)-honest almost automorphism. Given that F\Q = F(p)\Q there is a
U(F(p))-honest almost automorphism h € N(F(p)) < Commyp)(S) with repre-
sentative h : T;\T' — Ty\T such that hg : T;\T — Ty4\T fixes the leaves of T
and therefore extends to an autormorphism of T, fixing 7. Furthermore, on each
connected component of Ty\T', the automorphism hg € N(F) N Aut(Ty) coincides
with an element of U(F'). Hence, using Proposition[[I.7} we have hg € U(F) whence

hg € Commn(r)naut(Ty) (S) = Comme(r) (S) = G(F)(p) = G(F(p)) < N(F(p)).
by Theorem[[IL.8 Given that h € N(F(p)) we conclude g € N(F(p)) as required. [

Proposition [[TL6 suggests that Theorem [[IL8 might hold as soon as F(p) is
self-normalizing in F”. This is not the case as the following remark shows.

Remark 111.10. Theorem [IL§ does not hold if the condition Ng: (F(p)w)=F(p)w
for all w € Q is replaced with Np:(F(p)) = F(p): There are transitive, non-regular
permutation groups F < Sym(€) and primes p such that F\Q = F(p)\Q? and
Nrp(F(p)) = F(p) for which F(p) is regular. In particular, Ng, (F(p),) = F(p)..
In this case, U(F(p))s is a local p-Sylow subgroup of U(F) by Proposition [IL3]
However, U(F(p)), = F(p) is finite and hence U(F')(,) = U(F) > G(F(p), F).

A small example of this situation is a certain F' =2 Sy < Sg and the prime
p = 2, namely put F := ((123)(456), (14)(25)(37)(68)). Here, F(2) is regular and
self-normalizing in F of order 8.
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CHAPTER IV

Preliminaries

1. Willis Theory

In this chapter we recall central definitions of Willis theory and collect results
around them. Let G be a t.d.l.c. group. In [Wil94], Willis introduced the notions
of scale of an automorphism of G and tidiness of a compact open subgroup of G
for a given automorphism of G.

Searching for the most general natural setting of tidiness and the scale, the
definitions were generalized to endomorphisms in [Will5]: Let G be a t.d.l.c. group
and @ € End(G). Note that [a(U) : a(U)NU] € N for every compact open subgroup
U < G because a(U) is compact and a(U) N U is open in a(U). The scale of « is

s(a) = min {[a(U) : «(U) NU] | U < G compact open}.
A compact open subgroup U < G is minimizing if [a(U) : a(U) N U] = s(a).

It is a cornerstone of Willis theory that a compact open subgroup of G is
minimizing for « if and only if it has a certain structure. This structure is phrased
in terms of the following subgroups of G, see and [Wil15] for more context.
Put Uy := U. For n € Ny, we define U_,, = (;_, @ *(U) and, inductively, the
groups Up+1 := U N a(U,). Now set

Upi= [ Un, U_i= [ Uon= ﬁa‘k(U),
k=0

nENg nENp
Upy = |J o"(Uy) and U__:= ] a7"(U-).
nENp nENg

Both from a theoretical and mnemonic point of view, the following descriptions
of the above subgroups are important: Let z € G. The a-trajectory of x is the
sequence (a™(z))pen, in G. An a-regressive trajectory of x is a sequence (Zy)nen,
in G such that o = z and a(z,) = z,—1 for all n € N. Consequently, we have the
following verbal descriptions of the subgroups defined above.

elements of U whose
U_ = . . . . ,
a-trajectory is contained in U

U, — elements of U which admit an
* 7 1 a-regressive trajectory contained in U |’

U = elements of G whose a-trajectory
- is eventually contained in U '

elements of G which admit an a-regressive
U++ - . . . 5
trajectory eventually contained in U
The subgroup U is tidy above for o if U = U, U_, and tidy below for o if U__ is
closed. It is tidy for « if it is both tidy above and tidy below for a. Note that this
definition of being tidy below deviates from [Wil15l Definition 9] but turns out to
be equivalent in the case of tidy above subgroups, see [Wil15] Proposition 9].
The announced cornerstone of Willis theory now reads as follows.
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Theorem IV.1 ([Will5, Theorem 2]). Let G be a t.d.l.c. group, a € End(G) and
U < G compact open. Then U is minimizing for « if and only if it is tidy for a.

We have a(Uy) >Uy and a(U-) <U_. Tt can be shown that s(a) =[a(Uy) : Uy]
if U <@ is tidy for @ € End(G), and [U_ : a(U-)] = s(a™ 1) in case a € Aut(G).

For future reference, we include the following result which constitutes an endo-
morphism version of the equality

n n+k

ot (ﬂ ai(U)> = ﬂ o (U)
i=m i=m+k

which holds for an automorphism o € Aut(G), U < G compact open and m, n, k €Z.

Lemma IV.2 ([Wil15] Lemma 2]). Retain the above notation. For all n,m € N:

(1) U—pem = (U=p)—m, and

_ U NUp_pn 0<k<n
e U, k>n
(iii) (U_p)r =UrNU_p forall k> 0and (U_,)r =UsNU_,.

(ii) a*(U-n)

, and

Complementing Theorem [[V.1], Willis provides an algorithm, the tidying proce-
dure, which, starting from an arbitrary compact open subgroup of U < GG, produces
a compact open subgroup of G which is tidy for a.

Algorithm TV.3 ([WAil15] Section 7]). Let U < G be compact open and o € End(G).

(i) There exists n € N such that U_,, is tidy above for a.
Replacing U with U_,, we may assume that U is tidy above for a.
(ii) Define Ly :=Us4 NU__ and Ly := Ly
(iii) Set U:={z € U : 2Ly C LyU}.
(iv) Then ULy is a compact open subgroup of G which is tidy for a.
If, in Algorithm [[V23) the subgroup U < @ is already tidy for a, then ULy = U.
We remark that L of Algorithm [V.3lis given by
Ly={xe€G|3yeUs ImneN with a™(y) =z and a"(z) € U_}.
We continue with the introduction of further relevant subgroups of G associated
to an endomorphism a € End(G). The identity element of G is denoted by e.

(a) The nub of a is given by
nub(a) := ﬂ{U < G | U is compact open and tidy for a}.

It is a compact subgroup of G which by [Wil15] Proposition 12] captures the
obstruction for there to be an identity neighbourhood basis of tidy subgroups.
(b) The contraction groups

con(a) :={z € G | 1i_>m a"(z) =e € G} and
n—oo
con” (a) :={z € G | I(xn)nen, a-regressive for z with 1i_>m z, =e € G}
n—oo

play a particularly important role in the general theory of t.d.l.c. groups, see

e.g. [BW04], [BGT16] and [CRW17]. They are a-invariant subgroups of G

but not necessarily closed in G.
(c) The relevance of the parabolic subgroups

par(a) :={z € G | {a"(z) | n € Ny} is precompact} and

par~ (a) := {z € G | z admits a precompact, a-regressive trajectory}
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stems from the fact that par— (o) admits a quotient on which « induces an
automorphism, see [Wil15, Proposition 20]. They are closed and a-invariant
subgroups of G. Note that con(a) < par(a) and con™(a) < par™ («).

(d) The normal subgroup of said quotient is the bounded iterated kernel

bik(a) := {z € par—(«a) | a”(x) = e for some n € N}.

It is a consequence of [Wil15], Proposition 20] that any two a-regressive trajec-
tories of elements of par™(«a) differ only by elements of bik(a): Let 2 € par™(«)
and suppose that (z,)nen, and (2], )nen, are a-regressive trajectories of z. Then
xh ! € bik(a) for all n € Np.

We remark that bik(a) < nub(a) < par(a) N par~(a) by [Will5, Proposition 20].
2. Directed Graphs

Chapter VTl makes use of the permutation topology introduced in Section
as well as directed graphs. Here, we recall notation around the latter, largely fol-
lowing Moller [Mol02].

A directed graph T is a tuple (V(T"), E(T)) consisting of a vertex set V(I') and an
edge set E(T) CV(T) x V(I) \ {(u,u) | u € V(T')}. We let pry,pr, : E(T') —» V(T)
denote the projections onto the first and second factor, the origin and terminus
of an edge. Let I be a directed graph. An arc of length k € N from v € V(T') to
v' € V() is a tuple (v = vy, ..., v = v') of distinct vertices of I such that (v;,vi41)
in an edge in T for all i € {0,...,k — 1}. Two vertices v,w € I'(V) are adjacent if
either (v,w) € E(T) or (w,v) € E(T). A path of length k¥ € N from v € V(T') to
v’ € V(T) is a tuple (v = vp,...,v; = v') of distinct vertices of T such that either
(vi,vig1) or (vi41,v;) is an edge in T for all 4 € {0,...,k — 1}. The directed graph
' is connected if for all v,w € V(I') there is a path from v to w. It is a tree if it
is connected and has no non-trivial cycles, i.e. tuples (vo,...,v;) with k& > 3 and
such that (vg,...,vg—1) and (vi—1,vr) € E(T) are both paths and vy = vg. Two
infinite paths in ' are equivalent if they intersect in an infinite path. When T is a
tree, this is an equivalence relation on infinite paths and the boundary OT of T is
the set of these equivalence classes.

For the following, let v € V(I'). Set inrp(v) := {w € V(') | (w,v) € E(I')}
and outr(v) := {w € V(T') | (v,w) € E(I')}. The in-valency of v € V(T') is the
cardinality of inp(v) and the out-valency of v € V(T') is the cardinality of outr(v).
The directed graph I is locally finite if all its vertices have finite in- and out-valency.

A directed line in T' is a sequence (v;);ecz of distinct vertices such that either
(vi,vit1) is an edge for every i € Z, or (v;,v;—1) is an edge for every i € Z.

For a subset A C V(T'), the subgraph of T' spanned by A is the directed graph
with vertex set A and edge set {(v,w) € E(T') | v,w € A}.

The set of descendants of ve V (T') is descr (v):={w € V(T') |3 arc from v to w}.
For A C V(T), set descr(A) := J,c4 descr(v). A directed tree T' is rooted at
vo € V(T) if ' = desc(vp), in which case |inr(v)| = 1 for all vertices v # vy and
|inr (vg)| = 0. The definition of being regular is altered for rooted trees: A directed
tree rooted at vg is regular if |out(v)| is constant for v € V(I').

A morphism between directed graphs 'y = (Vi,E;) and Ty = (13, E») is a
pair (ay,ag) of maps ay : Vi — V, and ag : Ey — E» preserving the graph
structure, i.e. ay (pr;(e)) = pr; ag(e) and ay(pry(e)) = pryag(e) for all e € E;.
An automorphism of a directed graph T' = (V, E) is a morphism « = (ay, ag) from
I to itself such that ay and ag are bijective and a admits an inverse morphism.






CHAPTER V

Tidiness and Scale for Subgroups and Quotients

This section contains joint work with T. Bywaters and H. Gléckner, namely
[BGT16), Section 8]. We generalize several results of [Wil01] about how tidy sub-
groups and the scale behave with respect to taking subgroups and quotients from
automorphisms to endomorphisms. This can be seen as a parallel to the study of
topological entropy given in [BV16]. Generally speaking, the proofs follow the same
basic structure as those for automorphisms but changes need to be made to accom-
modate for the additional complications that arise in the case of endomorphisms.

1. Subgroups

We first explore the effect of taking subgroups on tidiness and the scale. The
following two lemmas show that tidy subgroups behave well when passing to sub-
groups. Lemma [V.2]is applied in Theorem [V.3] which concerns the scale.

Lemma V.1. Let G be a t.d.l.c. group, a € End(G) and H <G closed with a(H) < H.
Further, let W < G be compact open. Then there exists N € Ny such that W_,,NH
is tidy above for a|g, for all n > N.

Proof. Since a(H) < H we conclude that H N W_,, equals
Hn (o™ (W)={weH|Vk € {1,...,n} : o¥(w) € W}
=0

={weH|Vk € {1,...,n}: ¥ (w) e WnH}=("\(alu) F(HNW).
k=0
which is tidy above for a|g by [Will5, Proposition 3] for large n. O

Lemma V.2. Let G be a t.d.l.c. group, a € End(G) and H <G closed with a(H) < H.
Further, let U < G be compact open and tidy for a. Set V' := U N H. Then there
is N € N such that V_y is tidy for a|g.

Proof. Note that V is a compact open subgroup of H. By [Will5| Proposition 3]
there is N € N such that V_y is tidy above for a|g. Since U is minimizing, the
same proposition implies that U_y is tidy for a. By Lemma [V.1] replacing U by
U_n, we may assume that V' is tidy above for «|g. To see that this V' is tidy, we
show that Ly < V where Ly is given in Algorithm [[V.3l Since V < H is closed
this implies that Ly = Ly < V and hence V is tidy below and therefore tidy for
a|g by [Will5l Proposition 8]. First, note that

V.o=(Vin=U-NH
n>0
Also, since V4 is the collection of all elements in V' that admit an a-regressive
trajectory in V.= U N H, it follows that V;. < U, N H. Now, suppose that z € Ly .
Then x € H and there are y € V, and m,n € N such that a™(y) = z and
a™(y) € V_. By the above, y € Uy and a™(y) € U_. Therefore, z € Ly N H. Since
U is tidy for a we have Ly < U and thus conclude z € U N H = V. This shows
Ly <V as required. O
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Theorem V.3. Let G be a t.d.l.c. group and a € End(G). Furher, let H < G be
closed with a(H) < H. Then sp(a|mr) < sg(a). Furthermore, if H<G and U < G is
compact open and tidy for a such that U N H is tidy for a|p, then a((UNH))Uy
is a subgroup of G and sy (a|g) = [«(UNH))Uy : Uy

Proof. By Lemma there is a compact open subgroup U < G which is tidy for
a and such that V := U N H is tidy for a|g. In particular, sg(a|g) = [a(Vy) : V4]
and sg(a) = [a(Uy) : Uy]. Define ¢ : a(Vy)/Vy = a(Uy) /Uyt by p(uVy) = uUy
for all uVy € a(V4)/Vy. Then ¢ is well-defined as V; < Uy. For the first claim
it suffices to show that ¢ is injective. Indeed, assume that p(uVy) = p(vV;) for
some uV,, vV, € a(Vy)/Vy. Then it follows that = := v—!u € a(V,) N U, where
a(Vy) = a((UNH)y) < H. It is now a consequence of [Will5, Lemma 1] that
S UﬂHﬂOé(V+) = Vﬂa(V.,.) =V+.

For the second claim, suppose that H is normal in G. It suffices to show that
a((UNH) ) Uy = Ura((U N H)y): Indeed, this implies that a((U N H)4)Uy is
a group in which case the assertion follows from the previous paragraph. Now,
(UNH)o:=UNH isnormalin Uy :=U and (UNH )41 :=a(UNH),)NUNH is
normal in U, 41 := a(U,)NU for each n € Ny by the following inductive argument:
By the inductive hypothesis, (UNH),, is normal in U,. Hence a((UNH),,) is normal
in a(U,). Since UN H is normal in U, it follows that a((UNH),)NUNH is normal
in a(U,) N U which completes the induction. As a consequence,

(UNH); = ﬂ (UNH), isnormalin U, := ﬂ U,.

n€Ny n€Nyp
Let u € U;. Pick w € Uy with a(w) = u. Applying a to (UNH);w = w(UNH)4,
we deduce that a((UNH)1)u =ua((UNH)L). O

2. Quotients

We now turn our attention to quotients. Again, we first consider tidy subgroups
and then apply our findings to gain insight into the scale. Our first lemma provides
control over a-regressive trajectories. We let Ly and U be as in Algorithm [V.3]

Lemma V4. Let G be a t.d.l.c. group, a € End(G) and U < G compact open as
well as tidy above for . Then U NULy = U.

Proof. By definition 7 <UNULy as U < U and U < ULy. Now, let 2 € UNU Ly.
We need to show xLy < LyU. Indeed, Ly < ULyLy = ULy < LyU. [l

There are examples of automorphisms [Wil01] and associated tidy below sub-
groups which do not behave well when passing to quotients. Lemma [V.6lshows that
although we cannot expect a tidy below subgroup to be tidy below when passing to
a quotient, the original subgroup can be chosen so that the quotient is as close as
possible to being tidy below using Algorithm [V.3l The proof of LemmaV .6l relies
on the following result which is immediate from the proof of [Wil15, Lemma 16].

Lemma V.5. Let G be a t.d.l.c. group, a € End(G) and U < G compact open as
well as tidy above for a. Let w € U. Then uy € UL forany uy € Uy withu =uyu_.

Lemma V.6. Let G be a t.d.l.c. group, a € End(G) and H<G closed with a(H) < H.
Denote by @ the endomorphism induced by « on G/H and by ¢: G — G/H the
quotient map. Then there is a compact open subgroup U of G such that
(i) U tidy for a,
(ii) U N H is tidy for a|g, and
(iii) ¢(U) is tidy above for @, and Lytrq(U) = q(U) Ly -
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Proof. Applying Lemma[V.2] choose V < G compact open and tidy for o and such
that V' N H is tidy for a|g. Then ¢(V) is tidy above for @: On the one hand

«Vo)=a| (o) | S (Na™V) = a "@V) =aqV)-.
n>0 n>0 n>0

Also, Vi ={z € V' |z admits an a-regressive trajectory in V'}. Thus ¢(V}) C ¢(V)4+

as a-regressive trajectories descend to the quotient. Combined, we conclude

q(V) = q(Va Vo) = q(Vi)g(V-) € g(V)+¢(V)-.
That is, ¢(V) is tidy above for @. Now define U := V N g 1 (q(V)"), where ¢(V)~
is as in Algorithm [V.3l Then ¢(U) = ¢(V) and hence ¢(U) is tidy above for @
by [Wil15, Lemma 16]. In addition, by applying [Wil15, Proposition 6 (3)] we see
that Ly = Lgvy = Lgv)- It follows from [Will5, Lemma 13] and ¢(U) = ¢(V)~
that q(U)Lywy = Lgw)q(U). Furthermore, VN H C kerq C ¢~ *(¢(V)"). Hence

UNH=VNHNg¢ ' (qV))=VNH

is tidy for a|#.

It remains to show that U is tidy for a. We begin by proving that U is tidy above
for a. Let u € U. Then since V is tidy above, u = vy v_ for some vy € Vi and we aim
to show that v4 € Uy. Note that ¢(u) = q(vs)q(v_) with q(v+) € (Vi) C q(V)+.
Since ¢(u) € ¢(V), we deduce g(v+) € (¢(V))+ by LemmalV.3l Since a”(v_) € V_
and @"(g(v_)) € (g(V))_ for all n > 0 we have ¢(a™(v_)) € (¢(V))_. Therefore,
the orbit of v_ €V Ng=(q(V))= Ustays in U and we conclude v_ €U_.

As to vy, choose an a-regressive trajectory (v;);en, for vy contained in V. We
show that this sequence is contained within U. It is clear that v = vy € U. Suppose
for the purpose of induction that v,, € U. Applying [Wil15, Lemma 15] we see that
a(vn) € aU) N (Vi) C a(VINa(V); = ((V))s. There exists w € ((V))s with

a(w) = Q(’Un) = a(q(fun+1))'
Now w, q(v,) and g(v,41) are elements of par~(a). By [Will5l Proposition 20],
there is b € bik(@) such that g(v,11) = wb. Since (V) Ly is tidy, b € (V) Lyvy.
Hence q(vny1) € (V) Lyvy. By Lemma V.4l q(v,41) € ¢(V)” whence v,q1 € U.
Inductively, v; € U for all i € Ny and so vy € Uy.

To see that U is tidy below, note that V is tidy below and U C V. Hence
Ly € Vo nV_. Clearly, ¢(Vy NV_) C Ly and so q(Vy NV_) C ¢(V)". Hence
Vo NV_ CU. As a consequence, Lyy C U which implies that U is tidy below, see

[Wil15] Proposition 8]. O

In the following lemma, we factor the subgroup used to calculate the scale.
Later on, we turn this into a factorization of the scale itself.

Lemma V.7. Let G be at.d.l.c. group, a € End(G) and H<G closed with a(H) < H.
Denote by @ the endomorphism induced by a on G/H. Then there is a closed
subgroup J of G with a((H NU)4)Uy < J < a(Uy) and sg/p(@) = [a(Uy) = J].

Proof. Let U satisfy the conclusions of Lemma and let ¢: G — G/H denote
the quotient map. Then q(U) L,y is tidy for @ and
sq (@) = [a@(q(U)+)Lyw) : ¢U)+ L))
using [Wil15l Proposition 4, Proposition 6 (2)]. Now consider the map
a(q(U)4)/(@(q(U)+) N q(U)+Lyw)) = a@(qU)+Lyw))/a(U)+ Ly

given by
9@(qU)+) NaU)+Lyw)) = 9(a(U)+Lyqr))-
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This map is well-defined as @(q(U)+) N q(U)+Lyw)) < q(U)4 Ly Tt is injective
because any two elements in the domain which have the same image have coset
representatives which differ by an element in @(q(U)+) N q(U)4 Lgy- To see sur-
jectivity, simply note that @(Lytr)) < Ly < q(Uy)Lgry by [Will5, Lemma 6].
This shows

sq/a(@) = [a@(q@(U)4)Lyw) : a(U)+ Ly
(1) = [a(qU)+) : a@(q(U)+) N q(U)4Ly(v)]-
We know that @(q(U)y) Nq(U) Ly is closed in G/H because @ and ¢ are con-
tinuous, U is compact and L is closed. Set

J:=q7" (@(q(U)+) Nq(U)+Lyr)) N
By the above, J < a(Uy) is closed. To see a((H NU)L Uy < J note that
)N

2)  qla((HNU))UL) = q(Uy) < qU)+ <alq(U)4) NqU)4 Loy =: S
because a((H NU)4) Uy = Ura((HN U)+) and a((H NU)4) is contained in H.
The formula

z.(yS) :=q(z)yS for x € a(Us) and y € q(Uy)
defines a transitive action of «(Uy) on X :=@(q(U4))/S as ¢(a(Uy)) = a(q(Uy)).
Since S € X has stabilizer ¢! (S)Na(U,) = J under the action, the Orbit Stabilizer
Theorem (as in 1.6.1 (i)]) shows that

a(Uy) : J] = 1X| = [alq(Us)) : S].
Combining this with (2) and (d) we obtain s, p(@) = [a(Uy) : J]. O

Theorem V.8. Let G be at.d.l.c. group, @ € End(G) and HG closed with a(H) < H.
Then sy (alm)sq/a(@) divides sq(a).

Proof. Let U satisfy the conclusions of Lemma[V.6l By Lemma[V 7| there is a closed
subgroup J of G such that
Uy Ca((UNH))UL CJ Ca(Uy).

Recall that by Theorem [V.3 the set a((U N H);)Uy is indeed a subgroup of G.
Applying Lemma and Theorem [V.3] yields

sa(a) = [a(Uy) : Uy]
= [a(Uy) : T : a((U N HY)UJ[a((U 0 H)4)Us < Uy
= sy @) : (U N H) Ui (aln).
which completes the proof. O

We end this section by considering the special case of nested subgroups inside
par~(a) for which we achieve equality in Theorem [V.8

Lemma V.9. Let G be a t.d.l.c. group, @ € End(G) and H < par~(a) closed such
that «(H) = H. Then par— (a|g) = H.

Proof. Suppose © € H. We can find an a-regressive trajectory (z = zg,z1,...)
which is contained in some compact set K. Since a(H) = H we can choose another
a-regressive trajectory (z = yo,y1,...) such that y, € H for all n € N. Therefore
Yn,Tn € par~(a) and hence z; 'y, € bik(a) for all n € N. Thus y, € x, bik(a)
which is contained in K bik(a). Since both K and bik(a) are compact, K bik(a)
is compact and hence K bik(a) N H is a compact subset of H. This shows that
(Yo, Y1, -..) is bounded and hence z € par—(a|g). O
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The following result is known for automorphisms [DS91], Proposition 3.21 (2)].
Its proof utilizes the modular function which is not defined for endomorphisms.
Instead we consider the factoring of the scale given by Theorem

Proposition V.10. Let G be a t.d.l.c. group, @ € End(G) and H < par~ (a) closed
such that a(H) = H. Further, let N < H be closed with a(N) = N. Denote by @
the endomorphism induced by a|g on H/N. Then

su(ala) = spyn(@)sn(aly).

Proof. For simplicity, we write o for a|g as the enveloping group will play no
further role. By Lemma [V.9] par~ (o) = H and so if U < H is compact open as
well as tidy for a, then U = U, by [Will5, Proposition 11].

By Lemma[V.2] we may assume that U N N is tidy for a|y. Let ¢ : H — H/N
denote the quotient map. Choose U < H compact open and satisfying conditions
of Lemma with respect to N. From the proof of Theorem .8 we have

sa (@) = sp/n(@)[J : a((UNN)1)Us]sn(aln),
where .J is given in the proof of Lemma [V.6] by

J =q~ @qU)+) Nq(U)+Lyq) N Uy ).
It suffices to show J < a((U N N)4)Uy. Since q(Uy) < q(U)4, as seen in the proof
of Lemma [V.6 and Uy = U we have ¢(U;) < q(U)+ < ¢(U) = q(U4), which gives
equality throughout. Thus J = ¢~* (@(¢(U)) N q(U)Lyw)) Na(U). Since ¢(U) is an
open identity neighbourhood, we obtain

q(U) Ly = a(U)Lyw) = ¢(U)Lyw)-

Suppose that 2 € ¢! (q(U)Lgyv)). Then we can write 2 = ul for some u € U and
l € g ' (Ly))- Consider q(I) = IN € L. There exists n € N with

@ (IN) = a" ()N € q(U).

This implies a™(l)m € U for some m € N. Then a™(l)m has an a-regressive
trajectory contained in U = U,. Using that fact that N is assumed to satisfy
a(N) = N, choose m’ € N such that a™(m') = m.

Since [Wil15], Proposition 20] implies that any two elements in the preimage
of an element of par~(«a) = H are equal modulo bik(«), we have Im' € U bik(a) by
comparing o™ (Im') = a™(I)m with the a-regressive trajectory for ™ (I)m contained
in U. But U is tidy and so bik(a) < U. Hence I € UN and thus z € UN. This
shows that J C UN Na(U). Suppose now that z € UN Na(U). Then we can write
x =wun where u € U and n € N. Choose a-regressive trajectories

(u = ug, u1,-..), (un =vg,v1,...), and (n =ng,n1,...)

such that u;,v;41 € U for all ¢ > 0 and n; € N for all ¢ € N. Now, notice that
(un = ugnog,uini,...) is also an a-regressive trajectory. For all 7+ > 1 we have
u;n; € v; bik(a). Noting that bik(a) < U, we have n; € U for all i > 1. Then
ny € (UNN); and son =ng = a(ny) € a((UN N)4). As x = un, this shows
zeUa((UNN);)=a((UNN);)U (with equality by Theorem [V.3]). O






CHAPTER VI

Tidiness and Scale via Graphs

This section contains joint work with T. Bywaters, namely [BT17]. We study
Willis’ theory of totally disconnected locally compact groups and their endomor-
phisms in a geometric framework using graphs. This leads to new interpretations
of tidy subgroups and the scale function. Foremost, we obtain a geometric tidy-
ing procedure which applies to endomorphisms as well as a geometric proof of the
fact that tidiness is equivalent to being minimizing for a given endomorphism. Our
framework also yields an endomorphism version of the Baumgartner-Willis tree
representation theorem. We conclude with a construction of new endomorphisms
of totally disconnected locally compact groups from old via HNN-extensions.

1. Characterization of Tidy Subgroups

Let G be a totally disconnected, locally compact group and let o € End(G).
In this section, we characterize the compact open subgroups U of GG which are tidy
for « in terms of certain directed graphs. In doing so we generalize several results
of [M6102] from conjugation automorphisms to general endomorphisms.

Frequently, we restrict to the case where the set {a=*(U) | i € Ny} is infinite
and hence all a=¢(U) (i € Ny) are distinct. The finite case corresponds to Méller’s
periodicity case Lemma 3.1] and is covered by the following lemma.

Lemma VI.1. Let G be a t.d.l.c. group, a € End(G) and U < G compact open. If
{a~4(U) | i € Ny} is finite then there is N € Ny such that V := ﬂkN:0 a FU)=U_
satisfies (V) <V and is tidy for a.

Proof. If {a=*(U) | i € Ny} is finite, then U_ s Nien, @ *(U) is an intersection
of finitely many open subgroups. Say U_=(,_,a *(U)=:V. Then V < G is
compact open and a(V') < V. We conclude V = V_. Hence V is tidy above for a.

Since V =V_ < V__ we also deduce that V__ is open and hence closed. Thus V'
is also tidy below for a. O

1.1. Tidiness Above. We recover the fact that for every compact open sub-
group U < G there is n €Ny such that U_, = (,_, @ "(U) is tidy above for a.

Consider the graph I' defined as follows: Set v_; := a *(U) € P(G) for i € Ny,
where P(G) denotes the power set of G. Now set

V() :={gv_i|g€ G, i €No} and E(T):={(gv_i,gv_i—1)| g€ G, i € No}.

Note that G acts on I' by automorphisms via left multiplication. For this action,
we compute the stabilizer G,_, = a~*(U) (i > 0), as well as

G{v,m\mzo} = ﬂm>0 Oéim(U) =U_.
We now reprove [Wil15l Lemma 4] in terms of the graph T'.

Lemma VI.2. Retain the above notation. Suppose that Uyv_y = Uyv_; for some
N eN. Then U_,,v_,_1 = (U_p)4v_pn_1 for all n > N.

51
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Proof. By definition, (U_,);v_pn 1 C U _pv_pn_1. Now, let w € U_,v_,, 1. Then
there is u € U_,, such that w = uv_,_;. We obtain a™(u) € a"(U_-,,) which equals
U, by Lemma, and is contained in Uy since n > N. Hence, by assumption,
there is uy € Uy such that o™(u)v—; = uyv_1. By definition of Uy, we may pick
u!, € Uy NU_, such that uyv_y = o™(u! )v_y. Then v, € (U_,)4 as by Lemma
we have Uy NU_,, = (U-y)+. We conclude that v/, v_,,_y = uv_,_; since
u' u™! € U_p—y < G,y_,_, by the following argument: We have v/, u™" € U_, by
definition and u/,u™" € @™~ (U) by the subsequent computation:

a”+1(u'+u_1) = q"t! (u@)a”“(u_l) =a(ura™(u™")) eU

since, by construction, uya”(u)~! € G,_, = a~ (V). ad

The following Lemma will be used to prove analogues of Theorems 2.1 and 2.3

from [Mol02].

Lemma VI.3. Retain the above notation. Fix N € N and consider the following:
(1) UN’l},l = U+’U,1.
(ii) For every u € U_p there is uy € U NU_y with uyv; = ww; for all i < 0.
(iii) The subgroup U_x is tidy above for a.
Then (i) implies (ii), and (ii) implies (iii).

Proof. To see (i) implies (ii) let uw € U_pn. By induction, we construct a sequence
(un)nen contained in Uy NU_py such that upv; = uwy; for all i € {—N —n,...,0}.
Then, as Uy NU_ y is compact, (u,)nen has an accumulation point uy € UpNU_y.
We conclude that for any given n € N, we have

uptuy € Gy, =a (V)
for large enough k € N because a~"(U) is open. That is, given n € N we have

Us (V—p) = ug(v—p) = ulv_p)-
for sufficiently large k € N.
Now, by (i), Lemma [VL.2] and Lemma [V.2] we may pick u; € Uy N U_xn such

that wiv_ny_1 = wv_n_1. Next, assume that u, has been constructed for some
n € N. Then uu,,*(v;) = v; for alli € {—N —n,...,0}. That is,

uytu € ﬂ a” (U)=U_N_n.
=0

By Lemmal[VL2] there exists € (U_n—_y)4+ such that u; 'uv_n_p_1 = 20_N_p_1.
By assumption, u,, € Uy NU_y and, by LemmalVI2 2 € (U_n_ )+ =UNU_N_p.
Hence u,z € Uy NU_N. Also, upz(v;) = u(v;) foralli € {—N —n—1,...,0}. We
may therefore set ;1 1= upz.

To see that (ii) implies (iii) we use that, by assumption, for every v € U_n
there is uy € Uy NU_n such that v and uy agree on v; for all¢ < 0. Set u_ := u;lu.
Then u_v; = v; for all 4 < 0. Hence u— € Gy, jm<oy = U- and

U-n=UsrnNU-NU- = (U-n)+(U-n)-
by Lemma, as required. O

Theorem V1.4. Let G be a t.d.l.c. group, a € End(G) and U < G compact open.
Then there is V € N such that Uyv_y = Uyv_1, and U_y is tidy above for a.

Proof. First note that Uyv_y C Upv—_y1 C Upv_; for all 0 < n < m since the sets
U, (n € Np) are nested. Thus it suffices to show that Uyv_; C Ujv_; for some
N € N. Towards a contradiction, assume that Uyv_; C Uyv_y for all n € N, i.e.
there is w, € V(I') such that w, € U,v_y for all n € N but w,, ¢ Uyv_1. Then
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there is a sequence (u,)nen contained in U such that u,, € U, and u,v_1 = w,,.
Since U is compact, the sequence (u,)nen has an accumulation point uy in U. This
accumulation point has to be contained in Uy: Indeed, pick a subsequence (uy,, )ren
of (un)nen converging to uy. Then for any given m € N, we have u,, € Uy, for
almost all k. Since U,, is closed we conclude that vy € U, for every m € N. Hence

uy € [ Un =Uy.
meN

Furthermore, if ujv_; = w, then because uju,! is contained in the open set

G,_, for large enough k£ € N we must have w = wy, for sufficiently large k € N.
We conclude that wy € Uiv_y for sufficiently large £ € N and thus we have a
contradiction. Now, U_ is tidy above for a by Lemma [VL.3l O

Theorem V1.5. Let G be a t.d.l.c. group, a € End(G) and U < G compact open.
Then the following statements are equivalent.

(1) U’l},l = U+’U,1.
(ii) For every u € U there is us € Uy such that uiv; = uw; for all i <0.
(iii) The subgroup U is tidy above for a.
Proof. Note that (i) implies (ii) and (ii) implies (iii) by Lemma [VI.3] for N = 0.
Now, if (iii) holds, then Uv_; = U, U_v_y =Usv_; asU_ < G,_,. O
Proposition VI1.6. Let G be a t.d.l.c. group, a € End(G) and U < G compact open
as well as tidy above for a. Then

U_p:U_pyi]=[U:U_4]=[a ™U):a " U)Na ™(U)]
for all n € N.
Proof. Let u€U_,\U—_p—1. Then a™(u) eU\U_;. Hence [U_p, : U_p,—1]<[U : U_4].
Conversely, if u € U\U_; then u admits a representative in U; by Theorem

Let (un)n be an a-regressive sequence of u contained in U. Then u,, € U_,,_1\U_,,.
Hence equality holds. The same argument applies to the right hand equality. [

The following equality is used in Section [

Lemma VL.7. Let G be a t.d.l.c. group, a € End(G) and U < G compact open as
well as tidy above for a. Then [a(U) : U Na(U)] = [a(Uy) : U4].
Proof. Note that
aU)(UNna(l)) = aU)a(U-)(UNa)) = a(U)(UNa(U))

as a(U-) <U. Thus

[aU):Una@)] =[aUs) : UnaU)Na(Us)] = [aUs) : UnNa(Ug)].
Since U N a(U;) = Uy, the desired equality follows. O

1.2. Tidiness Below. In this section we present a geometric proof for the
commonly used criterion that identifies a compact open and tidy above subgroup
U < G as tidy below if U__ N U = U_, cf. [Will5} Proposition 8].

First, recall that U,y = ;e @' (Uy) and U =;cy, @ *(U-). In terms of
the graph I' introduced in Section [I1], we have

U= UneN G {o_m m<—n}-
Lemma VI.8. Let G be a t.d.l.c. group, a € End(G) and U < G be compact open
as well as tidy above for a. Then

(i) the group U__ < G is closed if and only if U__NU = U_, and
(if) if U__ is closed then Uy NU = Uy.
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Proof. For (i), first assume that U__ NU = U_. Then U__NU is closed. Since U
is closed, this implies that U__ is closed, see [HR12, 5.37].

Now suppose that U__ NU # U_. By definition, U_ C U__ N U. Hence there
exists u € U = Gy, with u € Gy, m<—n} forsomen € Nbut u ¢ U_ = Gy, jm<o}-
Then there is I € N with 0 < I < n and such that uv_; # v_;. Since U is tidy above,
we may decompose v = uqu_ for some uy € Uy and u_ € U_. Hence, replacing u
with uuZ', we may assume that u € U,..

Choose an a-regressive trajectory (u;)jen of w contained in U,. Define a se-
quence (z;);en contained in U__NU; < U as follows: Set 1 := w and z;41 := TiUin.
We collect the relevant properties of the sequences (u;)jen and (z;)ien in the fol-
lowing lemma, see below for an illustration of the second sequence.

Lemma VI.9. The sequences (u;);en and (2;);cn have the following properties.

(a) For all ] eN: Uj S G{vm\mgfnfj} N G{vm‘,jgmgo} N U+ S U__n U+.
(b) For all - € N: x; € G{vm\mgfin} N U+ S U__nN U+.

(c) Forall je N:u; € Gy_,_;.

(d) Forallie Nand 0 < j <i—1:2; € Gy, and Tip1v_—jn = TV jn-

Proof. For (a), note that o (u;) = u € Gy, jm<—n} = Np>n @ *(U) by assump-
tion and therefore u; € @™/ (N5, @7 (U)) = Nispyj @ F(U) = Gropm<—nj}-
For the second part, simply recall that (u;); is an a-regressive trajectory of u
contained in Uy ; in particular, u; € Uy and a™(u;) € Uy < U for all 0 < m < j.
Therefore, u; € ™ (U) =G,_,, forall0 <m < j.

Part (b) follows from (a) given that x;11 = juin = Uty -+ - U(i—1)nWin-

For part (c), recall that we have u ¢ o !(U) = G,,_, by assumption and there-
fore u; ¢ a™'=I(U) = Gy_,_,.

In order to prove part (d), we argue by induction: The element x1 = u satisfies
x1 € G,_, by part (c). Also zov_; = z1v_; because CEl_liL”Q = v luu, = u, and
Un € Gy, |-n<m} Dy part (a). Now assume the statement holds true for i € N and
consider ;11 = z;u;,. Then x4 & G,_,_,, because u;, & G,_,_,, by part (a)
whereas z; € G,_,_,, by part (b). Also, Z;41v_—jn = ;v _jp forall0 < j <i—1
since i1 = TiUlin and Ui, € Gy, —in<m} Dy part (a). O

By Lemmal[VL9] the sequence (z;);ey € U__NUy C U has the following shape,
analogous to Figure 1].

T ———
, N
/ \
é - Iy
-n -1
T2 =~ -~
Ve N s N
/ N/ \
4 3
—2n—-l—n —n —|
:I;k ~ — T~ T~
7 N e N7 N
/ \ / \/ \
é )Y 4 3 Iy
—k(n+1) —kn —2n—-l—-—n —n -l
T =~ =~ =~
7 N e N7 N
/ \ / \/ \
é )Y 4 3 Iy
—k(n+1) —kn —2n—-l—n —n -l

Now, since U is compact, the sequence (z;);en € U__NU; C U has an accumulation
point & € U. However, z ¢ U__ and hence U_ _ is not closed.
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For part (ii), note that Uy C Uy4+ NU by definition. Hence, towards a con-
tradiction, we assume that there is u € (Uyy N U)\Us. Since U is tidy above
we may decompose v = uyu_ with uy € Uy and u— € U_. Replacing u with
ui'u € (Uyy NU)\Us we may hence assume u € U_.

Now, since u € Uy, there is an a-regressive trajectory (un)nen of u in G
such that for some N € N we have u, € Uy for all n > N and un—1 & U.
Consider the element uy € U. For n > N we have a"(uy) = o™ N(u) € U_.
Hence uy € U__ NU. However, uy ¢ U_: Indeed, unx € G,_, = a 1(U) because
un_1 & U. Therefore, by part (i), U__ is not closed. O

1.3. Tidiness. Finally, we combine the previous sections in order to charac-
terize tidiness in terms of a subgraph of the graph I' introduced above. As before, let
G be a t.d.l.c. group, a € End(G) and U < G compact open. Recall the definition
v_i:=a"H(U) € P(G) for i € Ny. We consider the subgraph T'y of T' defined by

VIy) ={uv_; |uel, ieNo}, EIy):={(uv_j,uv_;_1)|uwel, ie Ny}
Note that the action of U < G on I preserves I'y CT" and that 'y = desc(wvp).

Lemma VI.10. Let G be a t.d.l.c. group, o € End(G) and U < G. If U is tidy above
for o then U acts transitively on arcs of a given length issuing from vy € V(T';.).

Proof. Given that outr, (v_pt1) = [@ " ({U) : a "t (U) N a "(U)] as well as
Utv_ylk<n—1} =U-_n+1, this follows by induction from Proposition [VL.6} O

We are now ready to characterize tidiness of U in terms of I';. when the set
{v_; | i € No} is infinite. Concerning the case where {v_; | i € Ny} is finite,
Theorem [VI.11l is complemented by Lemma [Vl

Theorem VI.11. Let G be a t.d.l.c. group, a € End(G) and U < G compact open.
Assume {v_; | i € Ny} is infinite. Then U is tidy for « if and only if T'; is a directed
tree with constant in-valency 1, excluding v, as well as constant out-valency.

Proof. First, assume that U is tidy for a. Notice that for a given i < 0, the in- and
out-valency is constant among the collection of vertices {uv; | u € U} given that U
acts on I'}. by automorphisms.

Concerning in-valencies it therefore suffices to show that each v_; for ¢ > 1
has in-valency equal to one. Suppose otherwise, that is in(v—;) > 2 for some ¢ > 1.
Then there is u € U,_, C a~*(U) such that uv_;;; # v_;11. By Theorem [VL5 we
may assume that u € U,. Now consider u' := af(u) € Uy NU. Since U is tidy
below, Lemma [VL8 shows that u' € Uy = U,y NU. But u € a~**(U) and hence
u' = al(u) ¢ a(U) D Uy, a contradiction. Thus T, is a directed tree.

Concerning out-valencies, we may also restrict our attention to {v_; | i € Np}.
Note that out(vg) = |[Uyv—1| by Theorem as U is tidy above. Furthermore,
out(v—;) = |(UNa~4(U))v—i—1| = |(U+Na~ (U))v_;—1 | by the same theorem. Now,
since I'y is a tree and U, fixes vy, we obtain

out(v_;) = [(Up NU_i)v—i1| = [(U—s) 4 v—i1| = [U_iv_i-1]
by Lemma [VI.2l We conclude the argument by showing that
U—iv—i—1| = [Uv—1| = |Usv-y].

On the one hand, we have |U_;v_;—1| < |Uv_1]|: Indeed, suppose u € U_; does not
fix v_; 1. Then a'(u) does not fix v_;. If it did, we would have a’(u) € a1 (U)
and hence u € o~ 1(U). On the other hand, |[U_;v_; 1| > |[Uv_1]|: Indeed, assume
u € U does not fix v_y, i.e. u  a~'(U). By Theorem VL5, we may assume u € U,.
Pick an a-regressive trajectory (u;);en, of w in U. Then o'*!(u;) = a(u) € U and
hence u; € a~ "1 (U), i.e. u; does not fix v_; ;.
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Now assume that 'y has all the stated properties. Since 'y is a tree, we have
U__NU C U_ while the reverse inclusion holds by definition. Hence U__ is closed
by Lemma [VI.§ and U is tidy below. Combining the constant out-valency assump-
tion with the fact that 'y is a tree we obtain the equality |Uv_1| = |U_;v—;_1].
Next, |U_;v_;—1] = |U;v_1| since |U;u_1| < |Uv_1| and due to the following observa-
tion: If u € U_; is such that uv_; | #v_; 1 then o(u) € a*(U_;) = U; by Lemma
V2l and a™(u)v—_y # v_1. Thus |Ujv_1| > |U_ju_;—1|. Overall, [Uv_,| = |U;v_1].

Finally, to see that the above implies |[Uv_1| = |Ujv_1|, let u € U. Then for
every i € N there is u; € U; with uwv_y = u;v_1. The sequence (u;);ecn is contained
in U and hence admits a convergent subsequence. Any such subsequence converges
to an element u4 € [, U; = Uy which coincides with « on v_;. Theorem
now implies that U is tidy above. O

The following Lemma is a useful test of tidiness as it relies only on calculating
inverse images and indices. It is, in a sense, an algebraic way to see if I} satisfies the
requirements of Theorem [VI.IIl We apply it multiple times in upcoming sections.

Lemma VI.12. Let G be a t.d.l.c. group, a € End(G) and U < G compact open.
Then U is tidy for « if and only if [U : UNa=™(U)]=[U : Una~!(U)]" for all n €N.

Proof. First, assume that U is tidy for «. If {v_; | i € No} is finite, then for some
N € Ny we have [U_y : U_n_1] = 1 by Lemma [VL1] and Proposition shows
that 1 = [U : UNa *(U)] which implies a=*(U) D U. Therefore a~"(U) D U for
all n € N and the assertion follows. Now assume that {v_; | i € No} is infinite.
Then I'; is a rooted directed tree with constant out-valency d and we obtain

U:UNa™U)]=[Up : Uy NU,_ ] =|Uv_p| =d" =[U:Una ()"
by the orbit-stabilizer theorem as desired.

Conversely, assume that [U : UNa " (U)] = [U : UNna 1 (U)]" for alln € N and
consider the graph I';.. We have d := out(vg) = [Uy, : Up,NUy_,] = [U : UNa=' (U)]
as before. By definition of I', the out-valency of any other vertex is at most d. But

|Uv_n| = [Upy : Uy NU,_ ] =[U:UNa™U)]=[U:UNna " ({U)]" =d"

by assumption. Thus, every vertex has out-valency equal to d. Hence I'y is a tree
of constant in-valency 1, excluding vg, and U is tidy for a by Theorem VLIIl O

2. A Graph-Theoretic Tidying Procedure

Let G be a totally disconnected, locally compact group and let o € End(G).
We show that there is a compact open subgroup of G which is tidy for a.

The proof is algorithmic: Starting from an arbitrary compact open subgroup
we construct a locally finite graph I'y 4. A certain quotient, inspired by [Mol00],
of this graph has a connected component isomorphic to a regular rooted tree which
admits an action of a subgroup of G. The stabilizer of the root in this tree is the
desired tidy subgroup.

For the remainder of the section, fix U < G compact open. Refering to Lemma
VL1 we shall assume throughout that {a #(U) | i € Ny} is infinite. By Theorem
VL4 we may also assume that U is tidy above for a.

2.1. The Graph I' .. Consider the graph I'y | defined by
V(F++)={U’U_i | u€Uiy,t € No}, and
E(F++):{(UU71',UU71',1) | u € U++, 1€ No}
The following remark will be used in the proof of Theorem
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Remark VI.13. Note that T is a subgraph of T'. Also, if U is tidy above for a,
the graphs I'; and T" have the same out-valency by Theorem [VL.5l Consequently,
descr(vg) = I'y C descr,, (vo) C descr(vo) = I'y. Hence descr,, (vg) =T'4.

The following Lemma will help to identify vertices in '}, as (un)equal. It is
immediate from the assumption that {a~(U) | i € Ny} is infinite and the fact that
left cosets of distinct subgroups are distinct.

Lemma VI.14. Retain the above notation and let ugv_;, uiv—; € V(I'y4) C P(G).
If wpv—; = wjv_; then i = j. |

Note that U,4 acts on 'y by automorphisms. We now define an injective
graph endomorphism of I';; that appears frequently. Let uv; € V(['yy) where
u € Uyy. Since a(Uyy) = Uyy, there exists u' € Uy, such that a(u') = u. Define
p(uv;) = u'vi—1. The following proposition summarizes the properties of p and
includes justification that p is a well-defined.

Proposition VI.15. Retain the above notation. The map p is a graph isomorphism
from 'y to p(T'y+4) where

V(p(T41)) = {uwv—; |u € Usy, i € N}, and
E(p(T41)) = {(wv—i,uv—i—1) [u € Uyy, i € N}

Proof. We first show p is well-defined. Suppose ugv—;,u1v—; € V(1) represent
the same vertex. Then uy 'u; € a~#(U). Choose wo,w; € Uy with a(w;) = u; for
i € {0,1}. Then a(wy'wi) = ug'ur € a~H(U) and so wy'wy € a~*='(U). This
implies wov_;_1 = wyv_; 1. By Lemma [VL.14] this is enough to show that setting
p(upv_;) = wov_;—1 is well-defined.

To see that p is injective suppose that p(ugv_;) = p(uiv_;). Then there are wy
and w; such that wov_;—1 = wiv_;—1 and a(w;) = u; (i € {0,1}). In particular,
wy wy € a7 Y (U) and so a(wg twi) = uy tuy € a7H(U). Thus uov—1 = ujv—;.

Asto V(p(T'4+)) we have, V(p(T44)) D {uv—; | u € Uy, i € N} by definition
as a(Usy) = Uy . Equality follows from Lemma [VIL.14l

To see that p preserves the edge relation, let (uvv_;,uv_;_1) € E(T'++). Choose
u' € Uyy with a(u') =u. Then (p(uv_;), p(uv_;—1))=(w'v_;_1,u'v_;_2) € BE(T4y).
Thus p is a graph morphism.

Again, we have E(p(T'++)) D {(uv_j,uv_;—1) | u € Uyy, i € N} by definition
as a(Us4) = Uy 4 and equality by Lemma [VL.T4l O

The following two results capture arc-transitivity of the action of Uy on I'f ;.

Lemma VI.16. Retain the above notation. Let 79 and -; be arcs of equal length in
[+ and with origin uvg (v € Usy). Then there is g € Uy such that gyo = 1.

Proof. Note that u=!v; (i € {0,1}) is an arc with origin vy and thus is contained in
descr, (vo). Remark [VI.13 and Lemma [VLI0 show that there exists u' € Uy such
that u'u"1y9 = u~1v;. Then uu'ut € Uy, and g := uu'u"" serves. O

In the following, we write [vg,v_y] for the arc (vo,...,v_g).

Proposition VI.17. Retain the above notation. Let vy and +; be arcs in 'y of
equal length. Then there are v € U,y and n € Ny with either up™yy = v or
up™y1 = v If 70 and 1 both terminate at v—; (i € N), we may choose n = 0 and
u € U++ NU__.

Proof. Suppose 7o originates at u;v_;, and y; originates at u;v_;,. Without loss
of generality assume io > i;. Then pi° % (v) originates at ujv_;, = p® =" (ugv_;,)
for some uj € Uy . For the first assertion it therefore suffices to show that for any
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two arcs o and -y, originating at vertices ugv_; and uyv_; (ugp,u; € Usy), there
exists u € Uy with uyg = 1. Further still, by considering the image of v; under
multiplication by uoufl, we can assume the ug = u;. Now we can extend v; to
'y;- by concatenating on the left with the path (ugvy,...,uqv_;). By Lemma [VLI6]
there exists u € Uy such that uy) = v]. We must necessarily have uyy = 1.

For the second assertion, let v be an arc terminating in v_g. It suffices to show
that there is ¢ € Uy NU__ such that gy C [vg,v_i]. Extending + if necessary, we
can assume without loss of generality that - originates at some uvg where u € U, 4.

We now construct g € U, NU__ such that gy = [vg,v_]. By Lemma [VL.T6]
there exists ' € Uy, such that u'y = [vg,v_]. Applying Lemma [VI.I6] for each
n € Ny there exist w, € Uy such that

! !
Wi (V0, -+, Ve WV g1, o, W V) = [V0,V_p—n]-
The sequence (wy,)ren is contained in U as each element fixes vg. It hence admits a
subsequence converging to some w’ € U. Put g := w'u’ € U4 4. Since the permuta-

tion topology is coarser than the topology on G, we get g(v—_;) = v—_; for all I > k.
That is, g € U—-_ and gy = [vg, v—g]- O

Remark VI1.18. Restricting Proposition[VIL.I7]to the case where v and 7, are single
vertices we conclude that for any two vertices ug,u1 € V(I';4), there are n € Ny
and u € Uy, such that either up™(ug) = u1 or up™(u1) = ug.

We now show that I'; ; is locally finite. We will need the following Lemma which
is a consequence of [Wil15], Proposition 4] given that Ly, see [Will5, Definition
5], is precisely Uy NU__.

Lemma VI.19. The closure of U, NU__ is compact. O

The last assertion of the following proposition will be used to show that T';
admits a well-defined “depth” function.

Proposition VI.20. Retain the above notation. The graph I'; ¢

(i) has constant out-valency,

(ii) has constant in-valency among the vertices {uv_; | u € Uyy, i € N},

(iii) satisfies that the in-valency of uvy (u € Uy, ) is 0,

(iv) is locally finite, and

(v) satisfies that every arc from wv_; to w'v_;—p (u,u’ € Usry; i,k € Np) has
length k.

Proof. If ug,u; € V(I'11), then by Remark [VLI8 and swapping uo with wu; if
necessary, there are g € U, and n € Ny such that gp™(ug) = u;. Proposition[VLI5]
shows that |out(uy)| = |out(p™(uo))|, hence (i). Similarly, in(u) = in(gp™(up)) if
neither uy and uy are of the form wvg for some u € U, 4 and therefore (ii) holds.

The assertion that |in(uwvg)| = 0 follows since for every edge (v'v_;,u'v_;_1)
we have u'v_; 1 # uvy by Lemma [VI.T4

For local finiteness it now suffices to show that both out(vg) and in(v_;) are
finite. Note that by Remark [VL.I3] we have

|out(vo)| = [Uv_y| = [U : Una Y(U)]

which is finite by compactness of U and continuity of a. To see that in(v_;) is
finite, note that by Proposition [VL.I7 each vertex of in(v_;) can be written as uvg
where u € Uy NU__ Na~'(U). Conversely, any such u yields a vertex in in(vp).
Thus

lin(v_1)|=[Us NU__Na " (U): Uy nU__Na” " (U)NT].
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IfUO,Ul € U++ﬂU,,r‘|a’1(U) with ’U/()’U/;l g U then Ug, U1 € U++ N Uffﬂail(U)
a fortiori and uou; ' € U. Thus

lin(v_ )| < U NU__Nna ' (U): U,y nU__Nna " (U)NU].

Applying Lemma [VI.T9 and noting that o~ (U) is closed, Uy, NU__Na~Y(U) is
compact. Furthermore, since U is open, we derive that U, , NU__Na~Y(U)NU
is open in Uy NU__ Na }(U). Thus in(v_,) is finite.

For part (v), let v be an arc from uv_; to uv—;—k. Note that by Proposition
VI17 there is g € Uy with gy C (vo,v_1,-..). By Lemma[NT14l guv_; = v_; and
gu'v_;_j = v—j—p. Thus gy = (v—;,...,v_k) has length k¥ and so does v because
U+ acts by automorphisms. 0

2.2. The quotient 7. The tidying procedure relies on identifying a certain
quotient T of T'; 1 as a forest of regular rooted trees. To define this quotient, we first
introduce a “depth” function ¢ : V(I';+) — Non 'y ; as follows: For v € V(' 4),
choose an arc « originating from some uvg (v € Usy) and terminating at v. Set
1(v) to be the length of . The following is immediate from Proposition VL.20l

Lemma VI.21. Retain the above notation. The map v is well-defined and ¢ (uv_;) =1
for all u € U;4 and i € Np. O

By virtue of Lemma [VI.2Tl we may define the level sets Vj, := ¢~1(k) C V(T'y4)
for k > 0 and the edge sets Ej, := {(w,w') € E(T'+4) | ¥ (w') =k} for k > 1. Tt is
a consequence of Lemma [VI.2]] and Lemma [VL.I4] that (w,w') € Ej, if and only if
there is u € Us 4 such that (w,w') = (wv_p41,uv_g). On Vi, (k> 1) we introduce
an equivalence relation by w ~ w’ if w and w' belong to the same connected
component of I'y 4\ E},. Similarly, for w,w’ € Vp we put w ~ w' if they belong to
the same connected component of I'; ;. Write [w] for the collection of vertices w'
with w ~ w’. Note that for every g € Uy and k € Ny we have gV}, = Vi, and
gE, = Ej. Since the action of U, 4 on I'y; preserves connected components we see
that w ~ w’ if and only if gw ~ gw'. The following Lemma extends this to p.

Lemma VI1.22. Retain the above notation and let k € Ny. Then p(V},) = V41 and
p(E) = Egy1. Hence, for w,w’ € V(') we have w~w' if and only if p(w) ~ p(w').

Proof. The assertions p(Vi) = Vi1 and p(Er) = Ejy; are immediate from the
definitions. Suppose now that w,w’ € Vj are in the same connected component of
'+ \ Ej. By Proposition[VL.IH this can occur if and only if p(w), p(w') € Vi1 are
in the same connected component of p(I'; 1) \ Egt1. By Proposition and the
definition of Ej1, the embedding p(T'14) — T'y4 maps connected components of
p(T44)\ Eg41 to connected components of I'y 1\ Ej+1 and is surjective on Viy1. [

Lemma VI.23. Retain the above notation. There is N € N such that for every
v € descr, , (vo) with ¥(v) > N we have in(v) C descr, , (vo).

Proof. By Proposition [VT.20, we can choose uq, .. .,ur € Uy, Na~!(U) such that
in(v_1) = {ugvo,...,urve}. Since u; € Uyy for all i € {0,...,k}, we may pick
a-regressive trajectories (w})jen, and N; € N such that wf = u; and wj, € U for
all n > N;. Set N =max{N; |i€ {0,...,k}}+ L

Suppose n > N. To see that in(v_,) C descr,, (vo) note that by Proposition
VI20 we have in(v_,) = p" (in(v_1)) = {w_jv_nN41 | i € {0,...,k}}. Since
n—1> N, for all i€{0,...,k}, the path (w!_,vg,...,wi_jv_pi1) is contained in
descr, , (vo). This shows in(v_,,) C descr, , (vo).

In general, let v € descr,, (vo) with ¥(v) = n > N. Applying Proposition
VILIT to the arc (vo,...,v_,) and any arc connecting vg to v, there isuw € UNU, 4
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such that wv_, = v. Furthermore, u descr, (vo) = descr, , (vo) as uvg = vp and it
follows that in(v) = win(v_,) C descr,, (vo). O

Lemma VI.24. Retain the above notation. Then the equivalence classes on I'y
induced by ~ have finite constant size.

Proof. By Proposition and Lemma [VI.22] it suffices to show that a single
equivalence class is finite. Using Lemma [VI1.23] choose N € N such that for every
v € descr, , (vo) with ¢(v) > N we have in(v) C desc(vy). We show that [v_x] C
descr, , (vo). Since desc(vg) NV}, is finite for all & € N, this assertion will follow.
Suppose v € [v_y]. Then v_x and v are in the same connected component of
't 4\ En. Hence there is a path from v_x to v contained in I'y  \ Ex. Choosing arcs
within this path and extending them to Vi if necessary, we see that there are ver-

tices uo, - .., u, € Vi with ug = v_n, up, = v and descr ., (u;) Ndescr,, (wit1) # 0.
We use induction to show that wu; € descr, , (vo). Clearly, uo = v_n € descr, , (vo).
Suppose uy, € descr, , (vo) and let (wp,...,w;) be an arc such that wy = w4, and

wy € descr, , (ug)Ndescr, , (ug+1)- Then w; € descr, , (vo) and ¢(w_;) = N+1 > N.
This implies wy—; € in(w;) C descr, . (vo) by the choice of N. Repeating this pro-
cess until we have up41 = wo € in(w;) C descr,, (vo) completes the induction. [

Now define a directed graph T as the quotient of 'y by the vertex equivalence
relation introduced above. In particular, (Jw], [w']) is an edge in T if and only if there
are representatives w € [w] and w' € [w'] such that (w,w') is an edge in Ty 4. The
following result collects properties of T'. For the statement, we let d,. = |outr, , (vo)|
and d_ = |inp,, (v_1)|. We let ¢ : T'; | — T denote the quotient map.

Lemma VI.25. Retain the above notation. The quotient T' is a forest of regular
rooted trees of degree d; /d_. The map p and the action of U, on I'y descend
to T'. Furthermore, we have the following.

(i) The map p is a graph morphism from T onto p(T') where
V(p(T)) = {[uv=i] | u € Us+, i € N}, and

E(p(T)) = {([wv—i], [uv—i-1]) | w € Uy, i € N},
(ii) For every v € V(T'), the stabilizer (U4 ), acts transitively on outr(v).

Proof. It is clear that if v € V(' )NVp, then |iny([v])| = O since |inp, , (u)| = 0 for
all u € Vp. We now show that if v € 'y ;\Vp, then |iny([v])|=1. Since |inr ., (v)[>1,
we have |inp([v])] > 1. Suppose now that (uo,[v]) and (u1,[v]) are edges in T.
Then there are representatives uj, w; € V(I'yy) such that u} € [u;], w; € [v] and
(uh,wi) e E(T'y4) for i€ {0, 1}. In particular, wy is in the same connected component
of T4\ Ey(wy) as wi. Consequently, ug is in the same connected component of
Ey(we)—1 as uf. As ¥(ug) = (wg) — 1 = ¢(w1) — 1 = 1p(u}), this shows that
uo = [ug] = [u}] = w1 and so (uo, [v]) = (u1,[v]). Hence |in([v])] = 1.

The map p and the action of U;4 on T'y; descend to T by Lemma
and the preceding paragraph. The assertions concerning p and p(T") are immediate
from Proposition VLI5l The same Proposition implies up™(in7(v)) = ing(up™(v)).
Proposition [VI.17 shows that an analogue of Remark [VI.1§ also holds for T'. Hence
T is a forest of regular rooted trees and has constant out-valency.

Let d denote the out-valency of T. As in [Mol00, Lemma 5], we argue that
d = d*/d~. By Lemma [VL.24] equivalence classes of vertices in 'y ; have constant
finite order £ € N. Given v € V(T), let A := ¢~ (v). The d edges issuing from v
end in vertices wy,...,wq € V(T). Put B := o~ ({w1,...,wyq}). Then all edges in
'y, ending in B originate in A because T has in-valency 1. The number of edges
issuing from A, which is kd*, and the number of edges terminating in B, which is
kdd—, are thus equal. Hence d = d*/d™~.
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For (ii), let v € V(T') and wp,u; € outy(v). Pick representatives wo, w(), wy, w}
in V(T'y4) such that ([w;], [w}]) = (v,u;) for i € {0,1} and choose g € Uy4 such
that g(wo,w() = (w1, w]) by Proposition VL7 Then gv = v and gug = us. O

Theorem VI.26. Let G be a t.d.l.c. group and a € End(G). Then there exists a
compact open subgroup V' < G which is tidy for a.

Proof. By Lemma[VL1lwe may assume that {v_; | i € Ny} is infinite. Furthermore,
by Theorem [VI.4] we may assume that U is tidy above for «.

For i € Ny, let v} := ¢(v;) € V(T). In view of the fact that 'y C T, consider
V= Gx,} where X; := [vg] C V(T';y) is the equivalence class of vo in I'y ;.. Then
V' is open in the permutation topology coming from I as Gx, < V = G(x,} and
hence also open (and closed) in G. Since X is finite by Lemma [VI.24] we conclude
that V' is compact as it contains the compact group U as a finite index subgroup.

We have descr, , (Xo) = descr (Xp) by Remark VLT3l Since the group V pre-
serves descr(Xp) it acts on descr, , (Xo) by automorphisms.

It is clear that V preserves V},, E} and connected components. So the action
of V descends to 7" and V' stabilizes vy € V(T). Note that (U;4),; <V and so
iterated application of Lemma shows that V acts transitively on vertices of
fixed depth in T'. Also, V,, =V N a~#(V): Suppose g € V and gv; = uv;, where
uw € Uyy. Then g~ 'u € a~*(U). Thus o(¢g~'u) € U and so a'(g)ve = a'(u)vy.
Applying Lemma [VI.22, we see that gv; ~ v; if and only if a’(g)vy ~ vo. Finally,
applying the orbit-stabilizer theorem and Lemma we have

V:Vna (V)] = Vol,|=(ds/d)" = Vol "= [V :Vna ' (V)"

for all n € N. Hence V is tidy for o by Lemma [VI.12] O

Remark VI.27. Retain the above notation and assume that U is tidy. We argue
that in this case 'y and T coincide: It suffices to show that |in(v)| = 1 for some
v = uwv_; with ¢ > 0 as Proposition shows that the relation ~ on 'y
is trivial. By Remark [VL.I3] and Theorem [VLIIl the graph descr,, (vo) = 'y is
already a tree. Lemma shows that there exists a vertex v with in(v) C T'y.
Thus |in(v)| = 1.

The following lemma will be used in Section [E
Lemma VI.28. Suppose U is tidy for . Then Uy NU__ <U,. NU_ <U.

Proof. Since U is tidy for «, the graph I'y; is a forest of rooted trees by Remark
[VI.27. Note that for each u € Uy NU__, there exists i € Ny such that uv_; = v_;.
Hence Uy NU__ preserves descr, , (vo). Since this is a tree with root v, Uy NU__
is contained within stabg(vg) = U. The claim now follows from Lemma VI8 O

3. The Scale Function and Tidy Subgroups

In this section we link the concept of tidy subgroups to the scale function
and thereby recover results of [Will5] in a geometric manner. First, we make a
preliminary investigation into the intersection of tidy subgroups. Let G be a t.d.l.c.
group, a € End(G) and UM, U?) < G compact open as well as tidy for a.

Proposition VI.29. Retain the above notation. Then
[U(l) .UM N afl(U(l))] = [U(2) - U? n afl(U(2))]

To prove Proposition [VI.29, we need some preparatory lemmas concerning in-
verse images of U(1) and U, The first one complements Lemma [Vl
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Lemma VI.30. Let G be a t.d.l.c. group, @ € End(G) and U < G compact open
and tidy above for a. If {a=™"(U) | n € Ny} is finite then a(U) = U = o~ (U).

Proof. By assumption, the intersection ();—, «~*(U) has only finitely many terms
and hence stabilizes eventually. For sufficiently large n € Ny we therefore have
[U_, :U_,_1] = 1. By Proposition VLG, we get for all m € Nq that

1=[U U o h]=[U:UL]=[U s :U_ppa]=[a"™U) : a~™(U) N o™ (U)].

Form =1, weobtain [U:U_1]=[U:Una ' (U)]=1=[a"}U):Una *U).
That is, a1 (U) D U and U D o' (U) which yields the assertion. a

The next lemma settles Proposition when both {a=*(UM) | n € Ny}
and {a ™(U®)) | n € Ny} are finite.

Lemma VI.31. Retain the above notation. If {a="(U() | n € Ny} is finite for both
i € {1,2} then [UD : UMD na= (UM =[UP : UG na~(UP)] and UHNT®) is
tidy for a.

Proof. The first assertion follows from Lemma [VI.30l By the same Lemma we have
a (UMD NUP)=a (U Na(UP)=UD NU. Lemma VLI now entails
that (UM NUR))_ =UM NUG is tidy for a. O

Retain the above notation and set V := UM N U?). Consider the graph T',
associated to V.

Lemma VI.32. Retain the above notation. Then either I' is a directed infinite tree,
rooted at vy, with constant in-valency 1 excluding the root, or there exists n € Ny
such that o "(V)=a " (V) for all k € N,.

Proof. Note that if (V) =a " (V) then a (V) = a " *(V) for all k € Ny.
Suppose instead that a="(V) # a="~1(V) for all n € Ng. By Lemma [VL.31] we
may assume, without loss of generality, that {a ™(UM")) | n € Ny} is infinite. In
particular, we may consider the graph I',’ associated to UM which is an infinite
rooted tree by Theorem [VL.TIl

We have to show that I';. does not contain a cycle, the in-valency of vg € V/(T';.)
is 0 and the in-valency of every other vertex in I'y is precisely 1. Note that every
vertex excluding vy has in-valency at least 1: By assumption, v_; # v_; ; for all
i € N. In particular v_; € in(v_;_4) for all 7 € N.

Now, suppose there is a cycle (uov—;, ..., unV—j—pn = uov—;) in I'y, where u; €
V for all j € {0,...,n}. Then a (V) = a " ™(V) and so (v_,...,v_; p) is
a non-trivial cycle. We aim to show that v_; has in-valency at least 2 in this
case. We can choose u € a~ =1 (V)\a=i(V): If a=i=1(V) C a=#(V) then iterated
applications of a~! show a~#(V) Da~ 1 (V) Da~ " (V)=a~#(V), in contradiction
to the assumption. Since a~"1(V) =a~ta" (V) =a~la=""(V), we also obtain
u € a L (V) \a " (V). This implies that (uv_; ,,v_; 1) is an edge in Ty
which is distinct from (v_p,_;,v_p_i—1).

Noting that if vy has non-zero in-valency then we have a cycle, it remains to
show that no vertex has in-valency at least 2. We split into two cases: First, consider
the case where {a="(U®)) | n € Ny} is finite. Then a=*(U®) = U®) for all n € Ny
by Lemma and

linp, (v;)] = [a”" (V) ra™ Na~ (V)]
=[a {(UNNUP o (UD)na UMDY NUP)
<UD 10T (UO) Na T U)] = [ingw ()] = 1

for all 7 € N which suffices.
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In the case where {a ™(U®)) | n € Ny} is infinite, suppose for the sake of a
contradiction that wv_, € V(I'y) (n € N) has in-valency at least 2. Choose ver-
tices wu_py1,20—py1 € V(I'y) such that (wv_,i1,uv—_y) and (2v_py1,vv_p) are
distinct edges in FJY Let ¢; : Ty — 1"( (i € {1, 2}) be the graph morphism given
by ¢i(uv_j;) = uv>’ for all j € Ny and u €V CUW, Since each vertex excluding
the root in F has in-valency 1, we have wl(wv,nﬂ) = @i(2v_p4+1). This im-
plies w™'z € o=t (UMW) N " (UP) = o= (V). Thus wv_py1 = 20_n4; in
contradiction to the assumption. O

Set ki = [U® : V] and d; = [UD : UD na1(UD)].
Lemma VI1.33. Retain the above notation. We have k;dl > |Vv_,| > d'/k;. Also,
if {a=4(V)|i € Np} is finite then dy = 1 = ds.

Proof. Since U is tidy, elther the graph F() is a tree with out-valency d; by
Theorem [VLIT] or {a *(U®) | i € Ny} is ﬁmte and a(U(’)) U = ofl(U(’)) by
Lemma [VI30, whence d; = 1. In both cases, kid?® = k;|U®v"") |, as the following
arguments show: In the former case this follows from Lemma [VIIQ, in the latter

we have v'”) = v whence |U(®v"”) | = 1. Next, we have
LUy | = [0 v[U®  UD AaUD)).
Since [a~™(U®) : a=(V )] < [UD : V] we obtain
kiU | > U na—”<U“>>][a—”<U“>> o (V)]
> (U@ ) Na " (UN[a U NnUD . UD na™(V))
=[P :UD na (V)]
| ”—n|

where UMv_,, is the orbit of v_,, under the action U in P(G). Since V < U,
we have k;d? > |[UDwv_,| > |Vv_,| which is the first inequality.

Sincea™"(V) =« "(U(l)) Na (UP) <a™(UW), wehave |[Vv_,| > |Vv |
when considered as orbits in P(G). The orbit-stabilizer theorem now implies

U6 VIV : staby (0))]  [U® : staby (v))]

(1)
Volnl = O V] a ki
S [U(i) stabU( )( @ )] _ |U’U(le| _ d_?
= ki - ki B ki7

as required. Finally, if {a (V) | i € Ng} is finite, then a (V) = a " *(V) for
n sufficiently large and k& € Ny by Lemma [VI.321 Thus (|Vv_,|)nen, eventually
stabilizes. This implies d; = 1. O

Proof. (Proposition [VT1.29). By Lemma [VL33] we may assume that {a~#(V) | i €
Np} is infinite. In this case, Lemma [VI.32] shows that I'y is a rooted tree with root
vo. Let t, = |outr, (v_y)| for n € Ny. Since '} is a rooted tree, t, = [V_,, : V_,_1].
The sequence (t)nen, is non-increasing: Indeed, we have
th—1 = [V—n+1 : V—n] > [V—n : V—n—l] =tp
for all n € N by the following argument: If u,u’ € V_,, with uV_,,_ 1 # «'V_,,_1,
then a(u) € a(V_,) < V_,11 by Lemma V.2 Similarly a(u') € V_,11. However
since u=tu' € a7~ HU), a(u ) a(u') € V_,
Since the sequence (tp)nen, is non-negative, non-increasing and takes integer

values it is eventually constant equal to some integer . Since I'; is a tree, we have
[Vo_,| = H?;ll t;. Given that t; = ¢ for almost all i € Ny there is a constant [ € Q
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such that |Vv_,| = It™ for sufficiently large n. Then

dr

kdl > |Vo_p| =1t" > k—’
for large enough n € N and i € {1,2} by the first claim. As a consequence, we have
t = d; for i € {1,2} which implies the overall assertion. O

The following theorem links the concept of being tidy to the scale function.

Theorem VI1.34. Let G be a t.d.l.c. group, @ € End(G) and U < G compact open.
Then U is tidy for a if and only if U is minimizing for «. In this case, we have

s(a) = |outr, (vo)]-

Proof. Suppose that U is minimizing for a. If {a™*(U) | k € Ng} is finite then
s(a) = 1 by Lemma [VIIl Consequently, a(U) < U. Therefore, we have U = U_
and U__ > U_ = U is open and hence closed.

Assume now that {a *(U) | k € N} is infinite. First, we show that U is tidy
above for a. Suppose otherwise. Then by Theorem [VI.4] and Lemma [VI.3] there is
n € N such that with v_; € V(T') we have |Upv_1| = |[Usv_1| < |[Uv_1| and so that
U_, is tidy above for a. Then

(U ) :aU_)NU G =[U_n:U nna " (U_p)] =[Un:U,Nna (U)]

= |Upv_1| < |Uv|=[U:UNna YU)] = [a(U) : «(U)NU].
where the equalities follow by applying the appropriate power of a to the respective
quotient, using Lemma[[V.2] This contradicts the assumption that U is minimizing.

Now consider the graph T'y, associated to U with out-valency dt, and in-
valency d—, excluding all v € V(T'y4) with ¢(v) = 0. Since U is tidy above,
Theorem [VL5 and Remark [VLI3limply that

dt =|Uv | =[U:Una Y (U)] =[a): aU)NU].
Let V' denote the tidy subgroup constructed from the graph I'y ; associated to U
by Theorem [VLT1l Then the quotient T of Ty ; has out-valency
d=[V:Vna'(V)]=[aV):a(V)NV].
Furthermore, d = d*/d~ by Lemma [VI.25l The fact that U is minimizing now
implies d~ =1. It follows that I';. is already a tree and U is tidy by Theorem [VI.26]

Conversely, assume that U is tidy for a. Let V' < G be a compact open subgroup
which is minimizing. Then V is tidy by the above and Proposition [VI.29 implies
s(@)=[a(V):a(V)NV]=[V:Vna'(V)]=[U:Una ' ({U)]=[aU) : a(U)NT].
That is, U is minimizing. O
Corollary V1I.35. Let G be a t.d.l.c. group and o € End(G). Then s(a™) = s(a)™.

Proof. By Theorem there is a compact open subgroup U < G which is tidy
for a.. Following Theorem [VL.34] the group U is minimizing and therefore
s(a) = [a(U) : a(U)NU]=[U: Una YU)].
Since U is also tidy for o™ by Lemma[VL.12lwe conclude, using the same lemma, that
s(a™) = [a"(U) : a"(U)NU] = [U:UNa " (U)] =[U : UNna " (U)]" = s(a). O

Moller’s spectral radius formula [M6102, Theorem 7.7] for the scale may be
proven as in [Will5] Proposition 18] but with reference to Theorem [VL.28] for the
existence of tidy subgroups.

Theorem VI1.36. Let G be a t.d.l.c. group, a € End(G) and U < G compact open.
Then s(a) = lim,, o [@™(U) : o™(U) N U]/, 0
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4. The Tree-Representation Theorem

In this section, we prove an analogue of the following tree representation theo-
rem for automorphisms due to Baumgartner and Willis [BW04], see also [Hor15].

Theorem VI1.37 ([BWO04], Theorem 4.1]). Let G be a t.d.l.c. group, a € Aut(G) of
infinite order and U <G compact open as well as tidy for a. Then there is a regular
tree T of degree s(a) + 1 and a homomorphism ¢ : Uy x (@) — Aut(T") such that

i) o(Ust x (a)) fixes an end w € 9T and is transitive on 0T \ {w},

ii) the stabilizer of each end in 0T \ {w} is conjugate to (Uy NU_) x (),
(iii) ker(yp) is the largest compact normal subgroup N < U, with a(N) = N,
(iv) @(Usy) is the set of elliptic elements in (Uit % {a)).

To prove an analogous statement for endomorphisms, we let « € End(G) have
infinite order and U < G compact open as well as tidy for a. Let S := U;4 X (@)
be the topological semidirect product semigroup of the (semi)group U, < G and
the semigroup (a) < End(G), where End(G) is equipped with the compact-open
topology and (a) acts continuously on Uy by endomorphisms as «(Uyy) = Us 4,
see [CHKS83l Theorem 2.9, Theorem 2.10]. In particular:

(1) Elements of S have the form (u,a*) for some u € Uy, and k € Ny. We
identify (Uit 4,id) with Uiy, and (id, () with (a).

(2) Composition in S is given by (ug,a*®)(u1,a*1) = (ugako (uy),arotkr).

(3) The topology on S is the product topology on the set Uj 4 x ().

(4) The subsemigroup of S generated by (id, ) is isomorphic to (N, +) because
a € End(G) has infinite order.

We split the construction of the desired tree into the cases s(a) =1 and s(a) > 1.
First, assume s(a) > 1. Recall that v_; := a~*(U) € P(G) for i > 0. We extend
this definition to positive indices by setting v; := a/(U) € P(G) for all i € Z. The
following lemma shows that these vertices are all distinct.

Lemma VI1.38. Retain the above notation. In particular, assume s(a) > 1. Suppose
a™(U) = «™(U) for some n,m € Z. Then m = n.

Proof. For m,n < 0, an equality a~™(U) = a~"(U) with m # n implies that the
set {a *(U) | k € Np} is finite and hence s(a) = 1 by Lemma [VT11

Now, let 0 < m < n. Then Lemma [VI.7] Lemma [VI.12 and Corollary VI.33]
show that

s(0)" = [0"(U4) : U]
=[a"(Uy) : ™ (U3)][@™(Us) : U]
= [0"(U}) : ™ (U )]s(a)"™.
Since m < n and s(a) > 1, we get [a™(Uy) : a™(U4)] # 1. Hence there exists
u € a™(Up)\a™(Us) C a™(U). For the sake of a contradiction, suppose u € a™(U).
Since U is tidy above, there exists ux € Uy such that v = o™ (uy)a™(u_). It
follows that a™(uy)~tu € a™(Uy) < Uy, since a™(Uy) < a™(Uy). Also, we have
a™(u_) € a™(U_) < U_ < U__, and so applying Lemma [VI.28
Oém(U+)71U € U++ NnNU__ S U+ NnU_ S am(U+).
It follows that u € a™(UL.), a contradiction. Thus u & o™ (U) and a™(U) # o™ (U).
Finally, suppose m < 0 < n and a™(U) = a™(U). Then o™ (U) is a compact
open subgroup which is stabilized by o™~ ™. This shows s(a™~™) = 1 which implies
s(a) = 1 by Corollary [VI.35 This contradicts the assumption s(a) > 1. O
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We define a directed graph T'y by setting
V(Tiy) ={uv;|i € Z,u € Uyy} and E(Tyy) = {(uvi,uv; 1 | i € Zyu € Uyy }.

Note that T'; . is a subgraph of T, and that U, acts on T',, by automor-
phisms. We will show that the map p, defined in the paragraph preceding Propo-
sition [VI.15] extends to an automorphism of T, ;. To do so, consider the following
subgroups associated to a:

par (a) := {z € G | there exists a bounded a-regressive trajectory for z},

bik(a) := {z € par—(a) | a”(x) = e for some n € N}.
It follows from [Wil15, Proposition 20], [Wil15] Definition 12] and Theorem [VI.34]
that bik(a) < U. The same proposition implies that for uy,us € U4 < par™ («)
with a(u;) = a(uz) we have u; 'uy € bik(a) < U.
Now define p : Ty, — T as follows: Given uv; € V(T4 ), choose u' € U, ;
such that a(u') = u and set p(uv;) = u'v;—;.

Proposition V1.39. Retain the above notation. Then p is an automorphism of T ;.

Proof. We first show that p is well-defined: By Lemma [VL.38 it suffices to sup-
pose ug,uy,uf,w; € Upy and i € Z are such that uov; = uyv;, a(uj) = up and
a(u}) = ui. Then uj'u; € ai(U) and (uf)~'u) € a*(a?(U)) N Usy. For any
uz € o Y(U) with a(uz) = uy u; we get ((uh) ‘ur) ‘us € bik(a) < o H(U)
as bik(a) < U and a(bik(a)) = bik(a). Hence (uy)~'u; € o'~'(U). This shows
ubv; 1 = u}v;_1 , hence p is well-defined. To see that p is a bijection on V(T ;) note
p(a(u)viy1) = uv; and that p~! defined by uv; — a(u)viy; is well-defined by the
following argument: If uv; = u'v;, then u='u' € o*(U) and a(u)'a(u') € atH(U).
Thus a(u)vir1 = a(u')virs- O

Note that 'y, contains I'y, as a subgraph and I, is a forest of rooted
regular trees by Remark [VT.27] For v € V(T4 ), there is n € Ny such that p"(v) €
V(I'y). This shows that the in-valency of v is 1. We find that T, is a regular
tree with constant out-valency s(«) by Theorem [VLIT] and Remark [VI.I3l Since
p is a translation in Aut(T ;) we see that the subsemigroup generated by p~' is
isomorphic to (N, +).

Define ¢ : Uy 4 U{a) = Aut(T 44 ) by ¢(u)(uw'v;) =uu'v; for all u,u' € Uy, and
o(a*) = p~* for all k € Ny.

Lemma VL40. Retain the above notation. The map ¢ extends to a continuous
semigroup homomorphism ¢ : S — Aut(T'y ).

Proof. Note that ¢ extends separately both to a semigroup homomorphism of
Uiy, and the semigroup generated by a. To show that it extends to a semi-
group homomorphism of S it suffices to show that p(a)p(u) = p(a(u))p(a). Then
o(u,a™) = p(u)p(a™) is well-defined for all uw € Uy and n € Ny. Given a vertex
u'v; € V(T'4,), we obtain as required:

pl@)p(uyu'v; = p~ (uu'vi) = a(uu)vipr = a(u)p™ (u'vi) = (a(u))p(a)uv;.
To see that ¢ is continuous it suffices to show that {z € S | p(z)w = w'} is open in
S for all w,w' € V(I';4). This follows from the fact that the stabilizer V' of w’ in

U4+ is an open subgroup of Uy 4, so z is contained in the open subset (V,id)z C S
and o((V,id)z)w = w'. O

We are now in a position to prove an analogue of Theorem [V1.37] for endomor-
phisms.
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Theorem VI.41. Let G be a t.d.l.c. group, a € End(G) of infinite order, U < G
compact open as well as tidy for a, and S := Uy x (a). Then there is a tree T
and a continuous semigroup homomorphism ¢ : S — Aut(T") such that

(i) T has constant valency s(a) + 1,

(ii) ¢(S) fixes an end w € IT and is transitive on 0T \ {w},
(iii) ker(yp) is the largest compact normal subgroup N < U, with a(N) = N,
(iv) ¢(Us4) is the set of elliptic elements of ¢(S).

Proof. First, assume s(a) > 1. Let T be the undirected graph underlying T,
i.e. the graph with vertex set V(I';,) and edge-relation the symmetric closure
of E(Ty;) C V(I'yy) x V(I'y4). The continuous semigroup homomorphism ¢
from S to Aut(T, 1) defined above induces a continuous semigroup homomorphism
S — Aut(T) for which we use the same letter.

Part (i) is now immediate from the fact that every vertex in T'y, has out-
valency s(a) and in-valency 1.

For part (ii), let w € T be the end associated to the sequence (v;);en,. Then
p(w) = w. If u € Uy, then there exists an a-regressive trajectory for u eventually
contained in U. That is u € o™(U) for all sufficiently large n € N whence uv, = vy,
for sufficiently large n. This shows that uw = w. Overall, we conclude p(S)w = w.

Now consider the end —w € 9T associated to the sequence (v_;);en,. Given
another end ' € 9T defined by (ug_;vk—;)ien, for k € Z and a sequence (ug—;)ien,
in U4y, the sequence u,:lpkw’ represents an end w' € 9T originating from v, and
it suffices to show that there is an element u € U, which maps the sequence of
—w to that of w”. This is a consequence of Lemma by picking a convergent
subsequence inside the compact set U N U4 ..

As to (iii), the kernel of ¢ consists of those elements s € S such that ¢(s) fixes
every vertex of T. That is,

ker(p) =Uysy N ﬂ ﬂ ua (U).
i€ZuEU 44

In particular, ker(y) is compact and satisfies a(ker(p)) = ker(¢) as a(Usy) = Uyy.

Now, let N be any compact normal subgroup of U;; with a(N) = N. Then
©(N) < Aut(Tyy), for some v € V(T';,) because ¢(N) is compact by Lemma
Since N is normal in U, we conclude that

‘p(N) = ‘p(u)(p(N)‘p(u)il < <p(N) n AUt(f++)w(u)v < AUt(f++)v7<p(u)v
for all w € U, 4. Similarly, given that a(N) = N we have

p(N) = p(a(N))p(a)p(a) ™ = p(a(N) o a)p(a)

= g(aoN)p(@)™" = p~ p(N)p < Aut(T14)y 51 (v)-
as well as
P(N) = ¢(@) " p(@)p(N) = p(a) "p(ao N)
= (@) p(a(N))p(a) = pp(N)p™" < Aut(Ti1 )y p0)-
As a consequence, p(N) fixes every vertex in the orbit of v under the action of the
group generated by (S). This group acts vertex-transitively as it contains ¢ (U; )
and both p and p~!. This shows that p(N) fixes T, i.e. p(N) < ker .

For part (iv), write s = (u,a*) (u € Uy, k € N) for elements of S. Given that
o(a) = p~!, we necessarily have k = 0 in order for ((s) to fix a vertex, so s € Uy .
Conversely, every element u € Uy, is contained in «™(U) for all sufficiently large
n € N, so p(u) fixes v, for the same values of n.

Now, assume s(a) = 1. Then a(Uy) = U; by Lemma [VL7 This shows that
Uty = Uy is a compact subgroup with a(Us4) = Uyy. Let T be the (undirected)
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tree with vertex set Z and 4,j € V(T') connected by an edge whenever |i — j| = 1.
Define ¢ : S — Aut(T) by setting ¢(a) to be the translation of length 1 in the
direction of w := (7);en, € 0T, and p(u) to be the identity automorphism of T for
all u € Uy . Then ¢ satisfies all the conclusions of Theorem VL4l O

Remark V1.42. The action in Theorem [VI.47] relates to Theorem in the fol-
lowing manner: Results from [Wil15] Section 9] show that if U is tidy for «, then
bik(a) < U4 and the endomorphism @ of U, /bik(a) induced by a|y,, is an
automorphism. Let ¢ : Uy — Uy /bik(a) be the quotient map. Then ¢(Uy.) is
tidy for @, (¢(Uy))++ = q(Usy) and s(@) = s(a). Extend ¢ to a semigroup homo-
morphism from S to ¢(Us1) x (@) by setting ¢(a) = @. Also, let ¢ : S — Aut(T)
be as in Theorem [VIAT] and ¢’ : ¢(Us4) x (@) — T" as in Theorem Then
there exists a graph isomorphism ¢ : 7' — T such that the diagram

S—2 . Aut(T)

1 I

q(Us4) x (@) —— Aut(T"),
)
where J is conjugation by v, commutes.

5. New Endomorphisms From Old

We conclude with a construction that produces new endomorphisms of totally
disconnected, locally compact groups from old, inspired by [Will5, Example 5].

Let G; and G be totally disconnected compact groups. Assume that there
are isomorphisms p; : G; = H; = G; < G; (i € {1,2}) of G; onto compact open
subgroups H; < G;. Consider the HNN-extension G of G; X G5 which makes the
isomorphic subgroups Hy x G5 =2 G1 X G2 2 G x Hy conjugate:

G = (G x G, t | {t7 (ha, g2)t = (1" (h1), 92(g2)) | (h1,92) € Hi X Ga}).

Set U := G; X Gy < G. Given that G commensurates U, it admits a unique group
topology which makes the inclusion of U into G continuous and open, see [Bou98|,
Chapter III, §1.2, Proposition 1]. Then G is a non-compact t.d.l.c. group which
contains U := G X G5 as a compact open subgroup. Define 8 € End(G) by setting
B(t) =t and B(g1,92) = (¢1(91), g2) for all (g1, 92) € G1 X G2. Then

Bt (b, g2)t) =t (o1 (1), g2)t = (1, g2) = By (h1), g2).

for all (h1,g2) € Hy XG5 and hence § indeed extends to G. Note that 3 is continuous:
Let V < G be open. Then sois V N (H; N G3) and

BTHV) 287 (VN (HING2)NU
which is open in U and therefore in G since ¢ is continuous. Observe that s(8) =1
as B(U) < U.Let a := ¢;03 € End(G) where ¢; : G — G, g+ tgt~! is conjugation
by t. For (gl, hg) € G1 x Hy we have
(E) algr, he) = 18(g1, ha)t = t(p1(g1), b2t = (91 (g1), 5" (h2))
We proceed to show that U is tidy for o and compute s(a).

Lemma V1.43. Retain the above notation. Then U is tidy for « and s(a) =[G» : Hs].

Proof. We proceed via Lemma[VIL12 First, we show that a="(U)NU =G1xp%(G3).
The inclusion Gy X ¢2(G2) < a~"(U) N U follows from equation (E). Suppose g ¢
G1 %% (Gs). We will show g & a™™(U)NU. If g ¢ U, then we are done and so we may
write g = (g91,92) € G1 X (G2 \ 93 (Hz)). By equation (El), there exists 0 < m < n
such that a™ (g1, g2) € G1 % (G2 \ H2). We therefore show that a!(g},g5) & U for
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all I € N whenever (g1, 95) € G1 x (G2\Hz). Indeed, o (g1, g2) = t' (2 (g1), g2)t "
is not contained in U: If # (¢! (g1), g2)t ™" = (g}, 95) € U then

- t((pll (gl)a 92)t71 T til(giil ) géil) =1,
contradicting Britton’s Lemma on words in HNN-extensions, see [Bri63), Lemma 4]

or [LS15, Theorem 2.1].

We have shown that o "(U) NU = G; x ¢5(G2). Since 5 (Gs) is a nested
series of subgroups for n € N, we have

[U:Una ™U)] =[G xGy:G1 x p3(G2)] =[Gz : v5(G2)]

= 1:[[903((;2) 1 GY)] = [Go : Ha)™
i=0

Lemma [VI.12] shows that U is tidy. By Lemma [VI.43] we have
S(Oé):[UCUﬂail(U)]:[G1XG23G1XH2]:[G2 ZHQ]. O
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